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Summary
Background Advances in artificial intelligence (AI) have triggered interest in using intelligent systems to improve
prenatal detection of fetal congenital heart defects (CHDs). Our aim is to systematically examine the current literature
on diagnostic performance of AI-enabled prenatal cardiac ultrasound.

Methods This systematic review and meta-analysis was registered with PROSPERO (CRD42024549601). Embase,
Medline, Cochrane Central Database of Controlled Trials, and CINAHL were searched from inception until
February 2025. Studies evaluating AI performance in prenatal detection of fetal CHDs were eligible for inclusion,
and studies focusing on the application of AI before 16 weeks of gestation, or using three- or four-dimensional
ultrasound, were excluded. Pooled sensitivity and specificity were obtained using random-effect method, and
pooled proportions using the Freeman-Tukey arcsine square root transformation. Heterogeneity was assessed with
I2 statistics. Risk of bias and adherence to reporting standards were assessed using QUADAS-2 and TRIPOD+AI,
respectively. Risk of publication bias was assessed with Deek’s test and certainty of evidence for outcomes with
GRADE approach.

Findings Fifteen studies were included, of which fourteen developed and evaluated a model and one externally
evaluated a previously trained model. Images and videos obtained during cardiac screening or fetal echocardiography
of 30.121 fetuses were used for training, validation and testing. For the binary task of classifying heart as normal or
abnormal, AI models achieved a pooled sensitivity of 0.89 (95% CI 0.83–0.93, I2 = 77.92%) and specificity of 0.91
(95% CI 0.84–0.95, I2 = 77.92%). The subgroup analysis showed that models tested on various CHDs exhibited lower
sensitivity compared to those tested for a specific cardiac abnormality (0.85; 95% CI 0.75–0.91 vs 0.92; 95% CI
0.87–0.96), while specificity remained comparable (0.90; 95% CI 0.79–0.96 vs 0.91; 95% CI 0.81–0.97). Overall, AI
models performed better than operators with lower expertise and were nearly comparable to experts; however, the
human comparator group (median six clinicians, IQR 3–10) was usually small and non-blinded. Relevant sources of
heterogeneity were the types of cardiac views collected, the prevalence of CHDs across different datasets, and the
types of CHDs examined. The risk of bias was moderate-high and adherence to reporting standards low (>70% in
18/51 TRIPOD+AI items). The risk of publication bias was not statistically significant (Deek’s test p = 0.474).

Interpretation These findings suggest that AI models perform better than clinicians with lower expertise, but this
must be interpreted with caution due to the high risk of bias and sources of heterogeneity.
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Research in context

Evidence before this study
The existing evidence on prenatal detection of congenital
heart defects (CHDs) using ultrasound shows low detection
rates in clinical practice; studies in the field using Artificial
Intelligence (AI) to improve detection were noted. No meta-
analyses had been performed to assess pooled estimates of AI
diagnostic performance for prenatal CHD detection prior to
this study. A focused analysis was therefore undertaken to
examine the value of AI models for the detection of CHDs.
Databases including Embase, Medline, Cochrane Central
Database of Controlled Trials, and CINAHL were searched
from inception to February 14, 2025. Studies involving AI
models applied to 2D ultrasound cardiac screening or fetal
echocardiography between 16 and 40 weeks gestation were
included. The existing evidence suggests that AI model
performance is promising in identifying normal cardiac
structures and performing segmentation, but limited data
were available on classifying normal vs abnormal fetal hearts
or detecting specific CHDs.

Added value of this study
This study systematically reviewed and analysed the
diagnostic accuracy of AI-enabled prenatal cardiac ultrasound
in detecting CHDs, providing pooled sensitivity and specificity
estimates. It is the first review to compare AI model
diagnostic performance against clinicians in real-world clinical
settings and to evaluate AI model readiness for clinical
implementation. The findings demonstrate important sources
of heterogeneity in datasets, differences of cardiac views and
types of CHD across studies. We highlight limitations and
strengths of current AI models, including the potential for AI
models to outperform less experienced operators–while
achieving near-expert accuracy in some cases.

Implications of all the available evidence
While AI-enabled models hold potential to improve prenatal
CHD detection, their clinical implementation faces several
challenges. Although they could enhance the accuracy of
detection, data are currently lacking in integration of AI
models into routine practice in assistive-AI tools. Prospective
studies, particularly in the most relevant community
screening settings and resource-limited settings, are needed.
Introduction
Globally, the leading causes of infant mortality are—in
order—prematurity-related illnesses, adverse intra-
partum events, and congenital abnormalities.1 Of the
latter, congenital heart defects (CHDs) are the most
common structural abnormalities at birth, affecting
nearly 0.8% of live births.2,3 In addition to being com-
mon, CHDs are associated with high mortality and
morbidity rates; this combination of high prevalence
and high rates of adverse outcome makes them the
leading cause of infant mortality due to congenital
abnormalities.2–4

Infants diagnosed prenatally with severe CHDs, as
those with ductal-dependent circulation, have better
postnatal outcomes and survival rates than those iden-
tified after birth.5 Mortality rates prior to cardiac surgery
and post-operative survival are more favourable in in-
fants with critical defects, such as coarctation of the
aorta or transposition of the great arteries, detected in
utero rather than postnatally (preoperative mortality
0.3% vs 3.0% and postoperative survival 99.3% vs
97.0%, respectively).5 Thus, given the importance of
prenatal detection, pregnant individuals in most high-
income countries (HICs) are offered screening for
CHDs as part of the routine mid-trimester anatomical
ultrasound scan.6–8 This allows optimal perinatal man-
agement such as birth in a unit with expert cardiac
support available.9 Hence, planned management to
achieve neonatal hemodynamic stability allows the pre-
vention of hypoxia, acidosis and related neonatal
morbidity, reducing ventilation time and the risk of
neurological injury.10

Despite the evident importance of prenatal detection,
data from HICs indicates that the policy of universal
cardiac screening still fails to recognise nearly half of
those affected with a CHD.11 Efforts have relied on the
implementation of protocolised screening,12 and
benefitted from improvements in ultrasonographic im-
aging clarity13; nevertheless, the screening performance
of routine cardiac assessment remains poor, particularly
in underserved settings, where resource constraints may
result in a lack of experienced operators. Referral for
formal fetal echocardiography—a comprehensive ultra-
sonographic evaluation of the heart by subspecialist fetal
cardiologists—has a high diagnostic performance,14 but
is not possible for all pregnant individuals: only about
10% of individuals at high-risk of fetal CHDs are
referred for this examination after a screening exam,
and this rate is based on the availability of such spe-
cialists and cost-effectiveness.15,16

The importance of CHD detection, limitations of
current screening, and the emergence of artificial
intelligence (AI)-based models applied to clinical ultra-
sound have led naturally to the question: could
AI-models be useful as tools to improve prenatal diag-
nosis of fetal CHDs?17 Initial data have been promising,
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with AI successfully achieving automated recognition of
normal cardiac views and segmentation of specific heart
structures, with good agreement with human opera-
tors.18 Fewer studies have examined the more clinically
useful task—investigating the correct prenatal classifi-
cation of the normal vs abnormal heart, or the recog-
nition of specific CHDs.

