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Abstract

Replicative DNA polymerases are frequently stalled by DNA lesions. The resulting replication blockage is released by
homologous recombination (HR) and translesion DNA synthesis (TLS). TLS employs specialized TLS polymerases to bypass
DNA lesions. We provide striking in vivo evidence of the cooperation between DNA polymerase g, which is mutated in the
variant form of the cancer predisposition disorder xeroderma pigmentosum (XP-V), and DNA polymerase f by generating
POLg2/2/POLf2/2 cells from the chicken DT40 cell line. POLf2/2 cells are hypersensitive to a very wide range of DNA
damaging agents, whereas XP-V cells exhibit moderate sensitivity to ultraviolet light (UV) only in the presence of caffeine
treatment and exhibit no significant sensitivity to any other damaging agents. It is therefore widely believed that Polg plays
a very specific role in cellular tolerance to UV-induced DNA damage. The evidence we present challenges this assumption.
The phenotypic analysis of POLg2/2/POLf2/2 cells shows that, unexpectedly, the loss of Polg significantly rescued all
mutant phenotypes of POLf2/2 cells and results in the restoration of the DNA damage tolerance by a backup pathway
including HR. Taken together, Polg contributes to a much wide range of TLS events than had been predicted by the
phenotype of XP-V cells.
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Introduction

DNA replication involves a rapid but fragile enzymatic mechanism

that is frequently stalled by damage in the DNA template. To

complete DNA replication, DNA lesions are bypassed by specialized

DNA polymerases, a process called translesion synthesis (TLS)

(reviewed in [1,2]). A number of TLS polymerases, including Polg
and Polf, that are conserved throughout eukaryotic evolution, have

been identified in yeast and mammals. Polg deficiency is responsible

for a variant form of xeroderma pigmentosum (XP-V) [3,4] that is

characterized by UV photosensitivity and a predisposition to skin

cancer (reviewed in [5]). Deficiency in Rev3, the catalytic subunit of

Polf, results in a considerably more severe phenotype, compared with

Polg. In fact, Rev3 disruption is lethal to mouse embryogenesis [6].

Chicken DT40 cells deficient in Rev3 exhibit significant chromosome

instability and hypersensitivity to a wide variety of DNA-damaging

agents [7–10]. In addition to their role in TLS, both Polg and Polf
can contribute to homologous DNA recombination (HR) in DT40

cells [9,11,12].

Exposure to UV induces cyclobutane pyrimidine dimers (CPDs)

and 6-4 UV photoproducts in DNA. While Polg can efficiently and

accurately bypass CPDs [4,13–15], no single DNA polymerase has

been shown to be capable of effectively bypassing 6-4 UV

photoproducts in vitro. This suggests that the coordinate use of

more than one polymerase is required to bypass such damage in vivo.

In support of this notion, several biochemical studies have suggested

that lesion bypass can be effected by two sequential nucleotide

incorporation events [16,17]. For example, to bypass the 6-4 UV

photoproduct, Polg inserts a nucleotide opposite the damage as a

first step, followed by extension from the inserted nucleotide as a

second step. This extension process has been shown to be catalyzed

by yeast Polf and by human Polk [1,2,18]. The contribution of

mammalian Polf to the extension step remains elusive, because

functional Polf has not been purified [19,20]. Recently, replication

of episomal plasmid DNA carrying various lesions was analyzed in

mammalian cell lines to define the role of each DNA polymerase in

TLS past individual DNA lesions [15,21,22]. Shachar et al. suggest

the sequential usage of Polg and Polf in TLS past the cisPt-GG
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lesion [21], while results of others do not support this two-step TLS

model [15,23]. Indeed, evidence for the two-step model in the

replication of chromosomal DNA has so far been lacking. By

contrast, both human and yeast Polg can bypass CPDs effectively in

vitro without extension polymerases [4].

Combining genetic tractability with a number of sensitive

phenotypic assays, the chicken DT40 B lymphocyte cell line

provides a unique opportunity to precisely analyze the role of

individual DNA polymerases in TLS as well as in HR. The

immunoglobulin loci of DT40 cells undergo constitutive diversi-

fication in culture by a combination of gene conversion (which

depends on HR) and point mutation (which depends on TLS

[24]). This diversification is driven by activation-induced deam-

inase (AID) [25,26], which catalyzes the deamination of cytosine to

generate uracil in the immunoglobulin loci. The uracil is then

eliminated by uracil glycosylase to form abasic sites, which are

thought to be the lesions that trigger bypass, either by gene

conversion or by mutagenic translesion synthesis (reviewed in

[27]). To study TLS in a different context, an episomal plasmid-

based system was recently developed to examine the replication of

a plasmid carrying site-specific lesions, in this case 6-4 UV

photoproducts, in DT40 cells [28].

To investigate the functional interaction between Polg and Polf
in the DT40 cell line, we created POLg2/2/POLf2/2 DT40 cells

(hereafter called polg/polf cells). Unexpectedly, depletion of Polg
in the polf cells suppressed virtually all mutant phenotypes

associated with the loss of Polf, including genome instability and

hypersensitivity to DNA-damaging agents. Furthermore, the

reconstitution of POLg2/2/POLf2/2 cells with intact human

Polg, but not the polymerase-deficient mutant carrying D115A/

E116A substitutions, increased their hypersensitivity to DNA-

damaging agents to the level of the POLf2/2 cells, indicating that

Polg-dependent DNA synthesis is toxic in the absence of Polf.
Remarkably, this alleviation of the polf phenotype was associated

with the restoration of effective translesion synthesis. These data

provide in vivo support for the two-step model of lesion bypass, with

Polf playing a critical role in the extension step following

nucleotide incorporation by Polg.

