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Methods

Sequencing and bioinformatic pipeline

Sequencing of Streptococcus pneumoniae isolates was performed as follows. Ge-

nomic DNA from pure S. pneumoniae cultures was extracted using the QIAGEN QI-

Asymphony DSP DNA Mini kit. Extracted DNA was sequenced on Illumina HiSeq

2500 platforms by the UKHSA Colindale Sequencing Laboratory (CSL). The de-

plexed fastq files produced by the CSL were then trimmed using the Trimmomatic [1]

tool. When run routinely, any isolate’s sequence data which has a yield < 100 MBp

after Trimmomatic processing is sent for re-sequencing.

These trimmed reads were then analysed by the UKHSA pneumococcal WGS

bioinformatic pipeline (Figure S1). The first step in the pipeline is species identifica-

tion, performed through the KmerID tool. KmerID splits a set of species reference

complete genomes from RefSeq into 18-mers. The percentage of 18-mers that ap-

pear at least twice in a set of query reads from a species reference is then reported as

the top hit. Mixed cultures are detected by comparing the similarity of the references

reported as the top hits. For S. pneumoniae the two reference sequences are strains

ATCC 700669 (RefSeq accession: GCF_000026665.1) and 5652-06 (RefSeq acces-

sion: GCF_000252025.1). Reads which have S. pneumoniae as their top hit, and are

not reported to be mixed, then proceed to the next step in the pipeline, multi-locus

sequence typing (MLST). This is performed by the MOST [2] tool with the publicly

available S. pneumoniae MLST scheme from PubMLST [3, 4]. MOST also provides

quality-control (QC) on the reads by reporting the maximum non-consensus base

percentage for MLST loci. Isolates with high ( > 15% ) non-consensus base scores

at any of these seven loci are sent for re-sequencing. The final step in the pipeline

is serotyping. This is performed using the PneumoCaT [5] tool, with manual slide

agglutination serotyping performed on certain serogroups, 24, 32, and 35B, which

PneumoCaT does not adequately distinguish.

All the tools in the routine pipeline used above have been validated previously,

with KmerID used in Ashton et al 2015 [6], and Kapatai et al 2016 [5] where Pneu-

moCaT has also been validated. MOST has been validated for S. pneumoniae in

Tewolde et al 2016 [2] .

Of 13,944 isolates sent for sequencing, those that came from a pure unmixed

culture and had a sequencing yield of > 100 Mbp were selected for further analysis

in this study, which left 13,812 isolates.

Assembly and further QC of genomes

The 13,812 reads were then assembled using shovill v0.9. Two isolates could not be

assembled, leaving 13,810 in total. Contigs of < 500 bp in length were then trimmed

from the assemblies. QUAST v5.2.0 [7] was used to summarise assembly statistics,

while CheckM v1.2.2 [8] was used to check the completeness and contamination of
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the assemblies. From this, two isolates fell below the threshold of an n50 > 5,000,

leaving 13,808. A further 55 isolates were found to have a contamination score of

> 5%. Removing these isolates left a collection of 13,753 assemblies for further

analysis.

PopPUNK v2.6.0 [9] was then run on this collection of assemblies in order to

cluster isolates into strains and produce a core-genome distance based phylogeny

using RapidNJ. From this a further four isolates were dropped from the collection

during PopPUNK QC steps, identified as length outliers, leaving a total collection of

13,749 isolates. In order to place the isolates in a global context, the collection was

also assigned to Global Pneumococcal Sequencing Clusters (GPSCs). This was per-

formed using PopPUNK and the publicly available GPSC v6 database (https://www.
pneumogen.net/gps/training_command_line.html). Dominant-GPSCswere defined
as those containing ≥100 isolates in the collection, following, but not recapitulating,
Gladstone et al 2019 [10]. Reads for the 13,749 isolates that have passed further

assembly QC were deposited in the Sequence Read Archive (SRA) with BioProject

Accession: PRJNA1034002 and PRJNA1027675. Individual isolate metadata can

be found in Appendix 2 p1.

