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Background. The MCM2-7 proteins are crucial components of the pre replication complex (preRC) in eukaryotes. Since they
are significantly more abundant than other preRC components, we were interested in determining whether the entire cellular
content was necessary for DNA replication in vivo. Methodology/Principle Findings. We performed a systematic depletion of
the MCM proteins in Drosophila S2 cells using dsRNA-interference. Reducing MCM2-6 levels by .95–99% had no significant
effect on cell cycle distribution or viability. Depletion of MCM7 however caused an S-phase arrest. MCM2-7 depletion produced
no change in the number of replication forks as measured by PCNA loading. We also depleted MCM8. This caused a 30%
reduction in fork number, but no significant effect on cell cycle distribution or viability. No additive effects were observed by
co-depleting MCM8 and MCM5. Conclusions/Significance. These studies suggest that, in agreement with what has
previously been observed for Xenopus in vitro, not all of the cellular content of MCM2-6 proteins is needed for normal cell
cycling. They also reveal an unexpected unique role for MCM7. Finally they suggest that MCM8 has a role in DNA replication in
S2 cells.
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INTRODUCTION
The MCM (minichromosome maintenance) 2–7 proteins play an

important role in DNA replication in eukaryotes. They are

involved during initiation where they are needed to form the

preRC (pre-Replicative Complex) (reviewed [1]). This complex is

formed at origins of replication by the sequential binding of

ORC1-6, cdc6, cdt1 and MCM2-7, and is absolutely required for

all subsequent processes of replication. The MCM proteins are

also proposed to act during elongation as the replicative helicase

(reviewed [2]).

In archael species which have a single MCM protein, the active

complex has been suggested to be a hexamer or double hexamer

(reviewed [3]. The MCM2-7 proteins can also form hexamers [4]

[5] [6]. Several studies have mapped subunit arrangement in the

hexamer [7] [8] [9] , however the catalytic constituents of the

active complex are not yet determined. Although all six budding

yeast MCMs are required for replication [10], it is not clear if they

all participate directly in the catalysis of the helicase reaction. In

mouse and S. pombe active helicases have been isolated containing

only MCM4/6/7 [11] [12]. Studies in Drosophila have also

suggested that cdc45 and the GINS complex may be necessary for

helicase activity [13]. Temporal differences in chromatin loading

of individual MCM proteins [6] [14] also suggest differential

function of MCM proteins. Recently a new MCM family member

(MCM8) has been isolated [15] and shown to form a homo-

hexameric helicase. Functional studies have suggested a role for

MCM8 in elongation in Xenopus [16] or preRC formation in

human cells [17].

Most preRC proteins are present at low levels, however the

MCMs are relatively abundant (.40 complexes per origin in

Xenopus [18] [19]. Their involvement in both initiation and

elongation might necessitate larger amounts of protein. Consistent

with this, depletion of MCM proteins using degron constructs in S.

cerevisiae produces an S phase block [10]. Similar effects are

reported on reduction of MCM4 in human cells [14]. Such

observations have prompted models where multiple MCM

complexes co-operate to give helicase activity [20] [19]. By

contrast, in Xenopus extracts a 90% reduction of MCM binding at

origins still permits efficient in vitro replication [21]. Depletion of

MCM7 in human cells [22] [23] and MCM 3 and 5 in Drosophila

Kc cells [24] are also reported to have no effect on replication.

The extra MCM proteins do however seem to be needed for the

recovery of replication in Xenopus extracts in vitro in the presence

of inhibitors of ATR [25]. In addition others have suggested that

some of the MCM content may be involved in processes other

than replication (reviewed [26] ).