Results

Deletion of Polg reversed the hypersensitivity of the polf
mutant to UV, ionizing radiation, MMS, and cisplatin

We generated polg/polf cells by inactivating both REV3 alleles of

the polg DT40 cells using a previously published gene-targeting

strategy (Figure 1A) [9,12]. The growth properties of the mutant

cells were examined by measuring their growth rate and cell-cycle

profile. As reported previously, the polg cells had a normal growth

rate, whereas the polf cells proliferated more slowly, exhibiting an

increase in the sub-G1 fraction, indicative of spontaneous cell

death during the cell cycle (Figure 1C). The loss of Polf caused a

significant increase in the number of spontaneous arising cH2AX

foci, which represent replication collapse (Figure S1). Interestingly,

deletion of POLg in the polf cells reversed their growth retardation

and reduced the rate of cell death (Figure 1B and 1C). Similarly,

the number of spontaneous chromosomal aberrations was

significantly reduced in polg/polf cells, compared with polf cells

(Table 1). Ectopic expression of human Polg in polg/polf cells

diminished their growth rate to the level of polf cells. This

observation does not reflect general toxicity of the overexpressed

human Polg, since its ectopic expression caused pronounced

growth retardation only in the polg/polf double mutant but not in

wild-type cells (Figure S2). These observations indicate that the

growth defect of polf cells is dependent on the presence of Polg.

The sensitivity of polg/polf cells to genotoxic stresses was

evaluated using a colony formation assay. polg cells showed a mild

sensitivity to UV but not to the other genotoxic stresses, in

agreement with the phenotype of mammalian XP-V cells [29,30].

In contrast, polf cells showed a marked sensitivity to UV, ionizing

radiation, cis-diaminedichloroplatinum-II (cisplatin), and methyl-

methane sulfonate (MMS) (Figure 2), as previously described [9].

The polg/polf mutant cells were less sensitive to UV than were the

polf cells. Furthermore, this double mutant showed significantly

increased tolerance to ionizing radiation, cisplatin, and MMS,

compared with the polf cells. This increased tolerance of the polg/

polf cells was reversed by ectopic expression of human Polg. To

investigate whether this reversion depended on the polymerase

activity of human Polg, we expressed human POLg cDNA

carrying D115A/E116A mutations in the polg/polf cells. These

mutations in the catalytic site abolish polymerase activity (data not

shown), as previously reported in yeast [31]. The expression of the

mutant Polg had no effect on the sensitivity of the polg/polf cells to

the DNA-damaging agents (Figure 2), indicating that Polg-

dependent DNA synthesis sensitizes polf cells to these DNA-

damaging agents.

polf cells have a more prominent defect in TLS past
abasic site than polg/polf cells

We wished to investigate if Polg and Polf could collaborate in

TLS past specific types of DNA damage. To this end, we

performed two sets of experiments: analysis of immunoglobulin

hypermutation, which in DT40 provides a readout of the bypass of

abasic sites [24], and analysis of the replication of a T-T (6-4)

photoproduct on an episomal plasmid [28].

To induce Ig hypermutation, we overproduced AID in DT40

cells using a retrovirus vector [32,33]. This vector drives the

monocistronic expression of AID and green fluorescent protein

(GFP), allowing a comparative assessment of the level of ectopic

AID expression. At 24 hours after infection with the AID

retrovirus, virtually all cells from each line displayed a strong

GFP signal, indicating that the deficiency of Polg and Polf did not

affect the expression of AID (Figure 3A). However, a substantial

fraction of the polf cells died at day 3, and with the surviving polf

Author Summary

DNA replication is a fragile biochemical reaction, as the
replicative DNA polymerases are readily stalled by DNA
lesions. The resulting replication blockage is released by
translesion DNA synthesis (TLS), which employs specialized
TLS polymerases to bypass DNA lesions. There are at least
seven TLS polymerases known in vertebrates. However,
how they cooperate in vivo remains one of central
questions in the field. We analyzed this functional interac-
tion by genetically disrupting two of major TLS polymer-
ases, Polg and Polf, in the unique genetic model organism,
chicken DT40 cells. Currently, it is widely believed that
Polg plays a very specific role in cellular tolerance to
ultraviolet light–induced DNA damage. Polf, on the other
hand, plays a key role in cellular tolerance to a very wide
range of DNA–damaging agents, as POLf2/2 cells are
hypersensitivity to a number of DNA damaging agents.
Our phenotypic analysis of POLg2/2/POLf2/2 cells shows
that, unexpectedly, the loss of Polg significantly rescued all
mutant phenotypes of POLf2/2 cells. The genetic interac-
tion shown here reveals a previously unappreciated role of
human Polg in cellular response to a wide variety of DNA
lesions and two-step collaborative action of Polymerase g
and f.

