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Abstract

In a clinical infection, multiplying and non-multiplying bacteria co-exist. Antibiotics kill multiplying bacteria, but they are
very inefficient at killing non-multipliers which leads to slow or partial death of the total target population of microbes in an
infected tissue. This prolongs the duration of therapy, increases the emergence of resistance and so contributes to the short
life span of antibiotics after they reach the market. Targeting non-multiplying bacteria from the onset of an antibiotic
development program is a new concept. This paper describes the proof of principle for this concept, which has resulted in
the development of the first antibiotic using this approach. The antibiotic, called HT61, is a small quinolone-derived
compound with a molecular mass of about 400 Daltons, and is active against non-multiplying bacteria, including methicillin
sensitive and resistant, as well as Panton-Valentine leukocidin-carrying Staphylococcus aureus. It also kills mupirocin resistant
MRSA. The mechanism of action of the drug is depolarisation of the cell membrane and destruction of the cell wall. The
speed of kill is within two hours. In comparison to the conventional antibiotics, HT61 kills non-multiplying cells more
effectively, 6 logs versus less than one log for major marketed antibiotics. HT61 kills methicillin sensitive and resistant S.
aureus in the murine skin bacterial colonization and infection models. No resistant phenotype was produced during 50 serial
cultures over a one year period. The antibiotic caused no adverse affects after application to the skin of minipigs. Targeting
non-multiplying bacteria using this method should be able to yield many new classes of antibiotic. These antibiotics may be
able to reduce the rate of emergence of resistance, shorten the duration of therapy, and reduce relapse rates.
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Introduction

The traditional route for identifying early hits in antibiotic

research is to target multiplying bacteria. All current antibiotics

have been generated this way. Activity of a potential antibiotic in

such assays is predictive of an antimicrobial effect in humans

(bearing in mind many compounds are not suitable due to

undesirable characteristics such as toxicity). The disadvantage of

this route is that the numbers of novel classes of non-toxic

compounds which kill multiplying bacteria may have been almost

exhausted [1] and those that remain, may require substantial effort

and expense to bring to market. Furthermore anti-multiplying

agents are almost always either inactive or only partially active

against non-multiplying or slowly multiplying or persister bacteria

[2,3,4,5,6] which leads to the need for multiple doses of antibiotics

in order to achieve cure of a bacterial infectious disease. This

prolongs the duration of therapy and increases the emergence of

resistance. Since bacterial resistance reduces the effectiveness of

antibiotics, new ones are required at regular intervals, as the old

ones lose their potency for most infections. However, the number

of new antibiotics which reach the market each year is falling

[1,3,5,7,8]. Whilst at least 15 classes of antibiotics were introduced

into the market between 1940 and 1962 [3], only three new classes

of antibiotics have been marketed since then [9,10,11]. Together

with their subsequent analogues, each class loses effectiveness, at

least for some species of bacteria such as Gram-negatives, within

50 years after entry into the market. So, if we continue to use

existing technologies for the next 50 years, it is unlikely that we will

produce enough new classes to prevent the antibiotic era fading

away. A fundamentally new route for antibiotic drug discovery is

required if the antibiotic era is to continue. Bacterial molecules

have been targeted, in order to create new drugs, but this has not

produced any new classes of antibiotics which have reached the

market [7]. Another potential way to develop new antibacterials is

to use bacteriophages. Although this method has been utilized for

decades, no marketed bacteriophages are available in Western

countries for licensed medicinal purposes.

We have proposed a new approach for the production of novel

classes of antibiotics [1,3]. This new route targets whole bacteria

which are in the non-multiplying stage from the beginning of the

discovery process. In a clinical infection, there is co-existence of

multiplying bacteria and non-multiplying bacteria [5,12]. Al-

PLoS ONE | www.plosone.org 1 July 2010 | Volume 5 | Issue 7 | e11818



though non-multipliers do not cause overt disease, they act as a

pool from which multiplying bacteria emerge to cause recurrent

disease. Current antibiotics kill multiplying bacteria, but they are

very inefficient at killing non-multipliers [3,4,13,14] which leads to

slow or partial death of the total target population in an infected

tissue. This results in repeated administration of antibiotics and

leads to extended periods of antibiotic treatment. For example,

tuberculosis has a drug regimen lasting at least six months [15].

Bacterial endocarditis is treated for several weeks. Non-multipliers

probably also occur in many other common infections such as sore

throat and infected eczema [3,5,7,16]. In turn, these repeat-dose

drug treatments can result in the emergence of antibiotic resistance

associated with poor patient compliance [3,16]. These contribute

to the short life span of antibiotics when they reach the market. An

ideal antibiotic would swiftly kill all of the non-multiplying and

multiplying bacteria in an infected tissue, thereby shortening

antibiotic regimens. This process should slow the emergence of

genetic resistance, because mutation cannot occur if there are no

live target bacteria. Unfortunately, no marketed antibiotic lives up

to this ideal, and resistance is now widespread.

