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All-trans-retinoic acid and 9-cis-retinoic acid have been reported to have inhibitory effects on pancreatic adenocarcinoma cells
and we have shown that this is partly due to induction of apoptosis. In this study, the mechanisms whereby 9-cis-retinoic acid
induces apoptosis in these cells were investigated. An involvement of the Bcl-2 family of proteins was shown, such that 9-cis-
retinoic acid causes a decrease in the Bcl-2/Bax ratio. Overexpression of Bcl-2 also resulted in inhibition of apoptosis induced
by 9-cis-retinoic acid. Furthermore, two broad-range caspase inhibitors blocked DNA fragmentation induced by 9-cis-retinoic
acid, but had no effect on viability defined by mitochondrial activity. Using synthetic retinoids, which bind selectively to specific
retinoic acid receptor subtypes, we further established that activation of retinoic acid receptor-g is essential for induction of
apoptosis. Only pan-retinoic acid receptor and retinoic acid receptor-g selective agonists reduced viability and a cell line
expressing very low levels of retinoic acid receptor-g is resistant to the effects of 9-cis-retinoic acid. A retinoic acid receptor-b/
g selective antagonist also suppressed the cytotoxic effects of 9-cis-retinoic acid in a dose-dependent manner. This study
provides important insight into the mechanisms involved in suppression of pancreatic tumour cell growth by retinoids. Our
results encourage further work evaluating the clinical use of receptor subtype selective retinoids in pancreatic carcinoma.
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Despite a lot of effort put into improving diagnosis, staging and treat-
ment of pancreatic cancer during the past decades, it is still one of the
leading causes of cancer-related deaths in the western world. Five-
year survival is less than 5% and the median survival time for patients
diagnosed with advanced disease is about 5 months (Rosewicz and
Wiedenmann, 1997; Harris and Bruckner, 2001). Surgery is the only
curative treatment for pancreatic cancer but a very small percentage
of tumours are actually resectable, due mainly to the fact that most
patients present late with locally advanced or metastatic disease. Even
after surgery, 5-year survival rates reported from most institutions are
only around 10% (Rios et al, 1999; Wagner et al, 1999) and as a
consequence, adjuvant and neoadjuvant treatments are important
issues. Current chemotherapeutic strategies are generally ineffective
(van Riel et al, 1999).

Retinoids are natural or synthetic derivatives of vitamin A. The
physiological form of vitamin A is retinol, which is metabolised in
its target cells to retinal and then further oxidised to form all-trans-
retinoic acid (ATRA) and its stereoisomer 9-cis-retinoic acid
(9cRA) (Vieira et al, 1995). In the late sixties, vitamin A was shown
to have anti-tumour activity (Saffiotti et al, 1967) and it has since
been shown that retinoic acids and other retinoid-related compounds
cause growth inhibition, accompanied by induction of differentiation
and/or apoptosis, in various types of cancer cells (Bollag et al, 1994;
De Luca et al, 1995; Lippman et al, 1995). Retinoids exert their effects
by interacting with nuclear receptors functioning as ligand-depen-
dent transcription factors that switch a variety of genes on and off
(Evans, 1988). There are two families of receptors binding retinoic

acids, the retinoic acid receptors (RARs) and the retinoid X receptors
(RXRs). Each family has three subtypes (a, b and g) and each of those
a number of isoforms. The natural ligand for RARs is ATRA whereas
9cRA binds to both RARs and RXRs with high affinity (Heyman et al,
1992). The activity of RARs and RXRs is further regulated by the
presence of numerous coregulatory molecules, which act at least in
part through regulation of histone acetylation and modulation of
chromatin structure (for review see Freedman, 1999; Glass and
Rosenfeld, 2000).