Collaboration between DNA Polymerases Polg and f
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cells at day 10 showed a decrease level of GFP signals (Figure 3A

and 3B). Furthermore, polf cells, but not polg or polg/polf cells,

displayed prominent chromosomal breaks at day 3 post-infection

(Figure 3C). Since the break sites on the chromosome were

randomly distributed, the overexpressed AID protein may be

targeting a number of different loci in addition to the Ig locus, in

DT40 cells. These observations suggest that TLS past abasic sites

created by the combined action of AID and uracil glycosylase may

Figure 1. Proliferation of chicken DT40 polf, polg, and polg/polf cells. (A) Schematic representation of the generation of the mutant cells used
in this study. (B) The polg and polg/polf mutants grew more rapidly than did the polf cells. Cells were cultured for 3 days. The doubling time of each
mutant is shown. Note that wild-type cells divide every 8 hours. ‘‘+Wild-type POLg’’ represents a reconstitution of polg/polf cells with wild-type human
polg. ‘‘Mutant POLg’’ carries D115A/E116A mutations, which inactivate the polymerase activity of human Polg. Error bars show the SD of the mean for
three independent assays. (C) Representative asynchronous flow cytometric cell-cycle profiles of wild-type, polg polf, and polg/polf cells. Cells were
pulse-labeled with BrdU for 10 minutes and stained with propidium iodide (PI) to measure DNA content. The large gate on the left of each panel
indicates the sub-G1 apoptotic cell fraction. The lower left, arch, and lower right gates indicate cells in the G1, S and G2/M phase, respectively.
Numbers show the percentage of cells falling in each gate.
doi:10.1371/journal.pgen.1001151.g001
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Table 1. Frequency of spontaneous chromosomal aberrations in wild-type, polf, polg, and polg/polf double mutants.*

Cell No. of cells analyzed Chromatid Isochromatid Total (per cell±SE)

Gaps Breaks Gaps Breaks

Wild-type 100 0 1 1 0 2 (0.0260.01)

polf 100 0 2 2 8 12 (0.1260.03)

polg 100 1 0 0 0 1 (0.0160.01)

polg/polf 100 0 0 0 2 2 (0.0260.01)

polg/polf+ wild-type Polg 100 0 6 1 7 14 (0.1460.04)

polg/polf+ mutant Polg 100 0 2 2 0 4 (0.0460.02)

*For each preparation, 100 metaphase spreads were analyzed. The number of aberrations per cell 6 SE was calculated as x/N6!x/N, based on the Poisson distribution
of chromosomal aberrations. The number of cells analyzed and total aberrations were defined as N and x, respectively.
doi:10.1371/journal.pgen.1001151.t001

Figure 2. Increased tolerance of polg/polf cells to various genotoxic stresses, compared with polf cells. Colony survival of the indicated
genotypes following the indicated genotoxic stresses. Data for the polg/polf #1 clone are shown in the other figures. Error bars show the SD of the
mean for three independent assays.
doi:10.1371/journal.pgen.1001151.g002

Collaboration between DNA Polymerases Polg and f
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Figure 3. polf cells, but not polg or polg/polf cells, are hypersensitive to AID overexpression. (A) Reduced AID transgene expression over
time in polf cells. The expression of AID was estimated by measuring the intensity of the GFP signal. Filled and open distributions represent GFP
intensity at days 1 and 10 post-infection, respectively. (B) Accumulation of dead cells in the polf mutant population 3 days after the AID virus
infection. The dot plot shows cells stained with PI. The percentage of dead cells falling into the indicated gate is shown in the histogram. (C)
Chromosomal aberrations are induced by AID overexpression in polf mutants. At day 3 post-infection, chromosomal aberrations in mitotic cells of the
indicated genotype were analyzed. Fifty metaphase spreads were measured. The number of aberrations per cell 6 SE was calculated as x/N6!x/N,
where N and x are the numbers of cells analyzed and total aberrations, respectively.
doi:10.1371/journal.pgen.1001151.g003

Collaboration between DNA Polymerases Polg and f
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be performed less effectively in polf cells, compared with polg/polf
or polg cells, resulting in chromosome breakage and cell death.

To verify that Polg-dependent DNA synthesis was toxic to the

AID-overproducing polf cells, we reconstituted polg/polf cells with

either wild-type POLg or the catalytically inactive mutant

polgD115A/E116A). Wild-type POLg expression sensitized the

polg/polf cells to the overexpression of AID, whereas the mutant

POLg had no impact on cell survival (Figure 3A and 3B). We thus

conclude that, in polf cells, TLS past abasic sites may be less

effective because neither Polg nor any other polymerase can

extend DNA synthesis following the Polg-mediated insertion of

nucleotides opposite the abasic site.

We have shown that AID overexpression results in increased

TLS-mediated hypermutation at G/C base pairs in Ig V segments

[32]. To define the role of Polg and Polf in this TLS process, we

determined the Ig Vl nucleotide sequences of AID-overexpressing

wild-type, polg, and polg/polf cells. polf cells were not analyzed

because of the difficulty of ectopically expressing AID to the same

extent as in the other lines. The number of non-templated point

mutations (PM, Figure 4A) was somewhat lower in polg cells than

in wild-type cells (This slight reduction is not significant (p = 0.15, t-

test) [32]). Surprisingly, the level of Ig V mutations in polg/polf
cells was comparable to that of wild-type cells. This observation is in

marked contrast with the fact that Rev1, an essential factor for the

function of Polf [20], plays a critical role in non-templated point

mutations at the abasic site [34]. Moreover, Polf played the critical

role in cellular tolerance to AID-mediated abasic sites (Figure 3).