Clonal complexes (CCs) were also defined by grouping together the single-locus

variants (SLVs) of MLST sequence types (STs). These were named after the largest

constitutive ST within the complex. This grouping was performed with an in-house R

script.

The output from the analysis pipeline outlined above for this study was bench-

marked against the pipeline currently used by the Global Pneumococcal Sequencing

project to analyse sequence data (https://github.com/sanger-bentley-group/gps-pipeline).
A total of 100 isolates were randomly selected from the 13,749 isolates in this study’s

collection. All of the isolates passed the QCmetrics for the GPS pipeline, the GPS as-

signment was consistent across both. One isolate, previously labeled as novel in our

dataset, was instead updated with a recent ST from the GPS pipeline. Seven isolates

differed in serotype, however all were within the same serogroup with the reported

serotype differing due to alternative approaches in PneumoCaT and the seroBA tool

used in the GPS pipeline.

Antimicrobial resistance

The presence of antimicrobial resistance (AMR) genes were detected using NCBI-

AMRFinderPlus v3.1.40 [11] with the S. pneumoniae organism-specific database.

The database version was v2022-08-09.1, which contains 6,218 unique AMR pro-

teins and 161 separate point mutation reference sequences. The default thresholds

of minimum identity were used on the assemblies that passed QC. The presence of

a gene was taken to indicate resistance.

For resistance to β-lactam antibiotics, the random forest method developed and

validated in Li et al 2016 [12] and Li et al 2017 [13] was used. The resistance cat-
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egorisation was based on the breakpoints for meningitis, which corresponds to the

Clinical and Laboratories Standards Institute document M100-23.

Resistance to sulfamethoxazole and trimethoprim was determined by searching

assemblies for mutations in the folP and folA genes respectively, as described in

D’Aeth et al 2021 [14]. For sulfamethoxazole, indels within the amino acid sequence

of folP from S61 were taken as evidence of resistance mutation, while for trimetho-

prim the mutation I100L in folA was taken as evidence of resistance. Resistance

to co-trimoxazole, a combination of both sulfamethoxazole and trimethoprim, was

predicted if either of the mutations in folP or folA were present.

All AMR profiles in this report are in silico predictions.

Phylogenetic and pangenome analysis

The 3,027 serotype 8 GPSC3 CC-53 isolates were combined with 137 GPSC3 ST53

serotype 8 isolates from the publicly available GPS study (https://data-viewer.
monocle.sanger.ac.uk/project/gps) accessed on 30/07/2024. This collection of

3,164 isolates wasmapped to the reference sequence for GPSC3, AP200 (accession

code: NC_014494.1) using ska v1.0 [15] with a split kmer size of 31. This alignment

was then input to Gubbins v3.3.5, using RapidNJ [16] as an initial phylogeny builder,

RAxML v8.2.12 [17] as the main phylogeny builder, and pyjar [18] as the ancestral

reconstruction option.

For GPSC12, an isolate’s clade was determined from the phylogeny created in

Bertran et al 2024 [19]. For the genome-wide association study (GWAS) described

below, a phylogeny was formed by mapping the 1399 GPSC12 isolates in this study

to the reference OXC141 isolate (Accession code: FQ312027.1), using ska v1.0 [15]

with a split kmer size of 31. Gubbins v3.3.5 was then used to form a phylogeny from

this alignment, using RapidNJ as the initial phylogeny builder [16], RAxML v8.2.12

[17], and pyjar as the ancestral reconstruction option.

For the GWAS study described below, the 1,399 GPSC12 isolates in this study

had their genomes delineated into core and accessory genes by panaroo v1.5 [20].

Sequences were first annotated using Prokka v1.13, then panaroo v1.5 was run in

strict mode, with a core-gene threshold of ≥99%, and set to produce a core gene

alignment only.

