THE LANCET Healthy Longevity

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Canning T, Arias-de la Torre J, Fisher HL, et al. Associations between life course exposure to ambient air pollution with cognition and later-life brain structure: a population-based study of the 1946 British Birth Cohort. *Lancet Healthy Longev* 2025. https://doi.org/10.1016/j.lanhl.2025.100724

Supplementary Material

Canning et al. Associations between life course exposure to ambient air pollution with cognition and later-life brain structure: a population-based study of the 1946 British Birth Cohort

Contents

Supplementary Methods: Full covariate description and additional methodology
eTable 1: Strengthening the reporting of observational studies in epidemiology (STROBE) checklist
eTable 2: Model performance for air pollution exposure models
eTable 3: Description of models used in analyses of the association between air pollution, cognition and brain health.
eTable 4: Correlation coefficients for air pollutants (NO ₂ , PM ₁₀ , NO _x , PM _{2·5} , PM _{coarse} , PM _{2·5} abs, BS and SO ₂) at each exposure time-point
eTable 5: Differences between participants at age 69 with an ACE-III score recorded and those with missing data
eTable 6: Differences between participants in the Insight 46 sub study and participants who had an ACE-III score at age 69
eTable 7: Differences between participants in the included in ACE-III analysis and in Verbal Memory and Processing Speed analysis
eTable 8: Associations between mean exposure to NO ₂ (at ages 45, 55 and 60-64), PM ₁₀ (at ages 55, 60-64), NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs (at ages 60-64) and ACE-III continuous total and fluency sub-scale scores at age 69.
eTable 9: Associations between mean exposure to NO ₂ (at ages 45, 55 and 60-64), PM ₁₀ (at ages 55, 60-64), NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs (at ages 60-64) and neuroimaging outcomes at ages 69-71
eTable 10: Extremes analysis (quartile 4 of exposure versus quartile 1-3 of exposure) of associations between exposure to NO ₂ (ages 45 to 60-64) and PM ₁₀ (ages 53 to 60-64) and continuous verbal memory and processing speed (at age 43, 53, 60-64, 69 and ages 53, 60-64 and 69 respectively)
eTable 11: Extremes analysis (quartile 4 of exposure versus quartiles 1-3 of exposure) of associations between exposure to NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs (at ages 60-64) and continuous verbal memory and processing speed (at age 69)
eTable 12: Extremes analysis (quartile 4 of exposure versus quartile 1-3 of exposure) of associations to mean NO ₂ (at ages 45, 55 and 60-64), PM ₁₀ (at ages 55 and 60-64), NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs (at ages 60-64) and ACE-III continuous total and sub-scale scores at age 69
eTable 13: Extremes analysis (quartile 4 of exposure versus quartile 1-3 of exposure) of associations to mean NO ₂ (at ages 45, 55 and 60-64), PM ₁₀ (at ages 55 and 60-64), NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs (at ages 60-64) and neuroimaging outcomes at ages 69-71
eTable 14: Longitudinal associations between exposure to PM ₁₀ (at ages 55 and 60-64) with continuous verbal memory and processing speed at ages 53, 60-64 and 69 in fully adjusted models, further adjusted for copollutant exposure to NO ₂ (at ages 55 and 60-64)
eTable 15: Associations between exposure to NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs (at ages 60-64) and continuous verbal memory and processing speed (at age 69) in fully adjusted models, adjusted for co-pollutants

eTable 16: Associations between mean exposure to air pollution at ages 55 and 60-64 (PM ₁₀ and NO ₂) and ages	3
60-64 (NO _x , PM _{2.5} , PM _{coarse} , PM _{2.5} abs) with continuous ACE-III total score at age 69 in fully adjusted models,	
and further adjusted for co-pollutants4	.2
eTable 17: Associations between mean exposure to air pollution at ages 55 and 60-64 (PM ₁₀ and NO ₂) and ages	3
60-64 (NO _x , PM _{2.5} , PM _{coarse} , PM _{2.5} abs) with neuroimaging outcomes at age 69-71 in fully adjusted models and	
further adjusted for co-pollutants4	.3
eTable 18: Complete case analysis of longitudinal associations between exposure to NO ₂ (ages 45 to 60-64) and	f
PM ₁₀ (ages 53 to 60-64) and continuous verbal memory and processing speed (at ages 43, 53, 60-64, 69 and	
ages 53, 60-64 and 69, respectively)4	4
eTable 19: Complete case analysis of prospective associations between exposure to NO _x , PM _{2·5} , PM _{coarse} and	
PM _{2·5} abs (at ages 60-64) and continuous verbal memory and processing speed (at age 69)4	.5
eTable 20: Complete case analysis of associations between mean exposure to NO ₂ (at ages 45, 55 and 60-64),	
PM ₁₀ (at ages 55, 60-64), NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs (at ages 60-64) and ACE-III continuous total and	
fluency sub-scale scores at age 69	6
eTable 21: Complete case analysis of associations between mean exposure to NO ₂ (at ages 45, 55 and 60-64),	
PM ₁₀ (at ages 55, 60-64), NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs (at ages 60-64) and neuroimaging outcomes at ages	;
69-714	8
eFigure 1 Timeline of measures used in this study5	0

Supplementary Methods: Full covariate description and additional methodology

Sample

In one week of March 1946, 13,687 babies across England, Wales and Scotland were interviewed. This was approximately 91% of all births that week and thus close to a population level sample of births at that time. Two years later, 5,362 mothers and babies from the original sample were followed up. It was not possible to follow the full sample due to funding constraints at that time. This subsample was selected to contain roughly the same number of children from each social class. This was achieved by including all those babies whose fathers worked in a non-manual or an agricultural occupation, and a random selection of one-in-four children whose fathers were employed in manual occupations. They excluded the 672 children born to unmarried mothers, as it was assumed that they would be adopted at birth and would be too difficult to trace. They also excluded 180 multiple births, as they were thought to be too small of a sample size for separate analyses. Full details are provided here: https://archives.ucl.ac.uk/CalmView/record/catalog/NSHD.

Participation has varied over the waves. At age 69, the last major follow up, 2816 were targeted as an analytical sample. Of the remaining 2546 (47%) study members: 957 (18%) had already died, 620 (12%) had previously withdrawn permanently, 574 (11%) lived abroad, and 395 (7%) had remained untraceable for more than 5 years. In total, 2148 participants completed a home visit. Both lifetime and recent contact with the study (at age 69) was associated with being in a non-manual occupational class, and having higher educational qualifications and childhood cognitive ability. At age 53, the sample generally remained representative of census level data. Further detail on participation is available at across a range of cohort profiles. 1-6

Exposure Modelling

The estimates included in the study reflect exposure levels of the key sources at the time of measurement (e.g. black smoke and SO₂ when coal combustion was a major source, since superseded by monitoring of particulates and NO₂ that capture traffic pollution). Due to data availability of pollutant exposure, annualised mean exposures were assigned to the participants' residential address at the closest wave of data collection and included at that wave, as exposure between years is highly related (e.g. for residential address at the wave of data collection at age 43 we assigned pollutants that were modelled at age 45).

NO₂ was modelled at ages 45, 55 and 64 through three land-use regression models (a Britain-specific contemporary model, ⁷ Ruimte voor Geoinformatie [RGI], ⁸ and European Study of Cohorts for Air Pollution

Effects [ESCAPE] models⁹). PM₁₀ was modelled at ages 55 and 64 through RGI and ESCAPE models.^{8,10} Further ESCAPE pollutants included NO_x, PM_{2·5}, PM_{coarse} and PM_{2·5}abs, which were modelled at age 64.⁹ Due to the unavailability of measures for contemporary pollutants for the whole life course, we included three further measures as markers of exposure prior to age 43 and adjusted for these in the analyses.

Prior air pollution exposure

The Douglas-Waller index classified coal consumption in participants' county borough (regions defined by a population limit of 75,000), and was reported as "Low", "Medium" or "High".¹¹

The Chronic Health Effects of Smoke and SO_2 (CHESS) land-use regression models were used to estimate mean black smoke (BS – a measure of particulates in the air) and sulphur dioxide (SO_2) exposure at ages 16, 25, 36 and 45, which was included as a mean of all four time-points. Land use regression models were developed using land cover, road network, population and combined with altitude, coordinates and buffers around air pollution measurement sites. Model verification took place with an independent set of monitoring sites, with a slight underprediction (fractional bias: $0\sim-0.1$) for all years. Data was from the national air quality archive from 1962, 1971, 1981, 1991 which aligned with census years in the UK. Measurement of BS and SO_2 was completed the same across all measurement years. Model performance varied by year (R^2 range 0.31-0.56 for BS, SO_2 0.26-0.71), and was maintained in a leave-one-out validation analysis.

NO₂ in 1991

NO₂ exposure in 1991⁷ was firstly back extrapolated from two land use regression models from 2001 and 2009 that was then evaluated against a national NO₂ diffusion tube network sample from 1991. Land use regression models for 2001 and 2009 were constructed using land cover, road network, site coordinates and altitude. Back-extrapolation of the 2009 models to 1991 yielded R², MSE-R², and beta between 0.53–0.55, 0.52–0.55, and 0.90–0.98, respectively, depending on the model formulation.

RGI (NO₂ and PM₁₀ in 2001)

Models for NO_2 and PM_{10} were constructed using 2001 annual mean concentrations from air quality networks, using land use regression models constructed with traffic, population, land use and topography data.⁸ Measurements from 156 monitoring stations (NO_2) and 93 for PM_{10} were used to generate great Britain specific models. R2 validation was good for NO_2 (0.62), but poorer for PM_{10} (0.37).

ESCAPE (NO₂, NO_x, PM₁₀, PM_{2.5}, PM_{coarse} and PM_{2.5}abs)

ESCAPE variables were modelled from monitoring campaigns between 2010-2011 in London, with models developed using a standardised approach across Europe. Land use regression models for London were created using traffic, road and density information for NO_2 and traffic and road distance for particulate matter.^{9,10} Due to the poorer performance of particulate matter models 400km from the monitoring area (London and Thames corridor west of London) when evaluated against national network monitoring sites), some addresses were not assigned a PM exposure for age 60-64. R^2 validation was good (R2 = 0.56-0.92 for particulate matter and NO_2/NO_x).