These observations indicate that in the absence of both Polg and

Polf, other unidentified DNA polymerase(s) can participate in

TLS past the abasic site. As the polg/polf cells displayed a

significant increase in the proportion of G/C to A/T transitions in

the non-templated Ig V mutations (12/25; 48%), compared with

wild-type cells (2/18; 11%)(Figure 4B), this unidentified DNA

polymerase(s) may preferentially incorporate adenine opposite the

abasic site in the absence of both Polg and Polf.

Lack of TLS past the T-T (6-4) UV photoproduct in polf
cells is reversed by the inactivation of Polg

T-T (6-4) UV photoproducts represent the most formidable

challenge to DNA replication, as they potently arrest replicative

polymerases [35]. To analyze TLS past a T-T (6-4) photoproduct,

we transfected two plasmids, pQTs and pQTo, [28] (Figure 5)

carrying T-T (6-4) UV photoproducts into DT40 cells. At two days

after transfection we recovered only replicated copies, and were

thus able to analyze the replication of site-specific T-T (6-4) UV

photoproducts in vivo. This photoproduct can be arranged in one

of two ways. In the staggered conformation (pQTs) (Figure 5A),

the lesions are separated by 28 intervening nucleotides and placed

opposite a GpC mismatch. Replicated copies can thus result from

TLS on the top or bottom strand. Error-free template switching

should result in GpC at the site of the photoproduct, while TLS

Figure 4. TLS–dependent point mutations in Ig V occur with comparable frequency in wild-type and polg/polf cells. (A) Rate of non-
templated single-base substitutions (PM), ambiguous single base substitutions (Amb) (which are single base changes that have a potential donor
sequence in the pseudogene array), and bona fide gene conversion tracts (GC) in the AID-virus-infected wild-type, polg, and polg/polf DT40 cells
shown in Figure 3. Cells were clonally expanded for two weeks. Three clones were analyzed in each data set. Note that the Amb mutation at A/T pairs
represents short-tract gene conversion [32]. (B) Nucleotide substitution preferences (as a percentage of the indicated number in the total mutations)
deduced from the Vl sequence analysis of the clones shown in (A). The preferences are shown for mutations categorized as non-templated base
substitutions (PM), which are caused by TLS past abasic sites [32].
doi:10.1371/journal.pgen.1001151.g004
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Figure 5. TLS past a T-T (6-4) UV photoproduct on episomal plasmid DNA. (A) Schematic of the staggered arrangement of T–T (6–4) UV
photoproducts in the construct pQTs. The dinucleotide GC is placed opposite each lesion, and there are 28 bp between the lesions, with the possible
outcomes of DNA replication over the area. TLS may occur on either the top or the bottom strand, with the most common base insertion shown as
AA. Alternatively, the nascent strand of the sister chromatid may be used as an alternative undamaged template; one possible mechanism for such a
template switching illustrated. (B) Example sequences of replicated pQTs plasmids recovered from xpa/polf and xpa/polg/polf clones, aligned with a
schematic drawing of pQTs. TLS on the top strand (inserting mostly AA in the reverse direction, top set), TLS on the bottom strand (middle set), and
error-free bypass (bottom set) are shown. Proportions are not representative. (C) The proportion of TLS versus error-free bypass in pQTs sequences
recovered from xpa/polf and xpa/polg/polf cells, shown as a percentage of the total. Data shown with asterisks are taken from Szüts et al. [28]. A total
of 23 and 29 sequences from xpa/polf and xpa/polg/polf cells, respectively, are shown as the sum of three independent experiments. (D) The pattern
of nucleotide incorporation opposite the T-T (6-4) photoproduct in xpa/polf and xpa/polg/polf cells. Error-free pQTs sequences were excluded from
analysis. The percentage of each nucleotide incorporated at each position is indicated by the size of the letter of the nucleotide in the column.
del = deletion. The incorporation positions indicated are at the 39 T and the 59 T of the lesion, followed by the next two bases in the template,

Collaboration between DNA Polymerases Polg and f
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past this photoproduct may insert ApA (accurate TLS) or other

nucleotides (inaccurate TLS) at this site. Note that our experiment

was done in a nucleotide-excision repair-deficient (xpa-deficient)

background, and thus excluded the recovery of replicated copies

generated by error-free nucleotide-excision repair. In the second,

unphysiological, replication template, the lesions are placed

opposite to each other (pQTo) (Figure 5E). Using this conforma-

tion, replicated DNA copies can be recovered as a consequence of

TLS, but not by template switching.

To assess the mode of bypass used when generating replicated

copies of pQTs, we analyzed the nucleotide sequences of

replicated copies of plasmids recovered from DT40 cells

(Figure 5B) and determined the proportion of TLS relative to

error-free template switching (Figure 5C). Overall replication

efficiency was comparable among cells carrying the various

genotypes used in the previous study and this study. Previous

study found that 45% and 55% of the recovered plasmid copies

resulted from TLS in xpa and xpa/polg cells, respectively [28]. In

comparison, the efficiency of TLS in xpa/polf cells was significantly

reduced, with less than 10% of the recovered plasmid generated as

a consequence of TLS. All TLS events observed in the xpa/polf
cells were associated with deletion at damaged sites (Figure 5D).