The aim of this study is to systematically review the
current knowledge of the diagnostic performance of AI-
enabled prenatal cardiac ultrasound, and to compare
this to clinical human performance, in order to evaluate
readiness of published work for potential clinical
implementation, based on the risk of bias and adher-
ence to TRIPOD+AI reporting standards.19
Methods
Search strategy
This systematic review and meta-analysis was conducted
using guidance from the Cochrane Handbook for Sys-
tematic Reviews of Interventions, and following an a-
priori designed protocol proposed by the Meta-analyses
of Observational Studies in Epidemiology (MOOSE)
group.20,21 Findings were reported according to the
Preferred Reporting Items for Systematic Reviews and
Meta-analyses (PRISMA) guidelines,22 and the PRISMA
checklist was completed and provided as Supplementary
Materials.22 Prior to commencing this review, a study
protocol was developed and registered with the PROS-
PERO International Prospective Register of Systematic
Reviews (CRD42024549601).

Embase and Medline were electronically searched on
OVID [1974-present and 1946-present, respectively], while
Cochrane Central Database of Controlled Trials [Issue 7 of
12, July 2024] and CINAHL [1981-present] on their web-
sites, from inception to July 4, 2024, using free-text key-
words and subject headings based on the search reported
in the Appendix. All the databases were searched sepa-
rately, with similar but adapted search strategies. A search
update was run up to February 14, 2025, during the
manuscript revision process to ensure the inclusion of the
most recent evidence. No limits were placed on the
searches as carried out in the databases as any limits were
applied after, using the inclusion and exclusion criteria as
set out in the protocol. No published search filters were
used. All search strategies were devised by the informa-
tion specialist (CS) for this systematic review only and
have not been used previously elsewhere. The search
strategy was reviewed and approved by the lead authors
before being run on the databases. In order to deduplicate,
all records were uploaded to EndNote 21 and each set of
duplicate results was carefully examined to ensure that
false hits were not removed.

Study selection and eligibility criteria
Two independent reviewers (E.D. and O.P.) selected the
studies in stages by first reviewing titles and abstracts of
www.thelancet.com Vol 84 June, 2025
results obtained from the search to identify potentially
relevant studies. Full-text articles were subsequently
evaluated to determine their eligibility for inclusion. The
reference lists of all eligible studies were screened
manually for additional citations not identified by the
initial electronic search. Agreement regarding inclusion
and exclusion of studies was achieved by consensus
between the two reviewers or by consultation with a
third reviewer (A.T.P.). Literature reviews, conference
abstracts, case reports with less than five subjects, edi-
torials, letters and personal communications were
excluded.

As our systematic review sought to understand ap-
plications for most healthcare settings, where routine
cardiac assessment is performed around the mid-
trimester anatomy scan using two-dimensional (2D)
ultrasound, we made an a-priori decision to include
those studies reporting on application of AI in 2D ul-
trasound cardiac screening or fetal echocardiography
from 16 to 40 weeks of gestation. Unrestricted criteria
were applied to different AI machine-learning ap-
proaches, and we considered still images of B-mode or
colour-Doppler, and videos or short “sweeps” as data
inputs. Similarly, no restriction was placed on the im-
aging planes (transverse or sagittal). Prospective and
retrospective observational studies, evaluating pregnan-
cies with any level of prior risk, were eligible for inclu-
sion, including singleton or multiple gestations, and in
any healthcare setting. Studies exclusively focusing on
the application of AI before 16 weeks, or on 3D/4D ul-
trasound, like spatiotemporal image correlation (STIC)
techniques, not commonly used in routine screening,
were excluded. Moreover, studies focusing on the AI
assessment of normal cardiac structures or on seg-
mentation only, without reporting the diagnostic per-
formance for CHDs, were excluded (Table 1). No
language restrictions were applied to the search strategy,
allowing inclusion of studies in any language. Every
attempt was made to identify publications from the
same research groups that shared screened subjects for
the same CHDs. In such cases, only the study judged to
be the most relevant to the aims of the present review,
or the one with the largest cohort was included (Table 1).
The flowchart of the literature search is presented in
Fig. 1.

Data analysis
For each study two independent reviewers (E.D. and
B.S.) extracted basic data authors’ name; year of publi-
cation; country where the study was conducted, cat-
egorised as a HIC or low-middle-income country
(LMIC)23; study design; the AI model used; the clinical
task evaluated; the type of annotation; the presence of a
training, validation and testing stage; the type of cardiac
assessment (cardiac screening or specialist fetal echo-
cardiography, or both); the gestational age (GA) at the
time of cardiac ultrasound; and the healthcare setting
3
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criteria

Inclusion criteria Exclusion criteria

Population Singletons or twins with both normal and abnormal fetal heart evaluated from 16 weeks’
gestation onwards in community screening departments or fetal cardiology units

Singletons or twins with both normal and abnormal heart examined
before 16 weeks’ gestation

Intervention AI-enabled 2D cardiac ultrasound with unrestricted criteria applied to the:

- Type of examinations: fetal echocardiography or cardiac screening;
- Type of US settings: still images of B-mode or colour-Doppler, and cine-loops or sweeps;
- Type of imaging planes: axial or sagittal.

AI-enabled 3D/4D cardiac ultrasound, like STIC techniques

Comparison Clinicians’ performance (when applicable) N/A

Outcomes 1) AI classification of normal vs abnormal fetal heart
2) AI detection of specific CHDs

1) AI assessment of normal cardiac structures only
2) AI segmentation, without reporting the diagnostic performance for

CHDs

Study design Both prospective and retrospective studies, evaluating pregnancies with any level of prior risk. Reviews, conference abstracts, case reports with less than five subjects
included, editorials, letters and personal communications.

AI, artificial intelligence; CHDs, congenital heart defects; STIC, spatiotemporal image correlation; N/A, not applicable; US, ultrasound; 2D, two-dimensional; 3D/4D, Three/four-dimensional.

