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Abstract 

Mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that regulates key cel‑
lular processes including cell growth, autophagy and metabolism. Hyperactivation of the mTOR pathway causes 
a group of rare and ultrarare genetic diseases. mTOR pathway diseases have diverse clinical manifestations that are 
managed by distinct medical disciplines but share a common underlying molecular basis. There is a now a deep 
understanding of the molecular underpinning that regulates the mTOR pathway but effective treatments for most 
mTOR pathway diseases are lacking. Translating scientific knowledge into clinical applications to benefit the unmet 
clinical needs of patients is a major challenge common to many rare diseases. In this article we expound how mTOR 
pathway diseases provide an opportunity to coordinate basic and translational disease research across the group, 
together with industry, medical research foundations, charities and patient groups, by pooling expertise and driv‑
ing progress to benefit patients. We outline the germline and somatic mutations in the mTOR pathway that cause 
rare diseases and summarise the prevalence, genetic basis, clinical manifestations, pathophysiology and current 
treatments for each disease in this group. We describe the challenges and opportunities for progress in elucidating 
the underlying mechanisms, improving diagnosis and prognosis, as well as the development and approval of new 
therapies for mTOR pathway diseases. We illustrate the crucial role of patient public involvement and engagement 
in rare disease and mTOR pathway disease research. Finally, we explain how the mTOR Pathway Diseases node, part 
of the Research Disease Research UK Platform, will address these challenges to improve the understanding, diagnosis 
and treatment of mTOR pathway diseases.
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mTOR signalling as an exemplar of the challenges 
and opportunities in rare disease research
Affecting fewer than 1 in 2000 individuals [1], rare dis-
eases are individually rare but collectively have a preva-
lence of 3.5–5.9% affecting 263–446 million people 
globally and therefore, when considered in aggregate, 
place a significant burden on effected individuals, fami-
lies, and healthcare systems [2]. Compared to common 
diseases, the small patient populations in rare and ult-
rarare diseases have resulted in both historically mea-
gre public funding for research into the underlying 
mechanisms and in ambivalence of industry towards 
drug development and pursuing clinical trials; as a con-
sequence, only 5–15% of rare diseases have drug treat-
ments [3]. Although rare disease research has recently 
gained momentum, there remain significant barriers to 
overcoming the challenges. These barriers stem from the 
small patient populations and often complex pathophysi-
ology of rare diseases, even after the causative variant is 
identified. Even though patient numbers for individual 
conditions are small, the impact on the lives of the peo-
ple with rare diseases and their support networks can be 
enormous. 75% of rare diseases affect children and are 
fatal before the age of 5 in 30% of children [4]. Progress in 
basic and translational research leading to benefits in the 
understanding, diagnosis and treatment of rare diseases 
will therefore have a huge impact on these patients and 
their communities.

The mechanistic target of rapamycin (mTOR) path-
way diseases (Table  1) is a group of rare early-onset, 
hard-to-treat genetic diseases with symptoms ranging 
from benign tumours in multiple organs to brain mal-
formations causing epilepsy, each of which is managed 
in disconnected medical disciplines (Fig.  1). The mTOR 
pathway has a multitude of direct and indirect associa-
tions with numerous diseases but we only include dis-
eases caused by mutations in core components of the 
mTOR pathway (Fig.  2), regardless of the affected cell 
types and organs or symptoms. mTOR pathway diseases 
share a common underlying mechanism: hyperactivation 
of mTOR complex 1 (mTORC1) activity (Fig.  2). Since 
they share common molecular mechanisms and drug 
targets, there is an opportunity to improve diagnosis and 
outcomes for mTOR pathway diseases by connecting 
disjointed populations, basic and translational research 
resources with clinical, patient and industry stakeholders. 
In this review, we describe mTOR pathway diseases as an 
exemplar highlighting the challenges and opportunities 

in rare and ultrarare disease research. We set out how 
we are tackling these research challenges and exploit-
ing opportunities through the mTOR Pathway Diseases 
node [5], part of the National Institute for Health and 
Care Research (NIHR)/Medical Research Council (MRC) 
Rare Disease Research UK (RDR UK) Platform [6]. Over 
5 years, the mTOR Pathway diseases node aims to trans-
form the mechanistic understanding, diagnosis and treat-
ment of mTOR pathway diseases.

mTOR signalling
mTOR is a large (289 kDa), highly conserved serine/thre-
onine protein kinase originally identified in the yeast S. 
cerevisiae [7–10]. mTOR regulates critical cellular pro-
cesses such as cell growth, autophagy, lipid synthesis, glu-
cose metabolism, cytoskeletal dynamics and cell survival 
(Fig. 2). Given its crucial cellular roles, it is not surpris-
ing that mTOR has also been associated with ageing and 
human diseases including metabolic disorders, neurode-
generation and cancer [11, 12].

mTOR acts as the catalytic core of two protein com-
plexes: mTOR complex 1 (mTORC1) and mTOR complex 
2 (mTORC2). While both complexes exist as homodi-
mers resembling hollow “lozenges”, they are structur-
ally and functionally distinct owing to their accessory 
proteins [11, 13, 14]. In addition to mTOR, mTORC1 
is composed of regulatory-associated protein of mam-
malian target of rapamycin (Raptor) and mammalian 
lethal with SEC13 protein 8 (mLST8) (Fig.  2). Raptor is 
a scaffold protein and the defining subunit of the com-
plex that senses stimuli, and recruits’ substrates, thereby 
conferring substrate specificity, and directs subcellular 
localisation of mTORC1 [11, 15]. mLST8 stabilises the 
interaction of mTOR and Raptor and, while it aids the 
activity of the complex, it appears to be non-essential 
as shown in mouse knockout models [16, 17]. Raptor 
also interacts with an inhibitory subunit of the complex, 
proline-rich Akt substrate of 40  kDa (PRAS40) (Fig.  2). 
Upon phosphorylation of PRAS40 by AKT, the endog-
enous inhibitor dissociates from mTORC1 and allows 
for substrate entry [18]. Similarly, DEP domain-contain-
ing mTOR-interacting protein (DEPTOR) is an endog-
enous inhibitor of the complex (Fig. 2) [19]. In addition, 
the drug rapamycin binds to the 12-kDa FK506-binding 
protein (FKBP12) and inhibits, albeit only partially [20], 
the activity of mTORC1 through interaction with the 
FKBP12-rapamycin binding (FRB) domain [13].
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mTORC2 is defined by the presence of the scaffold 
protein rapamycin-insensitive companion of mTOR 
(Rictor) that directly interacts with mammalian stress-
activated protein kinase-interacting protein 1 (mSin1) 
conferring substrate selectivity [21]. mSin1 bridges Ric-
tor with mLST8 and, unlike with mTORC1, mLST8 is 
essential for the activity of mTORC2. This spatial con-
formation appears to prevent the binding of FKBP12, 

resulting in the characteristic resistance of mTORC2 
to acute rapamycin treatment [22]. In addition, Ric-
tor interacts with protein observed with Rictor-1 and 
2 (Protor-1/2). Their biological role is largely elusive, 
but evidence suggests that Protor-1 is important for 
the phosphorylation of SGK1 (an mTORC2 substrate) 
in the kidney [23, 24]. Finally, mTORC2 also interacts 
with the endogenous inhibitor DEPTOR. The distinct 

Table 1  mTOR pathway diseases

For details see Sect. “Rare genetic diseases caused by germline mutations in mTOR pathway genes”

mTOR pathway 
disease

Prevalence where 
known

Gene Germline vs. somatic 
mutations

Main affected organs Current treatments 
(approved and off-
label)

Activated PI3K delta 
syndrome (APDS)/
Activated PI3K delta 
syndrome like (APDS-
like)

PIK3CD/PIK3R1/PTEN Germline Leukocytes mTOR inhibitors e.g. 
sirolimus; PI3Kδ inhibi‑
tors e.g. leniolisib

Birt-Hogg-Dubé syn‑
drome (BHD)

Approx. 1/200,000 FLCN Germline Skin, lungs, kidneys N/A

Focal Cortical Dysplasia 
type IIA/B (FCD IIA/B) 
(Epilepsy)

AKT3, PIK3CA, RHEB, 
MTOR, DEPDC5, 
TSC1/2, NPRL2, NPRL3

Somatic Brain mTOR inhibitors e.g. 
everolimus, sirolimus

GATORopathies DEPDC5, NPRL2, NPRL3 Germline Brain

Hemimegalencephaly/
megalencephaly

AKT3, PIK3CA, RHEB, 
MTOR, DEPDC5, 
TSC1/2, NPRL2, NPRL3

Somatic Brain Hemispherotomy/func‑
tional hemispherotomy/
anatomical hemispher‑
otomy

KPTN-related disorder KPTN Germline Brain

Lymphangioleiomy‑
omatosis (LAM)

Approx. 20/1,000,000 TSC1, TSC2 Predominately 
somatic/some ger‑
mline cases

Lung mTOR inhibitors e.g. 
sirolimus

Peutz-Jeghers Syn‑
drome (PJS)

Approx. 1/25,000 
and 1/300,000

STK11/LKB1 Germline Gastrointestinal tract, 
mucocutaneous 
regions

Surveillance, polypec‑
tomy, mTOR inhibitors

PIK3CA-Related 
Overgrowth Spectrum 
(PROS)

PIK3CA Predominately 
somatic/very rare 
germline cases

Overgrowth of various 
tissues

mTOR inhibitors e.g. 
sirolimus; PI3Kα inhibi‑
tors e.g. alpelisib

Pretzel syndrome/
polyhydramnios, mega‑
lencephaly and symp‑
tomatic epilepsy 
syndrome (PMSE)

STRADA Germline Brain

Proteus Syndrome Approx. 200 cases 
worldwide

AKT1 Somatic Multiple organs AKT inhibitors e.g. 
miransertib

PTEN Hamartoma 
Tumour Syndrome 
(PHTS)

1/200,000–1/250,000 
for Cowden syndrome

PTEN Germline Multiple organs mTOR inhibitors e.g. 
everolimus, sirolimus

RHEB-associated 
neurodevelopmental 
disorder

RHEB Germline

Smith-Kingsmore 
Syndrome

MTOR Germline Brain

TBC1D7-associated 
neurodevelopmental 
disorder

TBC1D7 Germline Brain

Tuberous Sclerosis 
Complex (TSC)

Approx. 1/6,000–
1/10,000

TSC1, TSC2 Germline, approx. 10% 
mosaic

Brain, kidney, lung, 
heart, eyes

mTOR inhibitors e.g. 
everolimus, sirolimus
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composition of mTORC1 and mTORC2 results in the 
involvement and regulation of different cellular pro-
cesses, with mTORC2 mediating cell survival and 
cytoskeletal dynamics in response to growth factors 
[11, 12].