Virulence factors

The 3,803 GPSC3 isolates and the 41 non-GPSC3 serotype 8 isolates with an as-

signed GPSC were searched for virulence genes. The virulence-factor database

(VFDB) [21] was accessed on 02/08/2024, and the protein sequences from the 141

S. pneumoniae identified alleles were subset. DIAMOND v2.1.9 was then used to

create a database of the 141 S. pneumoniae alleles, and isolates were then searched

using the blastx functionality of DIAMOND [22]. Results were filtered such that the

alignment and the reference sequence had the same length, alignments had a per-
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cent identity score ≥95%, and that there were zero gaps in the alignment.

Statistical analyses

For the calculation of Simpson’s diversity index values, the diversity command within

the R package vegan v2.6.6.1 was used. Confidence intervals around the values

were calculated using bootstrap sampling with 1,000 different replicates. Broad age-

range categories of 0-4, 5-14, 15-44, 45-64 and ≥65 years were used in these calcu-

lations.

To assess the mean within-CC core-genome distances the R v4.4.1 ks.test func-

tion was used with default settings.

For the logistic regression analysis, variables were chosen tomodel both pathogen

and host factors causing mortality. For pathogen factors, GPSC was chosen to rep-

resent the genetic diversity of an isolate, while AMR status was chosen to investigate

the clinical effect of resistance. For patient factors, age was chosen to represent the

diversity in host response to disease, clinical presentation to account for the severity

of different pathologies, and year of isolation to account for any temporal effects. All

predictor variables were coded as categorical variables. GPSC was coded with 24

levels matching the 24 dominant-GPSCs, those with greater than 100 isolates in the

collection. GPSC19, which had the closest fatality rate to the aggregated rate within

all dominant-GPSCs, was chosen as the reference group. Patient age was coded

with patients split into discrete age groups: 0-4, 5-9, 10-14, 15-19, 20-29, 30-39, 40-

49, 50-59, 60-64, 65-69, 70-74, 75-79, 80-84, and ≥85 years. The ≥85 age group was

chosen as the reference group. For sampling year, the year with the highest number

of isolates, 2019, was selected as the reference. For the clinical presentation, non-

meningitis was the reference. Isolates were coded as AMR if they had at least one

resistant gene predicted by the NCBI-AMRFinderPlus tool, or co-trimoxazole resis-

tance, and/or were predicted to be resistant to penicillin at the meningitis breakpoints

used by the random forest predictor [13]. Five isolates with incomplete penicillin

breakpoints were removed from the analysis. The glm command within the R v4.4.1

stats package was used to fit the logistic regression model.

Sensitivity analyses for the regression were performed, incorporating the effect

of vaccination with either a PCV vaccine (PCV7 or PCV13) or the PPV23 vaccine,

extending the number of GPSCs to 26, and modelling the most frequent serotypes

instead of GPSCs. Both PCV and PPV23 vaccine status was defined in one of five

classes: Yes (at least one dose administered between 14 days and five years be-

fore date of case), Yes-Longer (at least one dose administered five years or more

before date of case), Yes-Unsure (At least one dose administered, no data on date

of vaccination), Unknown (No data on whether a case had been vaccination), and No

(patient known not to have been vaccinated). PCV and PPV23 vaccine status were

included as categorical variables, with the reference group for both being No. For the

extended GPSC analysis, GPSC19 was once again chosen as the reference group,

while for the serotype analysis, serotype 23A was chosen as the reference, having
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the closest fatality rate of 17.5% to the dataset’s overall rate of 17.4%.

To assess more fine-detailed associations of isolate’s genetic characteristics with

the case fatality rate, a GWAS analysis was conducted. This analysis was limited

to the GPSC12 isolates taken from cases in patients in the ≥85 age group, a total

of 302 isolates. The R package treeWAS v1.0 [23] was used. The analysis was

conducted in two stages, with the filtered core gene alignment produced by panaroo,

noted above, used as genetic data in stage one, and for stage two the accessory

gene presence/absence matrix also produced by panaroo was used as the genetic

data. Common input to both stages was the Gubbins GPSC12 phylogeny described

above, subset to the 302 ≥85 years old isolates, and a csv file of the isolate’s name
and the outcome variable: whether the cases died within 30 days of laboratory case

confirmation. treeWAS performed three tests to calculate terminal, simultaneous and

subsequent association scores between input genetic data and the outcome variable,

adapting significance thresholds based on corrections for multiple testing [23].

