Supplementary Materials

Supplementary Methods

Data Cleaning and Filtering

Per-patient summary level data from unrelated patients referred for *FH* (HGNC:3700) testing was collated from three UK diagnostic clinical genetics laboratories (Birmingham, Leeds, Sheffield) and one US-based central testing laboratory (Ambry):

- Birmingham: 1110 Patients referred to the West Midlands Regional Genomic Laboratory
 Hub between 2009-2021
- Leeds: 359 Patients referred to the Leeds Genetics Laboratory within the North East and
 Yorkshire Genomic Laboratory Hub between 2016-2021
- Sheffield: 360 Patients referred to the Sheffield Diagnostic Genetics Service within the North
 East and Yorkshire Genomic Laboratory Hub between 2016-2021
- Ambry: 338 Patients referred to Ambry Genetics between 2013-2017

Based on the information available from each laboratory, HLRCC and Renal cancer phenotypes were defined as such:

- HLRCC: Diagnosis, pathology, or referral details state HLRCC, and/or renal papillary cancer
 (type II or unknown) including bilateral renal papillary cancer. Records reporting cutaneous
 leiomyomata and/or uterine leiomyomata as the reason for testing must also include HLRCC
 or kidney cancer pathology, as family history and histology was not available for most
 variant data, and leiomyomata alone is not sufficient for eligibility for R365 testing.
- Renal: Diagnosis, pathology, or referral details state kidney or renal cancer of any sub-type
 as the reason for testing. If none of these details were available, individuals were included if
 they were tested using the R224 renal cancer gene panel or laboratory-specific renal cancer
 diagnostic gene panel.

Patients with a reported Fumarate Hydratase Deficiency (FHD) phenotype were not included in either dataset due to risk of penetrance of these *FH* variants only being significant for FHD and no other phenotype. Individuals with an unknown test indication or a test indication not matching either phenotype were not included.

For all cases, the test indication indicated diagnostic testing rather than familial/predictive testing. Where variant data was provided as genomic coordinates (GRCh37) or the corresponding LRG coordinates (LRG_504), variants were converted to HGVS nomenclature using VariantValidator¹ against the MANE Select transcript for *FH* (RefSeq: NM_000143.3).

Exclusion of renal papillary cancer cases

When removing individuals with known renal papillary cancer from the dataset, records were excluded if the diagnosis, pathology, or referral details stated renal papillary cancer of any sub-type. In the Ambry dataset, no records contained referral details with any HLRCC phenotype except renal papillary cancer, therefore the Ambry HLRCC dataset is roughly equivalent to a renal papillary phenotype dataset. In the Birmingham dataset, there were no reported renal papillary cancer cases. This does not mean there were no renal papillary cancer cases, only that there were none reported in the dataset containing variant information.

Filtering of population controls

Population controls were derived from the 1000 Genomes Project (1KGP) phase 3 data (total individuals: 2504), the gnomAD v2.1.1 non-cancer exomes dataset (total individuals: 118474), and a static download from the UK Biobank from September 2022 (total individuals: 441317)²⁻⁴. Data from the 1KGP was included to increase representation from rarer ethnicities. Data from gnomAD v2.1.1 non-cancer exomes was filtered to remove variant observations which failed the standard gnomAD quality control filters. UK Biobank data was processed and filtered as follows:

 Downloaded initial BED file listing the coordinates of all exonic regions +/- 25 bp plus UTRs in the build 38 GENCODE v41 annotation across all FH transcripts. A cohort of 374,363 "non-cancer" patients was defined by applying the following filters to the bulk participant data encompassing just over 500,000 individuals:

"Cancer diagnosed by doctor" = "No"

o "Cancer code, self reported" is NULL

"Type of cancer: ICD9" is NULL

o "Type of cancer: ICD10" is NULL

 Of the non-cancer patients, 330,652 had had exome sequencing conducted, and all variants overlapping any of the FH coding regions were extracted for these samples.

FH variants were lifted back to GRCh37 using UCSC liftOver⁵

For each variant in the resulting VCF, the total allele number (AN) and total variant allele
count (AC; adding 1 for heterozygotes and 2 for homozygotes) was generated by looping
through each participant and each ethnicity.

Participants were included only if they listed a single ethnicity to enable later grouping by
ethnicity. Ethnicities of 'Prefer not to answer' and 'Do not know' were excluded from
analysis. The ethnicity groupings and sub-groupings can be seen at
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000.