Responsiveness to retinoids in pancreatic cancer cells has
previously been reported by different groups (Rosewicz et al, 1995;
Bold et al, 1996; Louvet et al, 1996). A phase II trial of 13-cis retinoic
acid and interferon-a in patients with advanced pancreatic carcinoma
has also been completed and promising results with one partial
remission and 14 out of 22 patients with stable disease for a median
duration of 5 months were reported (Brembeck et al, 1998). We have
shown that ATRA and 9cRA induce apoptosis in a number of
pancreatic adenocarcinoma cell lines and enhance the cytotoxic
effects of chemotherapeutic agents in these cells (Pettersson et al,
2000, 2001). In the present study, we examined the role of two
families of proteins that are important players in many apoptotic
responses, the Bcl-2 proteins and caspases. Furthermore, the involve-
ment of different RAR and RXR subtypes in this response was
investigated and a critical role for RAR-gamma was identified.

MATERIALS AND METHODS

Cell lines

The human pancreatic adenocarcinoma cell line T3M-4 was
obtained from Professor N Lemoine (ICRF, UK). All other cells
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were obtained from the American Tissue Culture Collection. Cells
were maintained in RPMI-1640 culture medium with 10% foetal
calf serum (FCS), 2 mM L-glutamine and antibiotics at 378C in a
humidified atmosphere containing 5% CO2. During all experi-
ments, cells were grown in medium containing 2.5% FCS. Under
these conditions, the level of endogenous retinoic acid in the
medium is less than 1079

M, which is negligible (Napoli, 1996).
Cells were routinely tested for mycoplasma contamination.

Reagents

ATRA and 9cRA were purchased from SIGMA (Poole, UK). Recep-
tor subtype-selective analogues were provided by Ligand
Pharmaceuticals Inc. (San Diego, CA, USA) The compounds were
characterised for their receptor subtype selectivity as previously
described (Allegretto et al, 1993) (see Table 1). The pUSEamp(+)
plasmid containing wild-type mouse Bcl-2 under the control of
the cytomegalovirus (CMV) promoter was obtained from Upstate
Biotechnology (Lake Placid, NY, USA). A control vector without
insert was supplied by the same source. The broad range caspase
inhibitors Z-VAD.fmk (Z-Val-Ala-Asp(OMe)-CH2F) and Boc-
D.fmk (Boc-Asp(OMe)-CH2F) were purchased from Calbiochem
(Nottingham, UK). The peptides were dissolved in DMSO and
stock solutions kept at 7208C. Antibodies for RAR-a, b, g,
RXR-a and Bax were purchased from Santa Cruz Biotechnology,
Inc. (Santa Cruz, CA, USA). A Bcl-2 specific antibody was obtained
from Dako (High Wycombe, UK).

Viability assay

Assessment of relative numbers of viable cells was done using an
MTT tetrazolium assay (Mosmann, 1983). Cells were cultured in
96-well plates in 200 ml of medium containing 2.5% serum and
the inhibitory compounds. At each time point, 20 ml 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
(5 mg ml71, SIGMA) was added to each well and the plates were
incubated at 378C for 4 h. The medium was then removed and
formazan crystals were dissolved in 100 ml of acidic isopropanol
(0.05 M HCl). Optical density was measured at 550 nm.

Apoptosis assays

Propidium iodide (PI) staining followed by flow cytometric analy-
sis was used to detect cells with a sub-G1 DNA content. After
treatment, cells were harvested by trypsinisation, washed twice with
sample buffer (PBS+1 g l71 glucose) and fixed in 70% ethanol at a
density of 16106 cells/ml. After 518 h cells were washed with
sample buffer and resuspended in PI staining solution containing
50 mg ml71 PI and 20 mg ml71 RNase A. Fluorescence was
measured on a Becton-Dickinson FACScan and DNA histograms
were analysed using ModFitLT software. Apoptosis was also
assessed using the Boeringer-Mannheim Cell Death Detection
ELISAPLUS kit, which detects the presence of histone-associated
DNA fragments in the cell cytosol, according to the manual

supplied by the manufacturer. Apoptotic index=OD(treated cells)/
OD(untreated cells). The two methods gave comparable results.