mTORC1 is a crossroads for other cellular signalling 
pathways. Activity of mTORC1 is affected by information 
on extra- and intracellular states including amino acids, 
growth factors and ATP (Fig. 2) [11]. Many pathways for 
sensing and interpretation of these cues ultimately con-
verge onto two distinct signalling axes represented by 
the small G proteins ras homolog enriched in the brain 
(RHEB) and the family of Rab GTPases, both of which are 
activators of mTORC1 (Fig. 2). Phosphoinositide 3-kinase 
(PI3K) and PTEN (phosphatase and tensin homologue) 
act downstream of receptor tyrosine kinases to regulate 
mTORC1 via RHEB (Fig.  2). The master energy sens-
ing kinase AMPK negatively regulates mTORC1 activ-
ity through phosphorylation of Raptor [25] (Fig. 2). The 
LKB1-STRAD-MO25 complex acts directly upstream 
of AMPK, regulating activity though the kinase activity 
of LKB1 towards AMPK [26] (Fig. 2). Sensing the avail-
ability of growth factors and cellular energy results in the 
inhibition of the tuberous sclerosis complex (TSC), made 
up of TSC1 (hamartin), TSC2 (tuberin) and TBC1D7, 
leading to activation of RHEB and mTORC1.

mTORC1 activity is also influenced by the presence 
of amino acids, independent of the TSC, though the 

activity of the GATOR1 complex. GATOR1 is com-
posed of three proteins: DEPDC5, NPRL2 and NPRL3. 
DEPDC5 contains a RagA-binding domain that allows 
it to perform its GTPase-activating protein (GAP) 
activity on the small GTPase RagA, thereby inactivat-
ing it (Fig.  2) [27]. RagA is a binding partner of RAP-
TOR and, when activated, prevents translocation of 
mTORC1 to the lysosome where mTORC1 can be acti-
vated by RHEB. In the presence of amino acids, RagA 
inhibition by GATOR1 promotes mTORC1 activity. 
GATOR1 activity depends on three upstream regula-
tors: the methionine sensor SAMTOR, which binds 
to and inhibits GATOR1 in the absence of methio-
nine, the GATOR2 complex and the KICSTOR com-
plex (Fig.  2). The GATOR2 complex, consisting of the 
proteins WDR24, MIOS, WDR59, SEH1L and SEC13, 
integrates information from the arginine sensor CAS-
TOR1 and leucine sensor Sestrin1/2 [28]. In the pres-
ence of arginine and leucine, CASTOR1 and Sestrin1/2 
lose their ability to bind to and inhibit GATOR2, allow-
ing GATOR2 to bind and inhibit GATOR1, ultimately 
resulting in increased mTORC1 activity (Fig.  2) [29]. 
The KICSTOR complex, which comprises four proteins: 
KPTN, ITFG2, KICS2 (previously C12ORF66) and 
SZT2, recruits GATOR1 to the lysosomal surface and 
is necessary for GATOR1 interaction with its substrates 
and thus acts as a negative regulator of mTORC1 activ-
ity alongside GATOR1 (Fig.  2) [30]. mTORC1 activity 

Fig. 1  The different medical specialities that manage patients with mTOR pathway diseases. APDS: activated PI3K delta syndrome, BHD: 
Birt-Hogg-Dubé, FCDIIA/B: focal cortical dysplasia type IIA/B, HME: hemimegalencephaly, LAM: lymphangioleiomyomatosis, ME: megalencephaly, 
PMSE: polyhydramnios, megalencephaly and symptomatic epilepsy syndrome, PHTS: PTEN hamartoma tumour syndrome, PJS: Peutz-Jeghers 
syndrome, PROS: PIK3CA-related overgrowth spectrum, TSC: tuberous sclerosis complex
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at the lysosome is also regulated by folliculin (FLCN) 
which, through its GAP activity towards RagC/D, 
recruits mTORC1 to the lysosomal surface (Fig. 2) [31].

mTORC1 acts as a master regulator of cell growth, 
proliferation and metabolism by controlling an array 
of cellular processes. These include important path-
ways such as protein and lipid synthesis, glycolysis, 
autophagy, mitochondrial biogenesis and maintenance 
(Fig.  2) [32]. Representative examples of downstream 
effectors of mTORC1 and their involvement in specific 
cellular pathways are summarised in Table 2. mTORC1 
signalling has wide ranging roles at the tissue, organ 
and system level including skeletal muscle and adipose 
tissue, the adaptive immune response and nervous sys-
tem development [11, 33–37].

Rare genetic diseases caused by germline 
mutations in mTOR pathway genes
Activated PI3Kdelta syndrome
Class I PI3Ks are important upstream effectors of mTOR 
signalling. They are heterodimeric proteins consisting 
of a catalytic and a regulatory subunit and are classified 
according to similarities in structure and function [38, 
39]. The regulatory subunit is important for recruitment 
of the catalytic subunit to the plasma membrane, its pro-
tection from proteolytic degradation and restraint of 
its enzymatic activity. In response to activation of vari-
ous cell surface receptors, class I PI3Ks act upon phos-
phatidylinositol-4,5-bisphosphate [PI(4,5)P2], adding 
another phosphate on the third position of the inositol 
ring to generate phosphatidylinositol-3,4,5-trisphosphate 
[PI(3,4,5)P3] [40]. PI(3,4,5)P3 is a second messenger and 
recruits AKT to the cell membrane where AKT can 
become fully activated leading to phosphorylation of 

Fig. 2  The mTOR pathway with rare diseases (shown in red) caused by mutations in specific proteins. APDS: activated PI3K delta syndrome, BHD: 
Birt-Hogg-Dubé, FCD: focal cortical dysplasia type IIA/B, HME: hemimegalencephaly, LAM: lymphangioleiomyomatosis, ME: megalencephaly, NDD: 
neurodevelopmental disease, PMSE: polyhydramnios, megalencephaly and symptomatic epilepsy syndrome, PHTS; PTEN hamartoma tumour 
syndrome, PJS: Peutz-Jeghers syndrome, PROS: PIK3CA-related overgrowth spectrum, SKS: Smith Kingsmore syndrome, TSC: tuberous sclerosis 
complex
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TSC2 and activation of mTORC1 (Fig. 2). PI3Kdelta is a 
catalytic class I PI3K subunit predominantly expressed by 
leukocytes and encoded by PI3KCD [38, 40]. Variants in 
both this catalytic as well as the p85alpha regulatory sub-
unit have been described to cause inborn errors of immu-
nity (reviewed in [40]). Biallelic loss-of-function variants 
in PI3KCD [41–43] and PI3KR1 (encoding p85alpha, 
which led to severely reduced PI3Kdelta levels) [44]), 
cause severe B cell lymphopenia and recurrent infec-
tions, reflecting the importance of PI3K signalling down-
stream of the B cell receptor. Interestingly, heterozygous 
activating variants in PI3KCD, are also associated with 
hypogammaglobulinemia and frequent airway infections 
[45, 46]. Two groups independently described what is 
now known as activated PI3Kdelta syndrome (APDS), an 
inborn error of the immune system (IEI) characterised 
by recurrent sinopulmonary infections, bronchiectasis, 
lymphoproliferative disease, increased risk of lymphoma 
and immune dysregulation [45, 46]. Heterozygous vari-
ants in PI3KR1 leading to exon skipping and PI3K hyper-
activation produce a very similar clinical phenotype 
(APDS2) [47–49]. T cells from patients with APDS show 
increased S6 phosphorylation and glucose uptake, key 
targets of mTOR signalling [46]. The lymphoproliferation 
in patients with APDS shows the best response to mTOR 
inhibition by sirolimus [49].

An alternative to mTOR inhibition treatment for APDS 
is leniolisib, a specific PI3Kdelta inhibitor repurposed 
from oncology that is well tolerated and might target 

the immune dysregulatory sequelae of APDS better than 
sirolimus [50]. The immunological phenotype of APDS is 
correctable by allogeneic haematopoietic stem cell trans-
plant (HSCT) and a recent large cohort study showed 
overall survival rates of 86% with no difference between 
APDS 1 and 2, donor type or conditioning intensity [51].

PTEN Hamartoma tumour syndrome and APDS‑like 
immunodeficiency
PTEN is a lipid phosphatase that antagonises PI3K activ-
ity by converting PI(3,4,5)P3 and its degradation prod-
uct PI(3,4)P2 to PI(4,5)P2 and PI(4)P, respectively, in the 
cell membrane and thus indirectly inhibiting mTORC1 
pathway activity (Fig.  2) [52–55]. PTEN Hamartoma 
Tumour Syndrome (PHTS) is an autosomal dominant 
tumour predisposition syndrome resulting from whole 
exonic deletions, truncating, splicing, missense or pro-
moter mutations with diverse functional effects on PTEN 
including haploinsufficiency, lost or reduced phosphatase 
activity, dominant-negative and aberrant function and/
or localisation [56–59]. 11–48% of PTEN mutations in 
PHTS are de novo [60]. Genotype–phenotype correla-
tions are not robust enough to facilitate personalisa-
tion of prognostic or screening advice [61–63]. PHTS 
incorporates historically described clinical syndromes 
including Cowden syndrome, Bannayan-Riley-Ruvalcaba 
syndrome, PTEN related Proteus syndrome and Pro-
teus like syndrome, with variable expression and age-
related penetrance [64–68]. The prevalence of Cowden 

Table 2  Representative examples of downstream effectors of mTORC1 and their involvement in specific cellular pathways

For details see Sect. “mTOR signalling”

Downstream effector Cellular pathway Effect of mTORC1 
activity on cellular 
process

References

4E-BP1 (Eukaryotic translation initiation factor 4E-binding protein 
1)

Protein synthesis Activation [311–313]

S6K1 (Ribosomal protein S6 kinase 1) Protein/lipid/nucleotide synthesis Activation [314, 315]

MYC (Myelocytomatosis oncogene) Protein synthesis Activation [316]

SREBP (Sterol regulatory element-binding protein) (through 
inhibition of Lipin-1)

Lipid synthesis Activation [317]

PPARγ (Peroxisome proliferator-activated receptor gamma) Lipid synthesis Activation [318]

ATF4 (Activating transcription factor 4) Nucleotide synthesis Activation [319]

CAD (Carbamoyl-​phosphate synthetase 2, aspartate transcarba‑
moylase, dihydroorotase)

Nucleotide synthesis Activation [271]

HIF1α (Hypoxia inducible factor 1α) Glycolysis Activation [320]

PGC1α (PPARγ coactivator 1α) Mitochondrial biogenesis and maintenance Activation [321, 322]

ULK1 (Unc-51 Like Autophagy Activating Kinase 1) Autophagy Inhibition [323]

ATG13 (Autophagy Related 13) Autophagy Inhibition [324, 325]

UVRAG (UV radiation resistance-associated gene protein) Autophagy Inhibition [326]

TFEB (Transcription Factor EB) Lysosome biogenesis Inhibition [327, 328]

TFE3 (Transcription Factor E3) Lysosome biogenesis Inhibition [328]
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syndrome has been estimated at 1 in 200,000–250,000 
[69], but the prevalence of PHTS is unknown.