Addenbrooke's cognitive examination III (ACE-III)

Cognitive state at age 69 was assessed using the Addenbrooke's cognitive examination III (ACE-III).¹³ The ACE-III is validated for assessing cognitive functioning and screening for cognitive impairment and dementia and has a quasi-normal distribution.¹³ Of the 2,148 participants who had a home visit at age 69, over 300 records of ACE-III were incomplete or lost due to an equipment failure, detailed elsewhere.¹⁴

Covariates

Educational Attainment

Educational achievement was assessed up to age 26 via the Burnham classification codes, and reclassified as "No qualification", "up to 'O' Level" or "A level and above".

Social Class

Father's social class at age 4 and participant's social class at age 43 and/or 53 were defined by a condensed version of the UK Registrar General's social class scheme, which bases social class on specific job standings ("Professional" and "Intermediate", "Skilled (non-manual)", "Skilled (manual)", and "Partly skilled" or "Unskilled"). 15

Childhood externalising and internalising mental health

This was assessed by a teacher-rated survey in childhood at ages 13-15 through a precursor to the Rutter B2 teacher questionnaire¹⁶ with total scores split into "Absent", "Mild", and "Severe" for internalising and externalising components, as previously described.¹⁷

Childhood cognition at age 15

The Heim Group Ability Test AH4, a 130-item test requiring shape matching and selection, and verbal and number problems, yielding scores for verbal intelligence and non-verbal Intelligence¹⁸ and the Watts-Vernon Reading Test, a 35-item test of reading comprehension requiring the participant to select an appropriate word to complete a sentence,¹⁹ were completed by participants at age 15. A 47-item mathematics test completed at age 15, requiring the use of arithmetic, geometry, trigonometry and algebra was also included. The sum of these three scores was summarised into a z score for the whole NSHD sample, with higher scores indicating better cognition compared to the mean.^{20,21}

Neighbourhood deprivation

Neighbourhood deprivation was measured as the proportion of population in participants' local authority who were employed in semi-skilled or unskilled occupations, as previously defined.²² Neighbourhood deprivation was assessed at age 53 or 60 as a confounder of both pollution exposure and cognitive state.²³

Multiple Imputation by chained equations

We imputed missing covariate data for three different groups of participants in the cohort due to differing missingness and different participant pool under the missing at random assumption.²⁴ First, for participants with complete data for verbal memory and processing speed at age 43, 53, 60-64 and 69. Second, for participants with an ACE-III total or fluency score at age 69. Third, for participants with a full data for neuroimaging outcomes. We did not impute air pollution exposure data, aside from our air pollutants which were included as covariates instead of exposures of interest. We performed multiple imputation with chained equations "mi impute chained" in Stata 18.0 MP. Imputed variables included father's social class, adult social class, air pollution (coal index, SO₂ and BS), internalising and externalising symptoms at age 13-15, cognition at age 15, neighbourhood deprivation, educational attainment, and lifetime smoking pack years. Complete variables were included in the imputation (assigned sex at birth and cognition outcomes). Missingness is described in Supplementary eTable 1. We imputed 25 datasets. For verbal memory and processing speed, imputation resulted in a sample size of 1298-1534, depending on pollutant. Complete case analysis was N=769-941 Imputation resulted in a sample size of N=1483-1749 for ACE-III analyses, compared to 788-990 complete case analysis for fully adjusted models, with covariates missing between 10 and 359 records. For neuroimaging, fully adjusted models had an imputed N of 391-453. Complete case size was 248-288, with missing covariates ranging from 2 to 102.

	Verbal Memory and Processing speed sample (N=1534)	ACE-III sample (N=1761) N (%)	Insight 46 sub-cohort (N=453) N (%)
	N (%)	11 (70)	11 (70)
Father's social class at age 4	107 (7.0)	138 (7.8)	16 (3.5)
Social Class at age 43	67 (4.4)	170 (9.7)	26 (5.7)
Social Class at age 53	56 (3.7)	164 (9.3)	14 (3.1)
Highest education attained by age 26	71 (4.6)	86 (4.9)	13 (2.9)
Exposure to air pollution at birth	167 (10.9)	200 (11.4)	38 (8.4)
Smoking – pack/years up to age 63	283 (18.5)	359 (20.4)	102 (22.5)
Neighbourhood deprivation – age 53	8 (0.5)	35 (2.00)	6 (1.3)
Neighbourhood deprivation – age 60	10 (0.7)	127 (7.2)	3 (0.7)
Cognition score at age 15	207 (13.5)	244 (13.9)	34 (7.5)
Internalising symptoms at ages 13-15	142 (9.3)	178 (10.1)	20 (4.4)
Externalising symptoms at ages 13-15	142 (9.3)	178 (10.1)	20 (4.4)
Mean SO ₂ (age 16 - 45)	0 (0)	10 (0.6)	2 (0.4)
Mean BS (age 16 - 45)	0 (0)	10 (0.6)	2 (0.4)

Supplementary Methods Table 1: Missingness for each covariate in each analytic sample. Missingness for largest exposure sample only (NO₂ exposure), missingness will vary by exposure as inclusion varied by available exposure data.

Statistical Analysis

Participants with dementia at Insight 46 assessment were excluded (N=2).

Sample equations for analysis

Verbal Memory and Processing Speed

For longitudinal multilevel models between NO₂ and PM₁₀ and verbal memory and processing speed, the full model can be seen in equation (1) where y_{ij} represents the outcome variable individual i at time j with random intercept μ_i and residual error ε_{ij} . Time-varying covariates are included at time (t_j) for individual (i), while time-invariant are specified for individual i. β_2 - β_{13} represent fixed effects. The parameter of interest is β_1 which is rescaled by the IQR in the model and so changes in outcome y_{ij} was reported as a β and 95% confidence intervals, representing a mean change per IQR increase in exposure. We treated each annual measure of exposure as a time-point with no lag with its corresponding verbal memory or processing speed score, with an additional time-point at age 69 for the cognitive outcomes.

(1) $y_{ij} = \beta_0 + \beta_1 pollutant_{it_j} + \beta_2 sex_i + \beta_3 father's social class_i + \beta_4 coal index at birth_i +$ $\beta_5 black \ smoke_i + \beta_6 Sulphur \ Dioxide_i + \beta_7 childhood \ internalising \ problems_i +$ $\beta_8 childhood \ externalising \ problems_i + \beta_9 childhood \ cognition_i + \beta_{10} education_i +$ $\beta_{11} pack - years \ smoking_i + \beta_{12} adult \ social \ class_{it_j} + \beta_{13} neighbourhood \ deprivation_{it_j} +$ $\varepsilon_{ij} + u_j$

For associations between NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5}abs and verbal memory and processing speed, linear regression models used the following equation (2). The parameter of interest is β_1 , which is rescaled by the IQR in the model and so changes in outcome y_i was reported as a β and 95% confidence intervals, representing a mean change per IQR increase in exposure:

(2) $y_i = \beta_0 + \beta_1 pollutant_i + \beta_2 sex_i + \beta_3 father's social class_i + \beta_4 coal index at birth_i + \beta_5 black smoke_i + \beta_6 Sulphur Dioxide_i + \beta_7 childhood internalising problems_i + \beta_8 childhood externalising problems_i + \beta_9 childhood cognition_i + \beta_{10} education_i + \beta_{11} pack - years smoking_i + \beta_{12} adult social class_i + \beta_{13} neighbourhood deprivation_i + \varepsilon_i$

ACE-III

As these were simple linear regressions, associations for all ACE-III outcomes used a similar equation (3). Again, the parameter of interest is β_1 , which is rescaled by the IQR in the model and so changes in outcome y_i was reported as a β and 95% confidence intervals, representing a mean change per IQR increase in exposure:

(3) $y_i = \beta_0 + \beta_1 pollutant_i + \beta_2 sex_i + \beta_3 father's social class_i + \beta_4 coal index at birth_i$ $+ \beta_5 black smoke_i + \beta_6 Sulphur Dioxide_i + \beta_7 childhood internalising problems_i$ $+ \beta_8 childhood externalising problems_i + \beta_9 childhood cognition_i + \beta_{10} education_i$ $+ \beta_{11} pack - years smoking_i + \beta_{12} adult social class_i$ $+ \beta_{13} neighbourhood deprivation_i + \varepsilon_i$

Neuroimaging outcomes

Associations for hippocampal volume, brain volume and ventricular volume outcomes used a similar equation (4). As before, the parameter of interest is β_1 which is rescaled by the IQR in the model and so changes in outcome y_i was reported as a β and 95% confidence intervals, representing a mean change per IQR increase in exposure:

 $(4) \ y_i = \beta_0 + \beta_1 pollutant_i + \beta_2 sex_i + \beta_3 father's \ social \ class_i + \beta_4 coal \ index \ at \ birth_i$ $+ \beta_5 black \ smoke_i + \beta_6 Sulphur \ Dioxide_i + \beta_7 childhood \ internalising \ problems_i$ $+ \beta_8 childhood \ externalising \ problems_i + \beta_9 childhood \ cognition_i + \beta_{10} education_i$ $+ \beta_{11} pack - years \ smoking_i + \beta_{12} adult \ social \ class_i$ $+ \beta_{13} neighbourhood \ deprivation_i + \beta_{14} age \ at \ scan \ date_i$ $+ \beta_{15} total \ intracranial \ volume_i + \varepsilon_i$

For white matter hyperintensities, the following equation generalised linear model (5) applied:

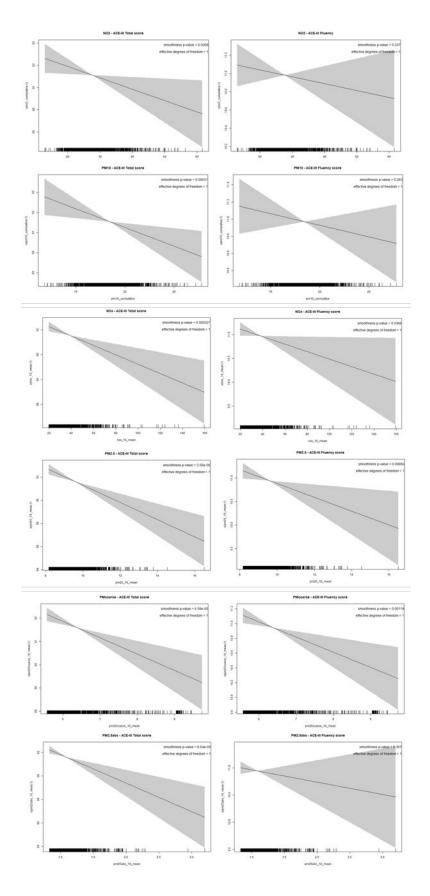
 $(5) \log(E[Y_i]) = \beta_0 + \pmb{\beta_1} pollutant_i + \beta_2 sex_i + \beta_3 father's social class_i + \beta_4 coal index \ at \ birth_i \\ + \beta_5 black \ smoke_i + \beta_6 Sulphur \ Dioxide_i + \beta_7 childhood \ internalising \ problems_i \\ + \beta_8 childhood \ externalising \ problems_i + \beta_9 childhood \ cognition_i + \beta_{10} education_i \\ + \beta_{11} pack - years \ smoking_i + \beta_{12} adult \ social \ class_i \\ + \beta_{13} neighbourhood \ deprivation_i + \beta_{14} age \ at \ scan \ date_i \\ + \beta_{15} total \ intracranial \ volume_i$

With link: $g(\mu_i) = \log(\mu_i)$ and variance: $y_i \sim Gamma(\mu_i, \theta)$. The exponentiated $\log([Y_i])$ is the estimate, with Y_i reported in the paper, such that it represents change in white matter hyperintensities (such as 1.04 = 4% change) per quartile $(\mu g/m^3)$ increase in air pollutant levels.