 All variants were finally run through VEP web browser, Ensembl 108 to retrieve the HGVSc/p coordinates and VEP annotations⁶.

MTAF_{pred} and defining very rare variants

The Maximum Tolerated Allele Frequency (MTAF_{pred}) was calculated as defined previously^{7,8}:

$$MTAF_{pred} = v(ga) \frac{1}{2p}$$

where:

• v = disease prevalence

• g = genetic heterogeneity

- a =allelic heterogeneity
- p = penetrance

Using the Whiffin/Ware allele calculator, we computed the maximum tolerated allele count (MTAC) given the MTAF_{pred} for *FH* for each top-level ethnicity group in the population control datasets and assuming a Poisson distribution and estimates based on the upper 95% confidence interval (Supplementary Table 1). A variant which is present at an allele frequency below the MTAC for each ethnicity in each population dataset was considered to be very rare, a truncating variant which was very rare denoted as a Very Rare Truncating Variant (VRTV), and a missense variant which was very rare denoted as a Very Rare Missense Variant (VRMV).

The top-level ethnicity backgrounds were used to group multiple sub-ethnicities from UK Biobank as per data field specification 21000; this is to avoid where possible a 0-vs-1 inclusion for maximum tolerated alleles in the sub-populations (where a single observation in a small subpopulation would mean the variant is not considered as a very rare missense variant). The Chinese AN is the only top-level group where 1 observation would affect designation of VRMV, however all variants with observations in this sub-population exceed the Maximum Tolerated Allele Count (MTAC) in at least one other sub-population or in the total dataset.

The MTAC was also re-computed for each ethnicity group in the population control datasets using the lower 95% confidence interval of the underlying Poisson distribution (Supplementary Table 1). This was to generate very rare variant groups based on a stricter definition of 'very rare' and examine the impact of this on the resulting likelihood ratio calculations.

References

- 1. Freeman PJ, Hart RK, Gretton LJ, Brookes AJ, Dalgleish R. VariantValidator: Accurate validation, mapping, and formatting of sequence variation descriptions. *Human mutation*. 01/2018 2018;39(1):61-68. doi:10.1002/humu.23348
- 2. Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. *Nature*. Oct 1 2015;526(7571):68-74. doi:10.1038/nature15393
- 3. Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. *Nature*. May 2020;581(7809):434-443. doi:10.1038/s41586-020-2308-7
- 4. Backman JD, Li AH, Marcketta A, et al. Exome sequencing and analysis of 454,787 UK Biobank participants. *Nature*. Nov 2021;599(7886):628-634. doi:10.1038/s41586-021-04103-z
- Hinrichs AS. The UCSC Genome Browser Database: update 2006. Nucleic acids research. 2006-01-01
 2006;34(90001):D590-D598. doi:10.1093/nar/gkj144
- 6. McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. *Genome biology*. 12/2016 2016;17(1):122. doi:10.1186/s13059-016-0974-4
- 7. Garrett A, Loveday C, King L, et al. Quantifying evidence toward pathogenicity for rare phenotypes:

 The case of succinate dehydrogenase genes, SDHB and SDHD. *Genetics in medicine : official journal of the*American College of Medical Genetics. Nov 19 2021;doi:10.1016/j.gim.2021.08.004
- 8. Whiffin N, Minikel E, Walsh R, et al. Using high-resolution variant frequencies to empower clinical genome interpretation. *Genetics in medicine : official journal of the American College of Medical Genetics*. May 18 2017;doi:10.1038/gim.2017.26