Stable transfections

T3M-4 cells were transfected with the pUSEamp.Bcl-2 plasmid or a
control plasmid without insert, using SuperFectTM transfection
reagent (Qiagen Ltd., West Sussex, UK), according to the manufac-
turer’s instructions. Selection of transfected clones was done using
culture medium containing 0.6 mg ml71 G418 sulphate (Geneti-
cin1, Life Technologies, Paisley, UK). Expression of Bcl-2 was
assessed by Western blotting in selected clones using an antibody
supplied by Upstate Biotechnology (Lake Placid, NY, USA).

Western blotting

Cells were harvested by scraping and whole cell lysates were
prepared by washing the cells in ice cold PBS and resuspending
them in lysis buffer (50 mM Trizma, pH 8.0, 150 mM NaCl, 0.1%
Triton X-100, 0.01 mg ml71 aprotinin, 0.05 mg ml71 PMSF),
followed by sonication on ice and ultracentrifugation. Equal
amounts of protein were electophoretically separated in 10 – 12%
SDS polyacrylamide gels and proteins were immobilised by transfer
onto nitrocellulose membranes. Membranes were immunoprobed
with the relevant antibodies followed by a secondary, peroxidase-
labelled antibody. The proteins of interest were visualized using a
luminescent visualization system (HRPLTM, National Diagnostics,
Hull, UK).

Statistics

All experiments were performed at least twice and results shown
are means of all determinations unless otherwise stated. Statistical
comparisons were made using an unpaired, two-tailed t-test or
ANOVA followed by the Fisher PLSD test (StatView 4.0 software
package for Apple Macintosh). All comparisons are made relative
to an untreated control, unless otherwise stated, and significance
is indicated as *P50.05, **P50.01, ***P50.005.

RESULTS

Loss of cell viability and induction of apoptosis

We have previously shown that treatment of pancreatic adenocar-
cinoma cells with ATRA or 9cRA for 6 days results in a dose-
dependent reduction in the number of viable cells. We show here
that 9cRA induced apoptosis in BxPc-3, T3M-4 and AsPc-1, but
not A818-4 pancreatic adenocarcinoma cells (Figure 1).

Suppression of apoptosis by Bcl-2

All cells in our study expressed moderate levels of Bcl-2 (not
shown). To assess if enhanced expression of this anti-apoptotic
protein would affect the ability of 9cRA to induce apoptosis,
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Table 1 Receptor selectivity and binding constants (Ki) of retinoids used in the study

Compound profile Receptor binding (Ki, nM)

Retinoid Selectivity Activity RARa RARb RARg RXRa

LG 101305 RXR-a/b/g Agonist 10 000a 10 000a 10 000a 4
LG 030593 RAR-a Agonist 7 14281 20 054a 5000
LG 101093 RAR-g Agonist 10 000a 10 000a 531 5365
LGD 1550 RAR-a/b/g Agonist 1.1 0.7 1.9 224
LG 030403 RAR-b/g Antagonist 5800 112 125 8333
9cRA RAR-a/b/g Agonist 9.3 97 148 8

RXR-a/b/g

a410 000 nM
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T3M-4 cells were transfected with the pUSEamp.Bcl-2 plasmid.
This resulted in generation of three clones that stably over-
expressed Bcl-2 (Figure 2A). Two of these, clones 2 and 7, and
the control transfected clone C1 were used in all subsequent
experiments. We show that the apoptosis-inducing effect of 9cRA
is suppressed by Bcl-2, as clone 2 and 7 were significantly less
sensitive than clone C1 or parental, untransfected T3M-4 cells.
Following treatment with 500 nM 9cRA for 6 days, loss of cell
viability, as determined using MTT, was decreased and no apopto-
sis could be detected (Figure 2B,C). Furthermore, expression levels
of Bcl-2 and Bax in parental T3M-4 cells were examined by semi-
quantitative Western blotting in untreated cells and on day 2 and 4
of treatment with 500 nM 9cRA. A decrease in the Bcl-2/Bax ratio
was found in treated cells, and this was due to decreased levels of
Bcl-2 as well as increased levels of Bax (Figure 3). 9cRA also caused
a slight, non-significant decrease in the level of the anti-apoptotic
Bcl-2 family member Mcl-1 (data not shown).