Table 1: Inclusion and exclusion criteria according to PICOS criteria.
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where studies were conducted. Details regarding the AI
model development and testing were also extracted,
including the number of data used for training, valida-
tion and testing, split into normal and abnormal cases.
The heart views that were used were also recorded,
including evaluation of the cardiac situs, the four-
chamber views (4CV), the left and right ventricular
outflow tracts (LVOT and RVOT, respectively), the three-
vessel (3VV) and 3-vessel-trachea (3VT) views, and
sagittal views; the use of images, videos, cardiac bio-
metrics and Doppler, including both colour-Doppler
Records identified from: 
Databases (n = 4) 
Central (n = 138) 
CINAHL (n = 107) 
EMBASE (n = 733) 
MEDLINE (n = 348) 

Records removed before screening: 
Duplicate records removed  (n = 
174) 
Records marked as ineligible by 
automation tools (n = 0) 
Records removed for other reasons
(n = 0) 

Records screened 
(n = 1152) 

Records excluded 
(n = 1094) 

Reports sought for retrieval 
(n = 58) 

Reports not retrieved 
(n = 1) 

Reports assessed for eligibility 
(n = 57) 

Reports excluded (n = 43): 

Review (n = 9) 
Conference abstract (n = 7) 
Editorial article (n = 2) 
Retracted article (n = 1) 
Postnatal application of AI (n = 3) 
No CHDs in the dataset (n = 5) 
Only CHDs in the dataset (n = 1) 
AI not applied on US recognition of
CHDs (n =1) 
Classification between normal and 
abnormal hearts not assessed (n 
=12) 
Same outcomes and possibly same
population of included study (n= 2)

Studies included after full text 
assessment (n = 14) 
Studies retrieved for included 
studies’ references (n =1) 

Studied included in review (n =15) 

Identification of studies via databases and registers up to July 4, 2024 
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Fig. 1: PRISMA flowchart; adapted from PRISMA 2020 checklist22; AI, ar
and pulsed-wave Doppler. Lastly, we extracted data on
diagnostic accuracy metrics provided for the AI models
and the clinicians, and the prevalence of CHDs in the
datasets used.

Statistics
The index test was the AI model, and the reference
standard was the prenatal diagnosis by experts in fetal
cardiology, the postnatal or post-mortem confirmation.
Since only one study provided true positive (TP), false
positive (FP), false negative (FN) and true negative (TN)
 

 

 
 

Records identified through 
search update (n = 124) 

Search update up to February 14, 2025  

Records removed before screening: 
Duplicate of previously included 
studies  (n = 3) 
Records marked as ineligible by 
automation tools (n = 0) 
Records removed for other reasons 
(n = 0) 

Records screened 
(n = 121) 

Records excluded 
(n = 117) 

Reports sought for retrieval 
(n = 4) 

Reports not retrieved 
(n = 0) 

Reports assessed for 
eligibility (n = 4) 

Reports excluded (n = 4): 

Erratum not altering data included 
in our meta-analysis (n = 1) 
Application of AI < 16 weeks (n = 1) 
Classification between normal and 
abnormal hearts not assessed (n 
=1) 
Same outcomes and possibly same 
population of included study (n= 1) 

tificial intelligence; CHDs, congenital heart defects; US, ultrasound.
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cases, a diagnostic test accuracy meta-analysis was per-
formed creating 2 × 2 tables with TP, FP, FN, TN
calculated using the number of cases included, the
prevalence of CHDs in the study population, and the
sensitivity and specificity reported in each study. In
studies reporting performance of multiple models, the
one with the highest specificity was selected by
consensus, as this best aligns with priorities of national
prenatal screening programmes to minimize false pos-
itives while maintaining diagnostic accuracy. The pri-
mary outcome was the performance of AI model
classification of normal vs abnormal hearts. A sub-group
analysis was performed to assess the performance of AI
models when tested for various CHDs or a single car-
diac defect. Intended subgroup and meta-regression
analysis for the performance of AI by gestational age,
in screening settings vs fetal cardiology units, and for
specific heart abnormalities was not possible due to
limited data. Pooled sensitivity and pooled specificity
with 95% Confidence interval (95% CI) were provided
using random-effect method and applying a 0.5 conti-
nuity correction. We performed a leave-one-out sensi-
tivity analysis to assess the robustness of the results and
the potential influence of any single study on the overall
effect size. Specifically, the meta-analysis was repeated
excluding one study at a time, and the pooled sensitivity
and specificity was recalculated for each iteration. In
addition, we conducted a secondary sensitivity analysis
in which we removed multiple studies identified as
having low adherence to reporting guidelines or deemed
to be at high risk of bias. This allowed us to examine
whether these studies had a disproportionate impact on
the overall results. Cochrane RevMan5 was used to
create summary ROC curves (sROCs), analysing the AI
classification task of normal vs abnormal hearts. Specific
sROCs for individual cardiac defects or grouped by
shared clinical or ultrasonographic findings were also
assessed. For instance, aortic coarctation was assessed
combined with duct-dependent CHDs and with hypo-
plastic left heart syndrome. Estimation of data parti-
tioning with pooled proportions was obtained using the
Freeman-Tukey arcsine square root transformation un-
der a random-effect model. The Freeman-Tukey trans-
formation was used to stabilize variance and normalize
the distribution of proportions. This method is widely
applied in proportion meta-analysis as it ensures a
balanced contribution of studies with extreme pro-
portions and provides a robust synthesis under a
random-effect model.24 Heterogeneity was assessed with
I2 statistics. To assess the risk of publication bias, we
performed Deek’s test, that is recommended in diag-
nostic accuracy meta-analyses to evaluate the presence
of small-study effects. A p-value <0.05 suggests signifi-
cant asymmetry, indicating potential publication bias.
All analyses were undertaken using “metadta”, “meta-
ndi” and “metan” packages in STATA 18, College Sta-
tion, TX: StataCorp LLC.
www.thelancet.com Vol 84 June, 2025
Assessment of risk of bias, adherence to reporting
standards and certainty of evidence
For each study two independent reviewers (E.D. and
B.S.) independently assessed the adherence to reporting
standards and risk of bias. Assessment of the risk of bias
was undertaken for all the included studies based on the
Quality Assessment of Diagnostic Accuracy Studies
(QUADAS-2) tool using Cochrane RevMan5. This tool
evaluates studies within four key domains: patient se-
lection, index test, reference standard and flow of pa-
tients through the study. The last item was modified
intentionally as the flow of data rather than patients.
Each study in the review was graded as having either a
low, high or unclear risk of bias for each domain and for
lack of applicability based on a series of signalling
questions.25

We assessed the reporting quality of the included
studies guided by Transparent Reporting of a multi-
variable prediction model for Individual Prognosis Or
Diagnosis + Artificial Intelligence (TRIPOD+AI).19 The
TRIPOD+AI checklist, an updated version of the orig-
inal TRIPOD, was published in April 2024. Although we
recognize that the included studies were either pub-
lished or submitted for publication before the intro-
duction of TRIPOD+AI, we have adopted this version to
align with its objective of harmonising and standard-
izing the reporting systems for studies employing AI
models. TRIPOD+AI comprises 27 items and, including
subitems, a total of 52 points. As our systematic review
is based on studies assessing the prediction or diagnosis
of CHDs that might require surgical interventions
postnatally, we evaluated the studies according to 51
total items, excluding one that refers to treatments
received during model development (subitem 6c).
Furthermore, we assessed studies conducted in a single
centre with 49 items, excluding two subitems related to
clustering data across multiple hospitals (12 d and 23 b).
Lastly, one study externally testing a previously devel-
oped AI model was assessed for 45 evaluation items.
Analogous to a prior study that employed the original
TRIPOD version, studies were assessed based on the
percentage of points relative to the total achievable
score.26 Studies were classified as having low adherence if
the score was below 50%.26 Moreover, we further defined
a moderate adherence, when scores ranged from 50% to
70%, and high adherence for scores exceeding 70%,
acknowledging that TRIPOD+AI encompasses a greater
number of items and subitems compared to TRIPOD
(+40%, 52 vs 37).

