SORA

Advancing, promoting and sharing knowledge of health through excellence in teaching, clinical practice and research into the prevention and treatment of illness

The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium.

Cloke, B; Huhtinen, K; Fusi, L; Kajihara, T; Yliheikkilä, M; Ho, KK; Teklenburg, G; Lavery, S; Jones, MC; Trew, G; et al. Cloke, B; Huhtinen, K; Fusi, L; Kajihara, T; Yliheikkilä, M; Ho, KK; Teklenburg, G; Lavery, S; Jones, MC; Trew, G; Kim, JJ; Lam, EW; Cartwright, JE; Poutanen, M; Brosens, JJ (2008) The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. ENDOCRINOLOGY, 149 (9). 4462 - 4474 (13). ISSN 0013-7227 https://doi.org/10.1210/en.2008-0356
SGUL Authors: Cartwright, Judith Eleanor

[img]
Preview
["document_typename_application/pdf; charset=binary" not defined] Published Version
Available under License St George's repository terms & conditions.

Download (416kB) | Preview

Abstract

Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. We now show an important role for androgen receptor (AR) signaling in this differentiation process. Decreased posttranslational modification of the AR by small ubiquitin-like modifier (SUMO)-1 in decidualizing cells accounted for increased responsiveness to androgen. By combining small interfering RNA technology with genome-wide expression profiling, we found that AR and progesterone receptor (PR) regulate the expression of distinct decidual gene networks. Ingenuity pathway analysis implicated a preponderance of AR-induced genes in cytoskeletal organization and cell motility, whereas analysis of AR-repressed genes suggested involvement in cell cycle regulation. Functionally, AR depletion prevented differentiation-dependent stress fiber formation and promoted motility and proliferation of decidualizing cells. In comparison, PR depletion perturbed the expression of many more genes, underscoring the importance of this nuclear receptor in diverse cellular functions. However, several PR-dependent genes encode for signaling intermediates, and knockdown of PR, but not AR, compromised activation of WNT/β-catenin, TGFβ/SMAD, and signal transducer and activator of transcription (STAT) pathways in decidualizing cells. Thus, the nonredundant function of the AR in decidualizing HESCs, centered on cytoskeletal organization and cell cycle regulation, implies an important role for androgens in modulating fetal-maternal interactions. Moreover, we show that PR regulates HESC differentiation, at least in part, by reprogramming growth factor and cytokine signal transduction.

Item Type: Article
Additional Information: PubMed ID: 18511503
Keywords: Science & Technology, Life Sciences & Biomedicine, Endocrinology & Metabolism, PREMATURE OVARIAN FAILURE, BREAST-CANCER CELLS, MENSTRUAL-CYCLE, STROMAL CELLS, SMOOTH-MUSCLE, LIGHT-CHAIN, PROTEIN, EXPRESSION, ACTIN, MIGRATION
SGUL Research Institute / Research Centre: Academic Structure > Molecular and Clinical Sciences Research Institute (MCS)
Academic Structure > Molecular and Clinical Sciences Research Institute (MCS) > Vascular (INCCVA)
Journal or Publication Title: ENDOCRINOLOGY
ISSN: 0013-7227
Related URLs:
Dates:
DateEvent
1 September 2008Published
Web of Science ID: WOS:000258660800030
URI: https://openaccess.sgul.ac.uk/id/eprint/100995
Publisher's version: https://doi.org/10.1210/en.2008-0356

Actions (login required)

Edit Item Edit Item