Clinical manifestations of PHTS include mucocuta-
neous, vascular, and lipomatous lesions. Malignant and 
benign tumours are reported including breast, thyroid, 
endometrium, kidney, gastrointestinal polyposis and 
Lhermitte-Duclos dysplastic gangliocytoma of the cer-
ebellum (Fig. 3) [70, 71]. Macrocephaly (over 2 standard 
deviations (SD) above the mean) is an almost universal 
feature of PHTS, averaging around + 5 SD in childhood. 
The paediatric phenotype includes congenital macro-
cephaly (> 2 SD) with or without developmental delay or 
intellectual disability, autism spectrum disorder (ASD), 
lipomas, a broad spectrum of benign polyps (gangli-
oneuromas, inflammatory polyps), as well as polyps with 
malignant potential (serrated, adenomas and juvenile 
type hamartomas) [72, 73]. Vascular anomalies occur in 
approximately 50% of PHTS patients and are associated 
with significant morbidity and mortality [74].

Small cohort studies and case studies have recently 
suggested that PHTS patients can manifest an APDS-
like condition (APDS-L) and can present with recurrent 
respiratory tract infections, hypogammaglobulinaemia, 

lymphopenia, lymphoproliferation changes in B and T 
cell subsets and auto-immune diseases [75–78].

Clinical trials using mTORC1 inhibitors (sirolimus 
and everolimus) are reported to be tolerated and have 
some efficacy in treating cutaneous and gastrointestinal 
features and improving cerebellar function, as well as in 
treatment of vascular anomalies [79–81]. Improvement 
in some measures, but not reaching primary endpoint 
was demonstrated in a 6-month phase II, randomized, 
double-blinded, placebo-controlled trial of treatment 
with everolimus for neurocognitive symptoms [79]. In 
a case study, two breast cancer patients with germline 
PTEN mutations showed a dramatic response to mono-
therapy with the AKT inhibitor capivasertib [82]. Inhi-
bition of mTORC1 may also represent an avenue for 
chemoprevention in PHTS – a mouse model has shown 
rapamycin to delay tumour development [83].

Peutz‑Jeghers syndrome
Peutz-Jeghers syndrome (PJS) is an autosomal domi-
nant cancer syndrome with an estimated prevalence of 
between 1/25,000 and 1/300,000 [84]. PJS is caused by 
germline pathogenic variants in the tumour suppressor 

Fig. 3  PHTS clinical manifestations. A Oral mucosal features. Gingival papillomatosis and neuromas may encroach on the dentition and cause 
difficulty with dental hygiene. B Papillomatosis of the tongue. C Plantar and palmar keratoses. Some are hyperkeratotic and may resemble viral 
verrucous lesions. D Axial T2 MRI image showing abnormal tissue in the left cerebellar hemisphere with the characteristic tigroid appearance 
and apparently preserved cerebellar folia of Lhermitte-Duclos Disease. E Segmental overgrowth of left thigh. This presented in adolescence, 
with no evidence of the lesion in early childhood. F, G MRI images demonstrating vascular malformation with fast and slow flow elements 
infiltrating muscle and fat
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gene STK11/LKB1, with subsequent somatic inactivation 
of the wild-type allele then resulting in loss-of-function 
of the kinase activity of LKB1 [85–89]. LKB1 is a mas-
ter kinase that activates multiple kinases of the AMPK 
subfamily [90], some of which regulate the mTORC1 
pathway through phosphorylation of TSC2 and Raptor 
(Fig. 2), with mTORC1 dysregulation likely to be involved 
in hamartoma and cancer development [91, 92].

PJS causes characteristic mucocutaneous pigmenta-
tion and intestinal (predominantly small bowel) hamar-
tomatous polyps (Fig.  4) and disease pathophysiology is 
not fully established [93]. Dysplasia in polyps is rarely 
observed, and it is likely that PJS polyps are not pre-
malignant [94]. Small bowel polyps causing intussus-
ception is the greatest risk in childhood. The cumulative 
intussusception risk is estimated at 50–68% during child-
hood and up to 30% of patients require surgery before 
age 10 [95, 96]. In adulthood, in addition to polyp-related 
complications, PJS confers an increased risk of cancer. 
The data are subject to significant selection bias, but the 
overall lifetime risk has been reported to be 55–85% [97–
103], with the most commonly seen malignancies being 
breast and pancreatic cancer [94].

Current treatments for PJS include pan-enteric sur-
veillance and polypectomy starting at 8  years of age, 
with a view to preventing polyp-related complica-
tions. Elective polypectomy via device-assisted ent-
eroscopy or intraoperative enteroscopy should then 
be performed for small-bowel polyps if they are 
either > 15–20  mm in size, or are symptomatic [104]. 
Breast surveillance is recommended, but the role of 
surveillance for pancreatic and gynaecological cancers 

is not clear [104]. Inhibition of mTORC1 may represent 
an avenue for chemoprevention in PJS—a mouse model 
showed rapamycin treatment was sufficient to reduce 
polyp burden [105], and a single human report has 
demonstrated partial remission in advanced pancreatic 
cancer [106].

Polyhydramnios, megalencephaly, and symptomatic 
epilepsy syndrome
Polyhydramnios, megalencephaly, and symptomatic epi-
lepsy syndrome (PMSE or Pretzel syndrome) is an ultra-
rare neurodevelopmental disorder caused by variants in 
the LYK5/STRADA gene. STE20-related kinase adaptor 
α (STRADA) is a pseudokinase that forms a heterotrim-
eric complex with LKB1 and the scaffold protein calcium 
binding protein 39 (CAB39, also known as MO25) [107]. 
STRADA activates LKB1 through an allosteric mecha-
nism leading to phosphorylation of LKB1 (Fig. 2) [26].

PMSE is characterized by severe, infantile-onset 
intractable epilepsy, developmental delay, macroceph-
aly, craniofacial dysmorphism and premature mortal-
ity [108].  Homozygous single nucleotide variants and 
larger deletions including exons 9–13 in the LYK5/
STRADA gene are associated with the STRADA phe-
notype. Pre-clinical models are available [109, 110] and 
a human cortical organoid model suggested that mega-
lencephaly arises from expansion of neural stem cells in 
early corticogenesis and potentially also from increased 
outer radial glia at later stages [111]. In a small clinical 
study sirolimus treatment reduced seizure frequency in 
PMSE patients [109].

Fig. 4  Peutz-Jeghers syndrome polyps. A 42-year-old female PJS patient being treated with ischaemic polypectomy
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Tuberous sclerosis complex
Tuberous Sclerosis Complex (TSC) has an estimated inci-
dence of between around 1 in 6000 and 1 in 13,000 live 
births worldwide and across all ethnic groups [112–115]. 
Inherited in an autosomal dominant manner, approxi-
mately 70% of affected individuals have no family his-
tory of the condition and harbour a de novo pathogenic 
variant [116]. TSC is caused by loss-of-function variants 
in either of two genes, TSC1 or TSC2 [117, 118]. TSC1 
and TSC2 form a complex, together with TBC1D7, that 
inhibits mTORC1 activity through the GAP activity of 
TSC2 towards RHEB (Fig. 2) [119]. The mutational spec-
trum in TSC is broad and includes deletions, nonsense 
and missense variants. Patients with causative variants 
in TSC2 usually present with a more severe phenotype 
than those with TSC1 variants, characterized by a higher 
number of tubers, earlier age at seizure onset and higher 
prevalence of intellectual disability [120]. Otherwise, the 
clinical phenotypes are highly variable and there is little 
genotype/phenotype correlation [121, 122]; the excep-
tion to this being a contiguous deletion on chromosome 
16 that encompasses both PKD1 and TSC2 resulting in 
a compound phenotype of polycystic kidney disease 
together with TSC [123]. TSC demonstrates extreme 
inter- and intrafamilial variability [122].

TSC is characterised by the development of benign 
hamartomas affecting different organs at different stages 
of life and including the brain, heart, kidneys, skin and 
lungs [116, 124, 125]. The most comprehensive under-
standing of the clinical presentation was obtained from 
international patient registry data; and informs best prac-
tice for clinical surveillance and treatment of the complex 
co-morbidities of TSC [126].

Antenatally, cardiac rhabdomyomas may be identi-
fied on foetal ultrasound after 20 weeks gestation in TSC 
patients [127]. Typically, these undergo spontaneous 
regression postnatally and rarely require intervention 
[128, 129].

Skin changes may be observed from the neonatal 
period onwards, including hypopigmented macules, 
which are often the first presenting feature of the condi-
tion postnatally, shagreen patches, facial angiofibromas, 
forehead plaques and subungual fibromas [130]. Moreo-
ver, UV damage of the second copy of TSC1 or TSC2 is 
sufficient to cause angiofibromas [131].

Epilepsy occurs in around 85% of affected individuals 
and in most, the onset of seizures occurs in the first two 
years of life, often with associated developmental regres-
sion and encephalopathy [132]. Initial presentation is 
often with infantile spasms and evolution to multi-focal 
seizures related in part to the number and location of 
focal cortical dysplasias (cortical tubers) that are typi-
cally seen in the brain of affected individuals (Fig. 5); the 

seizures are often refractory, with limited response to 
conventional anti-seizure medications [133]. Up to 24% 
individuals with TSC develop sub-ependymal giant cell 
astrocytomas (SEGAs; Fig.  5), which may need surgical 
or medical intervention if they enlarge [125, 134, 135]. 
TSC is also associated with a wide range of neurodevel-
opmental and psychiatric disorders including develop-
mental delay, intellectual disability and ASD, psychiatric 
disorders, neuropsychological deficits, school and occu-
pational difficulties—collectively known as TSC-Associ-
ated Neuropsychiatric Disorders (TAND) [136–138].

Kidney involvement occurs in about 80% of patients 
and is characterised by the development of angiomyoli-
pomas (AMLs) and cystic kidney disease from childhood 
onwards [139]. AMLs that grow to greater than 3 cm in 
diameter are associated with a risk of life-threatening 
haemorrhage. Renal cell carcinoma is a rare complica-
tion of TSC, occurring in around 1–3% of TSC patients 
but with a striking female preponderance [140, 141]. 
TSC is relatively infrequently associated with progressive 
chronic kidney disease, with around 1–10% of patients 
developing end stage kidney disease [142, 143].

Traditionally treatment of TSC has focussed on man-
agement of symptoms, including antiseizure medications 
for epilepsy and embolization for large kidney AMLs 
that are at risk of bleeding. However, clinical trials of 
mTOR inhibitors demonstrated regression of tumours 
in the brain and kidney and stabilisation of lung func-
tion in those patients with lymphangioleiomyomatosis 
(LAM) [144–146]. These drugs are now licensed for use 
in the management of kidney AMLs, pulmonary LAM, 
SEGA, facial angiofibromata and refractory epilepsy in 
the context of TSC. Temporary use of mTOR inhibitors 
for cardiac rhabdomyomas that are impacting on cardiac 
function and are inoperable can be considered; but there 
remains paucity of evidence [147].