Here we describe a proof of principle study for a new approach

in which we have selected for a compound throughout the

discovery process that has activity against non-multiplying

bacteria. The lead compound, HT61 which is a topical antibiotic,

is more bactericidal for non-multiplying bacteria than marketed

antibiotics but is less potent against multiplying organisms. It does

not induce resistance over 50 passages of suboptimal treatment.

HT61 kills non-multiplying bacteria in an animal model, and is

not toxic when applied to the skin of minipigs. This compound is

now in clinical trials.

Results

Establishment of a long term non-multiplying stationary
phase model for drug selection

In order to establish stationary phase models, methicillin-

sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S.

aureus (MRSA) were grown in nutrient broth for 10 days. Viability

of the bacteria was determined by CFU counts at different time

points. As shown in Fig 1, the growth in both aerated cultures

reached peaks (1.56109 CFU/ml) at 24 hours of growth, the CFU

counts remained relatively constant until 6 days of incubation for

MSSA and 7 days for MRSA, then gradually decreased to a value

of about 36108 CFU/ml after 10 days of incubation.

Long-term stationary phase cultures of 5 to 6 days were chosen.

These late stationary phase cultures, as seen in Fig. 1, may

represent a mixed population with a dynamic balance of cell

division and cell death [17]. In order to induce the bacterial cells

into a non-replicating stage, we washed and incubated the cells

with PBS. No changes in CFU counts of the bacteria were

observed after 24 hours of incubation in the buffer (data not

shown) indicating that the bacteria were in a non-multiplying state.

The nutrient depleted 5–6 day stationary phase cell suspension

was used to screen or test drugs and was called non-multiplying

stationary phase bacteria.

Strategy of screening drugs against non-multiplying
bacteria

A previous study has demonstrated that fluoroquinolones such

as ciprofloxacin, ofloxacin, levofloxacin, moxifloxacin, and gati-

floxacin exhibit bactericidal activity against stationary phase and

persistent Mycobacterium tuberculosis [18]. We used a company,

Argenta Discovery UK, to search similar commercially available

structures to quinolones using a virtual screening technique. All 2-

D substructure and similarity searches were carried out in the

Argenta ‘‘Unity’’ database which comprised 952,601 commercial-

ly available, drug-like compounds collated from the collection of

over 40 suppliers worldwide. As a result of the computer aided

search, we chose 57 quinolone-like compounds which we obtained

commercially. We screened activities of these compounds against

non-multiplying MSSA using the model described above. We

found that only two of these compounds with similar structures

showed stationary phase bactericidal effects with 2–3 log kill of

non-multiplying bacteria. We used these active compounds as core

structures to synthesise analogues. Over 300 new derivative

compounds were synthesised by Argenta Discovery UK and were

screened for activity against non-multiplying S. aureus. We have

seleted many compounds showing bactericidal activity. One of

them, named HT61, is a quinolone-derived compound which

presented significant potency.

HT61 is more active against non-multiplying MSSA and
MRSA than selected marketed antibiotics

The activity of HT61 against non-multiplying MSSA was

compared with several marketed antibiotics. Non-multiplying

MSSA was incubated with different concentrations of HT61,

amoxicillin/clavulanic acid (Augmentin), azithromyicin, levoflox-

acin, linezolid, daptomycin and mupirocin for 24 hours, and the

activities of the drugs were measured by CFU counts. As shown in

Fig. 2A, HT61 kills over 7 log CFU/ml at a concentration of

12.5 mg/ml. The minimum stationary phase-cidal concentration

50 (MSC50) of HT61 is 2.5 mg/ml and the minimum stationary

phase-cidal concentration 99 (MSC99) was 4.5 mg/ml. In contrast,

amoxicillin/clavulanic acid (Augmentin), azithromyicin, levoflox-

acin, linezolid and mupirocin at 50 mg/ml failed to exhibit any

activities against the non-multiplying bacteria. Daptomycin

reduced the CFU counts from log 7 to 0 at 50 mg/ml. The

minimum stationary phase-cidal concentration 50 (MSC50) of

daptomycin is 2.5 mg/ml and the minimum stationary phase-cidal

concentration 99 (MSC99) was 9 mg/ml.

We also tested the activities of HT61, vancomycin, daptomycin

and mupirocin against non-multiplying MRSA. As shown in

Fig. 2B, HT61 at 12.5 mg/ml reduced the CFU counts of MRSA

from log 7 to 0. The MSC50 of HT61 against MRSA was 2.6 mg/

Figure 1. Growth curves of methicillin-sensitive and methicil-
lin-resistant S. aureus. The bacterium was grown in nutrient broth
medium with shaking for 10 days. The arrows indicate the timepoints
when the cultures were used for drug sensitivity test. These results were
confirmed in two independent experiments.
doi:10.1371/journal.pone.0011818.g001
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ml and the MSC99 was 6 mg/ml. However, both vancomycin and

mupirocin at 100 mg/ml showed no activity against the same

cultures. Daptomycin killed the MRSA at 50 mg/ml showing a

MSC50 at 2.5 mg/ml and a MSC99 at 9 mg/ml. The data indicate

that HT61 is more active against non-multiplying MSSA and

MRSA than commonly marketed antibiotics.