Thus, as found previously [28] (Figure 5C), we conclude that Polf
is required for the successful bypass of T-T (6-4) UV photoprod-

ucts by TLS. Remarkably, the xpa/polg/polf cells displayed a

normal TLS efficiency, indicating that the failure of TLS in polf
cells is dependent on the presence of Polg.

We also classified the replication products obtained from the

pQTo plasmid, where bypass can be effected only by TLS or

deletion. As found in the previous study [28], the loss of Polf was

frequently associated with the deletion of two or more nucleotides

covering the site of the T-T (6-4) UV photoproduct (Figure 5E and

5F). The loss of Polf did not impair TLS in the absence of Polg,

but severely compromised it in the presence of Polg. A possible

explanation, discussed below, is that the Polg-dependent insertion

of nucleotides opposite the T-T (6-4) UV photoproduct inhibits

the completion of TLS in the absence of Polf (presumably due to

defective extension from inserted nucleotides), while other

unidentified DNA polymerases can perform the complete TLS

reaction in polg/polf cells.

Polk plays only a minor role in the damage tolerance of
polg/polf cells

The milder phenotype of the polg/polf cells, compared with polf
single mutants, led us to investigate the contribution of other TLS

polymerases to TLS in polg/polf cells. We previously showed that

polk/polf cells show a higher sensitivity to mono-alkylating agents,

compared with polf cells, though polk cells show normal sensitivity

[36], and thereby suggested that Polk can partially substitute for

the loss of Polf. We therefore sought to determine whether Polk
contributes to damage tolerance in polg/polf cells. To this end, we

deleted the Polk gene in polg/polf cells and analyzed the phenotype

of the resulting triple knockout polg/polk/polf clones (Figure 6A).

Deletion of the Polk gene tended to reduce growth kinetics.

However, the polg/polk/polf clones exhibited only limited increase

in DNA-damage sensitivity, compared with polg/polf cells

(Figure 6B). Likewise, overexpression of chicken Polk did not

increase cisplatin tolerance in polf or polg/polf cells (data not

shown). These observations imply that Polk does not play an

important role in TLS in polg/polf cells.

polg/polf cells, but not polf cells, displayed increased
numbers of UV-induced sister chromatid exchange
events

Replication arrest can be released by two major mechanisms:

HR and TLS [37]. HR-dependent release is initiated by

homologous pairing between the 39 end of the arrested strand

and the sister chromatid, followed by strand invasion and DNA

synthesis to extend the invading 39 strand (Figure 7D). To analyze

the efficiency of HR-mediated release from replication blockage,

we analyzed sister chromatid exchange (SCE) (Figure 6C and 6D)

[38,39]. The level of SCE is likely to be determined by two factors:

the number of DNA lesions that cause a replication block and the

efficiency of HR-dependent release from replication blockage. As

previously reported [9,39], the level of spontaneous SCE was

slightly increased (1.5 to 2-fold) in all TLS mutants compared with

wild-type cells, presumably because lesions are more frequently

channeled to HR. The polg cells displayed a markedly greater

increase in the level of UV-induced SCE (the number of

spontaneous SCE subtracted from the number of SCE following

UV irradiation shown in Figure 6D), which phenotype is

attributable to defective TLS over UV-induced damage. In

contrast, in the polf cells, the UV-induced SCE level was similar

to that of wild-type cells, suggesting that the defective TLS may not

be adequately compensated by HR [9].

SCE was induced more efficiently in the polg/polf cells than in

the polf cells, which is consistent with the increased UV tolerance

of polg/polf cells, compared with polf cells. Reconstitution of the

polg/polf cells with wild-type POLg, but not with the catalytically

inactive POLg, significantly reduced the number of UV-induced

SCE events. Thus, the degree of UV tolerance correlated with the

number of UV-induced SCE events at least in polf and polg/polf
cells. This observation suggests that, in addition to TLS, HR-

mediated release from replication blockages contributes to a

significantly higher UV tolerance in polg/polf cells than in polf
cells.

Discussion

Polg is required for TLS across a much wider range of DNA

lesions than indicated by the sensitivity of Polg-deficient cells.

Analysis of XP-V cells indicates that Polg plays a major role in

TLS past cyclobutane dimers and certain bulky adducts, but few

other lesions. We demonstrate here that, in DT40 cells, Polg is

also involved in the interaction of the replication machinery with

different types of damage, such as those induced by chemical

cross-linking agents (Figure 2), abasic sites (Figure 3 and Figure 4),

and T-T(6-4) UV photoproduct (Figure 5). Thus, the deletion of

polg in the polf cells reversed their hypersensitivity to UV, MMS,

cisplatin, and the ectopic expression of AID. Our finding that

polg/polf cells were significantly more tolerant to all tested DNA-

damaging agents compared with polf cells, reveals that neither of

these polymerases is absolutely required for the tolerance of these

types of damage during DNA replication. However, when Polg is

present, Polf is also required for efficient recovery from the effects

of these damaging agents.