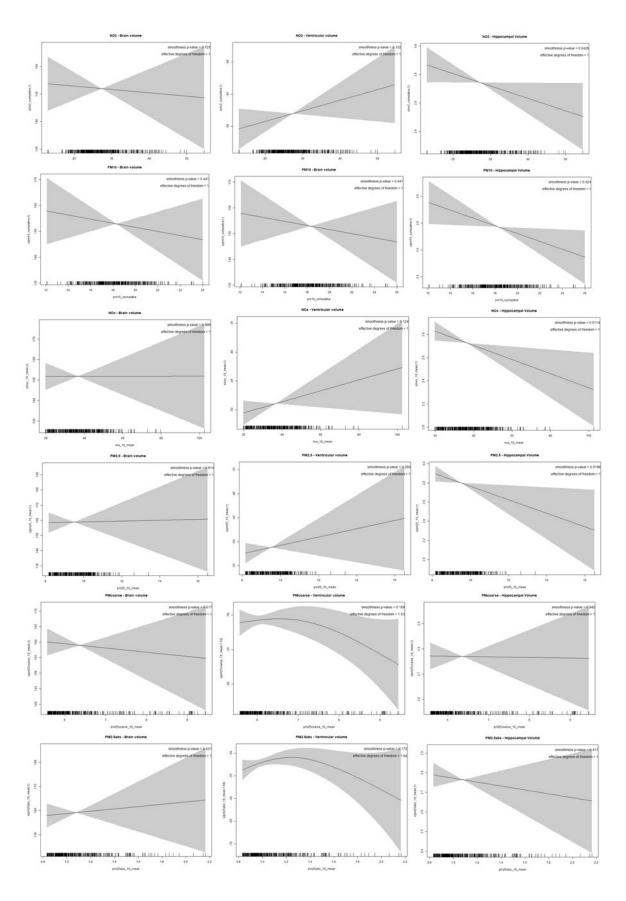
Sensitivity Analyses – two pollutant models

In constructing two pollutant models, we assessed collinearity between pollutants, we examined Pearson's correlation coefficients between pollutants at each time-point and assessed multicollinearity using the variance inflation factor (VIF) for all models. We firstly ensured that no co-pollutant model had a VIF of around 10, which would indicate large multicollinearity, and if so, excluded that model if the standard error more than doubled.

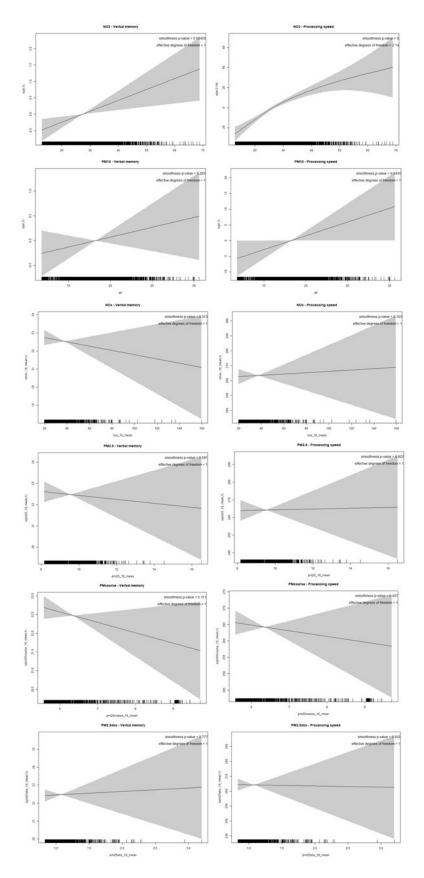
Generalised additive models


To examine non-linear relationships between exposure and outcome we ran generalised additive models, which estimate different distributions of the predictor variable and connect to the dependent variable via a link function.²⁵ These models were ran in R4.4.1 using mgcv²⁶ as STATA does not support GAMs. These models make no presumption that exposure-outcome associations are linear. We report the p-value of the smoothness term and effective degrees of freedom alongside visual representation of each of the exposure-outcome

associations reported here. For multilevel models (NO₂ and PM₁₀ and verbal memory and processing speed), only fixed effects were examined. We made assessments on linearity based on visual inspection, the total degrees of freedom and p-value of smoothness term. If a GAM indicated a non-linear association, we ran nested models with linear and smoothed terms and ran likelihood ratio tests to test model fit. We combined this with assessment of AIC to assess the model fit. Three exposure-outcome associations were investigated further. Examining nested models resulted in the following p-values and Akaike information criterion (AIC):


	LRT p-value	AIC
PM _{coarse} – ventricular volume	0.09	3211 (non-linear), 3212 (linear)
PM _{2.5} abs – ventricular volume	0.05	3211 (non-linear), 3214 (linear)
NO ₂ – Processing speed	0.04*	50356 (non-linear), 50360 (linear)

Supplementary Methods Table 2: Likelihood ratio tests and Akaike information criterion (AIC). * significant p<0.05.


Based on the very similar performance of models and testing, all models were included as noted in the main paper, with linear associations between exposure and outcome, aside from white matter hyperintensities that followed prior methodology as noted in the Methods section.

Supplementary Methods Figure 1: General additive model for pollutants and ACE-III total score and Fluency.

Supplementary Methods Figure 2: General additive model for pollutants and brain volume, ventricular volume and hippocampal volume.

Supplementary Methods Figure 3: General additive model for pollutants and verbal memory and processing speed

References

- 1 Kuh D, Wong A, Shah I, *et al.* The MRC National Survey of Health and Development reaches age 70: maintaining participation at older ages in a birth cohort study. *Eur J Epidemiol* 2016; **31**: 1135–47.
- 2 Wadsworth M, Kuh D, Richards M, Hardy R. Cohort profile: The 1946 National Birth Cohort (MRC National Survey of Health and Development). *Int J Epidemiol* 2006; **35**: 49–54.
- 3 Kuh D, Pierce M, Adams J, *et al.* Cohort Profile: Updating the cohort profile for the MRC National Survey of Health and Development: a new clinic-based data collection for ageing research. *International Journal of Epidemiology* 2011; **40**: e1–9.
- 4 James S-N, Lane CA, Parker TD, *et al.* Using a birth cohort to study brain health and preclinical dementia: recruitment and participation rates in Insight 46. *BMC Res Notes* 2018; **11**: 885.
- 5 Murray-Smith H, Barker S, Barkhof F, *et al.* Updating the study protocol: Insight 46 a longitudinal neuroscience sub-study of the MRC National Survey of Health and Development phases 2 and 3. *BMC Neurol* 2024; **24**: 40.
- 6 Stafford M, Black S, Shah I, *et al.* Using a birth cohort to study ageing: representativeness and response rates in the National Survey of Health and Development. *Eur J Ageing* 2013; **10**: 145–57.
- 7 Gulliver J, de Hoogh K, Hansell A, Vienneau D. Development and back-extrapolation of NO2 land use regression models for historic exposure assessment in Great Britain. *Environ Sci Tech* 2013; **47**: 7804–7811.
- 8 Vienneau D, de Hoogh K, Beelen R, Fischer P, Hoek G, Briggs D. Comparison of land-use regression models between Great Britain and the Netherlands. *Atmos Environ* 2010; **44**: 688–96.
- 9 Beelen R, Hoek G, Vienneau D, *et al.* Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe The ESCAPE project. *Atmos Environ* 2013; 72: 10–23.
- 10 Eeftens M, Beelen R, de Hoogh K, *et al.* Development of land use regression models for PM_{2.5}, PM_{2.5} Absorbance, PM₁₀ and PM_{coarse} in 20 European study areas; Results of the ESCAPE Project. *Environ Sci Technol* 2012; **46**: 11195–205.
- 11 Douglas JWB, Waller RE. Air pollution and respiratory infection in children. *Br J Prev Soc Med* 1966; **20**: 1–8.
- 12 Gulliver J, Morris C, Lee K, Vienneau D, Briggs D, Hansell A. Land use regression modeling to estimate historic (1962–1991) concentrations of black smoke and sulfur dioxide for Great Britain. *Environ Sci Technol* 2011; **45**: 3526–32.
- 13 Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of the Addenbrooke's Cognitive Examination III in frontotemporal dementia and Alzheimer's Disease. *Dement Geriatr Cogn Disord* 2013; **36**: 242–50.
- 14 Richards M, James S-N, Sizer A, *et al.* Identifying the lifetime cognitive and socioeconomic antecedents of cognitive state: seven decades of follow-up in a British birth cohort study. *BMJ Open* 2019; **9**: e024404.
- 15 Leete R, Fox J. 'Registrar General's Social Classes: Origins and Uses'. Population Trends 1977; 8: 1–7.
- 16 Rutter M. A children's behaviour questionnaire for completion by teachers: preliminary findings. *J Child Psychol & Psychiat* 1967; **8**: 1–11.
- 17 Colman I, Ploubidis GB, Wadsworth MEJ, Jones PB, Croudace TJ. A longitudinal typology of symptoms of depression and anxiety over the life course. *Biol Psychiatry* 2007; **62**: 1265–71.