HT61 is less potent against multiplying S. aureus
The MIC of HT61 and these conventional antibiotics against

multiplying S. aureus were determined. Log phase S. aureus was very

sensitive to amoxicillin/clavulanic acid (Augmentin) (MIC 0.8 mg/

ml), azithromyicin (MIC 1.56 mg/ml), levofloxacin (MIC 0.2 mg/

ml), linezolid (MIC 0.8 mg/ml), daptomycin (1 mg/ml) and

mupirocin (MIC 0.2 mg/ml). However, HT61 is less potent

against multiplying S aureus than marketed antibiotics with an

MIC of 8 mg/ml.

Quick action of HT61 against non-multiplying S. aureus
In order to investigate the speed of kill, different concentrations

of HT61 were incubated with non-multiplying MSSA for

24 hours. At various time points, the viability of the bacteria

was examined by CFU counts. As shown in Fig. 3A, at 10 mg/ml

HT61 killed 107 S. aureus after 5 hours of treatment and at 20 mg/

ml HT61 kill the same numbers of S. aureus after one hour of

treatment. A similar speed of kill was shown for MRSA (Fig. 3B).

HT61 kills non-multiplying clinical MRSA isolates
including those which are mupirocin resistant

HT61 was tested against 103 clinical isolates of MRSA which

had been isolated from St George’s Hospital, London. HT61 was

incubated with 106 non-multiplying MRSA for 24 hours, and the

drug activity was examined by CFU counts. As shown in Table 1,

MSC50 of HT61 was 1.5 to 7.5 mg/ml against these 103 MRSA

isolates. Amongst these 103 MRSAs, there are 8 strains which

were resistant to mupirocin (5 high level and 3 low level

resistance). HT61 was active against all of the mupirocin resistant

MRSAs.

The MIC of HT61 was determined using 45 MRSA, 11

vancomycin-intermediate S. aureus (VISA) and 3 vancomycin

resistant S. aureus (VRSA) which were clinical isolates collected

Figure 2. Effects of HT61 and marketed antibiotics against
stationary phase non-multiplying MSSA and MRSA. HT61 and
the antibiotics were added to the non-multiplying cultures at different
concentrations. CFU counts were carried out after 24 hours of
incubation. A. Effects of HT61, amoxicillin/clavulanic acid, azithromyicin,
levofloxacin, linezolid, daptomycin and mupirocin against MSSA. B.
Effects of HT61, vancomycin, daptomycin and mupirocin against MRSA.
These results were confirmed in two independent experiments.
doi:10.1371/journal.pone.0011818.g002

Figure 3. Speed of kill with HT61 against non-multiplying
MSSA and MRSA. HT61 was incubated with MSSA (A) and MRSA (B) at
different concentrations for 24 hours. At different time points, CFU
counts were performed.
doi:10.1371/journal.pone.0011818.g003
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from different hospitals in the UK. As shown in Table 1, the MIC

of these MRSA, VISA and VRSA was 4 and 8 mg/ml.

HT61 was active against other gram positive bacteria
HT61 was incubated with non-multiplying stationary phase

Streptococcus pyogenes, Streptococcus agalactiae and Propionibacterium acnes

at 20, 10, 5 and 0 mg/ml for 24 hours. As shown in Fig. 4, HT61

at 20 mg/ml reduced the CFU counts of S. pyogenes and S. agalactiae

from log 6 to 0. There were more than one log kills at 10 mg/ml

for these strains. HT61 at 10 mg/ml reduced the CFU counts of S.

epidermidis and P. acnes to 0. The MICs of HT61 against these

strains were 8 mg/ml.

No resistant S. aureus was selected after long-term
treatment with HT61

The initial MSC50 for HT61 was 2.5 mg/ml when inoculated

with 107 non-multiplying MSSA. The MIC of this strain for HT61

was 8 mg/ml. Selection of resistance was performed using log

phase and stationary phase cultures which were exposed to HT61

at concentrations which were 2 fold below MIC (4 mg/ml) and

MSC50 (2.5 mg/ml), respectively. After 50 passages of exposure to

HT61, no resistance to HT61 was observed in S. aureus (data not

shown). The same MSC50 and MIC was observed at the beginning

and at the end of the selection.

HT61 has no activity against Gram negative bacteria
Bactericidal activity of HT61 was also tested against Gram

negative bacteria. The bacterial strains used were Escherichia coli,

Klebsiella aerogenes and Pseudomonas aeruginosa which were clinical

isolates from St George’s Hospital, London. HT61 was incubated

with log phase and non-multiplying bacteria at different

concentrations from 5 to 40 mg/ml. No activity of HT61 was

observed against either log-phase or stationary phase Gram

negative bacteria (data not shown).

