Ong, CWM; Pabisiak, PJ; Brilha, S; Singh, P; Roncaroli, F; Elkington, PT; Friedland, JS
(2017)
Complex regulation of neutrophil-derived MMP-9 secretion in central nervous system tuberculosis.
J Neuroinflammation, 14 (1).
p. 31.
ISSN 1742-2094
https://doi.org/10.1186/s12974-017-0801-1
SGUL Authors: Friedland, Jonathan Samuel
|
PDF
Published Version
Available under License Creative Commons Attribution. Download (5MB) | Preview |
Abstract
BACKGROUND: Central nervous system tuberculosis (CNS-TB) may be fatal even with treatment. Neutrophils are the key mediators of TB immunopathology, and raised CSF matrix metalloproteinase-9 (MMP-9) which correlates to neutrophil count in CNS-TB is associated with neurological deficit and death. The mechanisms by which neutrophils drive TB-associated CNS matrix destruction are not clearly defined. METHODS: Human brain biopsies with histologically proven CNS-TB were stained for neutrophils, neutrophil elastase, and MMP-9. Neutrophil MMP-9 secretion and gene expression were analyzed using Luminex and real-time PCR. Type IV collagen degradation was evaluated using confocal microscopy and quantitative fluorescent assays. Intracellular signaling pathways were investigated by immunoblotting and chemical inhibitors. RESULTS: MMP-9-expressing neutrophils were present in tuberculous granulomas in CNS-TB and neutrophil-derived MMP-9 secretion was upregulated by Mycobacterium tuberculosis (M.tb). Concurrent direct stimulation by M.tb and activation via monocyte-dependent networks had an additive effect on neutrophil MMP-9 secretion. Destruction of type IV collagen, a key component of the blood-brain barrier, was inhibited by neutralizing neutrophil MMP-9. Monocyte-neutrophil networks driving MMP-9 secretion in TB were regulated by MAP-kinase and Akt-PI3 kinase pathways and the transcription factor NF-kB. TNFα neutralization suppressed MMP-9 secretion to baseline while dexamethasone did not. CONCLUSIONS: Multiple signaling paths regulate neutrophil-derived MMP-9 secretion, which is increased in CNS-TB. These paths may be better targets for host-directed therapies than steroids currently used in CNS-TB.
Statistics
Actions (login required)
Edit Item |