The certainty of evidence was assessed using the
GRADE (Grading of Recommendations, Assessment,
Development, and Evaluations) approach for AI diag-
nostic accuracy analysis. The evaluation was conducted
according to the GRADE Handbook with the assess-
ment of five key domains: risk of bias, using the
QUADAS-2 tool; inconsistency, measured by statistical
heterogeneity (I2) and the stability of pooled estimates in
5
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sensitivity analyses; indirectness, based on differences
between studies’ and real-world population, AI perfor-
mance real-time vs in retrospect, and quality of dataset
compared to real clinical settings; imprecision, according
to the CI width for sensitivity and specificity estimate;
publication bias, evaluated using Deek’s asymmetry test,
when applicable. The starting rating for evidence quality
was downgraded in any of the five domains in accordance
with the Handbook. Two independent raters (E.D. and
B.S.) assessed the quality of evidence, with discrepancies
resolved through discussion.

Ethics
This study was conducted using exclusively publicly
accessible data and did not involve direct enrolment of
human participants, therefore it did not require
approval from institutional ethical committee. The
methodology adhered to recognized reporting standards
for systematic review and meta-analysis, including prior
protocol registration and a clearly defined search and
analysis strategy to promote transparency.

Role of the funding source
The funder of the study had no role in study design, data
collection, analysis or interpretation, nor in the writing
of the paper.
Results
The electronic search inclusive of the literature update
yielded 1.273 citations. Following review of titles and
abstracts, sixty-two publications underwent full-text re-
view, of which fifteen studies evaluating AI-enabled ul-
trasound for prenatal detection of CHDs in 30.121
fetuses were included; all were performed between 2020
and 2024 (Fig. 1).27–41 Table 2 summarises the charac-
teristics of the included studies. Among the studies
there were no randomised controlled trials nor pro-
spective studies of diagnostic effectiveness. The meth-
odology of data collection was clearly reported by twelve
studies: ten used only retrospective data,27,28,32–34,36–38,40,41

one used prospective30 and another one both prospec-
tive and retrospective cases.35 In the remaining three
studies it was unclear whether data collection was per-
formed retrospectively or prospectively,29,31,39 with two of
them mentioning an opt-out design, but no further de-
tails.29,30 Six studies used multicentre datasets within the
same country28,29,31,35,39,40 and no multicentre interna-
tional studies were identified. Data were recorded from
cardiac screening,34,40 fetal echocardiography,27,32,33,36–38,41

or both,28,35 and four studies did not report on the type
of cardiac assessment.29–31,39 Eight studies used data
from cardiac scans performed between the second and
third trimester.27,29–32,37,38,41 Most studies were conducted
in HICs,27–29,31,32,34–41 and only two in LMICs.30,33 Also,
these were performed in tertiary units or university
hospitals,27–33,35–39,41 except for two in community-
screening settings.34,40

Five studies focused on the 4CV alone,27,30,32,36,38 seven
studies used all standard axial views recommended by
ISUOG,7,28,29,31,33,37,40,41 and five considered sagittal
views.33,35,40,41 Moreover, nine studies considered the
detection of any CHDs, while six focused on the recog-
nition of specific cardiac abnormalities (Supplementary
Table S1), such as total anomalous pulmonary venous
connection, duct-dependent CHDs, hypoplastic left heart
syndrome, atrioventricular and ventricular septal defects
and coarctation of the aorta.32,35–38,40,41 Only one study
assessed AI classification of fetal arrhythmia.39

In fourteen studies datasets were used to train and
test the AI models,27–33,35–41 while one study externally
tested a previously trained algorithm.34 The performance
of AI models compared to clinicians was reported by
eleven studies,27,28,30–32,34–36,38,39,41 (Supplementary Table S2).
Studies excluded from our analysis and reasons for
exclusion are listed in Supplementary Table S3.

Model development and testing
Details related to development and testing of AI models
and data partitioning for training, validation and testing
are summarised in Table 3. Validation methods were
reported by six studies, with three of them using split
sample, with the available dataset divided into two sets,
one to develop the model and the other to validate it, and
cross-validation, respectively. One study conducted an
external evaluation of a previously trained model in a
different country, using data collected from a screening
unit, with 40% of CHDs that were not included in the
dataset used for the initial model’s development.34

B-mode images or still frames extracted from videos
were sources of datasets in ten out of fifteen
studies.27,28,30,32,34–41 Training with cine-sweeps from the
situs to 3VT was used by two studies, with abnormal
sweeps used only for testing, but not for training.29,31

Three studies did not mention if still or cine records
were used for training, validation and testing.33,38,40 The
median number of participants included to train, vali-
date and test AI models was 341 (interquartile range
[IQR] 160–4.399) with a median of total records (images,
still frames extracted from videos and videoclips) of
2.687 (IQR 674–10.074). Five studies investigated the
implementation of automatic cardiac biometry,28,32,33,40,41

while Doppler data were used by four studies, among
which three used pulsed-wave Doppler32,39,41 and two
colour-Doppler.32,41

Pooled proportions showed that, overall, 75% (95% CI
58–88%, I2 = 99.9%) of data were used for training, 8%
(95% CI 4–12%, I2 = 99.4%) for validation and 20% (95%
CI 8–37%, I2 = 99.9%) for testing AI models (Table 4,
Supplementary Figures S1–S6). The most prominent
source of heterogeneity between studies was the type of
cardiac views collected (Supplementary Table S2).
www.thelancet.com Vol 84 June, 2025
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Lead
author
(year)

Country Design AI
architecture
backbone

Task Annotation Training Validation Testing Heart
exam

GA Healthcare
setting

Gong
202027

HIC (China) Retrospective DGACNN Classification of
normal vs abnormal
hearts

Training dataset was
partially labelled by
expert cardiologists

✓ ✓ ✓ FE 18–39
weeks

University
hospitals

Arnaout
202128

HIC (USA) Multicenter
Retrospective

U-Net;
ResNet;