Mechanism of action
The affect of HT61 on the cytoplasmic membrane of bacterial

cell was investigated. Log phase and 6 day old non-multiplying

stationary phase cultures were treated with the fluorescent probe

DiSC3(5) which accumulates in bacterial cells and self-quenches

its own fluorescence. HT61 at concentrations of 0.156 to 80 mg/

ml was added to DiSC3(5) treated cultures. As shown in Fig. 5A,

one minute after the addition of HT61, the fluorescence values

for the stationary phase cultures increased in a concentration

dependent manner, even at levels below the MSC50. After one

minute of treatment, the fluorescence signal did not increase

significantly. These data show that maximum depolarization of

the cytoplasmic membrane of stationary phase bacteria occurred

within 1 to 4 minutes after treatment with HT61. However, for

log-phase cultures (Fig. 5B), the release of fluorescence after

treatment of HT61 was slower than that of the stationary phase

and reached a peak after 45 minutes. It appears that the increase

of fluorescent signal was concentration dependent only at lower

concentrations of HT61. No increase in fluorescent release was

observed when HT61 reached concentrations higher than

20 mg/ml.

We then examined the ultra-structure of S. aureus by

transmission electronic microscopy after treatment with the drug.

As shown in Fig. 6B, after addition of HT61 for 10 minutes, the

cell membrane was disrupted and the cytoplasm leached out into

the extracellular space. In addition, we noticed that, after

treatment of HT61 at higher concentration, the cell wall was

nicked (Fig. 6C and Fig. 6D) and the cell contents were expelled.

HT61 kills non-multiplying MSSA and MRSA on mouse
skin

In an attempt to develop HT61 as a topical agent to clear

MSSA and MRSA, we investigated if HT61 killed MSSA and

MRSA on mouse skin. Two mouse skin models were used. The

first model was the superficial skin bacterial colonisation model.

Log phase or stationary phase MSSA or MRSA were applied onto

the intact skin of live mice at 107 CFU per 2 cm2 followed by

immediate treatment with 45 ml of HY50A (gel containing 1%

HT61) or 45 ml of Bactroban ointment (GlaxoSmithKline

containing 2% mupirocin) or 45 ml of placebo. As shown in

Fig. 7, after two hours of treatment, HT61 removed 100%

stationary phase MSSA (Fig. 7A) and 93% stationary phase

MRSA (Fig. 7B) on the mouse skin. In contrast, Bactroban showed

no activity against the same bacteria (Fig. 7A and 7B). When log

phase MSSA was applied on to mouse skin, Bactroban was more

effective than HT61 showing 100% reduction of the bacteria,

whilst HT61 killed 55% of the bacteria on the skin (Fig. 7C).

Table 1. The MSC50 and MIC of HT61 against clinically
isolated MRSA, VISA and VRSA.

MSC50

(mg/ml)
Number of
MRSA

MIC
(mg/ml)

Numbers
of MRSA

Numbers of
VISA and VRSA

1.5–1.9 26 4 32 9

2–2.9 12 8 13 5

3–3.9 30

4–4.9 19

5–5.9 5

6–6.9 5

7–7.9 4

doi:10.1371/journal.pone.0011818.t001

Figure 4. Effects of HT61 against stationary phase non-
multiplying S. pyogenes, S. agalactiae, S. epidermidis and P.
acnes. HT61 was added to the non-multiplying cultures at 20, 10, 5 and
0 mg/ml. CFU counts were carried out after 24 hours of incubation.
These results were confirmed in two independent experiments.
doi:10.1371/journal.pone.0011818.g004
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The second model which was used is the mouse superficial skin

bacterial infection model [19] in which a bacterial infection is

initiated with 107 log phase MSSA or MRSA after removal of the

upper epidermal layers. As shown in Fig. 8A, no increased growth

was seen after infection, the bacterial numbers on the infected skin

were constant during the first 24 hours, then gradually decreased.

Treatment with HT61 and Bactroban was initiated after 24 hours

of infection during which the bacteria remained stationary phase.

As shown in Fig. 7, HT61 reduced 2.91 logs of MSSA (Fig. 8B)

and 1.87 log of MRSA (Fig. 8C) after treatment for 24 hours. In

contrast, mupirocin reduced 0.86 logs of MSSA and 0.13 logs of

MRSA respectively.

Toxicity of HT61
Minipig skin was used to test HT61 for potential dermal

toxicity. These studies were conducted by LAB Research (Scantox

Denmark). After 14 days of administration of HT61 (1% gel

formulation) to 10% of the body surface of each animal, no

treatment related adverse events were seen in clinical observations

such as irritation, inflammation, itching and sensitization, body

weight and food consumption (data not shown). Furthermore, no

changes were seen before termination of treatment in clinical

chemistry, haematology, urinalysis and during ophthalmoscopy or

during electrocardiographic examination, at necropsy or at

histopathological examination. No changes were seen at histo-

pathological examination of the skin. Toxicokinetic evaluation

verified that the animals had been treated with HT61. An

accumulation of HT61 was seen between day 1 to 14 and this may

be due to saturation of the skin. Based on the Cmax and AUC0-

24h values, no dose proportionality was observed. No consistent

gender related differences were seen, although the values for the

female animals seemed higher.