Effects of caspase inhibition

Cells were preincubated with the broad-range caspase inhibitors Z-
VAD.fmk or Boc-D.fmk for 3 h before addition of 9cRA. They
were subsequently treated for up to 6 days and fresh medium,
containing both compounds, was added every 48 h. Addition of
either of the inhibitors resulted in a significant decrease in nuclear
fragmentation, as determined by Cell Death Detection ELISA on
day 6. Interestingly, mitochondrial activity was not affected, and
no increase in cell viability was seen at any time point (Figure 4).

Receptor expression

Expression of RAR-a, b and g and RXR-a was assessed in AsPc-1,
BxPc-3, T3M-4 and A818-4 cells, using semi-quantitative Western
blotting. Weak expression of RAR-a was detected in the four cell
lines, whereas very weak expression of RAR-b could be detected
in T3M-4 only. RAR-g was expressed in AsPc-1, BxPc-3 and
T3M-4 cells, but only very weakly in 9cRA-resistant A818-4 cells.
Approximately equal levels of RXR-alpha were seen in all four cell
lines (Figure 5). Using RT – PCR or Western blotting, we could
detect no induction of receptor expression upon retinoid treatment
(data not shown).

Role of RAR and RXR subtypes in apoptosis

To assess the role of receptor subtypes in retinoid-induced apopto-
sis in our cells, we treated T3M-4 and BxPc-3 with subtype
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Figure 1 Assessment of apoptosis by cell death detection ELISA. The
cells were treated with 500 nM 9cRA for 6 days and results are expressed
as means+s.d. (n=4).
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Figure 2 (A) Western analysis of Bcl-2 expression in transfected T3M-4
cells. Clone C1 is transfected with the control vector. (B) The inhibitory
effect of 9cRA is significantly suppressed in cells overexpressing Bcl-2. Via-
bility was assessed on day 6 of treatment, using an MTT assay. Results are
expressed as means+s.d. (n=6). (C) Propidium iodide staining and cell
cycle analysis confirm that apoptosis is inhibited. Representative histograms
are shown and percentages are means of duplicate treatments. Cells were
treated with 500 nM 9cRA for 6 days.
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selective retinoids for up to 6 days. We show that only two of the
compounds, the RAR-g selective LG101093 and the pan-RAR
agonist LGD1550, caused reduced cell viability. As previously
reported (Shalinsky et al, 1997), LGD1550 was significantly more
potent than any of the other compounds, with an IC50 value which
is around 500-fold lower than the IC50 value of LG101093. As
single agents, the pan-RXR selective LG101305 and the RAR-a
selective LG030593 had little or no effects (Figure 6). However,
addition of LG101305 to LG101093 or LGD1550 resulted in signif-
icantly increased inhibition of cell viability (Figure 7A), although
this was only observed at relatively low levels of LG101093 and
LGD1550. Co-treatment with LG030593 plus LG101093 did not
confer any additional inhibition, compared to LG101093 alone
(not shown). Importantly, addition of an RAR-beta/gamma selec-
tive antagonist, LG030403, resulted in significant suppression of
the effects of LGD1550 as well as 9cRA (Figure 7B)

Using the Cell Death Detection ELISA, it was confirmed that
LG101093 and LGD1550 induce apoptosis in T3M-4 cells, causing
significant nuclear fragmentation. Neither of the other compounds
had this effect. Again, LGD1550 was significantly more potent,
causing the same level of apoptosis as LG101093 and 9cRA at a
50-fold lower concentration (Figure 8A,B). Addition of the RAR-
b/g antagonist, LG030403, resulted in significant suppression of
the effects of LGD1550 as well as 9cRA (Figure 8B).