Supplementary Note: CanVIG-UK Consortium Members and Affiliations

C. Turnbull^{1,49}, A. Garrett^{1,47}, L. Loong¹, S. Choi¹, B. Torr¹, S. Allen¹, M. Durkie², A. Callaway³, J. Drummond⁴, G.J. Burghel⁵, R. Robinson⁶, I.R. Berry⁶⁵, A.J. Wallace⁵, D.M. Eccles^{7, 8}, M. Tischkowitz¹³, S. Ellard⁹, H. Hanson^{1,16}, E. Baple^{10,11}, D.G. Evans^{5,30}, E. Woodward^{5,30}, F. Lalloo^{5,30}, S. Samant³³, A. Lucassen^{57,14,15}, A. Znaczko⁴⁴, A. Shaw²³, A. Ansari³⁴, A. Kumar²¹, A. Donaldson⁵³, A. Murray¹⁹, A. Ross¹⁸, A. Taylor-Beadling²², A. Taylor¹⁸, A. Innes²⁵, A. Brady²⁹, A. Kulkarni²³, A.C. Hogg⁵, A. Ramsay Bowden¹⁸, A. Hadonou⁴⁷, B. Coad¹⁶, B. McIldowie¹⁹, B. Speight¹⁸, B. DeSouza⁴⁷, B. Mullaney³, C. McKenna⁶², C. Brewer⁴⁴, C. Olimpio¹⁸, C. Clabby⁴⁰, C. Crosby⁴⁷, C. Jenkins⁴², C. Armstrong³³, C. Bowles⁹, C. Brooks²², C. Byrne⁶², C. Maurer⁴, D. Baralle⁵⁷, D. Chubb¹, D. Stobo³⁴, D. Moore³⁵, D.O'Sullivan³³, D. Donnelly⁶², D. Randhawa²⁴, D. Halliday⁴¹, E. Atkinson⁵⁰, E. Rauter²⁴, E. Johnston³⁸, E. Maher⁸, E. Sofianopoulou¹⁷, E. Petrides²³, F. McRonald⁴³, F. Pelz⁵¹, I. Frayling¹⁹, G. Corbett⁶², G. Rea⁶², H. Clouston⁵, H. Powell³¹, H. Williamson⁵², H. Carley⁴⁷, H.J.W. Thomas²⁶, I. Tomlinson⁶³, J. Cook⁴⁶, J. Tellez³², J. Whitworth¹⁸, J. Williams⁴⁹, J. Murray³⁵, J. Campbell²⁷, J. Tolmie³³, J. Field³⁸, J. Mason⁶⁴, J. Burn³¹, J. Bruty¹⁸, J. Callaway⁸, J. Grant³⁴, J. Del Rey Jimenez⁴⁷, J. Pagan³⁵, J. VanCampen²⁴, J. Barwell⁵³, K. Monahan²⁹, K. Tatton-Brown¹⁶, K.R. Ong⁶³, K. Murphy³³, K. Andrews¹⁸, K. Mokretar²³, K. Cadoo⁴⁸, K. Smith⁵², K. Baker⁸, K. Brown²⁴, K. Reay⁶⁴, K. McKay Bounford³⁴, K. Bradshaw³⁸, K. Russell⁶⁵, K. Stone²³, K. Snape¹⁶, L. Crookes⁵, L. Reed²¹, L. Yarram⁶⁵, L. Cobbold⁴⁷, L. Walker³⁹, L. Walker⁴¹, L. Hawkes¹⁶, L. Busby²², L. Izatt²³, L. Kiely²², L. Hughes⁶⁴, L. Side⁵⁶, L. Sarkies¹⁸, K.-L. Greenhalgh²⁸, M. Shanmugasundaram⁶³, M. Duff⁴⁰, M. Bartlett²⁹, M. Watson³, M. Owens⁹, M. Bradford⁵⁴, M. Huxley⁶⁴, M. Slean³³, M. Ryten²³, M. Smith⁵⁵, M. Ahmed²¹, N. Roberts², O. Middleton³³, P. Tarpey⁴, P. Logan⁶², P. Dean³, P. May²⁴, P. Brace²¹, R. Tredwell³⁸, R. Harrison³⁷, R. Hart⁶³, R. Kirk⁵, R. Martin³¹, R. Nyanhete³, R. Wright², R. Martin⁶², R. Davidson³⁴, R. Cleaver⁴⁵, S. Talukdar¹⁶, S. Butler⁶⁴, J. Sampson¹⁹, S. Ribeiro⁴⁹, S. Dell⁴⁶, S. Mackenzie³², S. Hegarty⁶², S. Albaba⁵, S. McKee³⁶, S. Palmer-Smith¹⁹, S. Heggarty⁶², S. MacParland⁶², S. Greville-Heygate⁴⁹, S. Daniels⁴, S. Prapa¹⁸, S. Abbs⁴, S. Tennant³³, S. Hardy⁴³, S. MacMahon⁴⁹, T. McVeigh⁴⁹, T. Foo⁴⁹, T. Bedenham⁴², T. Cranston⁴², T. McDevitt⁴⁰, V. Clowes²⁹, V. Tripathi²³, V. McConnell⁶², N. Woodwaer⁴⁵, Y. Wallis⁶⁴, Z. Kemp⁴⁹, G. Mullan⁶², L. Pierson⁶², L. Rainey⁶², C. Joyce⁵⁹, A. Timbs⁴¹, A-M. Reuther³, B. Frugtniet⁴⁷, B. DeSouza²⁵, C. Husher³, C. Lawn²², C. Corbett⁶³, D. Nocera-Jijon¹⁶, D. Reay³¹, E. Cross³, F. Ryan³, H. Lindsay⁶, J. Oliver⁶, J. Dring⁶³, J. Spiers⁶⁵, J. Harper²³, K. Ciucias³⁴, L. Connolly⁶⁰, M. Tsang⁶², R. Brown⁶, S. Shepherd³², S. Begum¹⁶, S. Daniels³, T. Tadiso¹⁶, T. Linton-Willoughby⁴, H. Heppell³⁵, K. Sahan⁶¹, L. Worrillow⁶, Z. Allen²², C. Watt³⁴, M. Hegarty⁶², R. Mitchell⁶, R. Coles⁶⁶, G. Nickless²³, E. Cojocaru⁴⁹, I. Doal⁶⁴, F. Sava⁶⁴, C.