- 18 Heim A.W. Manual for the AH4 group test of general intelligence. London: National Foundation for Educational Research, 1970.
- 19 Pigeon D. Details of the fifteen years tests, Douglas JWB, Ross JM, Simpson HR, eds. London: Davies: All our future, 1968.
- 20 Richards M, Shipley B, Fuhrer R, Wadsworth MEJ. Cognitive ability in childhood and cognitive decline in mid-life: longitudinal birth cohort study. *BMJ* 2004; **328**: 552.
- 21 Lu K, Nicholas JM, Collins JD, et al. Cognition at age 70: Life course predictors and associations with brain pathologies. *Neurology* 2019; **93**: e2144–56.
- 22 Bakolis I, Murray ET, Hardy R, Hatch SL, Richards M. Area disadvantage and mental health over the life course: a 69-year prospective birth cohort study. *Soc Psychiatry Psychiatr Epidemiol* 2023; **58**: 735–44.
- 23 McCann A, McNulty H, Rigby J, *et al.* Effect of area-level socioeconomic deprivation on risk of cognitive dysfunction in older adults. *J American Geriatrics Society* 2018; **66**: 1269–75.
- 24 Mostafa T, Narayanan M, Pongiglione B, *et al.* Missing at random assumption made more plausible: evidence from the 1958 British birth cohort. *J Clin Epidemiol* 2021; **136**: 44–54.
- 25 Ravindra K, Rattan P, Mor S, Aggarwal AN. Generalized additive models: Building evidence of air pollution, climate change and human health. *Environment International* 2019; **132**: 104987.
- 26 Wood SN. Generalized additive models: An introduction with R, 2nd edn. Chapman and Hall/CRC, 2017 DOI:10.1201/9781315370279.

eTable 1: Strengthening the reporting of observational studies in epidemiology (STROBE) checklist

	Item	Recommendation	Included?
Title and abstract	No 1	(a) Indicate the study's design with a commonly used term	Birth cohort
		in the title or the abstract	and population-
			based study
			referenced in
			abstract and
			title
		(b) Provide in the abstract an informative and balanced	Study details in
		summary of what was done and what was found	abstract.
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the	Background
		investigation being reported	and rationale
			provided in
			introduction for
			all hypotheses.
Objectives	3	State specific objectives, including any prespecified	Specified
		hypotheses	hypotheses in
			final paragraph
			of introduction.
Methods			
Study design	4	Present key elements of study design early in the paper	Cohort
			information
			provided in first
			paragraph of
			methods
Setting	5	Describe the setting, locations, and relevant dates,	Cohort
		including periods of recruitment, exposure, follow-up, and	information
		data collection	provided in first
			paragraph of
			methods.
Participants	6	(a) Give the eligibility criteria, and the sources and	Full reference
		methods of selection of participants. Describe methods of	to cohort papers
		follow-up	provided for
			full detail.

		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	All variables defined in measures section of methods.
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	All detail included for each variable, as well as reference for previous use if available.
Bias	9	Describe any efforts to address potential sources of bias	Examination of loss to follow-up explained in statistical analysis section.
Study size	10	Explain how the study size was arrived at	Available participant data broken down in results and methods.
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Each main variable has explanation on coding and transformations, with justification for any transformations.
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	Included in statistical

			analyses section.
		(b) Describe any methods used to examine subgroups and interactions	NA
		(c) Explain how missing data were addressed (d) If applicable, explain how loss to follow-up was addressed	Multiple imputation with chained equations was used for analyses as outlined in methods. N/A referenced in cohort
		(<u>e</u>) Describe any sensitivity analyses	Sensitivity analyses outlined in section "Sensitivity Analyses" in methods
Results Participants	13*	(a) Report numbers of individuals at each stage of study— eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed (b) Give reasons for non-participation at each stage	Reported in results section. Provided in
			cohort papers referenced in methods.
Descriptive data	14*	(c) Consider use of a flow diagram (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	See Figure 1 See Table 1.

		(b) Indicate number of participants with missing data for each variable of interest	To reference missing data a specific wave would have to be chosen. Full variables available in Table 1 and N included for the wave in which they were collected.
		(c) Summarise follow-up time (eg, mean and total amount)	Each data collection wave has follow-up time as per study design.
Outcome data	15*	Report numbers of outcome events or summary measures over time	Reported ACE- II and brain health markers in Table 1.
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	Models outlined in methods section. Multiple tables provided for all results.
		(b) Report category boundaries when continuous variables were categorized	NA
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA – reference to total score compared to coefficient seen in models.
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	Sensitivity analyses reported on in

		Supplementary
		tables.
18	Summarise key results with reference to study objectives	Results outlined
		in terms of
		hypotheses in
		paragraph 1.
19	Discuss limitations of the study, taking into account	Limitations
	sources of potential bias or imprecision. Discuss both	outlined in
	direction and magnitude of any potential bias	limitations
		section.
20	Give a cautious overall interpretation of results	Results
	considering objectives, limitations, multiplicity of	contextualised
	analyses, results from similar studies, and other relevant	in existing
	evidence	evidence base.
21	Discuss the generalisability (external validity) of the study	Reference to
	results	other studies,
		limitations and
		strengths of this
		study.
22	Give the source of funding and the role of the funders for	Included after
	the present study and, if applicable, for the original study	discussion.
	on which the present article is based	
	20	19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias 20 Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence 21 Discuss the generalisability (external validity) of the study results 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study

eTable 2: Model performance for air pollution exposure models.

Year and Model	Air Pollution Variables	Model validation (r²)	RMSE (μg/m³)	Resolution
Black Smoke and SO ₂				
CHESS				
Age 16 (1962)	SO_2	0.71	44.8	1000metre x 1000metre
	BS	0.56	57.1	1000metre x 1000metre
Age 25 (1971)	SO ₂	0.57	28.4	1000metre x 1000metre
	BS	0.41	28.8	1000metre x 1000metre
Age 36 (1982)	SO_2	0.26	18.9	1000metre x 1000metre
	BS	0.38	8.8	1000metre x 1000metre
Age 45 (1991)	SO_2	0.31	12.4	1000metre x 1000metre
	BS	0.34	5.9	1000metre x 1000metre
Age 45 (1991)				
Land use regression (NO ₂)				
	NO ₂	0.55	9.2	200metre x 200metre
Age 55 (2001) RGI				
	PM_{10}	0.37	4.10	100metre x 100metre
	NO ₂	0.61	9.26	100metre x 100metre
Ages 60-64 (2010)				
ESCAPE				
	PM _{2·5}	0.71	1.4	100metre x 100metre
	PM_{coarse}	0.56	1.3	100metre x 100metre
	PM _{2·5} abs	0.92	0.2	100metre x 100metre
	PM_{10}	0.75	1.5	100metre x 100metre
	NO _x	0.78	16.2	100metre x 100metre
	NO ₂	0.75	6.6	100metre x 100metre

 SO_2 = Sulphur Dioxide, BS = Black Smoke, NO_2 = Nitrogen Dioxide, NO_x = Nitrogen oxides, PM_{10} = particulate matter $10\mu m$ or smaller, $PM_{2\cdot5}$ = particulate matter $2\cdot5\mu m$ or smaller, PM_{coarse} = particulate matter of size $2\cdot5\mu m$ - $10\mu m$, $PM_{2\cdot5}$ abs = absorbance as a measure of black carbon absorption fraction, CHESS = Chronic Health Effects of Smoke and SO_2 , ESCAPE = European Study of Cohorts for Air Pollution Effects, RGI = Ruimte voor Geoinformatie. RMSE = Root-mean-squared error.

eTable 3: Description of models used in analyses of the association between air pollution, cognition and brain health.

Air pollution exposure	Cognition or brain health outcomes	Covariates	Modelling framework
(PM_{10}) , particulate matter between	a 2·5 μm and 10 μm (PM _{coarse}) and po	and particulate matter (PM ₂₋₅ , particulate matter absorbance as a me articulate matter absorbance as a me r processing speed and verbal memor	asure of black carbon absorption
NO ₂ at ages 43, 53 and 60-64	Verbal memory and processing speed at ages 43, 53, 60-64 and 69	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Random intercept linear regression models between all exposures and outcomes utilising repeated measures in individuals over time
PM ₁₀ at ages 53 and 60-64	Verbal memory and processing speed at ages 43, 53, 60-64 and 69	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Random intercept linear regression models between all exposures and outcomes utilising repeated measures in individuals over time
NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs at ages 60-64	Verbal memory and processing speed at age 69	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Linear regression models with each exposure and each outcome at each time-point independently
(PM ₁₀), particulate matter between		 and particulate matter (PM2·5, parta articulate matter absorbance as a me r cognitive state and brain health.	
NO ₂ mean exposure across ages 43, 53 and 60-64	Addenbrookes' cognitive examination – III (ACE-III) at age 69	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Linear regression models with each exposure and each outcome at each time-point independently

PM ₁₀ mean exposure across ages 53 and 60-64	Addenbrookes' cognitive examination – III (ACE-III) at age 69	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Linear regression models with each exposure and each outcome at each time-point independently
NO _x , PM _{2.5} , PM _{coarse} and PM _{2.5} abs at ages 60-64	Addenbrookes' cognitive examination – III (ACE-III) at age 69	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Linear regression models with each exposure and each outcome at each time-point independently
NO ₂ mean exposure across ages 43, 53 and 60-64	Total brain volume, ventricular volume, hippocampal total volume, and white matter hyperintensities.	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Linear regression models with each exposure and each outcome at each time-point independently
PM ₁₀ mean exposure across ages 53 and 60-64	Total brain volume, ventricular volume, hippocampal total volume, and white matter hyperintensities.	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Linear regression models with each exposure and each outcome at each time-point independently
NO _x , PM _{2·5} , PM _{course} and PM _{2·5} abs at ages 60-64	Total brain volume, ventricular volume, hippocampal total volume, and white matter hyperintensities.	Fully adjusted for: assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood, neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45	Linear regression models with each exposure and each outcome at each time-point independently

 NO_2 = nitrogen dioxide, PM_{10} = particulate matter $10\mu m$ or smaller, NO_x = nitrogen oxide, $PM_{2\cdot 5}$ = particulate matter $2.5\mu m$ or smaller, PM_{coarse} = particulate matter of size $2.5\mu m$ - $10\mu m$. $PM_{2.5}abs$ = absorbance as a measure of black carbon absorption fraction

eTable 4: Correlation coefficients for air pollutants (NO₂, PM₁₀, NO_x, PM_{2·5}, PM_{coarse}, PM_{2·5}abs, BS and SO₂) at each exposure time-point