Detailed analysis of the MCM paradox has so far only been

carried out in detail in vitro in cell free extracts. We were

interested to see if the same effects were observed in vivo. Here we

report on the cellular effects of systematic depletion of MCM2-8 in

Drosophila S2 cells. We present data supporting the hypothesis that

some of the cellular MCM content may be redundant in the

normal cell cycle. We also present evidence that lends further

weight to the suggestion that not all MCM proteins have

equivalent cellular roles. Finally our data also suggests that, as in

other organisms, Drosophila MCM8 has a role in DNA

replication.
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RESULTS

Drosophila MCM mutants
To determine whether we could observe differential cellular

requirements for MCM proteins we compared the phenotypes of 4

MCM2/4/6 mutants (MCM2rl74, dpa1 [MCM4], MCM6k1214 and

MCM63) (Table 1). As reported earlier [27] [28] [29], all lines

showed loss or severe reduction in size of imaginal discs. Dpa1 and

MCM63 also showed a reduction in BrdU incorporation in larval

brains. Since dpa1 had been reported to exhibit defective mitosis

we examined all of the MCM mutants for mitotic index and

phenotype. Only dpa1 showed a significantly higher mitotic index

than control cells (57% higher). The mitotic index in MCM63 was

comparable to control cells, while decreases were seen for

MCM6k1214 and MCM2rl74 (20% and 26% lower) (table 1).

Not surprisingly, MCM63 cells appeared to progress normally

through mitosis (not shown). Despite MCM2rl74 and MCM6k1214

having fewer mitotic cells, no mitotic aberrations were detected,

suggesting that their defect was a pre-mitotic delay. For dpa1

however the defect seemed to be due to a metaphase delay

(anaphases were absent). While chromosome condensation was

unaffected, mitotic chromosomes appeared broken and did not

congress to a metaphase plate (Figure 1). Spindle defects were also

seen. Microtubules appeared to radiate towards the chromosomes,

but without apparent order. In addition roughly half of the dpa1

mutant cells showed abnormal centrosome number or fragments

(Figure 1).

Table 1. Quantitation of cell cycle parameters of Drosophila
MCM mutants.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Mutation S phase Index Mitotic Index Mitotic Cells

Wild type 14.7% 1% normal

mcm2rl74 ND 0.7% (Y by 26%) normal

dpa1 [mcm4] 10.3% (Y by 30%) 1.5% (X by 57%) abnormal

mcm63 9.1% (Y by 38%) 1% (similar to wt) normal

mcm6k1214 ND 0.8% (Y by 20%) normal

doi:10.1371/journal.pone.0000833.t001..
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Figure 1. Dpa1 mutants show abnormal chromosome condensation and unorganised mitotic spindles. Neuroblasts of heterozygous or
homozygous third instar larvae (prepared as in 4) were stained for: centrosomes (red) using CP190 antibodies (a kind gift from Will Whitfield) and
Goat anti-rabbit TxRed (Jackson labs); spindles (green) using anti-tubulin (Clone DM1A-Sigma) and goat anti-mouse Alexa 488 (Jackson Labs); and
DNA (blue) using DAPI (Sigma). Heterozygous neuroblasts showed normal spindles with correct localization of CP190 at the poles in metaphase (A/B)
and anaphase (B), and normally condensed chromosomes. Homozygous neuroblasts (C/D) showed fragmented, hyper-condensed and aneuploid
chromosomes, and disorganised mitotic spindles usually lacking CP190.
doi:10.1371/journal.pone.0000833.g001
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Depletion of MCM2-7 proteins by dsRNA-

interference
The mutant analysis suggests differential requirements for in-

dividual MCM proteins, however interpretation was complicated

by the fact that individual MCM mutant lesions were of different

types (MCM2rl74 is a P element insertion, dpa1, MCM6k1214 and

MCM63 are point mutations). We therefore decided that a more

systematic approach would be to deplete each MCM protein using

dsRNA-mediated interference (RNAi) in Drosophila S2 cells. A

500–600 bp dsRNA region was produced for each cDNA

(Figure 2a) and introduced into S2 cells. RT-PCR was used to

monitor loss of mRNA. For each MCM some loss of mRNA was

observed as early as 24 h (not shown) and levels decreased further

until after 96h no mRNA was detectable (Figure 2b). This

depletion was specific since in each case only the mRNA for the

targeted MCM was reduced (Figure 2b).