Results

GPSC3-CC53 phylogenetic analysis

The 3,027 GPSC3-CC53 isolates from the collection analysed in this study were com-

bined with 137 isolates from the GPS database. Within the phylogeny of these 3,164

isolates, two clades were formed (appendix 1 p15). The smaller clade of 201 isolates

contained 69 isolates (34·3%) from this study, along with 132 isolates (65·7%) from

the GPS study, which were primarily from South Africa (104 isolates; 51·7%). The

larger clade contained 2,963 isolates, of which 2,958 were from this study (99·8%),

while four were from New Zealand and one from Slovenia.

Diversity of PBP alleles among resistant isolates

Of the 205 unique PBP profiles in the collection among the 1,149 isolates predicted

to be resistant, 17 profiles were present in ≥10 isolates. Three profiles were present
in ≥100 isolates: PBP1a-1, PBP2b-67, PBP2x-1 (n = 147); PBP1a-16, PBP2b-13,

PBP2x-19 (n = 120); and PBP1a-23, PBP2b-27, PBP2x-77 (n = 108). There were

three dominant-GPSCswhich contained very high proportions of β-lactam resistance,

≥98%, GPSC5, GPSC9, and GPSC17. There were 24 different PBP profiles under-

lying the high-level of resistance in GPSC5, with all 147 PBP1a-7, PBP2b-67, PBP2x-

1, mentioned above, within GPSC5, followed by PBP1a-0, PBP2b-1, PBP2x-1 (62

isolates; 20·3% of GPSC5 resistant isolates) and PBP1a-7, PBP2b-1, PBP2x-1 (52

isolates; 17% of resistant isolates) in terms of frequency. For GPSC9 there were

30 distinct profiles among the 173 resistant isolates, with three profiles found in ≥10
isolates: PBP1a-24, PBP2b-27, PBP2x-28 (n = 81; 46.8% of resistant GPSC9 iso-

lates), PBP1a-67, PBP2b-27, PBP2x-35 (n = 26; 15% of resistant GPSC9 isolates),

and PBP1a-24, PBP2b-27, PBP2x-179 (n = 19; 11% of GPSC9 resistant isolates).

However, within GPSC17, all of whose 120 isolates was predicted to be resistant,
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only one PBP profile was observed, PBP1a-16, PBP2b-13, PBP2x-19.

Diversity of Tn916 among collection

Two dominant-GPSCs were observed to contain large numbers, ≥100, of putative
Tn916-like elements, GPSC3 (n = 208) and GPSC9 (n = 170). Within GPSC9, where

it was possible to reconstruct a Tn916-like insertion, 165 isolates contained a trun-

cated 17kb Tn6002 element, part of the Tn916-like family, with the erm(B) macrolide

resistance gene and the tet(M) tetracycline resistance gene. This insertion had ap-

peared to lose the 3.9kb region of the Tn916 backbone immediately upstream of the

tet(M) gene which contains the element’s site-specific integrase. A further two iso-

lates in GPSC9 contained a 23.5kb Tn2009 insertion, which contained mef(A) and

tet(M), while a further three isolates contained a 21kb element similar to the truncated

Tn6002 described above. Within GPSC3 193 isolates contained a complete 20.5kb

Tn6002 element, while a further 15 isolates contained Tn916-like elements. Most

of these Tn916-like elements were found in CC-717 in GPSC3 (196 of 208; 94·2%),

although there were seven isolates of the CC-53 lineage containing this.
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Figure S1: Analysis pipeline for pneumococcal sequence data. Flow chart detailing the analyses performed on S. pneumoniae

isolates used in this report, highlighting the routine pipeline used for surveillance by UKHSA, and the added analysis steps used

for this study.
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Figure S2: Isolate inclusion flowchart. Flowchart showing the flow of data from the initial

15,400 reported IPD cases between 1st of July 2017 and February 29th 2020, to the 13,749

isolates with WGS data analysed in this study. Exclusion reasons and numbers are listed in

the red boxes to the right of the flowchart.
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Figure S3: Serotype composition over time of the collection. (A) The overall counts of serotypes within the 13,749 isolate

collection by month of the study period from July 1st 2017 to February 29th 2020. Lines are coloured by serotype in question,

while the legend is arranged from the most frequent serotypes overall to the least frequent. Only the 20 most frequently observed

serotypes are plotted. (B) The percentage of isolates expressing a certain serotype during a particular month of the study period.

