Lu, Z; Ngan, MP; Lin, G; Yew, DTW; Fan, X; Andrews, PLR; Rudd, JA
(2017)
Gastric myoelectric activity during cisplatin-induced acute and delayed emesis reveals a temporal impairment of slow waves in ferrets: effects not reversed by the GLP-1 receptor antagonist, exendin (9-39).
Oncotarget, 8 (58).
pp. 98691-98707.
ISSN 1949-2553
https://doi.org/10.18632/oncotarget.21859
SGUL Authors: Andrews, Paul Lyn Rodney
|
PDF
Published Version
Available under License Creative Commons Attribution. Download (4MB) | Preview |
Abstract
Preclinical studies show that the glucagon-like peptide-1 (GLP-1) receptor antagonist, exendin (9-39), can reduce acute emesis induced by cisplatin. In the present study, we investigate the effect of exendin (9-39) (100 nmol/24 h, i.c.v), on cisplatin (5 mg/kg, i.p.)-induced acute and delayed emesis and changes indicative of 'nausea' in ferrets. Cisplatin induced 37.2 ± 2.3 and 59.0 ± 7.7 retches + vomits during the 0-24 (acute) and 24-72 h (delayed) periods, respectively. Cisplatin also increased (P<0.05) the dominant frequency of gastric myoelectric activity from 9.4 ± 0.1 to 10.4 ± 0.41 cpm and decreased the dominant power (DP) during acute emesis; there was a reduction in the % power of normogastria and an increase in the % power of tachygastria; food and water intake was reduced. DP decreased further during delayed emesis, where normogastria predominated. Advanced multifractal detrended fluctuation analysis revealed that the slow wave signal shape became more simplistic during delayed emesis. Cisplatin did not affect blood pressure (BP), but transiently increased heart rate, and decreased heart rate variability (HRV) during acute emesis; HRV spectral analysis indicated a shift to 'sympathetic dominance'. A hyperthermic response was seen during acute emesis, but hypothermia occurred during delayed emesis and there was also a decrease in HR. Exendin (9-39) did not improve feeding and drinking but reduced cisplatin-induced acute emesis by ~59 % (P<0.05) and antagonised the hypothermic response (P<0.05); systolic, diastolic and mean arterial BP increased during the delayed phase. In conclusion, blocking GLP-1 receptors in the brain reduces cisplatin-induced acute but not delayed emesis. Restoring power and structure to slow waves may represent a novel approach to treat the side effects of chemotherapy.
Item Type: | Article | ||||||
---|---|---|---|---|---|---|---|
Additional Information: | Copyright: Lu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | ||||||
Keywords: | GLP-1 receptors, cisplatin, emesis, ferret, gastric myoelectric activity | ||||||
SGUL Research Institute / Research Centre: | Academic Structure > Institute of Medical, Biomedical and Allied Health Education (IMBE) Academic Structure > Institute of Medical, Biomedical and Allied Health Education (IMBE) > Centre for Biomedical Education (INMEBE) |
||||||
Journal or Publication Title: | Oncotarget | ||||||
ISSN: | 1949-2553 | ||||||
Language: | eng | ||||||
Publisher License: | Creative Commons: Attribution 3.0 | ||||||
Projects: |
|
||||||
PubMed ID: | 29228720 | ||||||
Go to PubMed abstract | |||||||
URI: | https://openaccess.sgul.ac.uk/id/eprint/109450 | ||||||
Publisher's version: | https://doi.org/10.18632/oncotarget.21859 |
Statistics
Actions (login required)
![]() |
Edit Item |