		POLLUTANT											
	NO ₂ (age 45)	NO ₂ (age 55)	NO ₂ (ages 60- 64)	NO ₂ mean exposure (ages 45-64)	PM ₁₀ (age 55)	PM ₁₀ (ages 60- 64)	PM ₁₀ mean exposure (ages 55-64)	NO _x (Age 60- 64	PM _{2.5} (Age 60- 64)	PM _{coarse} (Age 60-64)	PM _{2·5} abs (Age 60- 64)	BS mean exposure (ages 16-45)	SO ₂ mean exposure (ages 16-45)
NO ₂ (age 45)	-												
NO ₂ (age 55)	0.76	-											
NO ₂ (age 60- 64)	0.64	0.72	-										
NO ₂ mean exposure (ages 45-64)	0.90	0.91	0.87	-									
PM ₁₀ (age 55)	0.67	0.94	0.65	0.84	-								
PM ₁₀ (age 60- 64)	0.34	0.37	0.54	0.46	0.34	-							
PM ₁₀ mean exposure (ages 55-64)	0.50	0.77	0.66	0.72	0.80	0.73	-						
NO _x (age 60- 64)	0.51	0.57	0.92	0.74	0.52	0.54	0.59	-					
PM _{2.5} (age 60-64)	0.49	0.50	0.85	0.68	0.46	0.59	0.58	0.84	-				
PM _{coarse} (age 60- 64)	0.12	0.18	0.18	0.18	0.14	0.76	0.48	0.64	0.58	-			
PM _{2·5} abs (age 60- 64)	0.57	0.65	0.71	0.71	0.55	0.59	0.65	0.22	0.17	0.39	-		
BS mean exposure (ages 16-45)	0.27	0.16	0.17	0.19	0.11	0.09	0.10	0.14	0.15	0.13	0.05	-	
SO ₂ mean exposure (ages 16-45)	0.57	0.44	0.35	0.46	0.37	0.18	0.22	0.26	0.25	0.33	0.11	0.76	-

 NO_2 = nitrogen dioxide, PM_{10} = particulate matter $10\mu m$ or smaller, NO_x = nitrogen oxide, $PM_{2\cdot 5}$ = particulate matter $2\cdot 5\mu m$ or smaller, PM_{coarse} = particulate matter of size $2\cdot 5\mu m$ - $10\mu m$. $PM_{2\cdot 5}$ abs = absorbance as a measure of black carbon absorption fraction. BS = Black Smoke. SO_2 = Sulphur Dioxide.

eTable 5: Differences between participants at age 69 with an ACE-III score recorded and those with missing data

Factor	Sample				Statistical test result	
	ACE-III	included	Missing	ACE-III		
	N (%)	Mean/Median (SD/IQR)	N (%)	Mean/Median (SD/IQR)		
Mean NO ₂ exposure (age 43 - 60-64) (median)	1745	26.5 (23.2, 31.1)	382	24.8 (21.6, 28.5)	Z=5.642, p < 0.0001	
Education at age 26						
No qualification	499 (29.9)		132 (37.1)		χ 2=7.528, p = 0.0232	
Up to 'O' level	488 (29.2)		88 (24.7)			
'A' level or above	684 (40.9)		136 (38.2)			
Social class at age 53						
Professional and intermediate	789 (49.5)		161 (45.7)		χ2=4.627, p = 0.2012	
Skilled (non-manual)	391 (24.5)		82 (23.3)			
Skilled (manual)	223 (14.0)		64 (18.2)			
Partly or unskilled	190 (11.9)		45 (12.8)			
Deprivation at age 60 (mean)	1630	15.4 (3.6)	358	15.2 (4.1)	t-test=0.981, p = 0.3266	
Childhood cognition at age 15 (mean)	1513	0.2 (0.8)	315	0.06 (0.9)	t-test=2.796, $p = 0.0052$	

 $\overline{NO_2}$ = Nitrogen Dioxide, $\chi 2$ = chi-square statistic, Addenbrookes' cognitive examination – III = ACE-III

eTable 6: Differences between participants in the Insight 46 sub study and participants who had an ACE-III score at age 69

	Sample				Statistical test result
Factor	Not in Ir	nsight-46	Included	in Insight-46	
	N (%)	Mean/Median (SD/IQR)	N (%)	Mean/Median (SD/IQR)	
Addenbrooke's Cognitive Examination-III	1340	92 (88-96)	421	94 (91, 97)	Z=-7.133, p < 0.0001
Mean NO ₂ exposure (ages 43 - 60-64) (median)	1328	26.5 (23.2, 31.3)	421	26.3 (23.0, 30.4)	Z=1.017, p = 0.3091
Education at age 26					
No qualification	436 (34.4)		64 (15.7)		χ2=54.974, p < 0.0001
Up to 'O' level	359 (28.3)		130 (31.9)		
'A' level or above	472 (37.3)		214 (52.5)		
Social class at age 53					
Professional and intermediate	528 (44.3)		262 (64.5)		χ2=55.778, p < 0.0001
Skilled (non-manual)	307 (25.8)		84 (20.7)		
Skilled (manual)	188 (15.8)		37 (9.1)		
Partly or unskilled	168 (14.1)		23 (5.7)		
Deprivation at age 60 (mean)	1215	15.6 (3.7)	419	14.7 (3.4)	t-test=4.210, p < 0.0001
Childhood cognition at age 15 (mean)	1126	0.093 (0.8)	391	0.502 (0.7)	t-test=-8.818, p < 0.0001

 $\overline{NO_2}$ = Nitrogen Dioxide, Addenbrookes' cognitive examination – III = ACE-III, $\chi 2$ = chi-square statistics

eTable 7: Differences between participants in the included in ACE-III analysis and in Verbal Memory and Processing Speed analysis

	Sample								
Factor	ACE-III	sample	Verbal Memory/ Processing speed Sample						
	N (%)	Mean/Median (SD/IQR)	N (%)	Mean/Median (SD/IQR)					
Addenbrooke's Cognitive Examination-III	1761	93 (88-96)	1280	93 (89, 96)					
Mean NO ₂ exposure (ages 43 - 60-64) (median)	1749	26.5 (23.2, 31.1)	421	26.2 (22.9, 30.5)					
Education at age 26	1675		1463						
No qualification	500 (29.9)		408 (27.9)						
Up to 'O' level	489 (29.2)		421 (28.8)						
'A' level or above	686 (41.0)		634 (43.3)						
Social class at age 53	1597		1478						
Professional and intermediate	790 (49.5)		746 (50.5)						
Skilled (non-manual)	391 (24.5)		350 (23.7)						
Skilled (manual)	225 (14.1)		212 (14.3)						
Partly or unskilled	191 (12.0)		170 (11.5)						
Deprivation at age 60 (mean)	1634	15.4 (3.6)	1524	15.3 (3.6)					
Childhood cognition at age 15 (mean)	1517	0.20 (0.8)	1327	0.24 (0.8)					

NO₂ = Nitrogen Dioxide, Addenbrookes' Cognitive Examination – III = ACE-III

eTable 8: Associations between mean exposure to NO₂ (at ages 45, 55 and 60-64), PM₁₀ (at ages 55, 60-64), NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5}abs (at ages 60-64) and ACE-III continuous total and fluency sub-scale scores at age 69.

Pollutant Ages 45 to 60-64		N	N	Iodel 1	Mod	del 2	Mo	del 3	·
			β	(95% CI)	β	(95% CI)	β	(95% CI)	VIF
	NO_2	1749							
	Total score		-0.405	-0.748, -0.062	-0.362	-0.669, -0.056	-0.589	-0.921, -0.257	1.7
	Fluency		-0.060	-0.181, 0.062	-0.058	-0.174, 0.058	-0.118	-0.251, 0.014	1.7
Ages 55 to	60-64								
	PM_{10}	1731							
	Total score		-0.480	-0.824, -0.136	-0.384	-0.691, -0.078	-0.442	-0.737, -0.147	1.6
	Fluency		-0.070	-0.192, 0.052	-0.051	-0.167, 0.065	-0.082	-0.199, 0.035	1.6
Ages 60-64									
	NOx	1607							
	Total score		-0.609	-0.940, -0.277	-0.4399	-0.696, -0.102	-0.465	-0.747, -0.177	1.6
	Fluency		-0.126	-0.245, -0.008	-0.084	-0.197, 0.030	-0.114	-0.229, 0.000	1.6
	PM _{2.5}	1483							
	Total score		-0.932	-1.317, -0.546	-0.514	-0.864, -0.165	-0.558	-0.890, -0.227	1.7
	Fluency		-0.184	-0.324, -0.045	-0.101	-0.236, 0.034	-0.137	-0.273, -0.002	1.7
	PM _{coarse}	1483							
	Total score		-0.526	-0.783, -0.268	-0.411	-0.642, -0.181	-0.290	-0.505, -0.075	1.6
	Fluency		-0.154	-0.246, -0.061	-0.126	-0.215, -0.037	-0.107	-0.194, -0.020	1.6
	PM _{2.5} abs	1483							
	Total score		-0.657	-0.984, -0.330	-0.535	-0.832, -0238	-0.526	-0.818, -0.234	1.7
	Fluency		-0.062	-0.180, 0.057	-0.038	-0.153, 0.077	-0.052	-0.171, 0.068	1.7

 NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter $10\mu m$ or smaller. NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size $2.5\mu m$ or smaller, PM_{coarse} = Particulate matter size $2.5\mu m$ -10 μm . $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. p-value <0.05 in bold. Model 1 = outcome and exposure. Model 2 = assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in

adulthood and neighbourhood deprivation in adulthood. Model 3 = Model 2 + cognitive scores at age 15 and air pollution at birth and up to age 45. VIF = mean value for the variance inflation factor for model 3. β and 95% confidence intervals (CI) represent the mean difference in ACE-III score per quartile (μ g/m³) increase in air pollutant levels.

eTable 9: Associations between mean exposure to NO₂ (at ages 45, 55 and 60-64), PM₁₀ (at ages 55, 60-64), NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5}abs (at ages 60-64) and neuroimaging outcomes at ages 69-71.