As for section A, only the 20 most frequently observed serotypes are expressed.
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Figure S4: Serotype diversity over time. The Simpson’s diversity index of isolate serotype

within patient age and epidemiological years. Lines are coloured by the patient age group,

total represents all age groups. Error bars represent the 95% confidence interval for values

calculated from bootstrap sampling.
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Figure S5: Serotype composition by age group. The percentage of the top 20 serotypes

in each patient age group in the collection. Bars are coloured by the serotype, with only the

top 20 serotypes coloured, other serotypes are grouped in the other category. The key is

ordered from the most common serotype, serotype 8, to the least common of the top 20,

serotype 20.
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Figure S6: Global pneumococcal sequencing cluster composition over time. (A) The overall counts of the 24 dominant-

GPSCs by month over the time period of the study. Lines are coloured by GPSC in question, with the legend ordered by the

frequency of GPSCs in the collection. (B) The percentage of isolates expressing a certain GPSC over the study time period.
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Figure S7: GPSC diversity over time. The Simpson’s diversity index of isolate GPSCwithin

patient age and epidemiological years. Lines are coloured by the patient age group, total

represents all age groups. Error bars represent the 95% confidence interval for Simpson’s

diversity index values calculated from bootstrap sampling.
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Figure S8: GPSC composition by age group. The percentage of the 24 dominant-GPSCs

in each patient age group. Bars are coloured by the GPSC, with the key ordered by the

frequency of the GPSCs.

15



Figure S9: Distribution of virulence genes among comparison groups.The percentage of isolates in three comparison groups

containing 49 separate virulence genes. Group GPSC3, not CC_53 N = 772; Group GPSC3, CC_53 N = 3027; Group Not GPSC3,

Serotype 8 N = 40.
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Figure S10: GPSC3 maximum likelihood phylogeny from global collection. Phylogeny formed from the non-recombinant

regions of the alignment of 3,164 GPSC3 isolates. The inner annotation ring represents the year of isolation, while the outer ring

represents the country of origin for an isolate.
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17
Figure S11: AMR isolates within dominant-GPSCs. A The count of isolates predicted to be resistant to a set number of an-

timicrobial subclasses within each of the 24 dominant-GPSCs. The bars are coloured by the number of different antimicrobial

subclasses isolates are predicted to be resistant to. A value of 0 represents isolates predicted to be susceptible, 1 represents

isolates predicted to be resistant to any single class of antimicrobial (i.e β-lactams). GPSCs are arranged on the x-axis in order of
overall size in the collection, with the total number of isolates printed above the bar. B The percentage of each GPSC’s isolates

predicted to be resistant to the set number of different antimicrobial classes.
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Figure S12: 30-day case fatality rate by GPSC. Bars represent the percent of each

dominant-GPSC’s isolates that either died or survived 30 days after laboratory confirmation

of case. The final bar represents the overall split across the 24 dominant-GPSCs, with the

dashed horizontal line, the split from this value. GPSCs are ordered on the x axis by their

size in the collection, from the largest GPSC3, to the smallest GPSC17.
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Figure S13: Manhattan plots fromGWAS analysis of GPSC12 isolates. The first row of plots represents the GWAS association

scores calculated by treeWAS for the accessory gene presence/absence table for the 302 GPSC12 isolates in cases where patients

where aged 85+. The three plots correspond to one of the three tests which treeWAS performs, terminal score, simultaneous score,

or subsequent scoring. The red horizontal line represents the corrected association score for multiple testing. The second row of

plots represents the same scoring metric as described above, except for the SNPs present in the core genome alignment created

for the 302 GPSC12 isolates in cases aged 85+.
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