The Clinical Significance of Brain MRI White Matter Hyperintensities: a Systematic Review and Meta-Analysis

Appendix

1. Supplemental Figures

- 1.1. Supplemental Figure 1: Meta-analysis of studies testing the association of WMH with incident stroke (PVH replaced by DWMH for studies that do not have results for total WMH burden)
- 1.2. Supplemental Figure 2: Meta-analysis of studies testing the association of WMH with incident dementia in patients with MCI
- 1.3. Supplemental Figure 3: Meta-analysis of studies testing the association of WMH with incident dementia (PVH replaced by DWMH for studies that do not have results for total WMH burden)
- 1.4. Supplemental Figure 4: Meta-analysis of studies testing the association of WMH with incident AD
- 1.5. Supplemental Figure 5: Meta-analysis of studies testing the association of WMH with mortality (PVH replaced by DWMH for studies that do not have results for total WMH burden)

2. Supplemental Tables

- 2.1. Supplemental Table 1: Association of WMH with incident stroke
- 2.2. Supplemental Table 2: Association of WMH with incident dementia
- 2.3. Supplemental Table 3: Association of WMH with cognitive decline
- 2.4. Supplemental Table 4: Association of WMH progression with cognitive decline
- 2.5. Supplemental Table 5: Association of WMH with mortality
- 2.6. Supplemental Table 6: Information on study quality (see attached excel file)

3. Supplemental Methods

- 3.1. Supplemental Methods 1: Data sources
- 3.2. Supplemental Methods 2: Study selection
- 3.3. Supplemental Methods 3: Statistical analyses

4. Supplemental References

1. Supplemental Figures

1.1. Supplemental Figure 1: Meta-analysis of studies testing the association of WMH with incident stroke (PVH replaced by DWMH for studies that do not have results for total WMH burden¹⁻³)

WMH and risk of stroke

DWMH: deep white matter hyperintensities; PVH: periventricular hyperintensities; WMH: white matter hyperintensities; Inverse variance meta-analysis; GP: general population; HRP: high risk population; all: overall meta-analysis; p for heterogeneity = 0.84, 0.008, and 0.16 for GP, HRP and all respectively; $I^2 = 0\%$, 79.1%, and 32.5%, for GP, HRP and all respectively

1.2. Supplemental Figure 2: Meta-analysis of studies testing the association of WMH with incident dementia in patients with MCI

MCI: Mild Cognitive Impairment; Inverse variance meta-analysis; p for heterogeneity = 0.26, I^2 = 26.1%

1.3. Supplemental Figure 3: Meta-analysis of studies testing the association of WMH with incident dementia (PVH replaced by DWMH for studies that do not have results for total WMH burden⁴)

WMH and risk of dementia

DWMH: deep white matter hyperintensities; PVH: periventricular hyperintensities; WMH: white matter hyperintensities; Inverse variance meta-analysis; GP: general population; HRP: high risk population; all: overall meta-analysis; p for heterogeneity = 0.38, 0.04, and 0.05 for GP, HRP and all respectively; $l^2 = 0\%$, 57.7%, and 48.0%, for GP, HRP and all respectively

1.4. Supplemental Figure 4: Meta-analysis of studies testing the association of WMH with incident AD

AD: Alzheimer Disease; Inverse variance meta-analysis; p for heterogeneity = 0.74, $I^2 = 0\%$

1.5. Supplemental Figure 5: Meta-analysis of studies testing the association of WMH with mortality (PVH replaced by DWMH for studies that do not have results for total WMH burden ²⁵)

DWMH: deep white matter hyperintensities; PVH: periventricular hyperintensities; WMH: white matter hyperintensities; Inverse variance meta-analysis; GP: general population; HRP: high risk population; all: overall meta-analysis; p for heterogeneity = 0.44, 0.06, and 0.03 for GP, HRP and all respectively; $l^2 = 0\%$, 60.4%, and 55.3%, for GP, HRP and all respectively

2. Supplemental Tables

2.1. Supplemental Table 1: Association of WMH with incident stroke

Author	Mean	Population	Ν	Fu (yrs)	MRI characteristics	WMH measure	Incident	Results
General po	pulation							
Wong, 2002 ⁶	62.3	ARIC study	1684	4.7	1.5T; T1, T2, PD	SQ (0-9), dichotomized (<u>></u> 3 vs. <3)	32 (25 IS, 5 ICH, 2 mixed)	HR=3.7(95%CI:1.7-7.8) ^{\dagger} for WMH \geq 3 vs. <3 HR=3.4(1.5-7.7) ^{\ddagger} for WMH \geq 3 vs. <3
Vermeer, 2003 ¹	72	Rotterdam study	1077	4.2	1.5T; T1, T2, PD	SQ (0-9) for PVH, quantitative for DWMH [*] , studied in tertiles and continuously	57 (42 IS, 6 ICH, 9 unspecified)	HR=4.7(2.0-11.2) [‡] for 3 rd vs. 1 st PVH tertile HR=1.36(1.20-1.54) [‡] per grade increase of PVH HR=3.6(1.4-9.2) [‡] for 3 rd vs. 1 st DWMH tertile Risk of stroke did not increase linearly with DWMH
Kuller, 2004 ⁷	75.0	CHS study	3293	7	1.5T (+0.35 in one of the 4 centres); T1, T2, PD	SQ (0-9), 6 classes: 0, 1, 2, 3, 4, <u>></u> 5 (reference = 0)	278 (225 IS)	HR=3.0(1.9-4.7) [§] for grade ≥5, for all stroke HR=2.9(1.7-4.8) for grade ≥5, for IS
Bokura, 2006 ²	57.8	Shimane study	2684	6.3	0.15T, 0.2T, 1.5T; T1, T2, ±PD, ±Flair	SQ (0-4 for PVH, 0- 3 for DWMH), dichotomized (PVH: \geq 3 vs. <3, DWMH: \geq 2 vs. <2)	102 (56 IS, 21 ICH, 11 SAH, 11 TIA, 3 unspecified)	OR=2.08(1.04-4.17) [‡] for PVH <u>≥</u> 3 vs. <3 OR=2.73(1.32-5.63) [‡] for DWMH <u>≥</u> 2 vs. <2
Buyck, 2009 ⁸	72.3	3C-study	1648	4.9	1.5T; T1, T2, PD	quantitative (automated), studied in quartiles	28 (22 IS, 5 ICH, 1 unspecified)	HR=5.7(2.0–16.4) for quartile 4 vs. quartile 1+2 of WMH ‡ HR=6.2(2.0-19.5) for quartile 4 vs. quartile 1+2 of PVH ‡ HR=4.1(1.5-11.3) for quartile 4 vs. quartile 1+2 of DWMH ‡
Debette, 2009 ⁹	62	Framingham Offspring study	2177	5.6	1.0T, 1.5T; T2	quantitative (automated), studied continuously, also dichotomized ^a	32 (26 IS, 5 ICH,1 unspecified)	HR=1.33(0.93-1.90) for increasing WMH volume [‡] HR=2.28(1.02-5.13) for extensive WMH [‡]

