SORA

Advancing, promoting and sharing knowledge of health through excellence in teaching, clinical practice and research into the prevention and treatment of illness

Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort.

Hvidtfeldt, UA; Chen, J; Andersen, ZJ; Atkinson, R; Bauwelinck, M; Bellander, T; Brandt, J; Brunekreef, B; Cesaroni, G; Concin, H; et al. Hvidtfeldt, UA; Chen, J; Andersen, ZJ; Atkinson, R; Bauwelinck, M; Bellander, T; Brandt, J; Brunekreef, B; Cesaroni, G; Concin, H; Fecht, D; Forastiere, F; van Gils, CH; Gulliver, J; Hertel, O; Hoek, G; Hoffmann, B; de Hoogh, K; Janssen, N; Jørgensen, JT; Katsouyanni, K; Jöckel, K-H; Ketzel, M; Klompmaker, JO; Lang, A; Leander, K; Liu, S; Ljungman, PLS; Magnusson, PKE; Mehta, AJ; Nagel, G; Oftedal, B; Pershagen, G; Peter, RS; Peters, A; Renzi, M; Rizzuto, D; Rodopoulou, S; Samoli, E; Schwarze, PE; Severi, G; Sigsgaard, T; Stafoggia, M; Strak, M; Vienneau, D; Weinmayr, G; Wolf, K; Raaschou-Nielsen, O (2021) Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort. Environ Res, 193. p. 110568. ISSN 1096-0953 https://doi.org/10.1016/j.envres.2020.110568
SGUL Authors: Atkinson, Richard William

[img] Microsoft Word (.docx) Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (98kB)
[img] Microsoft Word (.docx) (Tables and figures) Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (3MB)
[img] Microsoft Word (.docx) (Appendix) Accepted Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (63kB)

Abstract

BACKGROUND: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the "Effects of Low-level Air Pollution: A Study in Europe" (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence. METHODS: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status). RESULTS: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m3 PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m3 PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m3 PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative. CONCLUSIONS: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.

Item Type: Article
Additional Information: © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Keywords: Air pollution, Elemental components, Fine particulate matter, Lung cancer incidence, Pooled cohort, Air pollution, Elemental components, Fine particulate matter, Lung cancer incidence, Pooled cohort, Toxicology, 03 Chemical Sciences, 05 Environmental Sciences, 06 Biological Sciences
SGUL Research Institute / Research Centre: Academic Structure > Population Health Research Institute (INPH)
Journal or Publication Title: Environ Res
ISSN: 1096-0953
Language: eng
Dates:
DateEvent
February 2021Published
2 December 2020Published Online
29 November 2020Accepted
Publisher License: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0
Projects:
Project IDFunderFunder ID
R-82811201Environmental Protection Agencyhttp://dx.doi.org/10.13039/501100001589
2017–00641Swedish Research Council Formashttp://dx.doi.org/10.13039/501100001862
PubMed ID: 33278469
Go to PubMed abstract
URI: https://openaccess.sgul.ac.uk/id/eprint/112745
Publisher's version: https://doi.org/10.1016/j.envres.2020.110568

Actions (login required)

Edit Item Edit Item