Classification of
normal vs abnormal
hearts

Training datasets were
labeled and manually
traced by experts

✓ ✓ ✓ FE
CS

18–24
weeks

Tertiary level units

Komatsu
202129

HIC (Japan) Multicenter
Opt-out
design

YOLOv2 Classification of
normal vs abnormal
hearts

Experts labeled and
indicated structures on
the training dataset

✓ ✓ ✓ NR 18–34
weeks

University
hospitals

Nurmaini
202230

LMIC
(Indonesia)

Prospective DenseNet201 Classification of
normal vs abnormal
hearts

Videos annotated by
fetal cardiologists

✓ ✓ ✓ NR II-III
trimester

University hospital

Sakai
202231

HIC (Japan) Multicenter
Opt-out
design

YOLOv2 Classification of
normal vs abnormal
hearts

NR ✓ ✓ ✓ NR 18–34
weeks

University
hospitals

Wang
202232

HIC (China) Retrospective DeepLabv3+;
PSPNet;
FastFCN;
DenseASPP;

Prenatal detection of
TAPVC

Trained fetal cardiology
residents labeled the
frames

✓ NR ✓ FE 25.6 ± 2.7
weeks

University hospital

Truong
202233

LMIC
(Vietnam)

Retrospective Random
forest

Classification of
normal vs abnormal
hearts

NR ✓ ✓ ✓ FE 22.0
(21–24)
weeks

Tertiary level unit

Athalye
202334

HIC (The
Netherlands)

Retrospective U-Net;
ResNet.

Classification of
normal vs abnormal
hearts

as Arnaout et al. X X ✓ CS 18–22
weeks

Community-
screening unit

Tang
202335

HIC (China) Multicenter
Retrospective
and
Prospective

DDCHD-
DenseNet

Classification and
prenatal detection of
duct-dependent CHDs

NR ✓ ✓ ✓ FE
CS

NR University
hospitals

Day
202336

HIC (UK) Retrospective ResNet50 Prenatal detection of
HLHS

Images were retrieved
by one expert

✓ ✓ ✓ FE 20+0-23+6

weeks
Tertiary level unit

Yang
202337

HIC (China) Retrospective YOLOv5
ResNet50
MobileNetv2

Classification of
normal vs abnormal
hearts
Prenatal recognition
of VSD

NR ✓ ✓ ✓ FE 19–39
weeks

University hospital

Day
202438

HIC (UK) Retrospective ResNet50 Prenatal detection of
AVSD

Images were labeled by
experts

✓ ✓ ✓ FE 18+0 -32+0

weeks
Tertiary level unit

Yang
202439

HIC (China) Multicenter
NR

HOCAD
FasterRCNN

Prenatal detection of
ST, PAC, AVB

Experienced
sonographers (6 years
of experienced)
manually labelled A
and V waves

✓ ✓ ✓ NR NR University
hospitals but it is
unclear whether
scans were
performed also at
community-
screening units

Taksoee-
Vester
202440

HIC
(Denmark)

Multicenter
Retrospective

U-Net Prenatal detection of
CoA

Automatic
segmentation
manually corrected by
one annotator

✓ ✓ ✓ CS 18–22
weeks

Community-
screening unit

Zhou
202441

HIC (China) Retrospective U-Net
MA-Net
Link-Net

Prenatal detection of
AVSD

Images were labeled by
a junior physician (3–5
years of experience in
FE) and reviewed by a
physician with 10 years
of experience

✓ NR ✓ FE 24.4 ± 4.1
weeks

University hospital

AI, artificial intelligence; AVB, atrioventricular block; AVSD, atrio-ventricular septal defect; CHD, congenital heart defects; CoA, coarctation of the aorta; CS, cardiac screening; DenseASPP, Dense Atrous
Spatial Pyramid Pooling; DGACNN, model based on a discriminator generative adversarial network (GAN) and CNN layers; FastFCN, Fast Fully Convolutional Network; FE, fetal echo cardiography; GA,
gestational age; HIC, high income countries; HLHS, hypoplastic left heart syndrome; HOCAD, hierarchical online contrastive anomaly detection; NR, not reported; PAC, premature atrial contractions;
PSPNet, Pyramid Scene Parsing Network; ST, sinus tachycardia; TAPVC, total abnormal pulmonary vein connection; VSD, ventricular septal defect; YOLO, you-only-look-once.

Table 2: Characteristics of the included studies.
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Study
(year)

N.
Fetuses

Training
(normal)

Training
(abnormal)

Validation
(normal)

Validation
(abnormal)

Testing
(normal)

Testing
(abnormal)

Heart views Images Videos Cardiac
biometrics

Doppler TRIPOD+AI
adherence

Gong
202027

NR 2.655
images

541 images 200 images 200 images 200 imagesa 200 imagesa Axial view:
4CV

X ✓ X X LOW
(29.4%)

Arnaout
202128

5.867 69.841
images

102.974
images

NR NR FETAL-125
11.445
images
OB-125
220.990
images
OB-4000
4.365.437
images
BCH-400
4.389 images
TWINS-10
NR the
amount of
normal
images

FETAL-125
8.377 images
OB-125
108.415
images
OB-4000
108.415
images
BCH-400
40.123
images
TWINS-10
NR the
amount of
abnormal
images

Axial views:
Situs, 4CV, LVOT,
RVOT, 3VV, 3VT
(axial sweeps
from BCH-400)
Sagittal views:
LVOT

✓ ✓ ✓ X HIGH
(70.6%)

Komatsu
202129

363 668
videos

X 10 videos 10 videos 42 videos 42 videos Axial sweeps
from situs to
3VT

X ✓ X X MODERATE
(54.9%)

Nurmaini
202230

76 157
images

812 images NR NR Testing
intra-patient
20 images
Testing
inter-patient
5 images

Testing
intra-
patient
140 images
Testing
inter-patient
50 images

Axial views
4CV

✓ X X X LOW
(44.9%)

Sakai
202231

160 292 videos X 6 videos 6 videos 20 videos 20 videos Axial sweeps
from situs to
3VT

X ✓ X X MODERATE
(56.9%)

Wang
202232

319 492
images

48 images X X 82 images 20 images Axial view:
4CV

X ✓ ✓ ✓

PWD,
CD

MODERATE
(51.0%)

Truong
202233

3.910 NR NR NR NR NR NR Axial and
sagittal views:
Comprehensive
FE

NR NR ✓ ✓

PWD
LOW
(42.8%)

Athalye
202334

108 Previously
trained
(Arnaout
2021)

Previously
trained
(Arnaout
2021)

42 cases
(NR the
amount of
images)

66 cases
(NR the
amount of
images)

Previously
tested
(Arnaout
2021)