Discussion

Changing the target of drug development from multiplying to

non-multiplying bacteria creates a new set of opportunities for

antibiotic development. In particular, novel classes of antibiotics

can be discovered which show bactericidal activities against non-

multiplying bacteria, but may be less potent against multiplying

bacteria. HT61 is the first example of the selection of an antibiotic

from the beginning of the development process which is active

against non-multiplying bacteria. Interestingly, HT61’s activity

against multiplying bacteria is not as potent as current marketed

antibiotics, and so it would have been rejected by conventional

anti-multiplying screening tests. In our experience, this is not an

isolated example, and we anticipate that this new method will

produce many new classes of antibiotics.

HT61 is a narrow-spectrum antibiotic which is only effective

against Gram positive bacteria. HT61 is particularly active against

S. aureus including 162 strains of MRSA which represent the major

pathogens in the world, and those that carry the Panton-Valentine

leukocidin gene. HT61 can act on multiplying bacteria, but its

MIC is higher than that of the marketed antibiotics. However, it

showed significant potency against non-multiplying organisms. For

MSSA and MRSA at 107 CFU/ml, the concentration (MSC50)

used to reduce half of the initial bacterial load was 2.5 mg/ml and

Figure 5. HT61-induced cytoplasmic membrane permeabiliza-
tion determined by the DiSC3(5) assay. Non-multiplying and log
phase MSSA were incubated with DiSC3(5) to a final concentration of
0.4 mM until no more quenching was detected, which was followed by
addition of 0.1 M KCl. Different concentrations of HT61 were incubated
with non-multiplying MSSA (A) and log phase MSSA (B). The changes in
fluorescence were monitored at various time points. The data was
confirmed in two independent experiments.
doi:10.1371/journal.pone.0011818.g005

Figure 6. Thin sectioned electron micrographs of S. aurues
analyzed by transmission electron microscopy. The cells were
fixed 10 minutes after HT61 treatment. A. normal S. aureus cells. B. HT61
at 10 mg/ml. C. HT61 at 20 mg/ml. D. HT61 at 40 mg/ml. The scale bar is
0.2 mm.
doi:10.1371/journal.pone.0011818.g006
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the concentration to achieve a 99% kill (MSC99) is 4.5–6 mg/ml.

The concentration required to achieve a complete kill was

12.5 mg/ml. The potency of HT61 was significantly higher than

that which has been reported for the anti-stationary phase agent

daptomycin [20] that required 50 mg/ml to completely kill

stationary phase MSSA and MRSA (Fig. 2). Due to its combined

action against multiplying and non-multiplying bacteria, HT61

has the potential to treat an infection with a mix of organisms that

are in different growth phases. Although HT61 has lower

bactericidal activity against multiplying bacteria than marketed

antibiotics, it is used in such a high concentration in its topical

formulation (currently 1% v/v, 10 mg/ml) that this should

compensate for this weakness.

Figure 7. Effect of HT61 against MSSA and MRSA in a murine
skin bacterial colonization model. Stationary phase MSSA (A) and
MRSA (B) were applied onto 2 cm2 skin area followed by addition of
HT61 gel, Bactroban and placebo (control) for 2 hours. Log phase MSSA
were treated with HT61 gel, Bactroban and placebo (control) for
2 hours on mouse skin (C). The data has been repeated twice.
doi:10.1371/journal.pone.0011818.g007

Figure 8. Effect of HT61 against MSSA and MRSA in a murine
skin bacterial infection model. A. After tape-stripping the skin, log
phase MSSA was applied onto the skin area. At different time points
CFU counts of the bacteria were determined. The arrow indicates the
point which the treatment was initiated. B. Treatment of HT61,
Bactroban and placebo (control) against MSSA and C. Treatment of
HT61, Bactroban and placebo (control) against MRSA. **, P,0.01. The
data has been repeated twice.
doi:10.1371/journal.pone.0011818.g008
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The precise mode of action of HT61 has not been demonstrated

as yet. However, cell membrane depolarization of S. aureus was

observed after treatment with HT61. The compound acts on the

bacterial cell cytoplasmic membrane by disruption of S. aureus’s cell

membrane potential, and this leads to the release of the cellular

contents. Furthermore, HT61 also acts on the bacterial cell wall.

After 10 minutes of treatment, the cell wall structure is nicked

when HT61 is used at higher concentrations. This suggests that

HT61 has several mechanisms of action, whose targets lie in the

bacterial cell cytoplasmic membrane and the cell wall. Further

investigation into the mode of HT61 action is under way in our

laboratory.