Loss of mRNA correlated with a decrease in protein level for the

targeted protein (Figure 2c). For MCM2-6 all proteins were

decreased to ,5% of the normal level, and some were no longer

detectable. MCM7 levels were also decreased but precise

quantitation of the extent of the decrease was less accurate due

to the relatively low sensitivity of the MCM7 antibody (not shown).

Loss of MCM3, 6 and 7 causes instability of other

MCM proteins
Figure 2c shows that for MCM2/4/5 only the targeted protein

was depleted. However for MCM3/6/7 additional instabilities

were consistently observed. In cells depleted of MCM3 MCM5

was undetectable. For MCM6 depleted cells reductions were seen

in MCM2 (,75%) and MCM4 (,90%). Finally in MCM7

depleted cells MCM4 was reduced by ,90%. It is unlikely that the

changes were due to cross-reaction of the dsRNA reagents since no

corresponding reduction was seen in mRNA levels (Figure 2b). In

addition a different target region of MCM6 also caused MCM4

reduction (data not shown). The observed instability does not

appear to take place via the proteosome complex since the

addition of proteosome inhibitors does not prevent the protein

co-depletion (data not shown).

In S. cerevisiae, depleting one MCM protein prevents other

complex members from associating with chromatin [30]. To

determine whether an analogous situation occurred in Drosophila,

control and MCM-depleted cells were fractionated into chromatin

bound and soluble fractions and the location of non-targeted

MCMs analysed. In all cases only proteins depleted as a result of

RNAi treatment showed reduced chromatin association. Results

for MCM2 and MCM5 are shown in Figure 3. The binding of the

MCMs is considerably reduced by the treatment of the chromatin

with DNase suggesting that this is true chromatin binding rather

than non specific binding (data not shown). Therefore in S2 cells

the depletion of one MCM protein does not prevent binding of

other members of the complex to chromatin. We further checked

whether the reduction in MCM proteins had any effect on the

binding of other replication proteins. Figure 3 also shows that

neither dORC5 or dCDC45 binding were affected by depletion of

any of the MCM proteins.

MCM7 depletion causes an S phase defect
Since we had been able to significantly reduce MCM protein

levels, we proceeded to analyse the cellular effects of the

reductions. We initially examined the growth rate of MCM-

depleted cells compared to mock-treated cells (no RNA or

unrelated dsRNA produced the same results). The combined

results of seven such experiments are shown in Figure 4.

Surprisingly, for MCM2-6 reductions in protein level had no

statistically significant effect on cell doubling rates. However

MCM7 depleted cells consistently showed a significant decrease in

cell number. Total cell numbers after 5 days for these cells were

,50% of that for wild type cells (Figure 4), this fell to 30% after

7 days (data not shown). It is likely that the observed effect was

specific to MCM7 since dsRNA for a different region of MCM7

gave the same result (not shown).

We also analysed the cell cycle distribution of MCM2-7

depleted cells using FACS analysis. A representative data set is

shown in Figure 5. Compared to mock depleted cells, no

reproducible changes were seen in the DNA content profiles

for cells with reduced levels of MCM2-6. In contrast, MCM7

depleted cells reproducibly showed a broad peak of DNA content

between G1 and G2, suggesting that they had difficulty in

traversing S phase.

RNAi depletion of MCM8 in S2 cells
The lack of effects seen after MCM2-6 depletion could have been

due to compensation by a functionally redundant protein. Since

a possible candidate for this was MCM8 we targeted Drosophila

MCM8 [31] with dsRNA (Figure 2a). We were able to decrease

MCM8 mRNA to undetectable levels by this procedure

(Figure 6a). Depletion of MCM8 alone did not significantly affect

cellular levels of MCM2-7 (Figure 2c), the binding of MCM2,

MCM5, dORC5 or dCDC45 to chromatin (Figure 3), cell

doubling rate (Figure 4) or cell cycle distribution (Figure 5).