Pollutant	N	N	Model 1	Mo	odel 2	Mo	del 3	
Ages 45 to 60-64		β	(95% CI)	β	(95% CI)	β	(95% CI)	VIF
NO_2	453							
Brain volume		-0.882	-5.768, 4.003	-0.321	-5.156, 4.514	-1.395	-6.914, 4.124	1.7
Ventricle volume		1.200	-0.362, 2.763	1.294	-0.290, 2.877	2.259	0.457, 4.061	1.7
Hippocampal Volume		-0.063	-0.125, -0.002	-0.062	-0.124, 0.001	-0.060	-0.131, 0.011	1.7
WMHV		1.005	0.896, 1.126	1.004	0.895, 1.126	1.023	0.901, 1.163	1.7
Ages 55 to 60-64								
PM_{10}	451							
Brain volume		-2.148	-7.614, 3.319	-0.502	-5.887, 4.883	-1.688	-7.323, 3.873	1.7
Ventricle volume		1.158	-0.581, 2.897	1.238	-0.518, 2.994	1.841	0.013, 3.669	1.7
Hippocampal Volume		-0.079	-0.148, -0.010	-0.071	-0.141, -0.001	-0.070	-0.142, 0.003	1.7
WMHV		0.997	0.868, 1.145	0.981	0.854, 1.127	0.994	0.862, 1.146	1.7
Ages 60-64								
NO _x	414							
Brain volume		0.023	-6.412, 6.458	1.591	-4.707, 7.888	0.927	-5.631, 7.486	1.7
Ventricle volume		1.605	-0.442, 3.651	1.681	-0.389, 3.752	2.141	-0.011, 4.293	1.7
Hippocampal Volume		-0.103	-0.182, -0.023	-0.093	-0.174, -0.012	-0.088	-0.172, -0.004	1.7
WMHV		0.939	0.801, 1.100	0.944	0.804, 1.108	0.957	0.811, 1.131	1.7
PM _{2.5}	391							
Brain volume		0.370	-6.220, 6.961	1.355	-5.082, 7.795	0.409	-6.379, 7.198	1.7
Ventricle volume		1.180	-0.903, 3.264	1.188	-0.914, 3.300	1.621	-0.587, 3.830	1.7
Hippocampal Volume		-0.096	-0.177, -0.015	-0.089	-0.17, -0.006	-0.085	-0.171, 0.000	1.7
WMHV		0.967	0.820, 1.141	0.971	0.822, 1.148	0.981	0.825, 1.167	1.7
PM _{coarse}	391							
Brain volume		-1.051	-5.173, 3.070	-1.269	-5.297, 2.816	-1.711	-5.843, 2.422	1.7
Ventricle volume		-0.859	-2.162, 0.443	-0.735	-2.08, 0.573	-0.593	-1.940, 0.754	1.7
Hippocampal Volume		-0.002	-0.053, 0.049	-0.009	-0.06, 0.044	-0.010	-0.063, 0.042	1.7
WMHV		0.954	0.866, 1.051	0.956	0.865, 1.055	0.956	0.866, 1.055	1.7

PM _{2.5} abs	391						
Brain volume	1.283	-3.960, 6.527	2.013	-3.275, 7.300	1.418	-4.245, 7.082	1.77
Ventricle volume	-0.100	-1.761, 1.560	0.141	-1.584, 1.867	0.358	-1.487, 2.204	1.77
Hippocampal Volume	-0.027	-0.091, 0.038	-0.027	-0.095, 0.041	-0.019	-0.091, 0.053	1.77
WMHV	0.946	0.834, 1.072	0.964	0.846, 1.099	0.962	0.837, 1.105	1.77

 NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size 2.5 µm or smaller, PM_{coarse} = Particulate matter size 2.5 µm-10 µm. NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter 10 µm or smaller. $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. VMHV = white matter hyperintensity volume. p-value <0.05 in bold. Model 1 = outcome, exposure and total intracranial volume. Model 2 = age at scan date, assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood and neighbourhood deprivation in adulthood. Model 3 = Model 2 + cognitive scores at age 15 and air pollution at birth and up to age 45. VIF = mean value for the variance inflation factor for model 3. All volumes in cm³. β and 95% confidence intervals (CI) represent the mean difference in volume or exponential beta coefficient which represents change in white matter hyperintensity volume (such as 1.04 = 4% change) per quartile (µg/m³) increase in air pollutant levels.

eTable 10: Extremes analysis (quartile 4 of exposure versus quartile 1-3 of exposure) of associations between exposure to NO₂ (ages 45 to 60-64) and PM₁₀ (ages 53 to 60-64) and continuous verbal memory and processing speed (at age 43, 53, 60-64, 69 and ages 53, 60-64 and 69 respectively)

		Mod	lel 1	M	odel 2	Model 3		
Pollutant	N	β	95% Cl	β	95% CI	β	95% Cl	
NO ₂								
Verbal Memory	1534	0.090	-0.297, 0.476	0.131	-0.236, 0.498	0.101	-0.272, 0.475	
Processing Speed	1534	0.033	-5.855, 5.921	3.488	-2.199, 9.176	2.677	-3.321, 8.675	
PM ₁₀								
Verbal Memory	1522	0.122	-0.305, 0.592	0.149	-0.258, 0.555	0.106	-0.298, 0.510	
Processing Speed	1522	-6.348	-11.949, -0.746	-5.397	-10.908, 0.115	-5.527	-11.131, 0.078	

 NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter $10\mu m$ or smaller. p-value <0.05 in bold. Model 1 = outcome and exposure. Model 2 = assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood and neighbourhood deprivation in adulthood. Model 3 = Model 2 + cognitive scores at age 15 and air pollution at birth and up to age 45. β and 95% confidence intervals (CI) represent the mean difference in verbal memory and processing speed score between the top quartile of exposure and lower three quartiles.

eTable 11: Extremes analysis (quartile 4 of exposure versus quartiles 1-3 of exposure) of associations between exposure to NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5}abs (at ages 60-64) and continuous verbal memory and processing speed (at age 69)

		N	Model 1	N	Model 2	Model 3		
Pollutant	N	β	(95% CI)	β	(95% CI)	β	(95% CI)	
NO _x								
Verbal Memory	1415	0.091	-0.625, 0.808	0.232	-0.417, 0.880	0.087	-0.548, 0.722	
Processing Speed	1415	1.376	-7.239, 9.991	3.016	-5.538, 11.570	0.458	-8.343, 9.260	
PM _{2.5}								
Verbal Memory	1298	-0.703	-1.448, 0.041	-0.239	-0.924, 0.446	-0.473	-1.136, 0.190	
Processing Speed	1298	6.582	-2.370, 15.535	8.446	-0.488, 17.380	7.553	-1.518, 16.623	
PM _{coarse}								
Verbal Memory	1298	-0.856	-1.600, -0.111	-0.798	-1.478, -0.117	-0.732	-1.384, -0.080	
Processing Speed	1298	-1.052	-10.011, 7.908	-1.078	-9.980, 7.825	-2.374	-11.305, 6.557	
PM _{2.5} abs								
Verbal Memory	1298	-0.017	-0.762, 0.729	0.071	-0.618, 0.759	-0.041	-0.733, 0.652	
Processing Speed	1298	-2.668	-11.627, 6.291	0.485	-8.524, 9.494	-1.666	-11.125, 7.792	

 NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size 2.5 μ m or smaller, PM_{coarse} = Particulate matter size 2.5 μ m-10 μ m. $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. p-value <0.05 in bold and *. Model 1 = outcome and exposure. Model 2 = assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood and neighbourhood deprivation in adulthood. Model 3 = Model 2 + cognitive scores at age 15 and air pollution at birth and up to age 45. β and 95% confidence intervals (95% CI) represent the mean difference in verbal memory score or processing speed between the top quartile of exposure and lower three quartiles

eTable 12: Extremes analysis (quartile 4 of exposure versus quartile 1-3 of exposure) of associations to mean NO₂ (at ages 45, 55 and 60-64), PM₁₀ (at ages 55 and 60-64), NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5}abs (at ages 60-64) and ACE-III continuous total and sub-scale scores at age 69.

	Pollutant	N	N	Iodel 1	Mod	del 2	Mod	lel 3
Ages 45 to	60-64		β	(95% CI)	β	(95% CI)	β	(95% CI)
	NO_2	1749				· · · · · · · · · · · · · · · · · · ·	-	
	Total score		-0.749	-1.391, -0.106	-0.677	-1.247, -0.104	-0.999	-1.598, -0.399
	Fluency		-0.082	-0.309, 0.146	-0.073	-0.288, 0.144	-0.155	-0.394, 0.083
Ages 55 to	60-64							
	PM ₁₀	1731						
	Total score		-0.513	-1.159, 0.132	-0.616	-1.192, -0.039	-0.679	-1.226, -0.133
	Fluency		-0.168	-0.397, 0.060	-0.195	-0.413, 0.023	-0.240	-0.458, -0.022
Ages 60-64								
	NO _x	1607						
	Total score		-0.859	-1.527, -0.191	-0.603	-1.200, -0.005	-0.644	-1.208, -0.080
	Fluency		-0.096	-0.334, 0.143	-0.039	-0.267, 0.189	-0.064	-0.292, 0.164
	PM _{2.5}	1483						
	Total score		-1.456	-2.137, -0.775	-0.716	-1.330, -0.101	-0.760	-1.336, -0.183
	Fluency		-0.325	-0.571, -0.079	-0.175	-0.412, 0.062	-0.217	-0.452, 0.018
	PM _{coarse}	1483						
	Total score		-0.772	-1.456, -0.088	-0.718	-1.328, -0.107	-0.461	-1.029, 0.107
	Fluency		-0.196	-0.442, 0.051	-0.193	-0.428, 0.042	-0.152	-0.383, 0.078
	PM _{2.5} abs	1483						
	Total score		-1.272	-1.954, -0.590	-1.116	-1.737, 0.495	-1.109	-1.716, -0.502
	Fluency		-0.232	-0.477, 0.015	-0.206	-0.446, 0.034	-0.253	-0.501, -0.005

 NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size 2.5 µm or smaller, PM_{coarse} = Particulate matter size 2.5 µm-10 µm, NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter 10 µm or smaller. $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. p-value <0.05 in bold. Model 1 = outcome and exposure. Model 2 = assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in

adulthood and neighbourhood deprivation in adulthood. Model $3 = Model \ 2 + cognitive$ scores at age 15 and air pollution at birth and up to age 45. β and 95% confidence intervals (CI) represent the mean difference in ACE-III score between the top quartile of exposure and lower three quartiles.

eTable 13: Extremes analysis (quartile 4 of exposure versus quartile 1-3 of exposure) of associations to mean NO₂ (at ages 45, 55 and 60-64), PM₁₀ (at ages 55 and 60-64), NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5} abs (at ages 60-64) and neuroimaging outcomes at ages 69-71.