DISCUSSION

ATRA and 9cRA have previously been reported to have anti-prolif-
erative effects and to modulate differentiation in pancreatic cancer
cells (Rosewicz et al, 1995; Bold et al, 1996; Louvet et al, 1996). We
have shown that they can also act as potent apoptosis-inducers

(Pettersson et al, 2000), and in this study we have further eluci-
dated the mechanisms behind this finding.

The Bcl-2 family of pro- and anti-apoptotic proteins plays an
important role in apoptosis induced by a large variety of stimuli
(Gross et al, 1999). We show here that overexpression of Bcl-2
in T3M-4 cells efficiently inhibits induction of apoptosis by
9cRA. Treatment of parental T3M-4 cells with 9cRA also causes
a decrease in the Bcl-2/Bax ratio, which may facilitate cell death.
It may be hypothesised that this is important for the ability of reti-
noids to enhance the sensitivity of pancreatic cancer cells to other
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treatment with 500 nM 9cRA. Protein levels were assessed by semi-quan-
titative Western blotting and laser densitometry was used to quantify the
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-b and -g and RXR-a in AsPc-1, BxPc-3, T3M-4 and A818-4 pancreatic
adenocarcinoma cell lines. Equal amounts of total protein was loaded
on the gel, based on the Bradford assay.
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cytotoxic drugs (Pettersson et al, 2001). Until now, the relationship
between apoptosis induced by retinoic acid and expression of Bcl-2
has been explored mainly in leukaemic cells. In agreement with the
results presented here, down-regulation of Bcl-2 expression by reti-
noids has been observed in acute promyelocytic and myeloid
leukaemic cells, and stable overexpression of Bcl-2 has been shown
to confer resistance to apoptosis (Nagy et al, 1996; Bocchia et al,
1997; Bruel et al, 1997).

In recent years, several reports have also suggested that the sub-
cellular localisation of Bcl-2 may determine its function. For example,
stable overexpression of Bcl-2 targeted to the endoplasmatic reticu-
lum (ER) is protective against apoptosis induced by radiation as
well as serum starvation, but does not inhibit apoptosis induced by
etoposide, whereas Bcl-2 targeted to the outer mitochondrial
membrane protects against all these stimuli (Annis et al, 2001;
Rudner et al, 2001). Conversely, transient overexpression of Bcl-2
targeted to mitochondria has been shown to have pro-apoptotic
activity (Wang et al, 2001). In view of this, it would be of interest
in the future to study the subcellular localisation of Bcl-2 in our stably
transfected T3M-4 cells. However, based on the results shown here,
we can conclude that the majority of Bcl-2 localises in a favourable
way, as it effectively inhibits apoptosis induced by 9cRA.

Interestingly, the broad-range caspase inhibitors Z-VAD.fmk and
Boc-D.fmk were shown to inhibit nuclear fragmentation associated
with apoptosis induced by 9cRA and still had no effect on over-all
cell viability, identified by mitochondrial activity. This suggests that
caspase activation is involved in retinoid-induced apoptosis in
pancreatic adenocarcinoma cells, but that other mechanisms can
substitute for this activation and execute cell death. The subject
of caspase-independent apoptosis has been reviewed by Borner
and Monney (1999), and they point out that although inhibitors
like Z-VAD.fmk effectively block cleavage of caspase substrates as
well as nuclear fragmentation, morphological and mitochondrial
changes still occur in most systems and the cells eventually die,
possibly through activation of alternative proteases. The possibility
that the effect of 9cRA would be delayed, although not inhibited,
by addition of the caspase inhibitors was considered, but discarded
as no effect on mitochondrial activity was seen at any time-point
studied. It has been reported that retinoic acids can have direct
effects on mitochondria, causing a fall in transmembrane potential,

organelle swelling and cytochrome c release (Rigobello et al, 1999).
These are interesting issues, which merit further investigation but
are beyond the scope of this paper.