Previously
tested
(Arnaout
2021)

Axial views:
4CV, LVOT, 3VV
and 3VT

✓ X X X MODERATE
(60%)

Tang
202335

6.941 4.018
images

2.694
images

191 images 163 images 200 images 150 images Sagittal view:
Ao arch

✓ ✓ X X MODERATE
(52.9%)

Day
202336

161 5.019
images

3.241
images

593 images 380 images 676 images 339 images Axial views:
4CV

✓ ✓ X X HIGH
(75.5%)

Yang
202337

545 800
images

595 images 77 images 73 images CHD test set
66 images
VSD test set
57 images

CHD test set
57 images
VSD test set
54 images

Axial views:
4CV, LVOT,
RVOT, 3VV, 3VT

✓ X X X LOW
(40.8%)

Day
202438

173 NR NR NR NR NR NR Axial views:
4CV

X ✓ X X LOW
(48.9%)

Yang
202439

3.850 5.407
images

X 1.797
images

X 1.840 images 508 images E, A, V waves in
the LV in- and
out-flow tract

✓ X X ✓

PWD
LOW
(33.3%)

Taksoee-
Vester
202440

7.373 NR NR NR NR NR NR Axial views:
Situs, 4CV, LVOT,
RVOT, 3VV, 3VT,
septum view
Sagittal view:
Ao arch

✓ ✓ ✓ X HIGH
(78.4%)

(Table 3 continues on next page)
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Study
(year)

N.
Fetuses

Training
(normal)

Training
(abnormal)

Validation
(normal)

Validation
(abnormal)

Testing
(normal)

Testing
(abnormal)

Heart views Images Videos Cardiac
biometrics

Doppler TRIPOD+AI
adherence

(Continued from previous page)

Zhou
202441

275 96 images 126 images X X 21 images 35 images Axial views:
4CV, LVOT,
RVOT, 3VV/3VT
Sagittal view:
Ao arch

X ✓ ✓ ✓

PWD,
CD

MODERATE
(51.0%)

Images are defined as the source used for data collection, while frames or images extracted from videos after data collection, if used, are mentioned in the table’s section mentioning the amount of data
used for training, validation and testing. Ao, aortic; CD, Color Doppler; CHD, congenital heart defect; FE, fetal echocardiography; LVOT, left ventricular outflow tract; LV, left ventricle; NR, not reported;
PWD, pulsed-wave doppler; RVOT, right ventricular outflow tract; VSD, ventricular septal defect; 4CV, four-chamber view; 3VV, three-vessel view; 3VT, three-vessel-trachea. aGong et al. used also video
screening test dataset 1 and 2, accounting for 51,542 and 67,000 video frames, respectively, for further annotation of videos and data augmentation. In the Table is reported only the amount of data used
to test for CHD classification.

Table 3: Protocol for AI model development and/or testing.

Articles
AI model performance and comparison with
clinicians
The AI model performance, evaluated in retrospect, was
compared to clinicians’ detection in eleven
studies,27,28,30–32,34–36,38,39,41 of which one used a real-world
screening programme as a comparator,36 three studies
used images already annotated or labelled by clinicians
and nine studies compared AI vs clinicians’ perfor-
mance on a specific dataset derived from collected data
(Supplementary Table S3). The human comparator
group was generally small, with a median of six clinicians
(IQR 3–10), and unblinded, meaning that clinicians were
aware of the task and expected finding CHDs at higher
proportions than those normally seen in routine practice.
A median of three clinicians were expert cardiologists
(IQR 2–8) and a median of seven were reported as
sonographers, trainees or fellows (IQR 4–16).

A relevant source of heterogeneity was the dissimilar
prevalence of cardiac abnormalities across different data-
sets, ranging from 0.9% (in line with a community-
screening level prevalence of CHDs) to 30–60% (similar
to the frequency seen in a referral population to a fetal
cardiology unit).

For the binary classification into normal vs abnormal
heart, the pooled sensitivity and specificity were 0.89
(95% CI 0.83–0.93, I2 77.92%) and 0.91 (95% CI
0.84–0.95, I2 77.92%) (Fig. 2a, Supplementary Figure S7a
and b). For studies assessing AI models trained and
tested with normal hearts and all CHDs pooled, the AUC
varied from 0.7929 to 0.9928 and the pooled sensitivity and
Dataset Case type Median (IQR)

Training Normal 800 (292–5.019)

Abnormal 703 (230–3.104)

Validation Normal 138 (9–894)

Abnormal 73 (8–290)

Testing Normal 102 (24–462)

Abnormal 150 (31–319)

Table 4: Summary of dataset distribution and heterogeneity.

www.thelancet.com Vol 84 June, 2025
specificity were 0.85 (95% CI 0.75–0.91, I2 76.27%) and
0.90 (95% CI 0.79–0.96, I2 76.27%), respectively (Fig. 2a,
Supplementary Figure S8a and b). The lowest sensitivity
and specificity were obtained by the AI model trained
with the least number of records, as expected, while the
best accuracy metrics were found with the highest
number of cases collected.28,30 The leave-one-out sensi-
tivity analysis and exclusion of studies with high risk of
bias and low adherence to TRIPOD+AI are summarised
in Table 5. The overall estimates remained stable across
all iterations, with overlapping confidence intervals, sug-
gesting the robustness of pooled estimates.

We also assessed models that were tested on a specific
cardiac abnormality; there were five of such studies
reporting accuracy metrics, and these aimed to detect the
total anomalous pulmonary venous connection, hypo-
plastic left heart syndrome, atrioventricular septal defects
and coarctation of the aorta.32,36,38,40,41 Pooling these data
showed that the reported AI models achieved an overall
sensitivity and specificity of 0.92 (95% CI 0.87–0.96, I2

0.04%) and 0.91 (95% CI 0.81–0.97, I2 0.04%) (Fig. 2a,
Supplementary Figure S9a and 9b). In more detail, one
study developed an algorithm for detecting hypoplastic
left heart syndrome that, in a per-fetus analysis, reached a
sensitivity and specificity of 100% and 94%, respec-
tively.36 Models developed to screen atrioventricular septal
defect achieved a sensitivity and specificity of 86.8–100%
and 72.8–94.1%.38,41 Conversely, for coarctation of the
aorta, the reported sensitivity and specificity were 90.4%
and 88.9%.40 Lastly, total abnormal pulmonary vein
Pooled proportions (95% CI) I2 (%)

51% (23%–79%) 99.9%

27% (10%–49%) 99.9%

5% (2%–10%) 99.6%

3% (2%–4%) 95.2%

7% (3%–11%) 99.5%

6% (4%–8%) 97.9%

9
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Fig. 2: a (left) shows sROCs for AI classification of normal vs abnormal hearts, when tested with various CHDs or a specific heart defect. b
(right) shows sROCs for AI assessment of individual cardiac defects. CHDs, congenital heart defect; TAPVC, total anomalous pulmonary
venous connection; HLHS, hypoplastic left heart syndrome; AVSD, atrioventricular septal defect.
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returns were detected by the AI model with a sensitivity
and specificity of 94.7% and 81.7%, respectively32 (Fig. 2b,
Supplementary Table S3).