The most important property of HT61 is its activity in animal

models of S aureus skin infection. In animals infected with

multiplying and non-multiplying bacteria which had been applied

to normal skin, 106 or more bacteria were killed by a single

application of the antibiotic at a 1% concentration. In contrast,

mupirocin at 2% concentration failed to kill the non-multiplying

organisms. In animals which had skin partially stripped prior to

application of bacteria, the bacterial load remains relatively

constant after infection during the first 48 hours, indicating that

the bacteria stay non-multiplying or slowly multiplying. A 102–103

CFU bactericidal effect was also seen with HT61 but Mupirocin

barely had any effect.

Examination of the clinical usefulness of HT61 in man is now

under way. This antibiotic will be used topically at high

concentration (10 mg/ml). At these concentrations, it is anticipat-

ed that it will be bactericidal for both multiplying and non-

multiplying bacteria. This means that it may be useful as a stand-

alone antibiotic. On the other hand, better results may be obtained

by using it in combination with another antibiotic which is active

against multiplying bacteria. The combination should remove the

entire population of targeted bacteria. The best examples of

combinations of anti-multiplying and anti-non-multiplying antibi-

otics are in tuberculosis chemotherapy [21,22,23,24], where

isoniazid (kills multiplying bacteria) and pyrazinamide (kills non-

multiplying or persistent organisms), are used side by side, together

with other antibiotics such as rifampicin and ethambutol.

HT61 will be used clinically to decolonize the nose for S aureus,

including MRSA. Potential advantages over the market leader,

mupirocin, are as follows: Firstly, HT61 is active against

mupirocin resistant bacteria. In countries such as Spain,

mupirocin resistance is so high, that it is no longer used in many

hospitals [25]. It is likely that widespread use of mupirocin in the

rest of the world will result in an increase in mupirocin resistance

in many countries. Mupirocin resistance can occur at high level or

low level [26,27,28,29,30]. This type of resistance is associated

with bacteriological relapse in the nose within a shorter period of

time than for sensitive strains [31]. Whilst low level mupirocin

resistance can be induced in vitro in the presence of increasing

concentrations of mupirocin [32,33], we have demonstrated that

no HT61 resistant strains were obtained after 50 passages of

selection during the period of log phase and stationary phase

growth. Secondly, HT61 may be able to shorten the duration of

therapy in situations where non-multiplying bacteria are present.

In comparison to marketed antibiotics, HT61 is about one million

times more potent against non-multiplying S. aureus. In vitro and in

animal models, HT61 shortens the duration of therapy, but it is

not known whether this will occur in humans. However, it is likely

that populations of bacteria, other than multiplying ones in log

phase exist on the human skin. For example, if all the bacteria on

the human skin were multiplying, it would be expected that

overnight growth would be so rapid that colonies would be visible

in the morning. Clearly this is not the case, which suggests that,

perhaps due to lack of nutrients and other essential growth factors,

bacteria do not usually multiply rapidly on human skin, or in the

nose. Indeed, we show (Fig 8A) here that bacteria on mouse skin

after infection did not sustain growth. In other diseases, such as

tuberculosis [34], bacterial endocarditis [35,36,37] and biofilms on

intravenous catheters [38,39] mixed populations of bacteria are

known to co-exist. Whether this also applies to the skin and to the

nose is not known. Thirdly, it may be possible to reduce the rate of

emergence of resistance. Shortening of the course of antibiotic

therapy itself may reduce the emergence of resistance because it is

known that long courses can be associated with the emergence of

resistance, for example due to poor patient compliance. HT61 acts

fast, and this may reduce the chance of emergence of resistance.

This antibiotic also acts against the cell membrane and the cell

wall, and resistance emergence to this compound may be lower

than other antibiotics which target a single enzyme, such as

rifampicin or mupirocin [40,41,42,43,44]. Combination of HT61,

or similar compounds with antibiotics which kill multiplying

bacteria, may prolong the useful life of such partner antibiotics

because, if the combination of the two antibiotics kill the entire

bacterial target population faster than each on its own, the rate of

resistance emergence may be slowed [45,46]. After all, dead

bacteria cannot mutate. Another way of prolonging the useful life

of existing antibiotics, such as mupirocin, would be to use the

existing antibiotic once only in an individual, and then use HT61

for treatment of relapses. In this way, repeated exposure of

bacteria in one individual, a sure way to induce resistance, would

be limited. Fourthly, HT61 may lengthen the period before

relapse occurs. In the nose, S. aureus including MRSA can be

removed by the use of mupirocin [31]. However, if the bacteria

are resistant to mupirocin, relapse occurs within a few weeks [47].

For sensitive organisms, there is a 30% relapse rate at three

months, and by six months, 50% have relapsed [48]. The fact that

patients who are colonized with mupirocin resistant bacteria

relapse early with mupirocin resistant strains suggests that these

persist in the nose. It is not known what proportion of patients who

relapse with sensitive bacteria, do so as a result of relapse of

persistent bacteria in the nose, or auto-infection from another site

in the body, such as the finger. Since the initial strains are usually

the same as the relapse strains [49], it is thought re-infection from

other people or other sources is less likely than autoinfection.

In conclusion, this paper describes the properties of a novel

antibiotic which has been produced by a new approach, namely,

by selecting, from the beginning of the discovery process,

compounds which are active against non-multiplying bacteria.