Author	Mean	Population	Ν	Fu (yrs)	MRI characteristics	WMH measure	Incident strokes (n)	Results
High risk p	opulation	า						
Yamauchi , 2002 ¹⁰	66.0	patients with lacunar stroke, headache or dizziness	89	4.3	0.5T; T1, T2, PD	SQ ^c studied continuously and dichotomous (severe vs. mild or absent)	7 (5 IS, 2 ICH)	HR=1.60(1.02-2.54) ^e OR=20.5(3.6-118.0) ^f
Smith, 2004 ¹¹	76.3 ^b	lobar ICH patients	82 ^b	2.7 ^b	NA; Flair	SQ (0-9) for PVH, quantitative for DWMH, dichotomized (middle or high vs. low tertile)	NA (recurrent ICH)	HR=9.0(1.2-67.2) for PVH NS for DWMH (no HR)
Appelros, 2005 ¹²	66.4	lacunar stroke patients	81	5.0	1.0T; T2	SQ ^d , studied continuously	24 (21 IS, 2 ICH, 1 unspecified)	HR=1.7(1.2-2.7) ^g
Fu, 2005	68.3	stroke patients	228	1.9	1.5T; T1, T2, Flair, DWI	SQ (0-3); studied continuously	29 (23 IS, 6 ICH)	HR=4.18(2.04-8.56) [‡]
Gerdes, 2006 ³	62	patients with recent IS, myocardial infarction or peripheral artery disease	230	3.5	1.5T; T1, T2, PD	SQ (PVH+/-, DWMH+/- and for total WMH: none, $<50\%$, \geq 50% of total white matter)	21 (IS)	HR=4.4(1.8-11.0) for PVH+/- HR=3.2(1.3-8.4) ^h for PVH+/- HR=1.5 (0.6–3.8) for DWMH+/-
Naka, 2006 ¹⁴	67.2	stroke patients	266	1.5	1T; T2, T2*	SQ (0-3); dichotomized (≥2 vs. <2)	26 (16 IS, 10 ICH)	HR=10.7(2.6-43.7) for IS ¹ HR=0.016(0.001-0.258) for ICH ¹

CVD: cerebrovascular disease; DWMH: deep white matter hyperintensities; Fu: follow-up; HR: hazard ratio; ICH: intracerebral hemorrhage; IS: ischemic stroke; NA: not available; NS: non significant; OR: odds ratio; PD: proton density; PVH: periventricular hyperintensities; SAH: subarachnoid hemorrhage; SQ: semi-quantitative; TIA: transient ischemic attack; WMH: white matter hyperintensities; approximation (based on number and size of lesions); [†] adjusted for age, sex; [‡] adjusted for age, sex, vascular risk factors; [§] adjusted for clinic, age, sex, vascular risk factors; ^a extensive WMH: > age-group specific mean[logWMH]+1SD; ^b with MRI (182 patients overall, 100 had computed tomography only), mean follow-up and age are for overall group; ^c van Swieten¹⁵; ^d Wahlund scale¹⁶; ^e adjusted for age, sex, vascular risk factors, multiple lacunar infarcts; ^f computed by authors of meta-analysis from published raw numbers, for severe vs. mild or no WMH; ^g adjusted for age, ischemic heart disease, impairment score, MMSE, basal ganglia score; ^h adjusted for age, sex, vascular risk factors, stroke type, days from stroke onset, microbleeds

Author	Mean age	Population	Ν	Fu (yrs)	MRI characteristics	WMH measure	Incident dementia, n	Dementia type	Results
General p	opulation								
Kuller, 2003 ¹⁷	<u>></u> 65	CHS	3375	NA	1.5T; T1, T2, PD	SQ (0-9), dichotomized (<u>></u> 3 vs. <3)	480 (criteria not specified): 52 VaD, 76 MD, 330 AD	All dem AD VaD/MD	HR=1.7(95%CI:1.36-2.10) for WMH>3 [†] HR=1.5(1.17-1.99) for WMH>3 [†] HR=2.1(1.36-3.11) for WMH>3 [†]
Prins, 2004 ⁴	72.2	Rotterdam study	1077	5.2	1.5T; T1, T2, PD	SQ (0-9) for PVH, quantitative for DWMH [*] , continuous (per SD increment) and dichotomized	45 (DSM-IIIR): 34 AD, 6 VaD, 5 other types	All dem AD	HR=1.67(1.25-2.24) [‡] for PVH (NS for DWMH) HR=2.2(1.0-4.8) for DWMH >6 ^a HR=4.4(1.9-5.0) for PVH >6 ^a HR=1.41(1.01-1.98) [‡] for PVH (NS for DWMH)
Meguro, 2007 ¹⁸	<u>≥</u> 65	Osaki–Tajiri project	257	5	1.5T; T1, T2	SQ: PVH (4 grades), DWMH (4 grades), continuous	27 (DSM-IV and CDR1+): 17 AD (NINCDS- ADRDA), 5 VaD (NINDS- AIREN)	AD VaD	OR=0.78(NS) for increasing PVH OR=1.07, 1.02(NS) for DWMH right and left OR=4.14(p<0.005) for PVH OR=4.04, 3.27(p<0.05) for DWVH right and left
Debette, 2009 ⁹	62	Framingham Offspring study	2013	5.9	1.0T, 1.5T; T2	quantitative (automated), continuous and dichotomized ^b	11 (DSM-IV): 7 AD, 3 VaD, 1 other	All dem	HR=2.22(1.32-3.72) [§] for increasing WMH HR=3.97 (1.10- 14.30) [§] for extensive WMH