indicated by 1 and 2. (E) Example sequences of replicated pQTo plasmids recovered from xpa/polf and xpa/polg/polf clones, aligned with a schematic
drawing of pQTo. (F) The frequency of replication associated with two or more nucleotide deletions in replicated copies of pQTo, which contains T–T
(6–4) UV photoproducts in the opposing arrangement.
doi:10.1371/journal.pgen.1001151.g005
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Figure 6. HR, but not Polk, contributes to increased cellular tolerance to DNA damage in polg/polf cells, compared with polf cells. (A)
Growth of polg/polf and polg/polf/polk clones. Cells were cultured for 3 days. The doubling time of each mutant is shown. Error bars show the SD of
the mean for three independent assays. (B) Sensitivity profiles of indicated mutant cells to UV and cisplatin. Error bars show the SD of the mean for
three independent assays. (C) Induction of SCE in polg, polf, and polg/polf cells by UV. Cells were labeled with BrdU during over cell-cycles with or
without UV irradiation (0.25 J/m2) before labeling. Spontaneous and induced SCEs in the macrochromosomes of 50 metaphase cells were counted.
Histograms show the frequency of cells with the indicated numbers of SCEs per cell. The mean number of SCEs per cell 6 SE is shown. Statistical
significance was further calculated by the non-parametric Mann-Whitney U test. (D) The number of UV-induced SCE was calculated by subtracting
spontaneous SCE from SCE following UV irradiation.
doi:10.1371/journal.pgen.1001151.g006
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XP-V cells show a modest phenotype, including moderate

sensitivity to UV and cisplatin [40], only in the presence of

caffeine, and do not show significant sensitivity to MMS.

Consequently, it was once believed that Polg does not play a

role in TLS past DNA lesions induced by alkylating agents.

However, in vitro biochemical studies have shown that purified

Polg can bypass a variety of lesions including 7, 8-dihydro-8-

oxoguanine (8-oxoG), O6-methylguanine, abasic sites, benzo

pyrene adducts, and cisplatin intrastrand crosslinks [2,41–43].

The present study helps demonstrate that Polg can indeed be

involved in TLS past a wide variety of DNA lesions, even without

caffeine treatment in DT40 cells. This idea is relevant to

mammalian cells, since Polg focus formation is observed in

mammalian cells following treatment with cisplatin and UV in the

absence of caffeine [40].

The collaborative action of Polg and Polf in TLS
The improved damage tolerance of polg/polf cells, compared

with polf cells, suggests following several possibilities. One

possibility is that Polf somehow inhibits Polg action and that

Polg does not actually have a significant role when Polf is present.

However this possibility may be unlikely, since physical interaction

between Polg and Rev1, and Polg dependent recruitment of Rev1

to the DNA damage site support the sequential actions of Polg
followed by Polf rather than inhibitory action of Polf on Polg
[44–47]. Thus, more likely possibility is that, Polg generates a

replicative intermediate in an attempt to bypass the lesion, but

cannot complete an effective bypass reaction without Polf
(Figure 7A). We suggest that the abortive intermediates generated

by Polg in the absence of Polf lead to a difficult-to-rescue

replication collapse, thereby accounting for the hypersensitivity of

the single polf mutant (Figure 7B). The modest phenotype of XP-V

cells indicates that Polf may efficiently mediate TLS past a variety

of DNA lesions, either in collaboration with other polymerases or

possibly on its own.

This situation can be explored further in the light of current

TLS models. In the canonical model for TLS replication, arrest by

agents such as UV, MMS, and cisplatin, leads to PCNA becoming

mono-ubiquitinated [40,48–50]. This increases the affinity of

PCNA for Polg and other Y-family TLS polymerases by virtue of

their UBM and UBZ ubiquitin-binding motif [44,48,50–52] and

likely contributes to the accumulation of Y-family polymerases at

the sites of blocked replication forks. It has been suggested that

these polymerases can compete with each other by mass action to

attempt to carry out TLS. In the case of CPDs, if Polg wins this

competition; bypass can occur without the need for a second

polymerase. However, with other lesions such as a T-T (6-4)

photoproduct, there is currently no evidence to show that any

single polymerase can complete bypass. Polg may be able to start

the bypass by incorporating opposite at least the 59 base of the

lesion, but it cannot extend from the resulting mismatch

(Figure 7A). This would explain the abortive intermediate referred

to above. To complete TLS, Polf is required to extend from the

inserted nucleotides (Figure 7A), an explanation that is consistent

with the sequential action of Polg and Polf demonstrated in in vitro

studies [2]. A further implication of this model is that no other

polymerase can effectively substitute for Polf in this extension step

(Figure 7B).

The successive action of Polg and Polf might be mediated by

the association of the two polymerases with Rev1 [45,53]. The

idea of a Rev1-mediated switch from Polg to Polf is supported

by the fact that Polg tightly interacts with Rev1 [1,46,47,53,54].

Moreover, DNA-damage-induced Rev1 focus formation ap-

pears to be dependent on Polg [46,47]. Adding to these

Figure 7. Model for the sequential action of Polg and Polf in
wild-type, polf, and polg/polf clones. (A) The two step-model for TLS.
In wild-type cells, Polg is efficiently recruited to a replication blockage at
a DNA lesion (green circle) on a template strand and inserts 1,2 base(s)
(green box) to bypass the lesion (filled triangle). Polf further extends
from these inserted base(s) (red arrow) before replicative DNA
polymerases can take over from Polf. (B) In polf cells, after Polg inserts
nucleotides opposite to DNA lesions, no other polymerases can
effectively extend DNA synthesis for subsequent DNA synthesis by
replicative polymerases. (C) In polg/polf cells, other TLS polymerases
carry out TLS. (D) The replication blockage may be released by a
template switch to the intact sister chromatid using the HR machinery.
doi:10.1371/journal.pgen.1001151.g007
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findings, the present work establishes a role for Polg in the

bypass of a wider range of DNA damage than previously

thought and demonstrates the in vivo importance of the two-step

bypass of many lesions.