This method should be able to yield many new classes of

antibiotic. In addition, these antibiotics may be able to reduce the

rate of emergence of resistance, shorten the duration of therapy,

and reduce relapse rates.

Materials and Methods

Bacterial strains and growth conditions
Bacterial strains used in this study are list as following; Oxford,

S. aureus NCTC 6571 (methicillin-sensitive), methicillin-resistant S.

aureus (MRSA NCTC 12493), MRSA strains (clinical isolates from

St George’s Hospital, London), S. epidermidis (NCTC 5955), S.

pyogenes (NCTC 10867), S. agalactiae (NCTC 8542), P. acnes (NCTC

737) and Gram-negative bacteria, such as E. coli, K. aerogenes and P.

aeruginosa (clinical isolates from St George’s Hospital, London).

The strains of Staphylococci and Gram-negative bacteria were grown

in nutrient broth (Oxoid) or on blood agar plates and the strains of

Streptococci and P. acnes were grown in brain heart broth (Oxoid) or

on blood agar plates.
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Antibiotics and drug-like compounds
Antibiotics were used as follow: Augmentin (1.2 g containing

co-amoxiclav 1000/200, GlaxoSmithKline), Azithromycin (Zi-

thromaxTM suspension, 40 mg/ml, Pfizer), Levofloxacin (Tava-

nicH 5 mg/ml Hoechst Marion Roussel), Linezolid (2 mg/ml

Zyvox, Pharmacia), daptomycin (Cubicin, Novartis) and Mupir-

ocin (Sigma). 56 quinolone-like compounds were obtained from

Bionet Research, Butt Park Ltd, Maybridge, Enamine and Specs.

HT61 was synthesed by Argenta Discovery UK. Stock solutions of

the tested compounds were prepared in dimethyl sulfoxide to

10 mg/ml.

Susceptibility test of antibiotics against exponentially
growing bacteria

The minimum inhibitory concentration (MIC) was determined

by the broth dilution method in Iso-Sensitest broth (Oxoid)

following the Clinical and Laboratory Standards Institute

guidelines for broth microdilution MIC. A physiological level of

50 mg/L Ca2+ was supplemented to Iso-Sensitest broth when

testing daptomycin. MIC value was defined as the lowest

concentration resulting in 90% inhibition of growth.

Susceptibility test of antibiotics against stationary phase
non-multiplying bacteria

The methicillin-sensitive S. aureus (MSSA), methicillin-resistant

S. aureus (MRSA), S. epidermidis and Gram negative strains were

cultured in nutrient broth over-night at 37uC. Two hundred

microliters of the overnight cultures were used to inoculate 100 ml

of nutrient broth. Then the cultures were continuously shaken at

110 rpm at 37uC for 10 days. For growth of S. pyogenes and S.

agalactiae, a serial of 10 ml brain heart broth was inoculated with

the overnight cultures, and then the cultures were incubated

without shaking for 6 days. For growth of P. acnes, the broth

cultures and the blood agar plates were incubated under anaerobic

conditions for 5 days. Viability was determined by plating 100 ml

of serial dilutions onto nutrient agar (Oxoid) plates or blood agar

plates and was expressed as colony forming units (CFU) per

milliliter. The CFU was counted using aCOLyte colony counter

(Synbiosis) and analyzed using the software came with the counter.

To test antibiotic activities against stationary phase non-multiply-

ing bacteria, the 5–6 day old cultures were washed with phosphate

buffered saline (PBS) and diluted in the same buffer to 106 or 107

CFU/ml which was served as cell suspension for drug sensitivity

test. For testing of daptomycin, a physiological level of 50 mg/L

Ca2+ was supplemented. The cell suspension was added in each

well of a 96-well microtiter plate incubated with different

concentrations of the drugs in triplicate to a final volume of

300 ml. At different time points after drug incubation, the cultures

were washed three times with PBS and were resuspended in the

original volume. The activities of the drugs against stationary

phase non-multiplying bacteria were determined as minimum

stationary phase-cidal concentration 50 (MSC50) [5] which is

defined as the concentration of the drug leading to a reduction in

half of the initial bacterial counts and minimum stationary phase-

cidal concentration 99 (MSC99) which is defined as the

concentration resulted in reduction of 99% initial bacterial counts.

Multistep selection of resistance
The bacteria were cultured in nutrient broth over-night at

37uC. 20 microlitres of the overnight culture were used to

inoculate 10 ml of nutrient broth which was incubated for 5–6

days. The drug was added into the stationary phase culture to a

concentration which was 2-fold below its MSC50. After two days of

exposure, 200 ml of the culture was added to 10 ml of fresh

nutrient broth, at the same time the drug was added to the final

concentration which was 2-fold below its MIC. After drug

exposure for 4 days, single colonies were picked and sensitivity

test was carried out against both stationary phase non-multiplying

and log phase cultures. During this procedure, the drug was

exposed to both log phase and stationary phase cultures. Fifty

passages of drug exposure, as described above, were performed to

select drug resistant bacterial strains.