McCarthy⁶², R. Jeeneea⁶³, D. Goudie²⁰, M. McConachie²⁰, S. Botosneanu⁵, G. Kavanaugh¹, K. Russell¹⁰, C. Sherlaw⁶³, O. Tsoulaki⁴⁶, C. Forde⁵, E. Petley⁶³, A-B. Jones¹, K. Oprych¹⁶, S. Pryde⁶⁷, Z. Hyder⁵, N. Elkhateeb¹⁸, R. Braham²¹, L. Hanington⁴¹, C. Huntley¹, R. Irving⁵¹, A. Sadan²³, M. Ramos²², C. Elliot³⁵, D. Wren²², D.Lobo³⁵, J. McLean⁶⁸, D. May¹⁸, L. Kearney⁴⁸, T. Campbell³⁸, K. Asakura⁶⁸, L. Alwadi¹⁹, R. O'Shea⁴⁸, J. Gabriel⁴², L. Chiecchio³, P. Bowman⁴⁴, L.A. Sutton⁴⁸, C. Walsh²³, V. Cloke⁶⁹, D. Ucanok³⁷, J. Davies⁶⁵, B. Pleasance⁶⁵, E. Maguire⁶, A. Whaite⁷⁰, S. Best⁷¹, S. Westbury⁷², A. Logan⁶², D. Navarajasegaran⁷¹, A. Bench³⁵, P. Wightman³⁴, A. Cartwright², E. Higgs⁴¹, J.Bott⁴², H. Whitehouse⁵, J. Stevens⁵⁸, D. Martin³⁷, J. Dunlop⁶⁸, S. Thomas⁷³, C. Sau⁶⁸, S. Farndon⁷⁴, N. Coleman⁴⁸, P. Angelini⁴⁹, M. Duff⁵⁹, H. Massey³⁵, C. Rowlands¹, C. Garcia-Petit⁶⁸, K. Gillespie⁶⁸, A. Alder⁶⁸, E. Middleton⁶⁸, C. Cassidy⁷⁵, N. Orfali⁴⁸, A. Webb³, A. Luharia⁶⁴, N. Walker³³, J. Charlton⁷¹, A. Andreou⁴⁷, J. Peddie⁶⁸, M. Khan²³, L. Wilkinson³¹, H. Bezuidenhout⁴⁷, M. Edis¹⁸, A. Callard²⁹, P. Ostrowski⁷⁶, P. Moverley⁵¹, K. Bean⁷³, A. Dunne⁴⁸, A. Moleirinho²³, S. Waller⁵, K. Cox⁴⁷, L. Greensmith²⁸, A. Brittle⁵, N. Gossan⁵, L. Freestone⁴, C. Shak⁷⁷, T. Langford⁷⁵, Y. Clinch²¹, H. Livesey⁵¹, S. Borland⁴⁶, A. Joshi⁴⁷, K. Wall⁷⁷, A. Whitworth⁴⁶, A.Wilsdon³⁷, K. Edgerley⁷², S. Pugh⁵, N. Chrysochoidi³, S. Mutch³⁸, C. McMullan⁵, Y. Johnston⁷⁸, M. Muraru⁷⁷, A. May⁷⁷, R. Begum⁷⁷, C. Smith⁴⁴, R. Patel⁴⁷, I. Bhatnagar⁷⁹, A. Taylor⁶², D. Brown⁶⁹, J. Willan⁴⁶, S. Taylor⁴⁸, K. Jones²¹, K. Cox²¹, C. Ramsden⁷⁵, O. Taiwo⁴⁹, J. Jaudzemaite⁴⁷, R. Sharmin⁴⁷, L. Young³⁴, C.O'Dubhshlaine³⁵, L. McSorley⁸⁰, S. Lillis²³, P. Alexopoulos²³, E. Mortensson⁶⁵, L. Kingham⁴, R. Moore¹⁸, M. Kosicka-Slawinska⁸¹, S. Aslam⁶⁵, R. Wells⁸², A. Carter⁸², H. Warren⁶, E. Rolf⁴⁹, H. Reed⁷⁵, L. Pearce⁸³, D. Lock⁶, F. Ali⁶⁶, A. Kolozi⁸⁴, N. White⁴⁸, D. Wood³⁴, C. Hayden²⁵, W. Cheah⁵⁸, J. Sims⁶, R. Heron⁴⁶, J. Sibbring⁴, L. Elmhirst³⁵, L. Mavrogiannis⁶, K. Oakhill⁴, L. Wang²⁸, A. Singh⁴⁷, K. Doal²¹, L. Kettle⁶³, R. Salmon⁶³, G. Thodi⁴⁸, C. O'Brien⁴⁸, C. Wragg⁸⁵, N. Mannion³⁴, S. Chu⁶³, M. Ukash⁷⁵, V. Steventon-Jones⁴⁶, J. Fairley⁸⁴, H. Northen¹⁸, D. Babu⁷⁵, L. Donaghy³⁴, J. Jimmy⁴⁸, B. Matharu¹⁸, J. Beasley⁴², S. Waller⁷⁵, C. Batterton⁶³, G. Baker⁴, J. Trotman⁴, L. Jackson¹¹, A. Visavadia⁶³, M. Domeradzka⁴⁹, M. Slater²², K. Annesley¹⁸, C. Andrews¹, J. Doughty¹⁸, E. Wall⁶³, S. Morosini⁴⁶, E. Hanney⁶⁰