To determine whether MCM8 could compensate for the loss of

MCM2-6 we performed RNAi simultaneously targeting MCM5

and MCM8. Figure 6a shows that the mRNA for both proteins

was reduced to undetectable levels. Even this treatment however

had no significant effect on the growth rate (not shown) or cell

cycle distribution of S2 cells (Figure 6b). MCM8 also showed no

additional effect on the viability and cell cycle parameters

observed for MCM7 depleted cells ( data not shown).

Effect of MCM protein loss on PCNA loading
Lower MCM protein levels could result in less MCM at each

replication fork or a reduced number of active forks. The amount

of PCNA associated with chromatin has previously been used as

a measure of the number of active forks in a cell [14]. We therefore

used fractionation and immunoblotting to compare the level of

PCNA bound to chromatin in mock- and MCM-depleted cells.

None of the treatments altered the total cellular PCNA content

(not shown). Depletion of MCM2-7 did not change the amount of

chromatin-associated PCNA (Figure 7). This suggests that a .95%

loss of MCM2-7 does not produce a comparable reduction in

active replication forks.

Depletion of MCM8 consistently reduced PCNA binding by

30–50%. This suggests a role for MCM8 protein in DNA

replication in Drosophila cells. It further suggests that S2 cells can

tolerate a reduction in the number of active replication forks

without a significant effect on the cell cycle distribution or cell

viability.

DISCUSSION
We have used RNAi in Drosophila S2 cells to efficiently deplete the

MCM2-8 proteins. The data produced supports three main

conclusions about MCM proteins in this system.

Firstly, although we could demonstrate specificity of the RNAi

depletions, we observed co-instability for certain combinations of

MCM proteins. Some of our observations can be explained based

MCM Proteins in Drosophila
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Figure 2. a. Schematic detailing the regions of
each MCM targeted for dsRNA. Base positions are
quoted relative to the start AUG. Shaded arrows
designate the 2nd dsRNA made from MCM6/7. b.
Agarose gel of RT-PCR products showing the
effects of RNAi depletion of individual MCMs on
MCM mRNA expression levels. Horizontal numbers
designate the MCM targeted by RNAi. Vertical
numbers show the RT PCR target. The data
presented is one complete representative data
set from multiple repetitions. c. Western blot to
show the effect of RNAi depletion of individual
MCMs on MCM protein expression levels in total
cell extracts. Horizontal numbers designate the
MCM targeted by RNAi. Vertical numbers show the
antibody used for western blotting. Tubulin
expression is included as a loading control. The
data presented is one complete representative
data set from multiple repetitions.
doi:10.1371/journal.pone.0000833.g002
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on the composition of reported MCM sub-complexes (reviewed

[2]). Therefore, a reduction in MCM5 when MCM3 is targeted,

and MCM4 when MCM6 and MCM7 are targeted might be

related to loss of stability of the MCM3/5 and MCM4/6/7

complexes. However this is not a complete explanation since

MCM3 stability is unaffected by MCM5 depletion and MCM6/7

are not affected by depletion of other MCM4/6/7 components. In

addition, MCM2, which is affected by MCM6 depletion, is not

thought to be a component of either complex. We can also not

rationalise the co-reductions based on models proposed by us or

others for the structure of the MCM hexameric complex [7] [8]

[9]. Although we do not understand the basis for the co-reductions

we were able to show that they did not occur via the proteosome

pathway since treatment with proteosome inhibitors had no effect.

Co-instability of MCM proteins has been reported in other

systems, but the reported combinations differ from those we

observe in Drosophila [23].