2.2. Supplemental Table 2: Association of WMH with incident dementia

Author	Mean age	Population	Ν	Fu (yrs)	MRI characteristics	WMH measure	Incident dementia, n	Dementia type	Results
High risk	populatio	on							
Steffens, 2000 ¹⁹	>60	depression	182	1 to 5	1.5T; T2	quantitative (automated)	26 (criteria not specified), type unspecified	All dem	No association
Korf, 2004 ²⁰	62.9	MCI	75	2.8	1.5T; T2, PD	SQ ^c , continuous	37 (DSM-IV): 34 AD, 3 VaD	All dem	HR=1.01(0.94-1.08)
De Carli, 2004 ²¹	72.8	MCI	52	3.1	1.5T; T1, T2, PD	quantitative (automated), continuous	17 (CDR <u>></u> 1.0): 10 AD, 4 MD, 2 VaD, 1 other	All dem	HR=0.73(0.35-1.54) ^h
Geroldi, 2006 ²²	70.0	MCI	52	1.3	1.0T; gradient echo	SQ ^c , dichotomized ^e	11 (DSM-IV): 7 AD, 1 VaD, 1 DLB	All dem	OR=2.9(0.7-11.4)
Steffens, 2007 23	69.2	depression	161	5.4	1.5T; T2	quantitative (automated)	20 (DSM-IV): 10 AD, 3 VaD, 7 undetermined	All dem	No association ⁱ
Firbank, 2007 ²⁴	80.1	stroke	79	2	1.5T; T1, Flair	quantitative (automated), continuous and dichotomized (> vs. \leq 1/4 of white matter)	14 (DSM-IV): type not available	All dem	OR=1.0(0.2-4.1) ^j
Smith, 2008 ²⁵	72.3	MCI	156	6.4	1.5T; T2, PD	quantitative (automated), dichotomized ^f	54 (DSM-IV): 45 AD	All dem	HR=1.26(0.61-2.59)
Tapiola, 2008 ²⁶	72.7	MCI	60	2.8	1.5T; T2, Flair, PD	SQ ^c , continuous	13 (DSM-IV): 9 AD, 3 VaD, 1 MD	All dem	HR=1.01(0.89-1.14)
Bombois , 2008 ²⁷	68.1	MCI	170	3.8	1.5T; T1, T2, PD	SQ ⁹ , continuous, and also dichotomized for total WMH (> vs. <u><</u> median)	67 (DSM-IV): 29 AD (NINCDS-ADRDA), 19 DLB, 8 MD, 7 VaD (NINDS-AIREN)	All dem VaD/MD AD	HR=1.01(0.97-1.05) per unit WMH ^k HR=1.32(0.77-2.24) for WMH >6 ^{k,I} HR=1.14(1.06-1.24) per unit WMH ^k HR=10.00(1.55-64.39) for WMH >6 ^k HR=2.71(1.60-4.58) per unit PVH ^k HR=1.02(0.96-1.09) per unit WMH ^{k,I} HR=1.67(0.73-3.81) for WMH >6 ^{k,I}
Van Straaten , 2008 ²⁸	72.4	amnestic MCI	152	3	NA; T1, T2, PD	SQ ⁹ , continuous	55 (NINCDS-ADRDA): 55 AD	AD	HR=1.03(0.99–1.06) ^m for total WMH HR=1.02(0.97–1.08) ^m for DWMH HR=1.59(1.24–2.05) ^m for PVH

Author	Mean age	Population	Ν	Fu (yrs)	MRI characteristics	WMH measure	Incident dementia, n	Dementia type	Results
High risk	populatio	on							
Kantarci, 2009 ²⁹	77	MCI	151	2.1	1.5T; T1, Flair	quantitative (visual scale), dichotomized (>mean+1SD)	75 (DSM-III): 57 AD, 15 DLB, 3 FTLD	All dem	HR=0.75(0.42-1.35) ⁿ
Jokinen, 2009 ³⁰	73.5	with WMH and minor neurologica I problems	639	3	0.5T, 1.5T; T1, T2, Flair	SQ ^d , dichotomized into presence (or absence of SIVD)	91 (DSM-IV)	All dem	OR=3.01(1.64-5.55) °
Staeken borg, 2009 ³¹	69.9	MCI patients	152	2.0	1.0T; T1, Flair, T2*	SQ ^g , dichotomized into $<$ vs. \geq 6 for WMH, $<$ vs. \geq 3 for PVH, $<$ vs. \geq 4 for DWMH	72: 56 AD (NINCDS- ADRDA), 16 non-AD (7 VaD, 5 FTLD, 2 DLB, 1 PD, 1 alcohol dementia)	AD Non-AD	HR= 1.2(0.7-2.2) [‡] for WMH ≥6 HR= 1.3(0.8-2.3) [‡] for DWMH ≥4 HR= 1.1(0.7-2.0) [‡] for PVH ≥3 HR= 5.8(1.2-26.6) [‡] for WMH ≥6 HR= 5.7(1.2-26.7) [‡] for DWMH ≥4 HR= 6.5(1.4-29.8) [‡] for PVH ≥3

AD: Alzheimer's disease; All dem: all types of dementia; CDR: Clinical Dementia Rating scale ³²; DLB: dementia with Lewy bodies; DSM-III: Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition ³³; DSM-IV: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition ³⁴; DWMH: deep white matter hyperintensities; FTLD; frontotemporal lobe dementia; Fu: follow-up; HR: hazard ratio; MCI: mild cognitive impairment; MD: mixed dementia; NA: not available; NINCDS-ADRDA: criteria for AD from the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association ³⁵; NINDS-AIREN: National Institute of Neurological Disorders and Stroke and the Association Internationale pour la Recherche et l'Enseignement en Neurosciences ³⁶; NS: non significant; OR: odds ratio; PD: proton density; PVH: periventricular hyperintensities; SIVD: subcortical ischemic vascular disease, defined by either severe WMH (Fazekas scale³⁷) plus ≥1 lacune or moderate WMH³⁷ plus >5 lacunes; SQ: semi-quantitative; VaD: vascular risk factors, stroke, subclinical disease; [‡] adjusted for age, sex, vascular grade, infarcts on MRI, vascular risk factors, stroke, subclinical disease; [‡] adjusted for age, sex, [§] adjusted for age, sex, vascular risk factors; ^a numbers computed from graph; ^b extensive WMHV: >age-group specific mean[logWMH]+1SD; ^c Wahlund scale¹⁵; ^d grade 1 to 3 from Fazekas scale³⁷; ^e extensive WMH if total score>6 or any regional score>2; ^f extensive WMH if log-transformed >mean+1SD; ⁹ Scheltens scale³⁹; ⁿ adjusted for age, sex, education, medial temporal lobe atrophy, vascular risk factors, baseline cognition; ¹ unpublished data; ^m adjusted for age, sex, education; ^o adjusted fo

