SORA

Advancing, promoting and sharing knowledge of health through excellence in teaching, clinical practice and research into the prevention and treatment of illness

Bacterial pathogens and resistance causing community acquired paediatric bloodstream infections in low- and middle-income countries: a systematic review and meta-analysis

Droz, N; Hsia, Y; Ellis, S; Dramowski, A; Sharland, M; Basmaci, R (2019) Bacterial pathogens and resistance causing community acquired paediatric bloodstream infections in low- and middle-income countries: a systematic review and meta-analysis. Antimicrobial Resistance & Infection Control, 8 (1). p. 207. ISSN 2047-2994 https://doi.org/10.1186/s13756-019-0673-5
SGUL Authors: Hsia, Yingfen

[img]
Preview
PDF Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
[img] Microsoft Word (.docx) (Supplementary table) Published Version
Available under License Creative Commons Attribution.

Download (23kB)
[img]
Preview
PDF (Supplementary figure) Published Version
Available under License Creative Commons Attribution.

Download (24kB) | Preview

Abstract

Background Despite a high mortality rate in childhood, there is limited evidence on the causes and outcomes of paediatric bloodstream infections from low- and middle-income countries (LMICs). We conducted a systematic review and meta-analysis to characterize the bacterial causes of paediatric bloodstream infections in LMICs and their resistance profile. Methods We searched Pubmed and Embase databases between January 1st 1990 and October 30th 2019, combining MeSH and free-text terms for “sepsis” and “low-middle-income countries” in children. Two reviewers screened articles and performed data extraction to identify studies investigating children (1 month-18 years), with at least one blood culture. The main outcomes of interests were the rate of positive blood cultures, the distribution of bacterial pathogens, the resistance patterns and the case-fatality rate. The proportions obtained from each study were pooled using the Freeman-Tukey double arcsine transformation, and a random-effect meta-analysis model was used. Results We identified 2403 eligible studies, 17 were included in the final review including 52,915 children (11 in Africa and 6 in Asia). The overall percentage of positive blood culture was 19.1% [95% CI: 12.0–27.5%]; 15.5% [8.4–24.4%] in Africa and 28.0% [13.2–45.8%] in Asia. A total of 4836 bacterial isolates were included in the studies; 2974 were Gram-negative (63.9% [52.2–74.9]) and 1858 were Gram-positive (35.8% [24.9–47.5]). In Asia, Salmonella typhi (26.2%) was the most commonly isolated pathogen, followed by Staphylococcus aureus (7.7%) whereas in Africa, S. aureus (17.8%) and Streptococcus pneumoniae (16.8%) were predominant followed by Escherichia coli (10.7%). S. aureus was more likely resistant to methicillin in Africa (29.5% vs. 7.9%), whereas E. coli was more frequently resistant to third-generation cephalosporins (31.2% vs. 21.2%), amikacin (29.6% vs. 0%) and ciprofloxacin (36.7% vs. 0%) in Asia. The overall estimate for case-fatality rate among 8 studies was 12.7% [6.6–20.2%]. Underlying conditions, such as malnutrition or HIV infection were assessed as a factor associated with bacteraemia in 4 studies each. Conclusions We observed a marked variation in pathogen distribution and their resistance profiles between Asia and Africa. Very limited data is available on underlying risk factors for bacteraemia, patterns of treatment of multidrug-resistant infections and predictors of adverse outcomes.

Item Type: Article
Additional Information: © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
SGUL Research Institute / Research Centre: Academic Structure > Infection and Immunity Research Institute (INII)
Journal or Publication Title: Antimicrobial Resistance & Infection Control
ISSN: 2047-2994
Language: en
Dates:
DateEvent
30 December 2019Published
23 December 2019Accepted
Publisher License: Creative Commons: Attribution 4.0
URI: https://openaccess.sgul.ac.uk/id/eprint/111537
Publisher's version: https://doi.org/10.1186/s13756-019-0673-5

Actions (login required)

Edit Item Edit Item