TBC1D7‑associated neurodevelopmental disorder
TBC1D7 binds to TSC1 to maintain the integrity of the 
TSC1-TSC2 complex (Fig. 2). Biallelic homozygous path-
ogenic variants in TBC1D7 were identified in the children 
of consanguineous parents from two separate families, 
consistent with autosomal recessive inheritance [148, 
149]. The phenotype included macrocephaly and mild 
intellectual disability. Head size was enlarged at birth and 
remained greater than the 98th centile. Functional stud-
ies demonstrated loss of expression on TBC1D7 and an 
increase in mTORC1 pathway activity. A further patient 
was identified in a study of patients with undiagnosed 
neurodevelopmental disorders who had compound het-
erozygous variants in TBC1D7, again consistent with 
a loss-of-function disease mechanism [150]. Schrotter 
et  al., reported the generation of a TBC1D7 knock-out 
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mouse in which they demonstrated increased mTORC1 
signalling and identified brain overgrowth due to thick-
ening of the cerebral cortex, a phenotype consistent with 
that found in humans [151]. The paucity of reports sug-
gests that variants in TBC1D7 are a very rare cause of 
macrocephaly and intellectual disability.

RHEB‑associated neurodevelopmental disorder
RHEB belongs to a superfamily of small GTPase pro-
teins [152], is highly conserved and activates mTORC1 
through direct interaction (Fig. 2). Of the two RHEB pro-
teins, RHEB (a.k.a RHEB1) and RHEB like 1 (RHEBL1; 
a.k.a RHEB2), found in mammalian cells, the ubiqui-
tously expressed RHEB is required for the mid-stage 
embryonic viability and myelination of the brain, whilst 

RHEBL1 was found not to be essential for mTORC1 or 
mTORC2 signalling, or myelination [153].

Three cases with de novo germline hyperactivating 
RHEB variants have been described: two were siblings 
(suggesting parental gonadal mosaicism) and all had a 
heterozygous missense variant in the Ras effector domain 
of the protein [154]. All three individuals presented with 
early brain overgrowth and macrocephaly (+ 2.5/ + 3 SD) 
in childhood and had short stature (− 2 to − SD). They 
had severe to profound intellectual disability and ASD. 
Two had epilepsy, the third had epileptiform discharges 
on EEG but no seizures. Expression of these hyperacti-
vating Rheb mutations in vivo in zebrafish (Danio rerio) 
and mice recapitulated migrational defects, increase in 
neuronal soma size, macrocephaly and seizures. These 

Fig. 5  Neurological manifestations of TSC. 34-year-old female TSC patient with a germline TSC1 null mutation (Pro266ArgfsTer5). T2w (A) 
and postcontrast T1w (B) MRI images showing a large enhancing mass (SEGA) at the foramen of Monro with obstructive hydrocephalus 
and surrounding oedema. Background multiple cortical tubers were present, one of which is seen in the right frontal lobe (white arrow). C Histology 
of subependymal giant cell astrocytoma showing of spindle and epithelioid cells with abundant eosinophilic cytoplasm. D Immunohistochemistry 
for thyroid transcription factor 1 (TTF-1) displays expression in the nuclei. Bar: 50 mm
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phenotypes were rescued by treatment with rapamycin, 
supporting the hypothesis of a dominant gain-of-func-
tion effect of these Rheb mutations [154].

Current treatments for patients affected by RHEB-
related epilepsy include escalation of antiseizure medica-
tion and epilepsy surgery for focal cortical dysplasia type 
IIA/B (FCDII; see below). In hemimegalencephaly or 
megalencephaly, a surgical procedure called hemispher-
otomy or functional hemispherectomy is required to 
control seizures. This involves the surgical disconnection 
of one region or hemisphere, whilst leaving the discon-
nected brain within the skull. In other cases, an anatomi-
cal hemispherectomy is required. Surgical outcomes vary 
depending on whether there is contralateral involvement 
but can achieve a seizure-free rate of up to 50–60% of 
patients and significant improvement in seizure control 
in another 10–15% (reviewed in [155]).

Smith‑Kingsmore syndrome
Germline gain-of-function MTOR variants cause Smith-
Kingsmore syndrome (SKS). SKS is an autosomal 
dominant, ultrarare neurodevelopmental disorder char-
acterised by variable learning disability in combination 
with (prenatal onset) megalencephaly (head circumfer-
ence is generally at least + 2 SD) [156–158]. Additional 
SKS clinical features include ASD, brain MRI anomalies 
(particularly cortical dysplasia), afebrile seizures, sleep 
disturbance, vascular abnormalities and hypotonia [159].

A hotspot variant, targeting amino acid residue 1799 
(NM_004958.4: c. 5395G > A p.(Gly1799Lys), is currently 
the most common SKS variant [160, 161]. This variant is 
also an established somatic driver variant, identified in a 
range of different cancers [162]. Other missense variants, 
with functional data supporting causality in SKS, include 
Cys1483Phe [156]; Phe1888Cys and Met2327Ile [163].

Although data are limited, there is currently no evi-
dence that individuals with SKS are at an increased risk 
of developing cancer and there are no SKS-specific estab-
lished cancer screening programmes.

Whilst there has been considerable interest in the effi-
cacy of mTOR inhibitors in SKS, there are currently no 
published data to support their widespread use. This is, in 
part, because SKS is ultrarare and, in part, because quan-
tification of a response to treatment is challenging where 
impact on cognition and behaviour is being monitored.

Birt‑Hogg‑Dubé syndrome
Birt-Hogg-Dubé (BHD) syndrome is a rare inherited 
genetic disorder with an estimated prevalence of 1 in 
200,000 [164, 165]. Over 500 families with BHD have 
been reported world-wide. FLCN is the causative gene 
of BHD and functions as a tumour suppressor that 
regulates cell growth, energy/nutrient homeostasis, 

metabolism and autophagy (reviewed in [166]). BHD 
predisposes patients to benign skin lesions called fibro-
folliculomas that form from hair follicles on the face, 
neck and chest [167]. BHD patients are also at risk of 
developing slow growing kidney tumours after 30 years 
of age and in less than a third of patients. Hybrid onco-
cytic renal tumours are characteristic to BHD [168]. 
The recommendation is that these tumours are moni-
tored yearly, and kidney neoplasms greater than 3  cm 
in diameter are surgically removed. At the time of sur-
gery, smaller neoplasms are typically removed to avoid 
further surgery later in life. If left, these tumours can 
progress into renal cell carcinoma (management of dis-
ease can be found here [169]). This 3 cm rule is consid-
ered an appropriate measure of when to remove these 
neoplasms by surgery. However more recently, a renal 
tumour less than 3 cm was found to be metastatic, indi-
cating that tumour size might not be a reliable readout 
for some BHD patients. This study highlights a clinical 
need for better diagnostic markers of disease progres-
sion in BHD. Another key feature of BHD is lung cysts, 
where patients are at risk of spontaneous lung collapse 
(pneumothorax) that may need treatment to allow the 
lungs to re-inflate by needle  aspiration or chest tube 
insertion [167].

FLCN is thought to play a central role in orchestrating 
homeostatic balance of energy and nutrients within cells 
as they grow. To do this, FLCN associates with large pro-
tein complexes on the surface of lysosomal membranes 
that regulate mTORC1 (Fig.  2) [31]. The Rag-Ragulator 
complex on the membrane surface of lysosomes has 
been progressively elucidated over the last few decades 
and shows direct association of FLCN to this complex 
(reviewed in [166]). Loss-of-function mutations in FLCN 
impair energy and nutrient sensing and signal transduc-
tion at lysosomes causing dysregulated mTORC1 signal-
ling. FLCN-deficient cells then lose homeostatic balance 
and become metabolically challenged, likely the main 
driver of tumour growth. In a kidney specific FLCN 
knockdown mouse model, mTOR inhibition with rapa-
mycin was found to reduce the enlarged size of the poly-
cystic kidneys that developed [170]. More recently, it was 
uncovered that loss of FLCN alters mTORC1-directed 
phosphorylation of downstream substrates to favour 
TFEB phosphorylation [171]. This results in constitu-
tive activation of TFEB (a master regulator of lysosomal 
biogenesis and autophagy) and is considered to promote 
disease features associated with BHD. Supporting this, in 
a kidney-specific BHD mouse model, it was shown that 
TFEB depletion rescued cysts formation and enlargement 
of the kidneys [171], suggesting that mTORC1 hyper-
activity towards TFEB is a central driver of BHD. While 
major advances have been made in the understanding of 
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FLCN at the molecular level, no specific treatment for 
BHD patients is currently available.

GATORopathies
GATOR1 possesses GAP activity towards the Rag small 
G proteins that inhibit mTORC1 (Fig. 2), thereby repress-
ing cell growth. GATOR1 is composed of the subunits 
Dishevelled, Egl-10, Pleckstrin domain-containing pro-
tein 5 (DEPDC5), nitrogen permease regulator-like 2 
and 3 (NPRL2, NPRL3). Heterozygous pathogenic vari-
ants in DEPDC5, NPRL2 and NPRL3 are a major cause 
of focal epilepsy and are collectively classified as “GATO-
Ropathies”, with a prevalence of 0.2–3% for deleterious 
DEPDC5 variants in large international collaborative 
studies [172, 173]. DEPDC5 variants account for most 
GATOR1-related epilepsies (83%), possibly due to the 
greater length of the DEPDC5 transcript [174]. Loss-of-
function variants account for 60–70% of mutations and 
result in loss of inhibition of mTORC1. The remaining 
30% of the mutations are missense variants, more com-
monly associated with non-lesional epilepsies [175] and 
not associated with mTORC1 hyperactivation.

GATORopathies display incomplete penetrance, inter-
familial variability and predominant central nervous sys-
tem phenotypic expression (reviewed in [176]): up to 60% 
are dominantly inherited from seizure-free parents, and 
present as a broad spectrum of lesional and non-lesional 
focal epilepsies, ranging from the paradigmatic familial 
focal epilepsy with variable foci (FFEVF) to frontal and 
temporal lobe epilepsies and epilepsy with centrotem-
poral spikes. No distinct phenotypic characteristics dis-
tinguish individuals with DEPDC5, NPRL2 and NPRL3 
mutations. The age-of-onset ranges from childhood/
adolescence to older than 50 years, about half experience 
seizures out of sleep and the majority suffer from drug 
resistant epilepsy [174, 177]. Individuals with lesional 
GATORopathies have been reported as having malforma-
tions of cortical development (MCD), including bottom 
of sulcus dysplasia (BOSD), FCD type I and II, hemi-
megalencephaly (HME), polymicrogyria, and subcorti-
cal band heterotopia, with FCDII as the most common 
MCD. Associated cognitive and psychiatric comorbidi-
ties are common, with 40% affected by psychiatric dis-
orders, 9% having comorbid ASD and recent reports 
of ASD only phenotypes. Patients carrying GATOR1 
subcomplex mutations are at increased risk of sudden 
unexpected death in epilepsy (SUDEP), although further 
studies are required to elucidate whether GATOR1 com-
plex mutations directly influences SUDEP (e.g. through 
alteration of cardiovascular expression of DEPDC5 and 
NPRL3) or whether the increased prevalence of SUDEP 
in GATORopathies simply reflects the severity of the epi-
lepsy expression (174, 178–181).