¹ Division of Genetics and Epidemiology, Institute of Cancer Research, Sutton, UK

² Sheffield Diagnostic Genetics Service, NEY Genomic Laboratory Hub, Sheffield Children's NHS Foundation Trust, Sheffield, UK

³ Wessex Genetics Laboratory Service, University Hospital Southampton NHS Foundation Trust, Salisbury, UK

- ⁴ East Genomic Laboratory Hub, Cambridge University Hospitals Genomic Laboratory, Cambridge University NHS Foundation Trust, Cambridge, UK
- ⁵ Manchester Centre for Genomic Medicine and NW Laboratory Genetics Hub, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- ⁶ The Leeds Genetics Laboratory, NEY Genomic Laboratory Hub, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- ⁷ Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- ⁸ Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
- ⁹ Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- ¹⁰ Genomics England, London, UK
- ¹¹ University of Exeter Medical School, Exeter, UK
- ¹² Division of Evolution & Genomic Sciences, The University of Manchester
- ¹³ Department of Medical Genetics, National Institute for Health, Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
- ¹⁴ Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- ¹⁵ Clinical Ethics and Law Unit, University of Southampton, Southampton, UK
- ¹⁶ Department of Clinical Genetics, St. George's University Hospitals NHS Foundation Trust, London, UK
- ¹⁷ Public Health and Primary Care, Clinical Medicine, University of Cambridge, Cambridge, UK
- ¹⁸ Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- ¹⁹ Institute of Medical Genetics, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
- ²⁰ East of Scotland Regional Genetics Service, Level 6, Ninewells Hospital, Dundee
- ²¹ Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK

- ²² North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- ²³ Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
- ²⁴ South East Genomic Laboratory Hub, Guy's and St Thomas' NHS Foundation Trust, London, UK
- ²⁵ Genomic Medicine Service, Imperial College Healthcare NHS Trust, London, UK
- ²⁶ Faculty of Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
- ²⁷ Institute of Neurology, UCL Queen Square Institute of Neurology, London, UK
- ²⁸ Liverpool Women's NHS Foundation Trust, Liverpool, UK
- ²⁹ London North West University Healthcare NHS Trust, London, UK
- ³⁰ Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
- ³¹ The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- ³² North East and Yorkshire Genomic Laboratory Hub, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- ³³ NHS Grampian, Aberdeen, UK
- ³⁴ NHS Greater Glasgow and Clyde, Glasgow, UK
- 35 NHS Lothian, Edinburgh, UK
- ³⁶ Northern Ireland Regional Genetics Service, Belfast Health & Social Care Trust, Belfast, UK
- ³⁷ Nottingham University Hospitals NHS Trust, Nottingham, UK
- ³⁸ East Midlands and East of England Genomics Laboratory, Nottingham University Hospitals NHS Trust, Nottingham, UK
- ³⁹ University of Otago, Otago, New Zealand
- ⁴⁰ Our Lady's Children's Hospital, Crumlin, Dublin, Ireland

- ⁴¹ Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- $^{42}\,West\,Midlands,\,Oxford\,and\,Wessex\,Genomic\,Laboratory\,Hub,\,Oxford\,University\,Hospitals\,NHS\,Foundation$

Trust, Oxford, UK

- ⁴³ Public Health England, London, UK
- ⁴⁴ Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- ⁴⁵ Royal Free London NHS Foundation Trust, London, UK
- ⁴⁶ Sheffield Children's NHS Foundation Trust, Sheffield, UK
- ⁴⁷ St George's University Hospitals NHS Foundation Trust, London, UK
- ⁴⁸ St James's Hospital, Dublin, Ireland
- ⁴⁹ Cancer Genetics Unit, The Royal Marsden NHS Foundation Trust, Sutton, London, UK
- ⁵⁰ Trinity College Dublin, The University of Dublin, Ireland
- ⁵¹ University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, UK
- ⁵² University Hospitals Bristol NHS Foundation Trust, Bristol, UK
- ⁵³ University Hospitals of Leicester NHS Trust, Leicester, UK
- ⁵⁴ University Hospitals of Plymouth NHS Trust, Plymouth, UK
- ⁵⁵ University of Manchester, Manchester, UK
- ⁵⁶ Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
- ⁵⁷ Faculty of Medicine, University of Southampton, Southampton, UK
- ⁵⁸ University Hospital Southampton NHS Foundation Trust, Southampton, UK
- ⁵⁹ Cork University Hospital, Cork, Ireland
- ⁶⁰ Children's Health Ireland (CHI), Crumlin, Dublin, Ireland
- ⁶¹ The Ethox Centre, Oxford, UK

- ⁶² Belfast Health & Social Care Trust, Belfast, UK
- ⁶³ Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
- ⁶⁴ Central and South Genomic Laboratory Hub, Birmingham Women's and Children's NHS Foundation Trust,

Birmingham, UK

⁶⁵ Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, North Bristol NHS Trust, Bristol,

United Kingdom

- ⁶⁶ Northwick Park Hospital, Watford Rd, Harrow, UK
- ⁶⁷ Chapel Allerton Hospital, Chapeltown Rd, Leeds, UK
- ⁶⁸ NHS Tayside, UK
- ⁶⁹ South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK
- ⁷⁰ Liverpool Centre for Genomic Medicine, Liverpool Women's NHS Foundation Trust, Liverpool, UK
- ⁷¹ King's College Hospital, London, UK
- ⁷² University Hospital Bristol and Weston NHS Foundation Trust, Bristol, UK
- 73 Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
- ⁷⁴ Bristol Royal Hospital for Children, Bristol. UK
- ⁷⁵ Manchester University Foundation Trust, Manchester, UK
- ⁷⁶ North East Thames Clinical Genetics Service, London, UK
- ⁷⁷ West Midlands Regional Genetics Laboratory, Birmingham Women's Hospital, Birmingham, UK
- 78 West of Scotland Centre for Genomic Medicine, Queen Elizabeth University Hospital, Glasgow, UK
- ⁷⁹Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- ⁸⁰St Vincent's Hospital Group, Elm Park, Dublin, Ireland
- ⁸¹North West Thames Regional Genetics Service, St. Mark's Hospital, Harrow, UK

⁸²Royal Liverpool University Hospital Trust, Liverpool, UK

⁸³All Wales Medical Genetics Service, Cardiff, Wales, UK

⁸⁴GenQA

⁸⁵South West Genomic Laboratory Hub, Bristol Genetics Laboratory, Southmead Hospital, Bristol, UK