Secondly our data suggest that a dramatic reduction in the level

of MCM2-6 and 8 in vivo in Drosophila S2 cells has little apparent

effect on cell survival and DNA replication. This therefore suggests

that the MCM paradox–originally observed in Xenopus cell free

extracts [21] can also be observed in vivo for Drosophila. Cell

viability has also previously been shown to be unaffected for

MCM2 and 5 depletions in Drosophila Kc cells [24]. Whether the

same effects will also be seen in other higher eukaryotes is unclear

and in fact it has been reported that human cells cannot traverse S

if MCM4 is depleted [14]. Since it is unlikely that the lack of

replication effects on depletion of MCM2-6 is due to a different

role for the MCM complex in Drosophila we suggest two other

possibilities. Firstly, consistent with what has been suggested for

Xenopus it might be that under normal circumstances most of the

MCM protein in cells is redundant. We estimate that there are

50–100 MCM complexes per origin (assuming origin spacing of

40–100 kb) in S2 cells. Therefore even cells which have lost 99%

of a specific MCM should have enough protein to ensure that most

origins have one MCM complex. A single MCM complex per

origin may therefore be sufficient to allow a full complement of

activated replication forks as measured by PCNA loading. In this

case our results support proposed MCM mechanisms involving

single or double hexamers [32] rather than those that require bulk

chromatin loading of MCMs [19] [20]. Perhaps in support of this

suggestion we do not see effects of the MCM depletion on cdc45

chromatin loading. Cdc45 has been suggested to form an active

component of the replicative helicase complex with GINS and

MCM proteins [13]. It is therefore possible that despite the drastic

reduction in the total number of MCM complexes in the dsRNA

treated S2 cells the total number of active helicases has not

altered.

The second possibility is that MCM loss is compensated for

by other proteins. We investigated whether MCM8 could

perform this function. The decrease in PCNA loading observed

on depletion of MCM8 suggests that Drosophila MCM8 does

play a role in replication. From our data the exact nature of

its role is unclear, however the lack of an effect of the

depletion on cdc45 loading suggests that unlike the MCM2-7

proteins it is unlikely to be required for the loading of

downstream initiation factors. In addition MCM8 cannot be

the MCM2-6 compensating protein since co-depletion of

MCM5 and MCM8 does not synergistically affect cell viability

or DNA replication.

Finally the differences observed between depletion of MCM7

and MCM2-6 suggest that not all MCM proteins are equivalent.

The mechanism behind this differential behaviour is not clear.

Although a complex of MCM4/6/7 has been shown to have

helicase activity, there is no evidence that MCM7 acts in-

dependently. Therefore MCM7 may have additional cellular

functions. A role for MCM7 as a damage sensor via the ATR

pathway has been suggested by work in human [23] and S. cerevisiae

[22] cells where depletion or mutation of MCM7 produces cells

defective in the UV-induced S-phase checkpoint. In Xenopus

extracts MCM7 has also been shown to bind to the Rb protein

[33] leading to a brake on DNA replication. It is possible that the

MCM7 effect that we observe is related to a failure of a negative

control. This could lead to more significant damage which

activates other checkpoints to cause the S phase stop. How this

Figure 3. Immunoblot to show the effect of MCM depletions on the
levels of MCM2, MCM5 ORC5 and CDC45 bound to chromatin.
Coomassie stained histones are included as a loading control. The
amount of each protein was compared to the histones using Alpha
Innotech imager software. Horizontal numbers show the MCM protein
targeted by RNAi. Several repetitions of this experiment were
performed and this represents 1 complete data set.
doi:10.1371/journal.pone.0000833.g003

Figure 4. Day 5 growth profiles of MCM targeted cells compared to
a control cell line. The data presented shows combined data from
seven independent experiments. The data is expressed as a percentage
of the control. Lane 1 is the control and lanes 2-8 are MCM 2-8
resepectively.
doi:10.1371/journal.pone.0000833.g004

MCM Proteins in Drosophila

PLoS ONE | www.plosone.org 5 September 2007 | Issue 9 | e833



Figure 5. FACS analysis profiles of cells targeted with dsRNA against MCM2-7 proteins as compared to control targeted cells. The data presented
is one complete representative data set from multiple repetitions.
doi:10.1371/journal.pone.0000833.g005
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might be related to the roles of the S.cerevisiae and human

MCM7 protein in the UV checkpoint is unclear since RNAi

depletion of human MCM7 was not reported to show this effect

[14]. The level of MCM7 protein remaining after depletion is

significantly higher in human than Drosophila cells, however less

efficient depletion of Drosophila MCM7 has been seen to produce

the same effect (data not shown). Alternatively in addition to acting

as a negative regulator of replication, MCM7 may have a positive

regulatory effect on replication. In either case the effect is likely to

involve MCM7 directly, rather than occurring as a secondary

effect of a replication defect, since similar effects are not observed

for other MCM proteins.