	Pollutant	N		Model 1	N	Model 2	M	odel 3
Ages 45 to 6	60-64		β	(95% CI)	β	(95% CI)	β	(95% CI)
	NO ₂	453						
	Brain volume		3.913	-5.81, 13.635	7.008	-2.567, 16.584	7.328	-3.208, 17.86
	Ventricle volume		0.689	-2.429, 3.807	0.473	-2.681, 3.626	1.368	-2.096, 4.83
	Hippocampal Volume		-0.102	-0.224, 0.021	-0.085	-0.210, 0.039	-0.077	-0.214, 0.05
	WMHV		1.089	0.867, 1.369	1.086	0.860, 1.372	1.115	0.862, 1.44
Ages 55 to 6	50-64							
	PM ₁₀	451						
	Brain volume		-1.305	-11.104, 8.494	1.386	-8.272, 11.044	-0.075	-10.059, 9.90
	Ventricle volume		0.394	-2.727, 3.515	0.246	-2.912, 3.405	0.814	-2.444, 4.07
	Hippocampal Volume		-0.158	-0.280, -0.035	-0.151	-0.276, -0.026	-0.152	-0.281, -0.02
	WMHV		0.839	0.668, 1.054	0.802	0.636, 1.012	0.808	0.638, 1.02
Ages 60-64				<u> </u>				
	NO _x	414						
	Brain volume		2.409	-7.929, 12.748	5.373	-4.777, 15.523	4.844	-5.661, 15.34
	Ventricle volume		2.136	-1.155, 5.428	2.074	-1.271, 5419	2.655	-0.801, 6.11
	Hippocampal Volume		-0.155	-0.283, -0.028	-0.141	-0.272, -0.010	-0.137	-0.272, -0.00
	WMHV		0.953	0.751, 1.208	0.957	0.751, 1.220	0.971	0.756, 1.24
	PM _{2.5}	391						
	Brain volume		-7.610	-18.246, 3.026	-5.211	-15.672, 5.250	-6.377	-17.106, 4.35
	Ventricle volume		2.260	-1.108, 5.628	1.867	-1.555, 5.290	2.281	-1.223, 5.78
	Hippocampal Volume		-0.170	-0.300, -0.040	-0.153	-0.286, -0.020	-0.136	-0.272, 0.00
	WMHV		0.856	0.672, 1.090	0.854	0.666, 1.094	0.858	0.666, 1.10
	PM _{coarse}	391						
	Brain volume		-4.116	-14.785, 6.553	-3.236	-13.789, 7.317	-4.216	-14.914, 6.48
	Ventricle volume		-0.932	-4.311, 2.447	-0.563	-4.006, 2.880	-0.255	-3.747, 3.23
	Hippocampal Volume		0.047	-0.085, 0.178	0.033	-0.103, 0.168	0.034	-0.102, 0.17
	WMHV		0.920	0.720, 1.177	0.930	0.724, 1.194	0.931	0.725, 1.19

PM _{2.5} abs	391					
Brain volume	0.226	-10.436, 10.887	2.590	-8.126, 13.305	1.456	-9.936, 12.849
Ventricle volume	0.358	-3.018, 3.733	0.892	-2.608, 4.393	1.224	-2.492, 4.941
Hippocampal Volume	-0.091	-0.222, 0.040	-0.095	-0.232, 0.042	-0.092	-0.237, 0.052
WMHV	0.827	0.648, 1.056	0.866	0.670, 1.120	0.835	0.633, 1.102

 NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size 2.5 µm or smaller, PM_{coarse} = Particulate matter size 2.5 µm-10 µm, NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter 10 µm or smaller. $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. $PM_{2.5}$ white matter hyperintensity volume. $PM_{2.5}$ in bold. $PM_{2.5}$ be outcome and exposure. $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ white matter hyperintensity volume. $PM_{2.5}$ is a particulate matter size 2.5 µm or smaller, $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ and $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ and $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ and $PM_{2.5}$ as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ are matter hyperintensity volumes as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ are matter hyperintensity volumes as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ are matter hyperintensity volumes as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ are matter hyperintensity volumes as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ are matter hyperintensity volumes as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ are matter hyperintensity volumes as a measure of black carbon absorption fraction. $PM_{2.5}$ and $PM_{2.5}$ are matter

eTable 14: Longitudinal associations between exposure to PM_{10} (at ages 55 and 60-64) with continuous verbal memory and processing speed at ages 53, 60-64 and 69 in fully adjusted models, further adjusted for co-pollutant exposure to NO_2 (at ages 55 and 60-64).

	N	В	95% Cl	VIF
Pollutant				
Verbal				
Memory				
PM_{10}	1522	-0.005	-0.161, 0.151	1.28
NO ₂	1522	0.126	-0.036, 0.289	1.37
Processing Speed				
PM_{10}	1522	-4.325	-6.489, -2.161	1.28
NO ₂	1522	2.885	0.606, 5.163	1.3

 NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter size 10μ m or smaller. p-value <0.05 in bold and *. Fully adjusted model = outcome and exposure, assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood and neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45. NO_2 at age 55 is mean exposure across the two time-points available for PM_{10} (ages 55 and 60-64). VIF = variance inflation factor for each pollutant for fixed effects only. β and 95% confidence intervals (CI) represent the mean difference in score per quartile (μ g/m3) increase in air pollutant levels.

eTable 15: Associations between exposure to NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5}abs (at ages 60-64) and continuous verbal memory and processing speed (at age 69) in fully adjusted models, adjusted for co-pollutants

		Verbal Memory			Processing Speed		
Pollutant	N	β (95% CI)	β (95% CI)	N	β (95% CI)	β (95% CI)	VIF
$PM_{2.5} + NO_X$	1298	0.672	-0.710	1298	-4.864	5.494	3.53, 3.58
		(-0.045, 1.388)	(-1.327, -		(-14.634,	(-2.918,	
			0.094)		4.906)	13.907)	
$PM_{coarse} + NO_X$	1298	-0.072	-0.211	1298	-1.518	2.458	1.07, 1.17
		(-0.312, 0.169)	(-0.563, 0.140)		(-4.792, 1.756)	(-2.362, 7.278)	
PM _{2.5} abs +	1298	0.246	-0.386	1298	-1.646	3.060	1.80, 1.69
NO_X							
		(-0.144, 0.637)	(-0.809, 0.036)		(-6.990, 3.698)	(-2.732, 8.852)	

NO₂ = Nitrogen Dioxide, $\overline{PM_{10}}$ = particulate matter 10μm or smaller. NO_x = Nitrogen oxide, $\overline{PM_{2.5}}$ = particulate matter size 2.5μm or smaller, $\overline{PM_{coarse}}$ = Particulate matter size 2.5μm-10μm. $\overline{PM_{2.5}}$ abs = absorbance as a measure of black carbon absorption fraction. p-value <0.05 in bold. Fully adjusted model = outcome and exposure, assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood and neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45. VIF = variance inflation factor for each pollutant. β and 95% confidence intervals (CI) represent the mean difference in verbal memory or processing speed scores per quartile (μg/m³) increase in air pollutant levels.

eTable 16: Associations between mean exposure to air pollution at ages 55 and 60-64 (PM₁₀ and NO₂) and ages 60-64 (NO_x, PM_{2.5}, PM_{coarse}, PM_{2.5}abs) with continuous ACE-III total score at age 69 in fully adjusted models, and further adjusted for co-pollutants.

		· ·		
		Outcome		
Pollutants		ACE-III Total score	;	VIF
	N	β (95% CI)	β (95% CI)	
Ages 55 – 60-64				
		Pollutant 1	Pollutant 2	
$PM_{10} + NO_2$	1731	-0.187	-0.339	2.75, 3.25
		(-0.660, 0.286)	(-0.826, 0.147)	
Ages 60-64				
$PM_{2.5} + NO_X$	1483	-0.389	-0.181	3.43, 3.48
		(-0.969, 0.190)	(-0.691, 0.329)	
$PM_{coarse} + NO_X$	1483	-0.233	-0.400	1.08, 1.17
		(-0.452, -0.015)	(-0.698, -0.103)	
$PM_{2.5}abs + NO_X$	1483	-0.389	-0.232	1.83, 1.73
		(-0.753, -0.026)	(-0.595, 0.130)	

 NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter $10\mu m$ or smaller. NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size $2.5\mu m$ -10 μm . $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. p-value <0.05 in bold. Fully adjusted model = outcome, exposure, assigned sex at birth and father's social class, air pollution at birth and up to age 45, externalising and internalising scores at ages 13-15, cognitive scores at age 15, smoking, educational attainment, social class in adulthood and neighbourhood deprivation. NO_2 at age 55 is mean exposure across the two time-points available for PM_{10} (ages 55 and 60-64). VIF = variance inflation factor for each pollutant. β and 95% confidence intervals (CI) represent the mean difference in ACE-III score per quartile ($\mu g/m^3$) increase in air pollutant levels.

eTable 17: Associations between mean exposure to air pollution at ages 55 and 60-64 (PM₁₀ and NO₂) and ages 60-64 (NO_x, PM_{2.5}, PM_{coarse}, PM_{2.5}abs) with neuroimaging outcomes at age 69-71 in fully adjusted models and further adjusted for co-pollutants.