2.3. Supplemental Table 3: Association of WMH with cognitive decline

Author	Mean age	Population	Ν	Fu (yrs)	MRI characteristics	WMH measure s	Cognitive decline measure	Results
General po	opulatio	n						
Kuller, 1998	8 <u>></u> 65	CHS	346	93	1.5T; T1, T2, PD	SQ (0-9), dichotomized (<u>></u> 3 vs. <3)	global (3MSE)	no association with loss of \geq 5 points on 3MSE; OR=1.4(95%CI:1.0- 1.9) for 3MSE<80 at the end of fu
Schmidt, 2005 ⁴⁰	60.2	ASPS	329	6	1.5T; T1, T2, PD	quantitative (automated), continuous	domain-specific (composite z- score for each cognitive domain [memory, conceptualization, visuopractical skills, attention/speed])	no association of baseline WMH volume with decline in composite z-score [†]
Prins, 2005 41	5 71	Rotterdam study	832	5.2	1.5T; T1, T2, PD	SQ (0-9) for PVH, quantitative for DWMH, studied in quintiles	global (MMSE and cognitive index) and <i>domain-specific</i> (Stroop, Letter Digit Substitution Task, Verbal Fluency test, 15-word verbal learning test)	per SD increase in PVH, the annual MMSE decline increased by 0.035 points (0.003- 0.066); decline in Stroop naming and Letter Digit Substitution Test associated with PVH (p=0.04, <0.01); no association with DWMH
Smith, 2008	871.2	cognitively intact	67	5.1	1.5T; T2, PD	quantitative (automated), dichotomized	<i>global</i> (conversion to MCI [n=26])	HR=2.59(1.07-6.25) HR=3.30(1.33-8.17) [‡] for progression to MCI in subjects with extensive WMH
Debette, 2009 ⁹	62	Framingham Offspring study	134	46.2	1.0T, 1.5T; T2	quantitative (automated), continuous, also dichotomized [°]	global (conversion to MCI [n=93/1344], and to amnestic MCI [n=93/1134])	incident all MCI: HR=1.06(0.83-1.36) \degree for increasing WMH volume HR=1.26(0.67-2.39) \degree for extensive WMH incident amnestic MCI: HR=1.24(0.98-1.57) \degree for increasing WMH volume ^a HR=1.67(0.96-2.93) \degree for extensive WMH ^a
Silbert, 2009 ⁴²	62	cognitively intact	98	9.5	1.5T; T1, T2, PD	quantitative (automated), continuous	global (conversion to permanent cognitive impairment [n=53/98])	HR=1.04(1.00-1.07) ^b for increasing total WMH HR=1.06(1.01-1.10) ^b for increasing PVH

Author	Mean	Population	Ν	Fu	MRI	WMH measure C	Cognitive decline measure Res	ults
	age			(yrs)	characteristics	3		
High risk p	opulati	on						
Mungas, 2002 ⁴³	73.0	memory clinic: 68 CDR=0; 38 CDR=0.5; 14 CDR≥1	120	3.0	1.5T; T1, T2, PD	quantitative (automated), continuous	<i>global</i> (global cognitive change derived from word list learning test, digit span, letter fluency, animal category fluency)	WMH was not related to global cognitive change (p=0.36) $^{\rm g}$
Smith, 2004	476.3	lobar ICH	82 ^c	2.7 *	NA; Flair	SQ (0-9) for PVH, quantitative for DWMH, dichotomized (middle or high vs. low tertile)	global (incident cognitive impairment [deficits in memory of other cognitive areas interfering with tasks of daily living])	no association of PVH (p=0.85) or DMWH (p=0.44) with incident cognitive impairment
Appelros, 2005 ¹²	66.4	lacunar stroke	81	5.0	1.0T; T2	SQ ^d , studied continuously	global (MMSE)	correlation coefficient =0.21 (NS) for decline in MMSE, =0.41 (p<0.01) for MMSE at 5 yrs
Van der Flier, 2005	73	memory complaints, MCI or normal	59	1.8	1.5T; T1, T2, PD, Flair	quantitative (automated), continuous	global (CAMCOG)	WMH volume was significantly associated with annual change in CAMCOG (β =-0.1; p<0.05) ^h
Mungas, 2005 ⁴⁵	73.8	memory clinic: 58 CDR=0; 34 CDR=0.5; 11 CDR <u>≥</u> 1	103	4.8	1.5T; T1, T2, PD	quantitative (automated), continuous	<i>domain-specific</i> (composite memory measure derived from delayed, cued recall and word list learning task; composite executive function scale using letter fluency, digit span backward, visual span backward, initiation-perseveration scale)	baseline WMHV was related to change in executive functions (p=0.02), ^f NS after additional adjustments ⁱ
Van den Heuvel, 2006	75	vascular risk + MMSE <u>></u> 24	554	3	1.5T; T2, PD, Flair	quantitative (automated), studied in 3 strata (low, intermediate, high)	<i>domain-specific</i> (picture word learning test; letter digit coding test; abbreviated Stroop test)	higher PVH at baseline associated with more time to complete the Stroop test $(p=0.008)^{j}$, no association with DWMH
Debette, 2007 ⁴⁷	68.1	MCI	170	3.8	1.5T; T1, T2, PD	SQ ^e , dichotomous (>vs <median) and="" in<br="">tertiles</median)>	<i>global</i> (MMSE and DRS) and <i>domain-specific</i> (DRS subitems)	decliners more often had PVH or DWMH > median; mean annual decline in MMSE and DRS-initiation higher with increasing PVH tertiles; decline in MMSE associated with PVH > median ^k

Author	Mean age	Population	N	Fu (yrs)	MRI characteristics	WMH measure	Cognitive decline measure Re	esults
High risk	populati	on						
Firbank, 2007 ²⁴	80.1	Stroke	79	2	1.5T; T1, Flair	quantitative (automated) continuous	, global (CAMCOG)	no association of CAMCOG score at 2 years with WMH at baseline (β =-0.08; p=0.5)
Jokinen, 2009 ³⁰	73.5	with WMH and minor neurological problems	639	3	0.5T, 1.5T; T1, T2, Flair	SQ ^f , dichotomized into presence (or absence of SIVD)	global (MMSE); domain-specifi (immediate and delayed word recall, Stroop, trail making test and B-A, verbal fluency, symbol digit modalities and digit cancellation test, digit span backward)	 c participants with SIVD had a steeper decline for MMSE (p=0.03), verbal A fluency (p=0.007), Stroop I (p=0.007), ol Stroop II (p=0.005), TMT A (p<0.001)
Dufouil, 2009 ⁴⁸	60.5	stroke or TIA, in PROGRESS trial	226	4	1.0T, 1.5T; T2/PD	SQ ^e , categorized in 4 grades (none, mild, moderate, severe)	<i>global</i> (dementia [DSM-IV] or severe cognitive decline (declin in MMSE of >= 3 points)	RR=7.6 (1.9–31.2) for severe vs. none he