Figure 6. a. Agarose gel of RTPCR products to show the effects of RNAi depletion of MCM5 and MCM8 and MCM 5 plus 8 on the MCM5 and 8
levels. b. FACS profiles of cells targeted with dsRNA against MCM8, and MCM5 plus MCM8. The data presented is one complete representative data
set from multiple repetitions.
doi:10.1371/journal.pone.0000833.g006

MCM Proteins in Drosophila

PLoS ONE | www.plosone.org 7 September 2007 | Issue 9 | e833



MATERIALS AND METHODS

Fly stocks
all fly stocks (canton s (wild type), mcm2rl74, dpa1, mcm63, and

mcm6k1214 were obtained from the bloomington stock center.

Antibody reagents
MCM antibodies were described previously [7]. Antibodies

against PCNA and CP-190 were kind gifts from Paul Fisher and

Will Whitfield. DAPI and anti-tubulin antibodies (Clone DM1A)

were from Sigma. Goat anti-rabbit TxRed, and goat anti-mouse

Alexa 488 were from Jackson Labs.

Immunofluorescence staining of larval brains
preparation, visualisation and quantification of mitotic and s-phase

indices were as described previously [34]

Western blotting
Proteins from SDS PAGE were blotted onto Hybond ECL

(Amersham) and developed with Supersignal West Pico (Pierce).

Visualisation and quantitation were carried out using an Alpha

Innotech gel documentation system.

dsRNA-mediated interference
Sequence specific primers each containing a 59 T7 RNA

polymerase binding site were designed for MCM2-8 (Fig.ô 2A).

The dsRNA was made using MEGAscript T7 kit (Ambion) as per

manufacturers instructions. The RNAi experiment was carried out

on S2 cells in exponential growth phase as described [35]. 15 mg of

RNA was added per well (106 cells) and the cells were monitored

by cell count, FACS analysis, western blotting and RT-PCR over

a period of 7 days.

RT-pcr
cDNA from 500,000 S2 cells was made using the cell to cDNA kit

(Ambion) as per manufacturers instructions with the following

modifications: cells were lysed in 100 ml lysis buffer and the

RNAase inactivated by heat treatment. 20 ml of the lysate were

used for the reverse transcription reaction. The equivalent of 5,000

cells (1 ml of the reverse transcription reaction) was amplified using

Megamix blue (Microzone). Amplified fragments were run on

agarose gels and visualised with EtBr.

Amplified regions were located at the following nucleotide

positions relative to the start ATG: MCM2 1381–1550; MCM3

1701–1869; MCM4 1261–1400; MCM5 481–630; MCM6 781–

922; MCM7 321-480 and MCM8 311–450.

Flow cytometry
cells were harvested and fixed using ethanol. Immediately prior to

use they were treated with 10ug/ml RNase/1mM EDTA and the

DNA was stained with propidium iodide. Flow cytometry was

carried out on an EPICS Xl (Coulter Beckman) using EXPO 32

adc software.

Cell fractionation
Cell fractionation was carried out as described [35]. Samples were

analysed by PAGE and western blotting. For the DNAse treatment

of the chromatin, S2 cells were pelleted, washed in PBS and

homogenised in a potter homogeniser using a tight pestle. The

pellet was washed in PBS containing 0.1% triton, 5mM MgCl2

and protease inhibitors (complete EDTA free, Roche). They were

resuspended in the same buffer at a concentration of 56105 cells/

ml. DNAse (Turbo DNAse, Ambion) was added at a concentration

of 100 units/ml. The incubation was for 1 hour on ice.
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