Favourable epilepsy surgical outcomes have been 
reported in patients with GATOR-related epilepsies 
who underwent resective surgery (where 80% of patients 
achieved a good surgical outcome, Engel I or II) and 
modern surgical techniques such as laser interstitial ther-
mal ablation allow removal of multiple epileptic foci and 
have already shown promise in a case of epilepsy with 
variable foci due to an NPRL3 mutation [182].

mTOR inhibitors have shown efficacy in GATORopa-
thies involving a loss-of-function mechanisms in both 
preclinical models [176] and rare human cases [183] and 
represent a promising therapeutic strategy to lower sei-
zure frequency and reduce SUDEP risk in patients who 
are unsuitable or have failed resective surgery.

KPTN‑related disorder
KPTN-related disorder is an autosomal recessive dis-
order associated with germline variants in KPTN (pre-
viously known as kaptin), a component of the mTOR 
regulatory complex KICSTOR that also includes SZT2, 
ITFG2 and KICS2 (Fig.  2) [184]. KPTN-related disor-
der is rare, and its prevalence unknown. The disorder 
was originally delineated in the Ohio Anabaptist (Amish 
and Mennonite) communities in 2014 [184]. To date, 61 
individuals from 32 families (including 16 of Anabaptist 
heritage) have been identified associated with 20 biallelic 
pathogenic or likely pathogenic KPTN variants.

The condition is characterised by global developmental 
delay, hypotonia in infancy, mild-to-profound intellectual 
disability, neurobehavioural/psychiatric manifestations 
(including anxiety and findings associated with ASD 
such as stereotypies, hyperactivity, repetitive speech, and 
impaired social communication), characteristic craniofa-
cial appearance (frontal bossing, long face with promi-
nent chin, broad nasal tip and hooded eyelids) (Fig. 6A), 
seizures and post-natal progressive macrocephaly with 
occipitofrontal head circumference (OFC) measurements 
up to + 6.1 SDs in adulthood. Neuroimaging findings typ-
ically comprise of a globally enlarged brain structure with 
otherwise normal morphology. Other more variable fea-
tures include recurrent upper and lower respiratory tract 
infections, conductive hearing impairment, strabismus, 
nystagmus, ketotic hypoglycemia, thyroid dysfunction, 
early puberty, mild skeletal manifestations, hepatomegaly 
and splenomegaly [184–190].

OFC measurements are usually within normal limits at 
birth, but unlike other megalencephaly syndromes, OFC 
rapidly increases over the first two years of life (Fig. 6B), 
with ~ 70% of affected adults having an OFC > 2 SDs. 
Although KPTN heterozygous carriers are clinically unaf-
fected, OFC measurements are increased when compared 
to population OFC. Around half of affected individuals 
develop seizures, either generalized tonic–clonic seizures 
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alone, or with absence and/or complex partial seizures. 
Seizure onset can occur at any age and seizures are often 
refractory to polytherapy, with no anti-seizure medica-
tions identified as having greater efficacy [190].

Kptn knockout (KO) mice show increased mTOR sig-
nalling in the brain downstream of Kptn that is rapamy-
cin sensitive and display many of the key KPTN-related 
disorder phenotypes, including brain overgrowth, behav-
ioural abnormalities, and cognitive deficits. Differenti-
ated human induced pluripotent stem cell models of the 
disorder also display transcriptional and biochemical evi-
dence for altered mTOR pathway signalling, supporting 
the role of KPTN in regulating mTORC1 [190].

Interestingly, biallelic variants in SZT2 also cause a dis-
tinct but similar rare neurodevelopmental disorder char-
acterised by severe early-onset epileptic encephalopathy, 
global developmental delay, structural brain abnormali-
ties such as thick and short corpus callosum and macro-
cephaly [191, 192]. Szt2 KO mice display epileptogenesis 
and increased mTOR signalling in the brain [193, 194].

Rare genetic diseases caused by somatic mutations 
in mTOR pathway genes
Focal cortical dysplasia type IIA/B, hemimegalencephaly 
and megalencephaly
Postzygotic (or somatic) mutations in mTOR-pathway 
genes from human brain tissue were first shown to be a 
major cause of large cortical malformations (HME and 
megalencephaly ME; Figs. 7, 8), and later also identified 
in smaller cortical malformations (focal cortical dysplasia 
type IIA/B (FCDIIA/B), BOSD, where they arise in neural 
progenitor cells at a later stage of development and cause 
a clonal population of mutated cells (Fig.  8) (reviewed 

in [195–197]). The net effect of pathogenic variants is 
to lead to hyperactivation of mTORC1, either via a gain-
of-function heterozygous variant in MTOR or upstream 
activators (AKT3, PIK3CA, RHEB), or in rare cases via 
a double-hit inactivating mutation in a repressor gene 
(DEPDC5, TSC1/2 and NPRL3) (Fig.  2) [198]. In FCD, 
pathogenic variants are found in dysmorphic neurons or 
balloon cells (only FCDIIB) (Fig.  9), whilst in HME/ME 
glial cells also carry mutations, implying these arose in 
earlier progenitor cells during development. The size of 
the cortical malformation is directly related to the tim-
ing of the mutational hit and the variant load: in 80% of 
FCDIIA/B individuals, less than 5% of cortical cells carry 
a pathogenic variant (corresponding to a variant allele 
frequency of < 2.5%) and high read depth sequencing (at 
least 1000X) is required to improve diagnostic yield. In 
HME/ME variant allele frequency is higher, with up to 
60% of cells carrying a pathogenic variant [195].

Cortical malformations are associated with medi-
cally intractable focal epilepsy arising from childhood to 
early adulthood, with FCD-related epilepsies represent-
ing 9% of the epilepsy surgical population [199]. Surgi-
cal resection or thermal ablation of FCDs is associated 
with favourable outcomes (Engel I and II in 70–80% of 
patients) in drug refractory cases (reviewed in [177]). 
Within the dysplastic area, the region with the highest 
variant load is associated with maximal epileptogenicity 
[200, 201]: detection of the mutation gradient within the 
epileptogenic zone, e.g., through testing depth electrode-
derived tissue [202] and removal of the area with the 
highest mutation load may improve surgical outcomes.

Whether mTOR inhibitors are safe and effective in 
patients with FCD has been addressed in individual case 

Fig. 6  Clinical manifestations of KPTN-related disorder. A Craniofacial appearance of a 19-year-old male with KPTN-related disorder, a macrocephalic 
neurodevelopmental disorder with subtle facial dysmorphology, including frontal bossing, a prominent chin, small downslanting palpebral fissures 
and a broad nasal tip. Reproduced from [184]. B Occipitofrontal circumference in centimeters for a male individual with KPTN-related disorder. OFC 
increased from below the 50th centile (mean) at birth to over two standard deviations (SD) above the mean by the age of two years (blue line). 
Centiles given in brackets. Reproduced from [190]
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reports [203, 204], two completed small trials (14 patients 
in [205], 16 patients in [206]) and one open label trial 
[207]. Whilst mTOR inhibitors were deemed well toler-
ated, reduction in seizures in children with FCD did not 
reach the predefined level of statistical significance in the 
open-label trials and only one patient underwent genetic 
testing and had a confirmed mosaic MTOR variant [203]. 
Further studies are necessary to identify novel diagnos-
tic techniques to increase presurgical diagnostic yield 
of genetic testing, and those patients who would benefit 
most from mTOR inhibition.

PIK3CA‑related overgrowth spectrum
Post-zygotic mosaic (somatic) activating pathogenic 
variants in PIK3CA may result in diverse developmen-
tal disorders depending on the embryological timing 
of the variant, the tissues and site involved, the type of 
pathogenic variant and the mosaic ‘load’ of the activating 
pathogenic variant. These conditions have been grouped 
under the umbrella term ‘PIK3CA- Related Overgrowth 
Spectrum’ (PROS) [208]. The clinical presentation may 
be as minimal as macrodactyly of a single digit or as com-
plex as CLOVES (Congenital  Lipomatous  Overgrowth, 
Vascular malformations, Epidermal naevi, Spinal/skeletal 
anomalies/scoliosis) or MCAP (Megalencephaly-CAP-
illary malformation) (Fig.  10). PROS is associated with 
multiple complications and disabilities including pro-
gressive overgrowth, increased risk of infections (cellu-
litis) and venous malformation with an increased risk of 

superficial and deep thrombosis. The malformations are 
often present at birth but may increase/evolve over time 
[209, 210].

In view of the broad spectrum of presentation it is very 
difficult to assess the prevalence of these conditions. One 
recent paper cited an incidence of 1 in 27,000 [211].

The management of this cohort is mainly supportive 
but there is an increasing role for mTOR inhibitors, e.g., 
sirolimus, which can have a moderating effect on the 
progression of the disease [212, 213]. Moreover, clinical 
trials using agents that specifically target PI3K (e.g. alpe-
lisib) are underway for PROS, with some positive results 
to date [214, 215].

Lymphangioleiomyomatosis
Loss-of-function mutations in TSC1 or TSC2 cause 
LAM, a systemic disease causing lung cysts and lym-
phatic abnormalities [216]. LAM occurs as a rare spo-
radic disease but also affects over half of adult women 
with TSC [217]. The disease is strikingly female-spe-
cific, with the sporadic form appearing completely 
restricted to women. The overall prevalence of LAM is 
around 20 per million women, with no known ethnic or 
racial predominance [218, 219]. Sporadic LAM results 
from sequential somatic mutations in TSC2, whereas 
TSC-LAM is the result of germline TSC1/2 muta-
tions followed by loss of heterozygosity with muta-
tions spread across the whole gene [220, 221]. Both 
TSC1 or TSC2 mutations cause TSC-LAM, although 

Fig. 7  Hemimegalencephaly MRI. MRI from a female at age 2 months. A, B T2w and T2w images showing enlargement of the right occipital 
and adjacent posterior temporal/parietal lobes with diffuse thickening of the cortex, abnormal shallow overlying sulcation and underlying white 
matter signal abnormality. Findings are consistent with posterior quadrantic dysplasia (localised or hemi hemimegalencephaly)
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LAM is more common and more severe in those with 
TSC2 mutations [222]. In all cases, loss-of-function of 
the TSC1/TSC2/TBC1D7 complex results in activa-
tion of mTORC1 and phosphorylation of downstream 
substrates including p70S6K and 4E-BP1 [119, 223]. 
These mutations occur in a yet unknown mesenchymal 
cell which, as a result of mTOR dysregulation, clon-
ally expands and acquires a metastatic phenotype with 
a tropism for the lungs and axial lymphatics, whilst 

mTORC1-driven glycolytic (Warburg) metabolism 
allows the LAM cells to survive in these environments 
[224].