3MSE: Modified Mini-Mental State Examination ⁴⁹; CAMCOG: Cambridge Assessment Mental Disorders in the Elderly, section B ⁵⁰; CDR: Clinical Dementia Rating scale ³²; DRS: Dementia Rating Scale ⁵¹; DWMH: deep white matter hyperintensities; HR: Hazard ratio; MCI: mild cognitive impairment; MMSE: mini-mental state examination ⁵²; OR: odds ratio; PVH: periventricular hyperintensities; RR: relative risk; SIVD: subcortical ischemic vascular disease, defined by either severe WMH (Fazekas scale³⁷) plus ≥1 lacune or moderate WMH³⁷ plus >5 lacunes; SQ: semi-quantitative; extensive if log-transformed >1SD from study mean; [†] no numbers; [‡] adjusted for ApoE₄4, age, sex, education, smoking, CDR sum of boxes; [§] adjusted for age, sex, education, vascular risk factors, duration of follow-up; ^a significant in participants aged ≥60 years; ^b adjusted for age, hypertension, MMSE, ApoE₄4, intracranial and hippocampal volume; ^c with MRI (182 patients overall, 100 had computed tomography only), mean follow-up and mean age is for overall group; ^d Wahlund scale¹⁶; ^e Scheltens scale³⁸; ^f grade 1 to 3 from Fazekas scale³⁷; ^g adjusted for age, sex, age, education, treatment group, and test version when applicable; ^k adjusted for age, sex, education, vascular risk factors, medial temporal lobe atrophy, MCI subtype, +/- baseline cognitive performances; ¹ adjusted for age, sex, education, hypertension, physical impairment, baseline MMSE and treatment allocation

2.4. Supplemental Table 4: Association of WMH progression with cognitive decline

Author	Mean	Population	Ν	Fu	MRI	WMH progression	Cognitive decline measure	Results
General pop	ulation							
Longstreth, 2005 ⁵³	74.1	CHS	1919	5	1.5T; T1, T2, PD	SQ, worsening WMH grade (0-9), defined by 3 levels (increase of 0, 1, \geq 2 points)	<i>global</i> (3MSE) and <i>domain-specific</i> (digit symbol substitution test)	3MSE and digit symbol substitution test scores deteriorated significantly more with increasing WMH progression [‡]
Schmidt, 2005 ⁴⁰	60.2	ASPS	329	6	1.5T; T1, T2, PD	quantitative (automated), continuous	<i>domain-specific</i> (composite z-score each domain: memory, conceptualization, visuopractical skills, attention/speed)	progression of WMH significantly associated with declining performance in memory, conceptualization and visuopractical skills ^a
Kramer, 2007 ⁵⁴	73.9	healthy elderly subjects	50	3.8	1.5T; T1, T2, PD	quantitative (automated), continuous	<i>domain-specific</i> (composite memory measure derived from delayed and cued recall and word list learning task; composite executive function score using letter fluency, digit span backward, visual span backward, and an initiation-perseveration scale)	delta-WMH volume significantly associated with composite executive function score at the end of follow-up $(\beta=0.261, p=0.022)^{\circ}$, no significant association of delta-WMH volume with composite memory measure at the end of follow-up
Van Dijk, 2008 ⁵⁵	71	Rotterdam	668	3.4	1.5T; T1, T2, PD	SQ, studied in 3 classes (no progression, minor progression, marked progression)	global (MMSE, composite score for global cognitive function) and <i>domain-specific</i> (z-scores for memory performance and psychomotor speed)	increased mean change in MMSE (p=0.02) for marked PVH progression, in psychomotor speed for any or marked PVH progression (p<0.01), in global cognitive function for any (p<0.01) and marked (p=0.02) PVH progression; no association with DWMH change

Author	Mean	Population	Ν	Fu	MRI	WMH progression	Cognitive decline measure	Results
High risk po	pulation							
Van den Heuvel, 2006 ⁴⁶	75	vascular risk + MMSE <u>≥</u> 24	554	3	1.5T; T2, PD, Flair	quantitative (automated), studied in 3 strata (low, intermediate, high)	<i>domain-specific</i> (memory: picture word learning test; executive functioning and attention: letter digit coding test and abbreviated Stroop color word test)	larger progression in PVH volume associated with more time to complete the Stroop test (p=0.02) ^b
Mungas, 2005 ⁴⁵	73.8	memory clinic: 58 CDR=0, 34 CDR=0.5, 11 CDR≥1	103	4.8	1.5T; T1, T2, PD	quantitative (automated), continuous	<i>domain-specific</i> (composite memory measure derived from delayed and cued recall and word list learning task; composite executive function scale using letter fluency, digit span backward, visual span backward, and an initiation-perseveration scale)	no association with WMH change [§]

3MSE: Modified Mini-Mental State Examination ⁴⁹; CDR: Clinical Dementia Rating scale ³²; DWMH: deep white matter hyperintensities; MMSE: mini-mental state examination ⁵²; PVH: periventricular hyperintensities; SQ: semi-quantitative; TIA: transient ischemic attack; WMH: white matter hyperintensities; no neuropsychiatric disease at baseline; [‡] adjusted for age, sex, education, performance and WMH grade at baseline, occurrence of TIA or stroke (unchanged when adding worsening atrophy and presence of infarcts to model); [§] adjusted for age, education, sex; ^a adjusted for sex, age, education, major vascular risk factors (non significant after adjusting for brain volume change); ^b adjusted for sex, age, education, treatment group, and test version when applicable (non significant after adjusting for incident brain infarction; ^c adjusted for baseline executive function, change in hippocampal volume, cortical grey matter, and lacunes