The effect on TLS of depleting both Polg and Polf is distinctly

different in DT40 cells than in human cells. Ziv et al. showed that

depletion of Rev3 sensitized cells to UV more severely at two

days after irradiation in Polg-deficient XPV fibroblasts than in

Polg-proficient control cells [22], although its impact on Polg-

proficient DT40 cells was considerably stronger than on Polg-

deficient DT40 cells. There are several explanations for this

apparent difference. First, we favor the idea that DT40 may be a

more reliable cell line than others to evaluate TLS by measuring

cellular survival due to following reasons. The cell cycle

distribution is distinctly different between DT40 and other

mammalian cell lines. In DT40 cells, ,70% of the cells are in

the S phase, and the G1/S checkpoint does not function at all

[55]. In most of the mammalian cell lines, on the other hand,

more than 50% of the cells are in the G1 phase, and G1/S

checkpoint works at least partially. Therefore, environmental

DNA damage interferes with DNA replication more significantly

in DT40 cells than in mammalian cell lines. Accordingly, TLS

contributes to the cellular survival of the colony formation assay

to a considerably higher extent in DT40 cells than in mammalian

cell lines. Ziv et al., on the other hand, evaluated TLS by

measuring the number of living cells at 48 hours after UV

irradiation [22]. Since a majority of UV irradiated cells may have

stayed outside the S phase at 48 hours, it is unclear whether this

survival reflects the efficiency of TLS. The same laboratory also

analyzed TLS past a cisplatin G-G intrastrand crosslink located

in a gapped episomal plasmid [21]. Depletion of Rev3 with or

without codepletion of Polg in U2OS cells resulted in an 80%

reduction in TLS past the lesion, irrespective of the presence or

absence of Polg. The relevance of this finding to TLS during the

replication of chromosomal DNA remains elusive. Yoon et al.

investigated TLS in a double-stranded plasmid containing a

single 6-4 photoproduct as well as replication origins derived

from the SV40 virus [23]. Depletion of Rev3 or Rev7 in NER-

deficient XP-A fibroblasts reduced the efficiency of TLS in the

episomal plasmid by approximately 50%, with a similar reduction

obtained in XP-V fibroblasts. This result using human fibroblasts

is clearly different from the data we obtained using DT40 cells.

Given the close sequence similarity between the two polymerases

in human and chicken cells, we consider it unlikely that the

mechanisms of lesion bypass are fundamentally different between

the two organisms. The apparent difference between mammalian

cells and DT40 may be caused by the incomplete si-RNA

mediated inhibition in human cells versus the null mutation we

have used in DT40. Another possible reason to explain this

difference is the active HR system in DT40 cells, and the different

usage order of TLS DNA polymerases because the DT40 B

lymphocyte line undergoes Ig V hypermutation through TLS

[32]. The usefulness of the three episomal plasmid systems to the

analysis of TLS occurring during replication of chromosomal

DNAs should be further investigated [15,21,22,28]. Irrespective

of the reason for this apparent difference, our data clearly

indicate that, as discussed above, under some conditions Polg can

hinder the efficient progress of the replication fork past lesions

mediated by Polf.

Rescue of failed translesion synthesis by homologous
recombination

It is remarkable that deletion of the three major TLS

polymerase genes, POLg, POLk, and POLf, results in only a

mild reduction in the growth kinetics of DT40 cells (Figure 6A).

This is in marked contrast with the immediate cell death

associated with the massive chromosomal breaks generated upon

deletion of Rad51 [56]. These observations imply that during

DNA replication, if replication blocks are encountered, HR can

at least partially compensate for defective TLS. The significant

functional redundancy between TLS and HR is supported by our

previous report, which concludes that the deletion of both RAD18

and RAD54, a gene involved in HR, as well as the deletion of

both REV3 and RAD54, are synthetically lethal to cells [9,39]. We

show here that depletion of Polg irrespective of the status of Polf
markedly increases the level of UV-induced SCE (Figure 6C),

suggesting that DNA damage that cannot be resolved by TLS

because of the absence of Polg may be resolved by HR, leading

to increased SCE levels (Figure 7D). However, SCE is not

induced to the same level in polf cells (Figure 6C). Thus,

nucleotide incorporation by Polg appears to represent a point of

commitment in the TLS reaction beyond which rescue by HR is

problematic. This is likely to be explained by the creation of an

intermediate, possibly the mismatched primer terminus, which

can be efficiently extended by Polf, but which cannot readily

initiate HR.

In summary, the significant increase in the cellular tolerance of

polg/polf cells to DNA-damaging agents, compared with polf cells,

can be partially attributable to more efficient HR in polg/polf cells

than in polf cells. However, the normal level of TLS-dependent Ig

V mutation and restoration of TLS during 6-4 photoproduct

bypass in polg/polf cells (Figure 4B) suggests that one or more

other unidentified TLS polymerases can act as a substitute and

carry out TLS when both Polg and Polf are missing (Figure 7C).