LAM cells, likely by chemokine production, attract 
fibroblasts, alveolar type 2 cells, inflammatory and lym-
phatic endothelial cells to form LAM nodules within 
the lung [225–229]. LAM nodules, probably by protease 
secretion, form cysts causing recurrent pneumotho-
rax, progressive airflow obstruction and impairment of 

Fig. 8  Hemimegalencephaly histology. A, B Complex histological abnormalities in posterior quadrantic dysplasia (localised or hemi 
hemimegalencephaly) (Luxol fast blue-Nissl staining). The cortical lamination is abnormal with myelinated fibre layer in the middle of the cortex. 
The neurons are almost exclusively pyramidal cells with absence of granular cell layers. C The lamina 1 contains increased number of cells, 
occasionally pyramidal cells, and in areas parallel running myelinated fibres are seen. D In places the grey and white matter demarcation 
is blurred due to large neurons splaying into the subcortical white matter, immunohistochemistry for neuronal nuclear protein N—NeuN). E 
Immunohistochemistry for NeuN. F Occasional the heterotopic nodules are also noted. (Bars A, B, D, E: 1 mm; Bars C, F: 100 µm)
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ventilation perfusion matching [230–232]. Patients expe-
rience a loss of forced expired volume in 1  s (FEV1) of 
around 120  mL/year; over six times faster than healthy 
people [233]. Lymphatic obstruction causes chylous col-
lections in the abdomen and thorax in around 20% of 
patients (Fig. 11) [216].

LAM is incurable, but the mTOR inhibitor rapamy-
cin reduces lung function loss and is highly effective for 
chylous collections and other aspects of TSC [234, 235]. 
However, the drug does not completely suppress dis-
ease activity, possibly due to non-mTOR dysregulated 

wild-type cells in LAM nodules [236, 237]. Airflow 
obstruction can be treated with bronchodilators, with 
supplementary oxygen and pulmonary transplantation 
sometimes required [216].

Proteus syndrome
Proteus syndrome is a rare overgrowth syndrome (~ 200 
reported cases worldwide) caused by a gain-of-function 
somatic mutation (c.49G > A, p.Glu17Lys) in the AKT 
serine/threonine kinase 1 (AKT1) gene [238]. The net 
effect of the mutation results in AKT1 activation, leading 

Fig. 9  Focal cortical dysplasia (FCD) type IIb. A Slicing of the lesion after formalin fixation reveals blurred demarcation between cortex and white 
matter, confirmed by Luxol fast blue-Nissl staining (LFB-N) (B), also showing neurons splaying into the white matter. C Dyslamination of the cortex 
with presence of large (dysmorphic) neurons by immunohistochemistry for neuronal nuclear protein N (NeuN). D The dysmorphic neurons 
have abnormal orientation and frequently show chromatolysis (haematoxylin & eosin staining). E The ballooned cells are most common 
in the subcortical white matter (LFB-N). F Immunohistochemistry for CD34 may label glial cells with bushy ramified processes around some 
of the balloon cells. Bar A: 1 cm, Bars B, C: 1 mm; Bars D-F: 100 mm
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to activation of mTORC1 signalling, promoting growth 
and limiting apoptosis in nearly every region of the body 
[239]. Starting in infancy, proteus syndrome patients pre-
sent with asymmetric overgrowth, connective tissue nevi, 
epidermal nevi, cranial hyperostosis, visceral hamarto-
mas, and vascular anomalies. A cerebriform connective 
tissue nevus (CCTN) of the soles may be a specific find-
ing but is not pathognomonic. The disease is progressive 
and results in death [240] by compression or distortion of 

vital structures, thromboembolism, malignant transfor-
mation of overgrowing tissue or respiratory disease from 
pulmonary cysts [241]. Intellectual disability and seizures 
may be the presenting features in individuals with the 
less common central nervous system manifestations of 
Proteus syndrome, including hemimegalencephaly, cer-
ebral arteriovenous malformations, abnormal grey-white 
matter differentiation, neuronal migration disorders, cal-
losal dysgenesis, and hydrocephalus [242, 243].

Fig. 10  Clinical manifestations of PROS. A, B A 44-year-old male with CLOVES—congenital lipomatous malformation of the trunk, segmental 
overgrowth of both legs, extensive vascular and venous malformations, and scoliosis. There is macrodactyly of the toes on both feet 
with typical appearance (wide sandal gap and relatively short hallux). Skin biopsy of affected tissue identified a pathogenic variant in PIK3CA 
(c.1039-1041AAA. P.Val346_347ins Lys) in 50% of cells. C, D Extensive venous malformations of the right hand with leaking lymphangiectactic 
blisters at the tips of the index and middle finger and macrodactyly. Skin biopsy of the affected tissue identified a gain-of-function pathogenic 
variant in PIK3CA (c.1633G > A. P.Glu545Lys) in 13% of cells. E, F A 40-year-old female with a lympho-veno-vascular malformation of the right thigh 
and buttock and segmental overgrowth of the right leg (diagnosed as Klippel–Trénaunay syndrome). Current problems with pain and leakage 
from lymphangiectatic blisters (seen in the images). Skin biopsy identified a pathogenic variant in PIK3CA c.3140A > G. p.His1047arg in 4% of cells
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Until recently, only palliative treatment was available 
for individuals with Proteus syndrome. Recently, miran-
sertib (ARQ 092) an oral, allosteric, selective pan-AKT 
inhibitor was identified, trialled in patients with ovarian 
cancers bearing an activating AKT1 variant and reported 
showing favourable efficacy and side effects [244, 245]. 
Furthermore, six Proteus syndrome patients were treated 
with 5 mg/m2/day of miransertib (1/7th oncologic dose) 
in a pilot study, which was well tolerated and achieved 
the primary endpoint of a 50% reduction in the tissue lev-
els of AKT phosphorylation from biopsies in 5/6 affected 
individuals, as well as a decrease in a cerebriform con-
nective tissue nevus and a reduction in pain in children 
[246]. An adult man was subsequently reported being 
treated on a compassionate scheme with miransertib 
titrated up to 25  mg/m2/day for one year, resulting in 
improved general well-being, increased mobility, reduced 
CCTN and a whole-body MRI showing no apparent dis-
ease progression [241].

Current mechanism‑targeting treatments for mTOR 
pathway diseases
Everolimus and sirolimus for TSC and LAM
Clinical guidelines align well with the clinical trial evi-
dence supporting the use of everolimus and sirolimus 
in TSC and LAM [125]. The use of everolimus in TSC is 
supported by a range of clinical trials. The EXIST-1 trial, 
a phase III, randomized, placebo-controlled trial dem-
onstrated that everolimus significantly reduced the size 

of SEGAs in individuals with TSC [247]. Response rates 
(≥ 50% reduction in target volume relative to baseline) 
were higher in the everolimus group compared to pla-
cebo (35% vs. 0%). The EXIST-2 trial showed that everoli-
mus significantly reduced the volume of kidney AMLs 
compared to placebo. The AML response rate (≥ 50% 
reduction in total volume of target AML relative to base-
line) was significantly higher in the everolimus group 
(42% vs. 0%) [248]. The EXIST-3 trial evaluated the effi-
cacy and safety of everolimus in patients with TSC who 
have drug-resistant epilepsy. Everolimus significantly 
reduced seizure frequency in TSC patients with drug-
resistant epilepsy, with both high-exposure and low-
exposure groups showing benefit over placebo. However, 
the beneficial effects do not continue after treatment 
ends. The treatment was generally well-tolerated, with a 
manageable safety profile [249]. Everolimus is approved 
for treating SEGAs, kidney AMLs and TSC-related 
refractory epilepsy by both FDA and EMA. There are no 
strong guidelines for its use in LAM, and it is used off-
label based on limited evidence.

Sirolimus has demonstrated efficacy in reducing SEGA 
volume in TSC patients in a non-randomized, open-label 
study [250]. It is used off-label for TSC-related tumours 
when everolimus is not suitable or available.

Sirolimus is FDA, EMA and MHRA approved for the 
treatment of LAM. The MILES trial, a phase III, ran-
domized, placebo-controlled trial demonstrated that 
sirolimus stabilizes lung function decline in individuals 

Fig. 11  Clinical manifestations of LAM. Coronal CT scan of the chest and abdomen of a patient with LAM. Soft tissue windows (left) show a large, 
complex abdominal lymphangioleiomyoma (white arrows) and a left sided chylous pleural effusion (dashed arrow). Lung windows (right) show 
multiple air-filled lung cysts distributed throughout the lung parenchyma (some highlighted by small arrows)
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with LAM. Patients receiving sirolimus had a signifi-
cantly slower rate of decline in FEV1 compared to pla-
cebo [146]. The use of sirolimus is recommended for 
LAM patients with abnormal or declining lung func-
tion, chylous effusions, or symptomatic LAM [251].

Topical rapamycin is an effective treatment option for 
facial angiofibroma in TSC [252]. A preparation of topi-
cal sirolimus marketed as Hyftor is now approved by 
the FDA, EMA and MHRA, although funding for pre-
scription on the NHS has yet to be approved.

Alpelisib for PROS
By the time PIK3CA variants were identified as the 
genetic cause of PROS, targeted PI3K inhibitors were 
already advancing in oncology [253]. Hopes were 
therefore high that such therapies could eventually be 
repurposed as effective treatments for PROS. In 2018, 
this seemed within reach after an initial report of sub-
stantial benefit to 19 PROS patients, including two 
with life-threatening disease, upon treatment with the 
PI3Kα-selective inhibitor alpelisib/Piqray® [254]. This 
was an unregistered index study, however, and subse-
quent follow-up studies have highlighted the need for 
caution and, most importantly, a randomised controlled 
trial (RCT). A retrospective study (EPIK-P1) of patients 
with severe or life-threatening PROS with managed 
access to alpelisib reported that 38% of 32 studied 
individuals presented with a measurable reduction 
in “target lesion” volume and improvements in other 
symptoms; however, 39% of the study population suf-
fered from alpelisib-related adverse effects [214]. Such 
adverse effects are unsurprising given the importance 
of PI3Kα for normal cell function. Moreover, although 
alpelisib acts preferentially on PI3Kα, at clinically rel-
evant doses it is also likely to inhibit PI3Kβ/δ/γ [255]. 
This may contribute to some of the reported adverse 
effects, especially those involving the immune system. 
Uncertainty therefore remains regarding alpelisib’s 
therapeutic window, safety and overall efficacy in PROS 
where life-long treatment is likely to be required [256]. 
Reflecting this uncertainty, EMA recently highlighted 
lack of long-term safety data, particularly in relation 
to growth and development, as one of the major objec-
tions precluding conditional marketing authorisation of 
alpelisib for PROS [257]. By contrast, the results from 
EPIK-P1 were sufficient for accelerated FDA approval 
of alpelisib for the treatment of adults and children 
(2 years of age or older) with severe PROS [258]. Ulti-
mately, however, a comprehensive and unbiased evalu-
ation of alpelisib in PROS will only emerge once the 
ongoing RCT, EPIK-P2 (NCT04589650), is completed 
in 2031.