Overall, studies stated that AI models outperformed
less expert operators (such as fellows, junior sonogra-
phers, residents and trainees), but were less accurate
than experts in fetal cardiology. Only two studies
showed that clinicians’ performance improved if
AI-assisted with binary outputs (normal vs abnormal).
Analysis Excluded study/studies P

Overall pooled effect size None 0

Leave-one-out analysis

Arnaout 2021 0

Nurmaini 2022 0

Truong 2022 0

Wang 2022 0

Day 2023 0

Athalye 2023 0

Tang 2023 0

Zhou 2024 0

Day 2024 0

Taksoee-Vester 2024 0

Exclusion of high risk of bias Nurmaini 2022,
Truong 2002,
Day 2024

0

Exclusion of low adherence to TRIPOD+AI Nurmaini 2022,
Day 2023

0

Table 5: Leave-one-out, exclusion of studies with high risk of bias and low
Risk of bias, adherence to reporting standards and
certainty of evidence
The overall risk of bias using QUADAS-2 classified
three studies as high-risk in the domain of applicability
of the reference standard, and two studies for patient
selection (Fig. 3). The remaining studies were of
unclear-risk, mostly for patient selection, the conduct or
the interpretation of the index test and reference stan-
dard, and the flow of data.
ooled sensitivity (95% CI) Pooled specificity (95% CI) I2

.89 (95% CI 0.83–0.93) 0.91 (95% CI 0.84–0.95) 77.92%

.88 (95% CI 0.82–0.93) 0.90 (95% CI 0.81–0.95) 79.20%

.90 (95% CI 0.85–0.94) 0.92 (95% CI 0.86–0.99) 74.22%

.90 (95% CI 0.83–0.94) 0.91 (95% CI 0.83–0.96) 77.56%

.89 (95% CI 0.82–0.94) 0.91 (95% CI 0.83–0.96) 78.86%

.89 (95% CI 0.81–0.93) 0.89 (95% CI 0.82–0.94) 79.40%

.89 (95% CI 0.82–0.94) 0.92 (95% CI 0.84–0.96) 79.72%

.90 (95% CI 0.83–0.94) 0.89 (95% CI 0.82–0.94) 63.30%

.87 (95% CI 0.81–0.91) 0.91 (95% CI 0.82–0.96) 73.75%

.90 (95% CI 0.82–0.94) 0.92 (95% CI 0.85–0.96) 77.56%

.89 (95% CI 0.82–0.94) 0.91 (95% CI 0.83–0.96) 78.00%

.92 (95% CI 0.87–0.95) 0.94 (95% CI 0.88–0.97) 70.53%

.91 (95% CI 0.86–0.94) 0.93 (95% CI 0.88–0.96) 79.20%

adherence to TRIPOD+AI sensitivity analyses.
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Fig. 3: QUADAS-2 assessment.25
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For reporting standards, on a per-item analysis,
optimal adherence (>70%) was present for 35%
TRIPOD+AI items (18/51) (Fig. 4). Overall, the included
studies adhered to TRIPOD+AI items with a median of
53% (IQR 27–80%). On a per-study analysis, three
studies were rated as highly adherent, six as moderately,
and six as low (Supplementary Table S3). All the
included studies were submitted for publication before
the TRIPOD+AI checklist was released. However, only
two studies explicitly stated their intention to comply
www.thelancet.com Vol 84 June, 2025
with the reporting standards available at the time of
publication, as TRIPOD.40–42

Publication bias was evaluated using Deek’s test,
suggesting an absence of statistically significant publi-
cation bias in this analysis (p = 0.474). The coefficient
for invess was −6.20 (95% CI, −32.25 to 19.86;
p = 0.582), indicating no significant relationship be-
tween study size and effect estimates. Overall, these
findings do not support the presence of small-study ef-
fects, although the limited number of the included
11
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Fig. 4: TRIPOD+AI assessment, adapted from TRIPOD+AI 2024 checklist.19
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studies may reduce the statistical power to detect subtle
biases.

Summary of findings applying GRADE showed low
level of evidence for the primary outcome and subgroup
analyses (Supplementary Table S4).
Discussion
This systematic review and meta-analysis thoroughly
analysed the currently available literature on AI applied
to the prenatal detection of heart defects, aligning with
recent standards, as TRIPOD+AI.19 AI model perfor-
mance for the classification of normal vs abnormal heart
achieved a high pooled sensitivity and specificity with a
higher pooled sensitivity when tested with specific car-
diac defects rather than various CHDs, but a similar
specificity. Compared to clinicians, AI models per-
formed better than less experienced operators, but not
as accurately as experts in the reported studies.

These results illustrated the emergent attempts to
implement AI to support decision-making in fetal car-
diology. In fact, over the last five years, the interest has
progressively moved from the recognition of cardiac
planes in normal fetuses, towards the classification of
CHDs, and the evaluation of diagnostic performance.
Initial studies showed that, amongst all anatomical
views, cardiac views were the hardest to recognise, due
to the dynamicity of cardiac cycles and the “category
confusion” produced by different scanning angles,43

while, more recently, AI was found to correctly classify
cardiac planes in over 90% of cases, with overall good
agreement with experts.18 Automated segmentation has
shown potential in the automated analysis of cardiac
morphology, and may aid in obtaining automated
measurements, such as of the cardiac axis or ventricular
diameters.28,40 These efforts in AI-based analysis of
normal cardiac anatomy have laid the groundwork for
abnormality detection as a recent development—with all
published studies in this review after 2020.

So far, AI fetal cardiac examination have been
evaluated mainly through models trained and tested
with images or still frames extracted from videos, while
only two studies used video-analysis.29,31 Although
there is no consensus on whether videos are superior
to still images, or vice versa, for fetal heart evaluation,
in clinical practice an operator sweeps through the
heart to evaluate the spatial relationships of the cardiac
structures using moving images. In our opinion, the
strength of ultrasound as a real-time imaging modality
is somewhat neglected when evaluating still images
only, and this is of particular significance when it
comes to the rapidly beating fetal heart. This real-time
element also suggests that integration of AI models
with acquisition is the most likely mode to work in
practice, with AI-based-software embedded in ultra-
sound machines.29,31,44

An established way to improve the recognition of
structural cardiac defects is the application of colour-
Doppler.7,45 Notably, only two included studies used a
protocol for AI model development and evaluation with
colour-Doppler images, and it is still unclear whether AI
models may perform better if trained with colour-
Doppler data, or whether this may in fact increase
category confusion.
www.thelancet.com Vol 84 June, 2025
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Although not routinely recommended, cardiac mea-
surements were previously found to improve prenatal
detection and prognostic assessment of cardiac defects,
such as coarctation of the aorta, hypoplastic left heart
syndrome and atrioventricular septal defects.46,47 Manual
measurement of cardiac biometry is a time-consuming
task that is mainly performed in targeted examination
by experts in fetal cardiology, but not in routine
screening. Automation of these measurements might
expedite this process and assist in their acquisition. Five
studies explored the automated cardiac biometry, with
one showing the feasibility of implementing this to
improve early prediction of aortic coarctation.40 This is a
critical heart defect that is subtle, and often missed
prenatally,48 so further studies in this direction are
warranted.