2.5. Supplemental Table 5: Association of WMH with mortality

Author	Mean age	Population	Ν	Fu (yrs)	MRI characteristics	WMH measure	Incident deaths (n)	Results
General pop	oulation							
Bokura, 2006 ²	57.8	Shimane study	2684	6.3	0.15T, 0.2T, 1.5T; T1, T2, ±PD, ±Flair	SQ (0-4 for PVH, 0-3 for DWMH), dichotomized (PVH: <u>></u> 3 vs. <3) and 3 classes (DWMH: 0, 1, >1)	93	OR=4.01(95%CI:1.91-8.45) [†] for PVH <u>></u> 3 vs. <3 OR=0.63(0.32–1.25) [†] for 1 vs. 0 DWMH OR=1.06(0.45–2.53) [†] for >1 vs. 0 DWMH
Kuller, 2007 ⁵⁶	74.8	CHS	3245	10 to 12	1.5T; T1, T2, PD	SQ (0-9); 5 classes: 0-1, 2, 3, 4, ≥5 (reference = 0-1)	1056	HR=2.22(1.75-2.82) for grade \geq 5 vs. 0-1 (p for trend <0.0001 across grades) [‡]
lkram, 2007 ⁵⁷	73.4	Rotterdam study	490	8.4	1.5T; T1, T2, PD, HASTE	quantitative (automated) , continuous and in quartiles	191	HR=1.38(1.16-1.65) per SD increase in WMH volume HR=2.05(1.32–3.20) for 4 th vs. 1 st quartile ^{§,a}
Debette, 2009 ⁹	62	Framingham Offspring study	2208	5.2	1.0T, 1.5T; T2	quantitative (automated) , continuous and dichotomized	97	HR=1.38(1.13-1.69) [†] for increasing WMH volume HR=2.27(1.41-3.65) [†] for extensive WMH ^a
High risk po	pulation	า						
Yamauchi, 2002 ¹⁰	66.0	lacunar stroke, headache or dizziness	89	4.3	0.5T; T1, T2, PD	SQ ^b , dichotomized (presence vs. absence)	4	0R=0.26(0.03-2.59) ^e
Levy, 2003 5	70	depression	259	5.5	1.5T; T1,T2	SQ: PVH (0-3), DWMH (0-3), SGMH (0-3), studied as binary variable (2-3 vs. 0-1)	30	HR=3.43(1.29-9.08) for DWMH [†] OR=2.36(1.07-5.21) for PVH ^j association with PVH non significant in Cox regression including DWMH
Appelros, 2005 ¹²	66.4	lacunar stroke	81	5.0	1.0T; T2	SQ ^a , studied continuously	15	HR=1.6(1.2-2.2) ^g
Fu, 2005 ¹³	68.3	stroke	228	1.9	1.5T; T1, T2, Flair, DWI	SQ (0-3), studied continuously	25	HR=2.02(1.03-3.96) [†]
Kerber, 2006 ⁵⁸	>75	mild imbalance	108	11.8	1.5T; T1, T2	SQ (0-2), grade 0 = reference	62	HR=1.98(1.06-3.7) HR=2.31(1.21-4.40) ^h for grade 2 vs. 0
Oksala, 2009 ⁵⁹	70.8	stroke	396	7.5	1.0T; T1, T2, PD	SQ ^d , dichotomized: severe vs. mild to moderate	277	HR=1.31(1.00-1.71) ^{i,a}

DWMH: deep white matter hyperintensities; DWI: diffusion-weighted imaging; Fu: follow-up; HASTE: 3D half-Fourier acquisition single-shot turbo spin echo sequence; HR: hazard ratio; OR: odds ratio; PD: proton density; PVH: periventricular hyperintensities; SGMH: subcortical grey matter hyperintensities; SQ: semi-quantitative; WMH: white matter hyperintensities; * extensive WMHV: > age-group specific mean[logWMH]+1SD; [†] adjusted for age, sex, vascular risk factors; [‡] adjusted for age, sex and race (still significant when adjusting for vascular risk factors, incident dementia, infarct on MRI); [§] adjusted for age and sex (unchanged after adjustment for vascular risk factors and after censoring for incident dementia or stroke); ^a the association was stronger with vascular death; ^b Wahlund scale¹⁶; ^c none to mild, moderate, severe (modified Fazekas scale³⁷); ^d van Swieten¹⁵; ^e OR computed by authors of meta-analysis from published raw numbers; ⁱ adjusted for age, sex, vascular risk factors, vascular disease and poor modified Rankin score; ⁱ OR computed by authors of meta-analysis using raw numbers

3. Supplemental Methods

3.1. Supplemental Methods 1: Data sources

References for this review were identified through searches of PubMed from 1966, to November 23rd 2009, using pre-defined search terms ("white matter" or "periventricular" or "subcortical" or ("Leukoaraiosis"[Mesh]) or "Leukoaraiosis/pathology"[Mesh])) and ("Dementia" or "Alzheimer disease" or "Vascular dementia" or "Stroke" or "Brain Infarction" or "Cerebral Hemorrhage" or "Death" or "Mortality" or "cognitive" or ("Stroke"[Mesh] or "Stroke/epidemiology"[Mesh]) or ("Dementia"[Mesh] or "Dementia/epidemiology"[Mesh]) or "Death"[Mesh] or "Dementia/epidemiology"[Mesh]) or "Death"[Mesh] or "Mortality"[Mesh]) and ("Magnetic Resonance Imaging"[Mesh]) and ("Risk Factors"[Mesh] or "Longitudinal Studies"[Mesh] or "Cohort Studies"[Mesh]), restricted to research in humans. Only papers published in peer-reviewed journals were selected.

3.2. Supplemental Methods 2: Study selection

We excluded studies on white matter lesions occurring in inflammatory or neurodegenerative conditions such as multiple sclerosis, auto-immune disorders such as lupus or Sneddon syndrome, or in monogenic neurodegenerative diseases such as Huntington's disease, neurofibromatosis, and leukodystrophies, as well as studies on WMH in monogenic cerebrovascular disease such as CADASIL, Fabry disease, and sickle cell disease. We also did not include studies where the outcome was MRI-defined (including silent) brain infarcts instead of clinical stroke, or subjective cognitive decline instead of objective cognitive decline evaluated by standardized neuropsychological tests, as well as studies on the association of WMH with cognitive decline in already demented individuals.

We reviewed abstracts of identified articles in all languages. For those potentially meeting the inclusion criteria the full paper was reviewed.