Leniolisib for APDS
The characterisation of the genetic defect of APDS has 
allowed the repurposing of PI3K inhibitors previously 
used in haematological malignancies (reviewed in [255]). 
Initial clinical trials, however, were complicated by con-
siderable toxicities (hepatitis, colitis, pneumonitis) and 
infection susceptibility [259]. In 2014 idelalisib became 
the first FDA-approved PI3Kdelta inhibitor licensed to 
treat relapsed chronic lymphatic leukaemia as a third 
line-treatment for follicular lymphoma and small lym-
phocytic lymphoma [255]. Leniolisib, a more selective 
PI3Kdelta inhibitor, was repurposed and proven effective 
to treat APDS [50, 260]. This new, targeted therapy was 
granted orphan drug designation status by the EMA in 
late 2021 and is currently undergoing evaluation by NICE 
in the UK. Medium term safety and tolerability appears 
favourable [261], but vigilance regarding any impact on 
lymphoma predisposition will be essential [75].

Drugs in development for mTOR pathway diseases
Development of mTOR inhibitors has rapidly progressed 
since the discovery of rapamycin and other allosteric 
mTOR inhibitor rapalogs for clinical use (sirolimus, 
everolimus, temsirolimus) [262]. Second generation 
mTOR inhibitors, including torin-1, torin-2 and vistu-
sertib, are ATP competitive mTOR kinase domain inhibi-
tors, competing with ATP for the catalytic site, which 
target both mTORC1 and mTORC2. Third generation 
mTOR inhibitors, RapaLink 1 and 2, combine the allos-
teric mTORC1 specificity of rapamycin with an mTOR 
kinase domain inhibitor [263]. An ingenious strategy has 
also been developed using a brain impermeable analogue 
of FK506 known as RapaBlock, to restrict the activity of 
RapaLink 1 to the brain [264]. Despite these advances in 
the development of second and third generation mTOR 
inhibitors, they have yet to be used in clinical trials for 
mTOR pathway diseases.

A number of drug trials for mTOR pathway diseases are 
currently ongoing. Metformin activates AMPK resulting 
in inhibition of mTORC1 [265]. Metformin treatment 
reduced SEGA volume and seizure frequency in a small 
randomised double-blind placebo-controlled trial in TSC 
[266]. More recently, the NIHR released a commissioned 
call to address whether metformin is effective in reducing 
seizures in TSC [267].

In PHTS trials of mTOR inhibitors (sirolimus, everoli-
mus) are reported to be tolerated and have some efficacy 
in treating cutaneous and gastrointestinal features and 
improving cerebellar function, as well as in treatment of 
vascular anomalies [79–81]. A trial using sirolimus for 
treatment of colon polyps for Cowden syndrome is ongo-
ing (ClinicalTrials.gov ID: NCT04094675). Improvement 
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in some measures, but not reaching primary endpoint 
was demonstrated in a trial of treatment of everolimus 
for neurocognitive symptoms in PHTS [79]. Two patients 
with germline PTEN mutations and breast cancer 
showed a dramatic response to treatment with the AKT 
inhibitor Capivasertib [82].

There is significant use of mTOR inhibitors off label 
in the treatment of mTOR pathway diseases. In the UK, 
sirolimus is currently under consideration by NHS Clini-
cal Commissioning as an intervention for extracranial 
slow-flow vascular malformations that are refractory to 
standard therapies in PROS. An open-label observational 
study was performed in five patients with drug-resist-
ant epilepsy caused by variants in the GATOR1 com-
plex genes DEPDC5 and NPRL3. All four patients with 
DEPDC5 variants showed reduced seizure frequency, 
while seizures worsened in the NPRL3 patient [268].

Challenges and future opportunities in mTOR 
pathway diseases
Underlying mechanisms
Since the discovery of mTOR in the 1990s, research into 
this kinase, the complexes it forms, and its regulatory 
mechanisms has transformed the way we understand 
fundamental processes in cell biology. However, although 
we have an exceptional knowledge of the function of 
the core components of the pathway, the role and func-
tion of the downstream targets is much less understood. 
Whilst a handful of mTORC1 substrates (S6K, 4E-BP, 
ULK1, and TFEB), are well characterised, we have little 
understanding of the detailed regulatory mechanisms 
of the vast majority of direct and indirect mTORC1 tar-
gets. Phospho-proteomic studies in mammalian cell lines 
identified 85–174 proteins whose phosphorylation was 
regulated by mTOR [269–271]. A recent survey identified 
56 and 26 bona fide substrates of mTORC1 and mTORC2 
respectively [272]. Gene editing now provides the means 
to precisely mutate phosphosites in mTOR substrates to 
test their functional role in biology and their potential 
contibution to mTOR pathway diseases.

In the context of human disease, mTOR signalling 
touches upon nearly all aspects of medicine including 
immune disorders, cancer, metabolic disorders, neuro-
degeneration and neurodevelopmental diseases [11]. The 
major challenge now is to exploit our detailed knowledge 
of the molecular and cellular mechanisms of this pathway 
to improve understanding and provide new treatments 
for human disease. As a group, mTOR pathway diseases 
affect most tissues and organs and even individual dis-
eases can affect multiple tissues. We still have very little 
idea of why specific tissues are affected in diseases that 
are associated with the mTOR pathway. Recent tech-
nologies such as phospho-proteomics and single cell 

sequencing can be applied to analyse patient tissue and 
sophisticated disease models utilized to identify com-
mon and divergent targets, including potential biomark-
ers, that will provide deep insight the enigma of tissue 
specificity.

Cellular and animal models of mTOR pathway dis-
eases, by design, produce highly reproducible pheno-
types within and between experiments. This markedly 
contrasts with the clinical manifestations of mTOR 
pathway diseases, which are highly variable, often mak-
ing diagnostic criteria hard to define. Despite a common 
underlying molecular mechanism, the clinical presenta-
tion across mTOR pathway diseases is diverse, affecting 
the brain, kidney, lung, skin and haematopoietic system 
and this phenotypic heterogeneity is currently unex-
plained. Within individual mTOR pathway diseases there 
is also an unexplained broad clinical spectrum. In TSC 
for example, patients with, in some cases the exact same, 
loss-of-function mutations in TSC2 can have symptoms 
ranging from severe epilepsy starting in infancy to mild 
skin lesions [121, 124]. There is also little genotype–phe-
notype correlation between TSC gene variants and dis-
ease severity [121, 273]. This phenotypic heterogeneity 
presents major challenges to accurate prognoses and pre-
dicting the efficacy of existing drugs. The identification 
of genetic modifier loci in cystic fibrosis (CF) has shown 
not only that these contribute to the phenotypic hetero-
geneity in CF but that modifiers can be organ specific. 
Moreover, data integration approaches with CF-specific 
biospecimens has led to the identification of novel ther-
apeutic targets that have now been the subject of small 
molecule screens to develop modifier-directed therapies 
that are in pre-clinical studies [274–277]. Combined with 
well-defined patient populations, the rapidly falling cost 
of whole genome sequencing provides the opportunity to 
identify the genetic modifiers responsible for the broad 
heterogeneity in mTOR pathway diseases and utilise this 
knowledge to improve prognosis and develop precision 
medicine treatments.

mTOR pathway diseases associated with malformations 
of cortical development and intractable epilepsy, known 
as mTORopathies, cause the greatest morbidity and chal-
lenge to treatment [278]. Insight into the neurodevelop-
mental complexities in mTORopathies has been provided 
by mouse models [279, 280]. Conditional knockout of 
mTOR pathway genes has been complemented by in 
utero electroporation methods to model the genesis of 
cortical malformations in mTORopathies. CRISPR has 
recently been employed to inactivate Depdc5,  Tsc1 and 
Pten during mouse cortical development and directly 
compare the effects on cortical excitatory synaptic activ-
ity [281]. iPSCs and organoid models are also emerg-
ing as powerful tools to investigate the alterations in 
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neurodevelopment in mTORopathies directly in human 
cells, reviewed in [12].

Diagnosis and prognosis
Establishing a molecular diagnosis
Although diagnostic criteria are well established for 
mTOR pathway diseases, and targeted genetic testing or 
gene panel testing by whole genome sequencing (WGS) 
is available in England [282], primary clinical diagnosis 
is not always straightforward. Due to the significant phe-
notypic heterogeneity patients often present to a range 
of different clinical specialists and therefore require an 
astute physician to consider a genetic referral. Even when 
there is a clear clinical diagnosis, genetic testing may be 
negative; possible explanations include somatic mosai-
cism, complex structural variation, deep intronic variants 
or undiscovered genetic heterogeneity. For example, in 
those with a clinical diagnosis of TSC, pathogenic vari-
ants are identified using standard technology in around 
85% of patients, while somatic mosaicism for patho-
genic variants in TSC1 or TSC2 occurs in at least 10% of 
patients [283]. Access to deep sequencing technology in 
clinical care has proved highly successful in improving 
the diagnostic yield, offering more families the potential 
for more tailored offspring risks and prenatal or preim-
plantation genetic diagnosis [283].

In some health systems genetic testing may be una-
vailable because of funding or geographical issues [284], 
therefore depriving individuals of an accurate diagnosis 
and reproductive choice. Centralisation of funding for 
molecular testing in the UK has enabled more individuals 
to access testing in an equitable fashion [285].

Other challenges are presented when disease is caused 
by somatic mutations in inaccessible tissues, as in FCD; 
here diagnosis is probabilistic or confirmed after surgical 
resection and histological examination. Brain tissue can 
be hard to access for histological diagnosis without neu-
rosurgical procedures. Sensitive, deep sequencing tech-
nologies may allow accurate detection of low frequency 
somatic variation from depth EEG electrodes when tissue 
is not resected. Less invasive approaches under investi-
gation include high resolution neuroimaging combined 
with artificial intelligence to detect and classify subtle 
lesions.

Diagnostic biomarkers
As genetic testing is not always possible or successful 
or comprehensive, biomarkers detectable through non-
invasive methods are another potential way to diagnose 
mTOR pathway diseases and disease manifestations. Liq-
uid biopsies of peripheral blood or cerebrospinal fluid 
have promise. The best described example in the mTOR 
field is the use of serum VEGF-D as a marker for LAM 

diagnosis [286]. High serum VEGF-D levels can distin-
guish LAM patients from patients with other lung con-
ditions, such as pulmonary Langerhans’-cell histiocytosis 
and emphysema [287]. A serum VEGF-D threshold of 
800  pg/ml is the recommended cut-off for LAM diag-
nosis [251]. However, a low serum level cannot exclude 
a LAM diagnosis, while the utility of VEGF-D as a prog-
nostic marker is unclear [251], so additional biomarkers 
are still needed. Analysis of extracellular vesicles (EV) 
in blood is another cutting-edge technique undergoing 
evaluation. For example, differences in plasma EV pro-
tein cargo are seen in TSC patient samples compared to 
healthy controls [288].