The majority of studies conclude that AI outperforms
less experienced sonographers, achieving diagnostic
accuracy that approaches expert levels. AI assistance
may also enhance performance, particularly for opera-
tors with lower expertise. However, these findings must
be interpreted cautiously, as expertise in fetal cardiology
remains inconsistently defined. Although some studies
have attempted to define expertise based on years of
experience in fetal cardiac US–ranging from more than
10 years to 15–25 years -34,35,39(Supplementary Table S2),
for which a threshold of at least 10 years might be
considered a reasonable benchmark, others rely on case
volume, participation in structured training, or profes-
sional titles without specifying whether these pertain to
clinical or ultrasonographic skills. How clinical experi-
ence translates to ultrasonographic skill is also a matter
that current studies inadequately address, despite its
relevance, considering that variability in US data acqui-
sition can introduce significant data heterogeneity. A
further issue concerns the false positive and false nega-
tive rates reported in experienced hands, up to 5%.28

These rates in high-expertise units are difficult to estab-
lish a-priori, being highly dependent on dataset compo-
sition and case complexity (coarctartion of the aorta,28,34

total abnormal pulmonary venous returns,28,34 anoma-
lous left coronary artery from the pulmonary artery,34

aortopulmonary window,34 Supplementary Table S1).
Given these challenges, future research should prioritize
the development of clear and standardized criteria for
defining expertise in fetal cardiology, across varying levels
of case complexity, to improve the reliability of
AI-assisted diagnostic approaches in fetal cardiology.
Despite encouraging sensitivity, AI models dealing with
detection of rare CHDs, less likely to be diagnosed pre-
natally, performed at the expense of a lower specificity. In
practice, use of such models would result in large in-
creases of false-positive referrals to fetal cardiology
units.49 Moreover, the results should be considered in
light of the overall unclear-to high-risk of bias, sub-
optimal adherence to reporting standards, and low
GRADE certainty, although we acknowledge that the
www.thelancet.com Vol 84 June, 2025
included studies are at an earlier point of diagnostic ac-
curacy study developing and testing. Significant biases
arose in most studies from the selection of patients, the
conduct of the index test and reference standard, and the
flow of data. It is unclear whether patient selection might
have been conducted leading to better AI performance. In
line with this risk, some studies used only high-quality
images to develop AI models, which might introduce
bias and reduce applicability in a real clinical scenario
where low-quality images may be obtained. Moreover,
three studies considered the clinical interpretation of
cardiac findings as a reference standard, without post-
natal confirmation, meaning there is uncertainty if only
true positives were detected by cardiologists prenatally.
Lastly, among multicentre studies, the process of
handling data clustering was not clearly reported,50 and
together with the limited external validation, it challenges
the estimation of AI real-world performance, considering
the variations in ultrasound machines and imaging pro-
tocols, all of which may impact AI models’ performance.
Future studies should prioritize external validation to
assess AI performance across different populations,
clinical settings, and healthcare infrastructures, as the
use of quality control and the adherence to standard-
ized imaging protocols and international guidelines, to
minimize variability introduced by different machines
and operator techniques. Open sources without data
sharing constraints are also needed to maximize
generalizability. Until this is done, confidence in
applying these AI models broadly remains limited.
These aspects should be carefully considered when
examining the thin line between progress in fetal
cardiology and potential harms. The emerging chal-
lenge of “trust calibration”, referring to the ability of
clinicians to rely on correct AI outputs while over-
riding them when erroneous to prevent misdiagnoses,
is key in this context. How this might be appropriately
achieved is still a matter of ongoing debate. Moreover,
the AI model may be correct when the human is
wrong, and even less is understood about the best way
to deal with this scenario.38 Explainable AI (XAI)
techniques, such as saliency maps, attention mecha-
nisms, or visual explanation methods, have the po-
tential to address clinical concerns by illustrating how
AI systems reach decisions. Although it has been
suggested that incorporating XAI can enhance clini-
cian trust in AI predictions, XAI remains underex-
plored in prenatal cardiac ultrasound, and future
research should prioritise evaluating explainable
methods in terms of transparency, interpretability, and
clinical acceptability.32

The strength of our review is the systematic and
detailed assessment of AI performance for CHD detec-
tion and characterization. We sought to understand the
clinical potential for such models in the context of pre-
natal screening, rather than a technical perspective on the
feasibility of implementation. We also acknowledge the
13
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limitations of this systematic review, mostly arising from
limitations in the constituent studies. Firstly, the
included studies mainly conducted retrospective data
collection, and it is possible that prospective evaluation
may give a different result on AI performance. In fact, we
hypothesise that real-world AI model performance may
well be weaker, due to a higher proportion of lower-
quality records and operator-dependent factors in clin-
ical practice. Second, we have identified prominent
sources of heterogeneity, from the heart views collected
to the dissimilar prevalence and types of CHDs across
different datasets. Lastly, the results of this systematic
review are mostly from HICs and tertiary level units,
where implementation of AI is expected to be of less
relevance compared to LMICs or community-screening
levels.

Most studies into AI prenatal detection of CHD have
moderate-high risk of bias with sub-optimal adherence
as assessed against the TRIPOD+AI reporting stan-
dards. Heterogeneity applies to most studies in terms of
datasets, protocols used for model development and
testing, healthcare settings and types of heart defects
considered. The conclusion that the performance of AI
models is better than non-expert clinicians, and slightly
inferior to experts in fetal cardiology, should be inter-
preted with caution. Limitations exist due to the rela-
tively small number of studies, affecting power in
detecting publication bias and influencing GRADE cer-
tainty. We call on researchers for future studies to follow
reporting standards to reduce the risk of bias and
sources of heterogeneity. Furthermore, there is a lack of
prospective studies conducted at community-screening
level, where implementation of AI-based systems
might be of greatest benefit. Alongside technical de-
velopments in the fields of colour-Doppler and cardiac
biometry, future prospective studies of diagnostic ac-
curacy are needed.
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