3.3. Supplemental Methods 3: Statistical analyses

For studies that measured deep WMH (DWMH) and periventricular hyperintensities (PVH) separately, and did not provide a global risk estimate for WMH, the results for PVH were used for the meta-analysis. Indeed, it has been shown that although PVH and DWMH volumes are both very strongly associated with global WMH burden, there is a steeper slope of change in PVH volume with increasing total WMH volume.⁶⁰

Supplemental references

- 1. Vermeer SE, Hollander M, van Dijk EJ, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. *Stroke* 2003;34(5):1126-9.
- 2. Bokura H, Kobayashi S, Yamaguchi S, Iijima K, Nagai A, Toyoda G, et al. Silent brain infarction and subcortical white matter lesions increase the risk of stroke and mortality: a prospective cohort study. *J Stroke Cerebrovasc Dis* 2006;15(2):57-63.
- 3. Gerdes VE, Kwa VI, ten Cate H, Brandjes DP, Buller HR, Stam J. Cerebral white matter lesions predict both ischemic strokes and myocardial infarctions in patients with established atherosclerotic disease. *Atherosclerosis* 2006;186(1):166-72.
- 4. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Koudstaal PJ, Oudkerk M, et al. Cerebral white matter lesions and the risk of dementia. *Arch Neurol* 2004;61(10):1531-4.
- 5. Levy RM, Steffens DC, McQuoid DR, Provenzale JM, MacFall JR, Krishnan KR. MRI lesion severity and mortality in geriatric depression. *Am J Geriatr Psychiatry* 2003;11(6):678-82.
- 6. Wong TY, Klein R, Sharrett AR, Couper DJ, Klein BE, Liao DP, et al. Cerebral white matter lesions, retinopathy, and incident clinical stroke. *Jama* 2002;288(1):67-74.
- Kuller LH, Longstreth WT, Jr., Arnold AM, Bernick C, Bryan RN, Beauchamp NJ, Jr. White matter hyperintensity on cranial magnetic resonance imaging: a predictor of stroke. *Stroke* 2004;35(8):1821-5.
- Buyck JF, Dufouil C, Mazoyer B, Maillard P, Ducimetiere P, Alperovitch A, et al. Cerebral white matter lesions are associated with the risk of stroke but not with other vascular events: the 3-City Dijon Study. *Stroke* 2009;40(7):2327-31.
- 9. Debette S, Beiser A, DeCarli C, Au R, Himali JJ, Kelly-Hayes M, et al. Association of MRI Markers of Vascular Brain Injury with Incident Stroke, Mild Cognitive Impairment, Dementia and Mortality: the Framingham Offspring Study. 2009, in press in *Stroke*.
- 10. Yamauchi H, Fukuda H, Oyanagi C. Significance of white matter high intensity lesions as a predictor of stroke from arteriolosclerosis. *J Neurol Neurosurg Psychiatry* 2002;72(5):576-82.
- 11. Smith EE, Gurol ME, Eng JA, Engel CR, Nguyen TN, Rosand J, et al. White matter lesions, cognition, and recurrent hemorrhage in lobar intracerebral hemorrhage. *Neurology* 2004;63(9):1606-12.
- 12. Appelros P, Samuelsson M, Lindell D. Lacunar infarcts: functional and cognitive outcomes at five years in relation to MRI findings. *Cerebrovasc Dis* 2005;20(1):34-40.
- Fu JH, Lu CZ, Hong Z, Dong Q, Luo Y, Wong KS. Extent of white matter lesions is related to acute subcortical infarcts and predicts further stroke risk in patients with first ever ischaemic stroke. J Neurol Neurosurg Psychiatry 2005;76(6):793-6.
- 14. Naka H, Nomura E, Takahashi T, Wakabayashi S, Mimori Y, Kajikawa H, et al. Combinations of the presence or absence of cerebral microbleeds and advanced white matter hyperintensity as predictors of subsequent stroke types. *AJNR Am J Neuroradiol* 2006;27(4):830-5.
- 15. van Swieten JC, Hijdra A, Koudstaal PJ, van Gijn J. Grading white matter lesions on CT and MRI: a simple scale. *J Neurol Neurosurg Psychiatry* 1990;53(12):1080-3.
- 16. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. A new rating scale for agerelated white matter changes applicable to MRI and CT. *Stroke* 2001;32(6):1318-22.
- 17. Kuller LH, Lopez OL, Newman A, Beauchamp NJ, Burke G, Dulberg C, et al. Risk factors for dementia in the cardiovascular health cognition study. *Neuroepidemiology* 2003;22(1):13-22.
- 18. Meguro K, Ishii H, Kasuya M, Akanuma K, Meguro M, Kasai M, et al. Incidence of dementia and associated risk factors in Japan: The Osaki-Tajiri Project. *J Neurol Sci* 2007;260(1-2):175-82.
- 19. Steffens DC, MacFall JR, Payne ME, Welsh-Bohmer KA, Krishnan KR. Grey-matter lesions and dementia. *Lancet* 2000;356(9242):1686-7.
- 20. Korf ES, Wahlund LO, Visser PJ, Scheltens P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. *Neurology* 2004;63(1):94-100.
- 21. DeCarli C, Mungas D, Harvey D, Reed B, Weiner M, Chui H, et al. Memory impairment, but not cerebrovascular disease, predicts progression of MCI to dementia. *Neurology* 2004;63(2):220-7.
- 22. Geroldi C, Rossi R, Calvagna C, Testa C, Bresciani L, Binetti G, et al. Medial temporal atrophy but not memory deficit predicts progression to dementia in patients with mild cognitive impairment. *J Neurol Neurosurg Psychiatry* 2006;77(11):1219-22.
- 23. Steffens DC, Potter GG, McQuoid DR, MacFall JR, Payne ME, Burke JR, et al. Longitudinal magnetic resonance imaging vascular changes, apolipoprotein E genotype, and development of dementia in the neurocognitive outcomes of depression in the elderly study. *Am J Geriatr Psychiatry* 2007;15(10):839-49.