0 0		0	v J		J					
		Brain Vol	ume	Ventricul	ar Volume	Total Hippoc	ampal Volume	WM	1HV	VIF
Pollutants	N	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	
Ages 55 – 60-64										
		Pollutant 1	Pollutant 2	Pollutant 1	Pollutant 2	Pollutant 1	Pollutant 2	Pollutant 1	Pollutant 2	
PM ₁₀ and NO ₂	451	-2.318 (-11.414,	0.799 (-8.238, 9.835)	-0.620 (-3.558,	3.116 (0.188,	-0.030 (-0.148,	-0.050 (-0.167,	0.940 (0.739,	1.066 (0.852,	2.94,
		6.777)		2.318)	6.044)	0.088)	0.067)	1.196)	1.333)	3.31
Ages 60-64										
PM _{2.5} and NO _X	391	0.229 (-11.266,	0.224 (-11.218,	-0.500 (-4.229,	2.619 (-1.094,	-0.017 (-0.162,	-0.084 (-0.228,	1.090 (0.785,	0.884 (0.643,	3.22,
		11.723)	11.665)	3.229)	6.332)	0.128)	0.061)	1.512)	1.217)	3.23
PM _{coarse} and NO _X	391	-1.755 (-5.914,	0.703 (-6.091, 7.496)	-0.741 (-2.089,	2.341 (0.136,	-0.004 (-0.057,	-0.097 (-0.183, -	0.956 (0.866,	0.951 (0.801,	1.08,
		2.404)		0.607)	4.545)	0.048)	0.011)	1.056)	1.129)	1.14
PM _{2.5} abs and	391	1.951 (-5.240, 9.143)	-1.035 (-9.614,	-1.262 (-3.587,	3.149 (0.369,	0.051 (-0.040,	-0.135 (-0.244, -	0.978 (0.820,	0.966 (0.777,	1.97,
NO_X			7.544)	1.064)	5.929)	0.141)	0.027)	1.167)	1.200)	1.81

NO₂ = Nitrogen Dioxide, PM₁₀ = particulate matter 10µm or smaller. NO_x = Nitrogen oxide, PM_{2.5} = particulate matter size 2.5µm or smaller, PM_{coarse} = Particulate matter size 2.5µm-10µm, PM_{2.5}abs = absorbance as a measure of black carbon absorption fraction. WMHV = white matter hyperintensity volume. p-value <0.05 in bold. Fully adjusted model = outcome, exposure, assigned sex at birth and father's social class, air pollution at birth and up to age 45, externalising and internalising scores at ages 13-15, cognitive scores at age 15, smoking, educational attainment, social class in adulthood and neighbourhood deprivationNO₂ at age 55 is mean exposure across the two time points available for PM₁₀ (age 55 and 60-64). VIF = variance inflation factor for each pollutant. β and 95% confidence intervals (CI) represent the mean difference in volume or exponential beta coefficient which represents change in white matter hyperintensity volume (such as 1.04 = 4% change) per quartile (µg/m³) increase in air pollutant levels.

eTable 18: Complete case analysis of longitudinal associations between exposure to NO₂ (ages 45 to 60-64) and PM₁₀ (ages 53 to 60-64) and continuous verbal memory and processing speed (at ages 43, 53, 60-64, 69 and ages 53, 60-64 and 69, respectively).

	N	MOD	EL 3
Pollutant		β	95% Cl
NO ₂			
Verbal Memory	941	-0·144	-0.321, 0.033
Processing Speed	941	-9·415	-12·239, -6·592
PM ₁₀			
Verbal Memory	912	-0.042	-0.243, 0.159
Processing Speed	912	-5.908	-8.626, -3.189

 NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter 10 μ m or smaller. p-value <0.05 in bold. All associations are fully adjusted or assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood and neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45. β and 95% confidence intervals (CI) represent the mean difference in ACE-III score per quartile (μ g/m³) increase in air pollutant levels.

eTable 19: Complete case analysis of prospective associations between exposure to NO_x, PM_{2·5}, PM_{coarse} and PM_{2·5}abs (at ages 60-64) and continuous verbal memory and processing speed (at age 69).

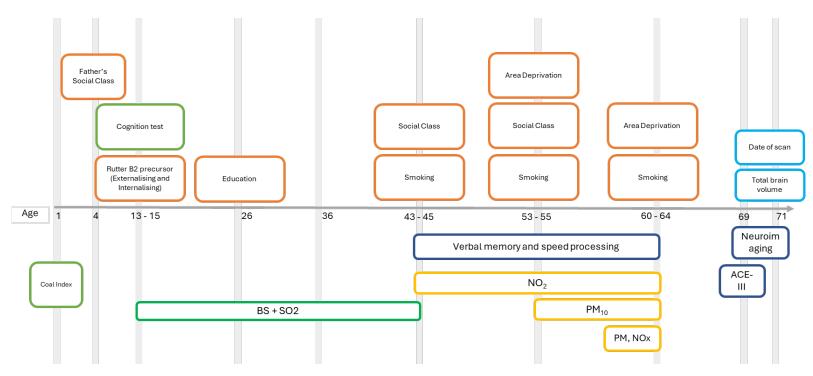
	N	Mo	del 3
Pollutant		β	(95% CI)
NO _x			
Verbal Memory	849	-0.052	-0.484, 0.380
Processing Speed	849	2·171	-4.005, 8.347
PM _{2·5}			
Verbal Memory	769	0.009	-0.507, 0.525
Processing Speed	769	0.506	-6.806, 7.818
PMcoarse			
Verbal Memory	769	-0.100	-0.336, 0.137
Processing Speed	769	0.469	-3.884, 4.822
PM _{2·5} abs			
Verbal Memory	769	-0.052	-0.359, 0.255
Processing Speed	769	0.091	-5.560, 5.742

 NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size 2.5 μ m or smaller, PM_{coarse} = Particulate matter size 2.5 μ m-10 μ m. $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. p-value <0.05 in bold. All associations are fully adjusted or assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood and neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45. β and 95% confidence intervals (CI) represent the mean difference in ACE-III score per quartile (μ g/m³) increase in air pollutant levels.

eTable 20: Complete case analysis of associations between mean exposure to NO₂ (at ages 45, 55 and 60-64), PM₁₀ (at ages 55, 60-64), NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5}abs (at ages 60-64) and ACE-III continuous total and fluency sub-scale scores at age 69.

		N	Mo	odel 3
Pollutant				
Ages 45 to 6	0-64		β	(95% CI)
	NO ₂	987		
	Total score		-0.296	-0.739, 0.149
	Fluency		-0.103	-0.287, 0.080
Ages 55 to 6	60-64			
	PM ₁₀	983		
	Total score		-0.364	-0.750, 0.022
	Fluency		-0.060	-0.219, 0.099
Ages 60-64				
	NO _x	863		
	Total score		-0.364	-0.741, 0.013
	Fluency		-0.078	-0.237, 0.080
	PM _{2.5}	788		
	Total score		-0.358	-0.786, 0.070
	Fluency		-0.089	-0.276, 0.098
	PM _{coarse}	788		
	Total score		-0.340	-0.624, -0.056
	Fluency		-0.168	-0.292, -0.044
	PM _{2.5} abs	788		
	Total score		-0.317	-0.696, 0.062
	Fluency		-0.126	-0.291, 0.040

 NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter $10\mu m$ or smaller. NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size $2.5\mu m$ or smaller, PM_{coarse} = Particulate matter size $2.5\mu m$ - $10\mu m$. $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. p-value <0.05 in bold. All associations are fully adjusted or assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood


and neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45. β and 95% confidence intervals (CI) represent the mean difference in ACE-III score per quartile (μ g/m³) increase in air pollutant levels.

eTable 21: Complete case analysis of associations between mean exposure to NO₂ (at ages 45, 55 and 60-64), PM₁₀ (at ages 55, 60-64), NO_x, PM_{2.5}, PM_{coarse} and PM_{2.5}abs (at ages 60-64) and neuroimaging outcomes at ages 69-71.

		N	Mo	odel 3
Pollutant				
Ages 45 to 60)-64		β	(95% CI)
	NO ₂	276		
	Brain volume		-2.569	-10.095, 4.956
	Ventricle volume		2.187	-0.210, 4.583
	Hippocampal Volume		-0.032	-0.125, 0.061
	WMHV		1.124	0.955, 1.323
Ages 55 to 60)-64			
	PM ₁₀	287		
	Brain volume		0.348	-7.143, 7.838
	Ventricle volume		1.622	-0.792, 4.038
	Hippocampal Volume		-0.065	-0.160, 0.031
	WMHV		1.072	0.891, 1.29
Ages 60-64				
	NOx	264		
	Brain volume		2.032	-6.046, 10.109
	Ventricle volume		1.850	-0.832, 4.532
	Hippocampal Volume		-0.083	-0.195, 0.013
	WMHV		1.086	0.881, 1.339
	PM _{2.5}	248		
	Brain volume		2.232	-5.905, 10.369
	Ventricle volume		1.212	-1.465, 3.888
	Hippocampal Volume		-0.081	-0.183, 0.02
	WMHV		1.104	0.890, 1.369
	PM _{coarse}	248		
	Brain volume		-2.504	-8.116, 3.108
	Ventricle volume		-0.318	-2.169, 1.533
	Hippocampal Volume		-0.040	-0.110, 0.03
	WMHV		0.893	0.779, 1.020

PM _{2.5} abs	248		
Brain volume		0.203	-6.794, 7.200
Ventricle volume		0.868	-1.433, 3.169
Hippocampal Volume		-0.039	-0.127, 0.049
WMHV		1.054	0.886, 1.254

 NO_x = Nitrogen oxide, $PM_{2.5}$ = particulate matter size 2.5μ m or smaller, PM_{coarse} = Particulate matter size 2.5μ m-10 μ m. NO_2 = Nitrogen Dioxide, PM_{10} = particulate matter 10 μ m or smaller. $PM_{2.5}$ abs = absorbance as a measure of black carbon absorption fraction. WMHV = white matter hyperintensity volume. p-value <0.05 in bold. All models adjusted for age at scan date, assigned sex at birth, father's occupational social class, externalising and internalising scores at age 13-15, smoking status, educational attainment at age 26, occupational social class in adulthood and neighbourhood deprivation in adulthood, cognitive scores at age 15 and air pollution at birth and up to age 45. All volumes in cm³. β and 95% confidence intervals (CI) represent the mean difference in volume or exponential beta coefficient which represents change in white matter hyperintensity volume (such as 1.04 = 4% change) per quartile (μ g/m³) increase in air pollutant levels.

eFigure 1 Timeline of measures used in this study. NO_2 = Nitrogen Dioxide, NO_x = Nitrogen oxides, SO_2 = sulphur dioxide, SO_2 = sulphur dioxide, SO_2 = sulphur dioxide, SO_2 = black smoke, SO_2 = sulphur dioxide, SO_2 = sulphur diox