Fluorescent assay to measure cytoplasmic membrane
potential

Cell membrane permeability was measured using a fluorescent

assay as described previously [50]. Log phase or stationary phase

cultures were harvested and washed with PBS. The bacterial cells

were resuspended with PBS to an optical density of 0.05 at

600 nm. The cell suspension was incubated with 0.4 mM DiSC3(5)

(Dipropylthiacarbocyanine) (Sigma), a membrane potential sensi-

tive cyanine dye, until a stable (approximately 90%) reduction in

fluorescence was reached as a result of DiSC3(5) uptake and

quenching in the cell due to an intact membrane potential. Then

100 mM KCl was added into the cell suspension to equilibrate the

intracellular and external K+ concentrations. The samples were

placed into wells of a 96 well flat bottom fluorescence microtitre

plate (Fischer Scientific UK) followed by addition of different

concentrations of drug in triplicates. Fluorescence was monitored

using a fluorescence spectrophotometer (Applied Biosystem) at an

excitation wavelength of 622 nm and an emission wavelength of

670 nm. The induction of fluorescence, which resulted from the

disruption of the cytoplasmic membrane by different concentra-

tions of drugs, was recorded. The background was subtracted

using a control which contained only the cells and the dye.

Electron Microscopy
Bacterial cultures were harvested and fixed with a fixation

solution containing 2% formaldehyde and 2% glutaraldehyde,

0.2 M sucrose in 0.1 M cacodylate (pH 6.9) buffer. Sample

processing, sectioning and examination of the transmission

electron microscope were performed in the Ultrastructural

Imaging Unit, King’s College London.

Superficial skin bacterial colonization and infection
models

The skin bacterial colonization and infection models were

performed using female ICR mice (6 to 8 weeks old) obtained from

Harlan, UK Ltd. The animal husbandry and animal care

guidelines were followed according to the Animals Scientific

Procedures Act, 1986 (an Act of the Parliament of the United

Kingdom 1986 c. 14). The study was specifically approved by the

animal ethical committee of St George’s University of London.

For the intact skin bacterial colonization model, ICR mice were

anesthetized by intraperitoneal injection of 200 ml of a 1:1:2

mixture of 100 mg/ml ketamine hydrochloride, 20 mg/ml

xylazine, and sterile water. The fur of the mice on the back was

removed by an electric clipper. A two cm2 skin area was marked

with a marker pen and log-phase or stationary phase cultures (20

to 30 ml) were added on the 2 cm2 area. The bacterial suspension

on the skin was allowed to dry for 20 minutes. Treatment of the

bacteria was performed by spreading 45 ml of gels or ointment on

the skin. The superficial damaged skin infection model was

performed as described previously [19] with the following

modifications. After anesthetizing the mouse and removing its

fur on the back, an area of 2 cm2 skin is tape stripped using an
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autoclave tape. The skin was striped 10 times in succession. This

procedure damaged the skin by removing the top dermal layers,

which became red and shiny, but without observable bleeding.

Buprenorphine was given at 0.2 mg/kg body weight during the

anesthetic period and every 12 hours for up to 3 days to reduce

pain. Bacterial infection was induced by the addition of 10 to 25 ml

of log phase culture containing 107 bacterial cells on the stripped

skin. At 24 hours after infection, treatment with gels or ointment

was initiated. At different time points after infection and

treatment, 3 or 4 mice were sacrificed by cervical dislocation.

The skin, approximately 2 cm2 was cut and added to 2 ml tubes

which contained 1 ml water and glass beads (1 mm). The skin was

homogenised using a reciprocal shaker (Fisher Scientific UK) for

45 second (6.5 speed). Antibiotic remaining on the skin was

removed by washing 3 times with water. CFU counts were

performed on serial dilutions of the homogenates.

Dermal toxicity study
The dermal toxicity of the compounds was performed by LAB

Research (Scantox Denmark). Twenty-four Göttingen SPF mini-

pigs (12 males and 12 females) were used for the study which were

obtained from Ellegaard Göttingen Minipigs ApS, Denmark. The

animals were approximately 3 months old and the body weight

was 6.0 to 8.4 kg. They were allocated to 4 groups each consisting

of 3 males and 3 females. HT61 was administered daily by dermal

application to for 14 days. The dose for the treatment was 1 g/kg/

day on 10% of the body surface area. Clinical signs, dermal

reactions and food consumption were recorded daily. The body

weight was recorded weekly, and in addition, on the day of

necropsy.

Before and after treatment, blood and urine samples were taken

from all animals for clinical chemistry, haematology and urinalysis.

Also the animals were subjected to an electrocardiographic and

ophthalmoscopic examination. Blood taken from day 1 and day 14

was also used for toxicokinetic analysis. At the end of the

experiment, the animals were anaesthetised, euthanized by

exsanguination and subjected to macroscopic necropsy. Selected

organs or tissues were weighed, sampled, fixed and examined

microscopically.
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