- 24. Firbank MJ, Burton EJ, Barber R, Stephens S, Kenny RA, Ballard C, et al. Medial temporal atrophy rather than white matter hyperintensities predict cognitive decline in stroke survivors. *Neurobiol Aging* 2007;28(11):1664-9.
- 25. Smith EE, Egorova S, Blacker D, Killiany RJ, Muzikansky A, Dickerson BC, et al. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. *Arch Neurol* 2008;65(1):94-100.
- 26. Tapiola T, Pennanen C, Tapiola M, Tervo S, Kivipelto M, Hanninen T, et al. MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. *Neurobiol Aging* 2008;29(1):31-8.
- 27. Bombois S, Debette S, Bruandet A, Delbeuck X, Delmaire C, Leys D, et al. Vascular subcortical hyperintensities predict conversion to vascular and mixed dementia in MCI patients. *Stroke* 2008;39(7):2046-51.
- 28. van Straaten EC, Harvey D, Scheltens P, Barkhof F, Petersen RC, Thal LJ, et al. Periventricular white matter hyperintensities increase the likelihood of progression from amnestic mild cognitive impairment to dementia. *J Neurol* 2008;255(9):1302-8.
- 29. Kantarci K, Weigand SD, Przybelski SA, Shiung MM, Whitwell JL, Negash S, et al. Risk of dementia in MCI: combined effect of cerebrovascular disease, volumetric MRI, and 1H MRS. *Neurology* 2009;72(17):1519-25.
- Jokinen H, Kalska H, Ylikoski R, Madureira S, Verdelho A, van der Flier WM, et al. Longitudinal cognitive decline in subcortical ischemic vascular disease--the LADIS Study. *Cerebrovasc Dis* 2009;27(4):384-91.
- Staekenborg SS, Koedam EL, Henneman WJ, Stokman P, Barkhof F, Scheltens P, et al. Progression of mild cognitive impairment to dementia: contribution of cerebrovascular disease compared with medial temporal lobe atrophy. *Stroke* 2009;40(4):1269-74.
- 32. Morris JC. The Clinical Dementia Rating (CDR): current version and scoring rules. *Neurology* 1993;43(11):2412-4.
- 33. American_Psychiatric_Association. Diagnostic and Statistical Manual of Mental Disorders, Revised Third Edition. Washington, DC: American Psychiatric Association. 1987.
- 34. American_Psychiatric_Association. *Diagnostic and Statistical Manual of Mental Disorders. 4th ed. Washington, DC: American Psychiatric Association*, 1994.
- 35. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology* 1984;34(7):939-44.
- Roman GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. *Neurology* 1993;43(2):250-60.
- 37. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. *AJR Am J Roentgenol* 1987;149(2):351-6.
- Scheltens P, Barkhof F, Leys D, Pruvo JP, Nauta JJ, Vermersch P, et al. A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. *J Neurol Sci* 1993;114(1):7-12.
- 39. Kuller LH, Shemanski L, Manolio T, Haan M, Fried L, Bryan N, et al. Relationship between ApoE, MRI findings, and cognitive function in the Cardiovascular Health Study. *Stroke* 1998;29(2):388-98.
- 40. Schmidt R, Ropele S, Enzinger C, Petrovic K, Smith S, Schmidt H, et al. White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. *Ann Neurol* 2005;58(4):610-6.
- 41. Prins ND, van Dijk EJ, den Heijer T, Vermeer SE, Jolles J, Koudstaal PJ, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. *Brain* 2005;128(Pt 9):2034-41.
- 42. Silbert LC, Howieson DB, Dodge H, Kaye JA. Cognitive impairment risk: white matter hyperintensity progression matters. *Neurology* 2009;73(2):120-5.
- 43. Mungas D, Reed BR, Jagust WJ, DeCarli C, Mack WJ, Kramer JH, et al. Volumetric MRI predicts rate of cognitive decline related to AD and cerebrovascular disease. *Neurology* 2002;59(6):867-73.
- 44. van der Flier WM, van der Vlies AE, Weverling-Rijnsburger AW, de Boer NL, Admiraal-Behloul F, Bollen EL, et al. MRI measures and progression of cognitive decline in nondemented elderly attending a memory clinic. *Int J Geriatr Psychiatry* 2005;20(11):1060-6.
- 45. Mungas D, Harvey D, Reed BR, Jagust WJ, DeCarli C, Beckett L, et al. Longitudinal volumetric MRI change and rate of cognitive decline. *Neurology* 2005;65(4):565-71.

- 46. van den Heuvel DM, ten Dam VH, de Craen AJ, Admiraal-Behloul F, Olofsen H, Bollen EL, et al. Increase in periventricular white matter hyperintensities parallels decline in mental processing speed in a non-demented elderly population. *J Neurol Neurosurg Psychiatry* 2006;77(2):149-53.
- 47. Debette S, Bombois S, Bruandet A, Delbeuck X, Lepoittevin S, Delmaire C, et al. Subcortical hyperintensities are associated with cognitive decline in patients with mild cognitive impairment. *Stroke* 2007;38(11):2924-30.
- 48. Dufouil C, Godin O, Chalmers J, Coskun O, MacMahon S, Tzourio-Mazoyer N, et al. Severe cerebral white matter hyperintensities predict severe cognitive decline in patients with cerebrovascular disease history. *Stroke* 2009;40(6):2219-21.
- 49. Teng EL, Chui HC. The Modified Mini-Mental State (3MS) examination. *J Clin Psychiatry* 1987;48(8):314-8.
- 50. Roth M, Tym E, Mountjoy CQ, Huppert FA, Hendrie H, Verma S, et al. CAMDEX. A standardised instrument for the diagnosis of mental disorder in the elderly with special reference to the early detection of dementia. *Br J Psychiatry* 1986;149:698-709.
- 51. Mattis S. *Mental status examination for organic mental syndrome in the elderly patient.* 1976 ed. New York: NY: Grune & Stratton Inc, 1988.
- 52. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. *J Psychiatr Res* 1975;12(3):189-98.
- 53. Longstreth WT, Jr., Arnold AM, Beauchamp NJ, Jr., Manolio TA, Lefkowitz D, Jungreis C, et al. Incidence, manifestations, and predictors of worsening white matter on serial cranial magnetic resonance imaging in the elderly: the Cardiovascular Health Study. *Stroke* 2005;36(1):56-61.
- 54. Kramer JH, Mungas D, Reed BR, Wetzel ME, Burnett MM, Miller BL, et al. Longitudinal MRI and cognitive change in healthy elderly. *Neuropsychology* 2007;21(4):412-8.
- 55. van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MM. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. *Stroke* 2008;39(10):2712-9.
- 56. Kuller LH, Arnold AM, Longstreth WT, Jr., Manolio TA, O'Leary DH, Burke GL, et al. White matter grade and ventricular volume on brain MRI as markers of longevity in the cardiovascular health study. *Neurobiol Aging* 2007;28(9):1307-15.
- 57. Ikram MA, Vernooij MW, Vrooman HA, Hofman A, Breteler MM. Brain tissue volumes and small vessel disease in relation to the risk of mortality. *Neurobiol Aging* 2007.
- 58. Kerber KA, Whitman GT, Brown DL, Baloh RW. Increased risk of death in community-dwelling older people with white matter hyperintensities on MRI. *J Neurol Sci* 2006;250(1-2):33-8.
- 59. Oksala NK, Oksala A, Pohjasvaara T, Vataja R, Kaste M, Karhunen PJ, et al. Age related white matter changes predict stroke death in long term follow-up. *J Neurol Neurosurg Psychiatry* 2009;80(7):762-6.
- 60. DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ. Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden. *Stroke* 2005;36(1):50-5.