A major aim of this study was to investigate the role of different
retinoid receptor subtypes in activation of the apoptotic response
to the pan-agonist 9cRA. We determined that the four cell lines
studied showed similar receptor expression patterns, with one
important exception. That is, 9cRA-resistant A818-4 cells express
almost undetectable levels of RAR-g. RAR-a, RAR-g and RXR-a
were expressed in all cells but weak expression of RAR-b could
be detected in T3M-4 cells only. This is in agreement with previous
reports, which have shown that RAR-b expression is generally low
or absent in pancreatic cancer cells (Kaiser et al, 1997). Although
induction of RAR-b has been reported to be an indicator of reti-
noid response (Seewaldt et al, 1995; Lee et al, 2000; Sun et al,
2000), we could detect no induction of either RAR subtype upon
retinoid treatment. This may seem surprising, but is likely to be
due to methylation of the RAR-beta gene (Ueki et al, 2000).

Among the receptor subtype selective compounds tested, only
two had inhibitory activity as single agents. LG101093, which binds
selectively to RAR-g and the pan RAR-agonist LGD1550 both
caused significantly reduced cell viability and induced nuclear frag-
mentation, characteristic of apoptosis. Furthermore, an RAR-b/g
selective antagonist (LG030403) was shown to counteract the effect
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of LG101093, LGD1550, as well as 9cRA. Taken together, these
results demonstrate that activation of RAR-g is essential for induc-
tion of apoptosis by retinoids in pancreatic adenocarcinoma cells.
This is also supported by the fact that A818-4 are resistant to
the effects of 9cRA. A number of earlier studies have established
a connection between RAR-g and retinoid induced growth arrest
and apoptosis in various cell types. Expression of RAR-b is often
lost or decreased in tumour cells (Seewaldt et al, 1995; Wan et
al, 1999; Lee et al, 2000; Sun et al, 2000). However, results from

a study in melanoma cells showed that, although RAR-b expression
was induced by activation of any of the RAR or RXR subtypes,
only RAR-g selective compounds were able to induce differentia-
tion followed by apoptosis. This suggests a critical role for RAR-
g in apoptosis (Spanjaard et al, 1997). The same finding has been
observed in neuroblastoma cells. In contrast to ATRA, which
induces differentiation in these cells, RAR-g selective retinoids were
shown to induce apoptotic cell death (Meister et al, 1998).

Pancreatic carcinomas, like many other tumours, show frequent
loss of RAR-b expression and an association between this loss and
development of pancreatic malignancy is supported by transfection
experiments restoring RAR-b expression in pancreatic cancer cells
(Kaiser et al, 1997). On the other hand, selective loss of RAR-g
expression in retinoid resistant cells (see Figures 1 and 5 and Rose-
wicz et al, 1995) implies an important role for this subtype in
conferring sensitivity to retinoids. Kaiser et al (1998) demonstrated
that reintroduction of RAR-g1 into resistant cells could restore
their ability to be growth inhibited in response to retinoic acid
treatment. Results presented in this study also make it clear that
activation of RAR-g is necessary and sufficient for induction of
apoptosis in human pancreatic cancer cells. Since the RXR agonist
LG101305 alone had no effect on cell viability, RXR homodimers
do not mediate the response. Instead, the fact that the effects of
LG101093 and LGD1550 are potentiated by LG101305 supports a
model where RAR/RXR heterodimers are optimally activated when
both RAR and RXR bind their ligand (Apfel et al, 1995; Minucci et
al, 1997). However, RXR activation is clearly not required, since
this potentiation by LG101305 was abolished at higher concentra-
tions of LG101093 and LGD1550.

In summary, retinoids activating RARs, and RAR-g in particular,
induce apoptosis in pancreatic adenocarcinoma cells via a pathway
involving altered expression of Bcl-2 family members as well as
caspase activation. Together with our previous report that 9cRA
enhances the effect of currently used chemotherapy (Pettersson et
al, 2001), and promising clinical data from a phase II trial of
13-cis retinoic acid and interferon-a (Brembeck et al, 1998), this
encourages further work evaluating the use of receptor subtype-
selective retinoids in management of this disease.
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