Materials and Methods

Cell lines and cell culture
Generation of polf (rev3)- and polg-deficient DT40 cells was

described previously [9,12]. To generate polg/polf cells, we

sequentially introduced two rev3 gene-disruption constructs (rev3-

hygro and rev3-His) [9] into polg (PuroR/BlsR) cells. A puromycin-

resistant XPA disruption construct was used to disrupt the single

XPA allele and recreate the xpa/rev3 cell line. After removal of

the BlsR marker gene from the polg/polf cells by the transient

expression of CRE recombinase, a blasticidin-resistant XPA

disruption construct was used to generate the xpa/polf/polg cell

line. A puromycin-resistant POLk disruption construct was used

to generate polg/polf/polk cells. To make a POLg expression

plasmid, we inserted human POLg cDNA into the multi-cloning

sites (MCS) of an expression vector, pCR3-loxP-MCS-IRES-

GFP-loxP [57]. A mutant Polg that lacks polymerase activity

(Mutant POLg) was generated by inserting D115A/E116A

mutations into human Polg cDNA. The conditions for cell

culture, selection, and DNA transfection were described

previously[58]. The growth properties of cells were analyzed as

described previously [58].

AID overexpression by retrovirus infection
For the retrovirus infection, the pMSCV-IRES-GFP recombi-

nant plasmid was constructed by ligating the 5.2 kb BamHI-NotI

fragment from pMSCVhyg (Clontech) with the 1.2 kb BamHI-

Not1 fragment from pIRES2-EGFP (Clontech). Mouse AID cDNA

[33] was inserted between the BglII and EcoRI sites of pMSCV-

IRES-GFP. The preparation and infection of the retrovirus were

carried out as previously described [33]. Expression of the GFP

was confirmed by flow cytometry. The efficiency of infection was

more than 90% as assayed by GFP expression.
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Assay of TLS past a T-T (6–4) photoproduct on episomal
plasmid

pQTs and pQTo plasmids containing a T-T (6-4) photoproduct

were generated and transfected into DT40 cells as previously

described [28].

Chromosome aberration analysis
Karyotype analysis was performed as described previously [56].

Cells were treated with colcemid for 3 hours to enrich mitotic

cells.

Measurement of SCE level
Measurement of SCE level was performed as described

previously [38]. For UV-induced SCE, cells were suspended in

PBS and irradiated with 0.25 J/m2 UV followed by BrdU

labeling.

Ig Vl mutation analysis
Genomic DNA was extracted at 14 days after subcloning. The

rearranged Vl segments were PCR amplified using 59-CAG-

GAGCTCGCGGGGCCGTCACTGATTGCCG-39 as the for-

ward primer in the leader-Vl intron and 59-GCGCAAG-

CTTCCCCAGCCTGCCGCCAAGTCCAAG-39 as the reverse

primer in the 39 of the JCl intron. To minimize PCR-introduced

mutations, the high-fidelity polymerase, Phusion (Fynnzymes) was

used for amplification (30 cycles at 94u C for 30 s; 60u C for 1 min;

72u C for 1 min). PCR products were cloned using a Zero Blunt

TOPO PCR Cloning Kit (Invitrogen) and subjected to sequence

analysis with the M13 forward (-20) or reverse primer. Sequence

alignment using GENETYX-MAC (Software Development,

Tokyo) allowed the identification of changes from the parental

sequences in each clone.

As described previously [59], all sequence changes were

assigned to one of three categories: point mutation, gene

conversion, or ambiguous. This discrimination is based on the

published sequences of Vl pseudogenes that can act as donors for

gene conversion. For each mutation, the database of Vl

pseudogenes was searched for a potential donor. If no pseudogene

donor containing a string .9 bp could be found, the mutation was

categorized as a non-templated point mutation. If such a string

was identified and there were further mutations that could be

explained by the same donor, then all these mutations were

categorized as a single long-tract gene conversion event. If there

were no further mutations, indicating that the isolated mutation

could have arisen through a conversion mechanism or could have

been non-templated, it was categorized as ambiguous.

Supporting Information

Figure S1 Increased phospholylation of histone H2AX in polf
deficient cells. (A) Fluorescence image of fixed DT40 cells with

indicated genotype. Cells were stained with antibody to phospho-

Histone H2AX (red) and with DAPI (Blue). (B) Percentage of the

cells with over 10 phospho histone H2AX signals was calculated.

Found at: doi:10.1371/journal.pgen.1001151.s001 (1.94 MB PDF)

Figure S2 Proliferation of wild-type DT 40 cells carrying human

POLg transgene or control expression vector. (A) Expression of

the human POLg transgene was examined by Northern blot

analysis. The level of endogenously expressed human POLg in

293T cells was below the detection limit, while human POLg
expression was detected in DT40 cells carrying the human POLg
transgene, indicating that human POLg was overexpressed in

DT40 cells. (B) Proliferation of cells was examined for 3 days.

Ectopic expression of human POLg in wild-type DT40 cells has

no impact on cell proliferation.

Found at: doi:10.1371/journal.pgen.1001151.s002 (1.13 MB PDF)
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