For those conditions with brain involvement, imag-
ing and EEG markers can be useful in assessment. In the 
context of TSC, it was found that interictal fast ripples 
on scalp EEG could be a biomarker of epilepsy in chil-
dren [289]. Circulating serum miRNAs and isomiRs have 
potential in the early risk assessment of ASD and intellec-
tual disability development in TSC patients [290]. FCD 
is often not easy to diagnose and one study found MRI 
was unrevealing in a third of patients [291]. However, 
combining brain morphometric analyses such as voxel-
based or surface-based morphometry to extract imaging 
biomarker information could improve the detection of 
FCD lesions that are undetectable by MRI [292]. Overall, 
while promising, there is still substantial work to be done 
on identifying diagnostic and prognostic biomarkers of 
mTOR pathway diseases.

Phenotypic variability and stratified care
Secondary diagnosis refers to the detection of the indi-
vidual manifestations of disease once the primary diag-
nosis has been made. In common with many other rare 
diseases, mTOR pathway diseases show variability of 
expression and therefore all patients require screening 
for disease manifestations that they may never develop. 
Secondary diagnoses may not be evident at the time of 
presentation, for example the development of SEGA 
or TAND diagnoses [293] in children with TSC, or the 
growth of gastrointestinal polyps in PJS [93]. Currently, 
secondary diagnoses rely on serial monitoring and sys-
tematic screening, which may be expensive or invasive 
and challenging to perform in patients that are unable to 
cooperate with medical procedures.

Improving our understanding of phenotypic variabil-
ity, for example cancer susceptibility in PHTS and PJS, 
or epilepsy risk in TSC, would lead to more personalised 
approaches to management and treatment. Susceptibility 
to secondary manifestations of disease might be revealed 
by large-scale genome-wide association studies, as exem-
plified in the autosomal recessive multi-organ disease 
CF [294], or the identification of biomarkers including 
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radiological findings that predict the development or 
absence of complications. Given the phenotypic overlap 
between different mTOR pathway diseases, a specific 
mTOR pathway disease next generation sequencing panel 
in Genomics England National Genomic Test Directory 
would provide uniformity of access and diagnosis as well 
as an invaluable research resource.

Access to assessment and care
For families affected by mTOR pathway diseases, the 
multisystem nature of many of the conditions and the 
challenge of neurodevelopmental impairments is com-
pounded by fragmented care [295]. Care during child-
hood is usually overseen by a coordinating paediatrician 
in the UK, but transition to adulthood is a vulnerable 
time as multidisciplinary care is lost [296]. Optimising 
early recognition and management of these conditions 
has the potential to reduce the burden of developmen-
tal issues and learning difficulties. This is particularly 
pertinent in families where both parents and children 
are affected. Improving the coordination of care is a key 
recommendation of the UK Rare Disease Framework 
but requires bold commissioning decisions in a complex 
health system. The development of rare disease clinics 
that provide access to multiple specialists as a ’one-stop 
shop’ and access to clinical nurse specialists as points of 
contact may provide a solution to some of these difficul-
ties [297].

Creating patient cohorts
Diagnosis also attains vital importance in epidemiology 
and public health when measured at the population level. 
In this context, individuals with a specific diagnosis need 
to be identifiable within health system records. Conven-
tionally, this is achieved using diagnostic codes. Several 
coding systems pertain in different health systems. In the 
UK, World Health Organisation (WHO) International 
Statistical Classification of Diseases and Related Health 
Problems, Tenth Revision 5th Edition (ICD-10) codes are 
used in hospital care whilst the Systematised Nomencla-
ture of Medicine Clinical Terms (SNOMED CT) is preva-
lent in primary care. ICD-10 codes have been assigned 
to only 500 rare diseases and this presents a problem in 
assessing burden and in patient identification or insur-
ance reimbursement.

Coding representations to WHO may be made indi-
vidually, although the process can be time-consuming 
and requires considerable resources [298]. A global 
approach is more powerful and efficient but some coun-
tries have tackled the issue at a national level. The Rare 
Disease Coding project (2013–2019) in Germany sought 
to address this by first, adding and assigning ICD-10-GM 
codes for diseases listed in OrphaNet missing in ICD-10; 

and second, assigning Alpha-IDs to synonymous terms 
of rare diseases mapped to the same OrphaNet and ICD-
10-GM codes [299]. Once the coding problem has been 
solved, health records can be fully exploited for research 
and patient care.

There are still sparse data concerning epidemiology, 
natural history, treatment response, outcomes and health 
economics for most rare diseases. Importantly, knowl-
edge about most of these data constitutes a fundamental 
starting point for industry partnerships, which are vital 
for progress in rare disease therapeutics. In England, the 
National Diseases Registration Service (NDRS) collects 
data on rare diseases under Section  254 of the Health 
and Social Care Act and so, importantly, does not require 
patient consent. Given sufficiently high-quality electronic 
patient records and coding, NDRS data could be used to 
generate unbiased estimates of epidemiology and comor-
bidity and to reveal inequalities or disparities in access 
or treatment. Linkage to associated population datasets 
could provide data on mortality, patterns of prescribing 
and health service utilisation. To date, several rare dis-
ease research projects have been supported by NDRS, 
e.g. [300, 301], and a population-based approach offers 
obvious advantages over clinically held databases or 
pharmaceutical sponsored registries. Population-based 
registries also offer the opportunity to investigate genetic 
and environmental modifiers underpinning phenotypic 
heterogeneity, leading to the development of precision 
medicine-based diagnostics and interventions. In the 
future, national registries could be a vehicle to identify 
geographically dispersed patients with specific character-
istics for clinical trials.

Personalised medicine
Prediction of treatment response is another key area for 
advancement in rare diseases alongside diagnosis and 
prognosis. Using the example of TSC, not all patients that 
meet the criteria for the prescription of mTOR inhibitors 
will respond. The response rate in those with enlarging 
renal AMLs is high (around 97% in the EXIST-2 follow up 
[145]), but lower with epilepsy (50% long term reduction 
in seizures [302]). Better understanding of the factors 
that influence drug response and efficacy will facilitate a 
more personalised approach to prescribing.

Development and approval of new therapies for mTOR 
pathway diseases
Knowledge around the genetics and neurobiology of 
neurodevelopmental disorders caused by mutations in 
genes in the mTOR pathway has expanded in recent 
years. However, for many mTOR pathway diseases there 
is no targeted treatment available, opening opportuni-
ties for development of new therapies to address the 
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high unmet need. The development of new therapies is 
impeded by the slow, complicated processes that make 
drug development costly and the high attrition rates 
that create significant uncertainty regarding the return 
on investment [303]. Overall, rare, and ultra-rare dis-
eases do not attract the same level of interest, research 
and investment as more common conditions. How-
ever, there is unique opportunity for a disease pathway 
approach by unifying multiple mTOR pathway diseases 
based on their common molecular mechanisms. This 
approach would provide several advantages by increas-
ing critical mass through collaboration across differ-
ent diseases and disciplines; reducing attrition due 
to genetically driven biology [304]; the possibility to 
derisk translation to clinic through the use of a rare dis-
ease model concept to arrive at proof of concept, and 
expansion of patient impact to additional mechanisti-
cally related diseases.

Drug repurposing offers a promising avenue, where 
existing drugs, both within and outside mTOR pathway 
indications, can be redirected to treat these rare condi-
tions, potentially reducing development time and costs.

Working across diseases brings significant challenges 
related to the heterogeneity between these diseases that 
includes differences in unmet need, natural history of 
the disease and endpoints, including patient-centred 
outcomes. Initiatives involve establishing rare disease 
registries to facilitate the collection of essential informa-
tion for designing clinical trials [305]. Dealing with this 
level of heterogeneity will require significant innovation 
with respect to trial design and regulatory flexibility, 
for instance when using a basket trial design approach 
(clinical trials including multiple diseases concurrently). 
Progress in the timely diagnosis of diseases and the 
development of biomarkers for patient stratification are 
essential to reconcile molecular biology with clinical end-
points. Currently, there are no non-invasive CNS mTOR 
pathway biomarkers that allow assessment of target 
engagement or early prediction of response in patients. 
Emerging technologies such as artificial intelligence and 
digital tools offer promising avenues to expedite and mit-
igate risks during clinical phases.

The authorization of over 240 orphan medicines in 
the EU over the past two decades [306] exemplifies the 
success of orphan drug pathways. Despite these early 
successes, we will need to continuously reflect and reim-
agine how to further incentivise development of innova-
tive solutions for patients with rare diseases, including 
repurposing approved drugs for novel but mechanisti-
cally related conditions. Partnerships between academic 
institutions, patient advocacy groups, and pharmaceuti-
cal companies can facilitate the sharing of knowledge and 
resources, accelerating the path to new therapies.

Integration of PPIE in mTOR pathway disease 
research
Integrating Patient and Public Involvement and 
Engagement (PPIE) from the earliest stages of research 
is recognised by the NIHR as crucial, ensuring research 
activities are carried out ’with’ or ’by’ members of the 
public or patients, rather than ’to’ or ’about’ them [307]. 
The aims of PPIE are broadly twofold: (1) to empower 
lay communities in an expert-dominated environment 
and ensure ethical medical research that addresses 
identified unmet needs and priorities; (2) to optimise 
the design, applicability and/or dissemination of the 
research itself, ultimately for more robust findings and 
effective interventions [308]. These aims are particu-
larly pertinent for mTOR pathway disease communities 
presenting with unique challenges, including a limited 
patient population making it difficult to identify and 
involve a sufficient number of patients and represent-
atives; diverse needs and perspectives between and 
within conditions; challenges analysing data; reduced 
resource and funding; and concerns around data secu-
rity and confidentiality [309].

Broad-ranging benefits are expected from the inte-
gration of PPIE in mTOR pathway disease research. 
First, PPIE integration enhances potential to identify, 
recruit and retain participants, including those not 
yet diagnosed or without confirmed genetic diagnosis, 
to support clinical research and trials. The commu-
nity are more likely to commit to research if they feel 
connected to and have supported the design of (for 
example, ensuring flexibility and support to travel to 
research sites). Second, effective PPIE fosters trust and 
transparency, crucial to addressing accessibility, data 
sharing, security and ethical concerns that may arise 
with establishing a patient registry. Third, involvement 
of patients and the public can improve the dissemina-
tion of research opportunities and findings, making the 
results more accessible and actionable for broader com-
munities, with a higher likelihood of translation and 
adoption of research into everyday practice. Fourth, 
demonstrating robust PPIE can influence policy makers 
and funding bodies to support research initiatives, rec-
ognizing diverse stakeholder perspectives and inspiring 
further collaboration. Importantly, by integrating PPIE, 
we ensure the autonomy of people with lived experi-
ences of mTOR pathway diseases is respected, enabling 
the community to influence research priorities and 
practice. Such efforts have the potential to enhance the 
relevance, dissemination and impact of research, ulti-
mately leading to more patient-centred approaches and 
better outcomes.
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The mTOR pathway diseases node
The mTOR Pathway Diseases node [5] is one of the 11 
nodes in the NIHR/MRC Rare Disease Research UK 
Platform (RDR UK) Platform [6]. RDR UK is a £14  M, 
5-year project, beginning in 2023, and was established 
to connect and enhance the UK’s strengths in rare dis-
ease research. The platform fosters greater collaboration 
between academic, clinical and industry researchers, 
patients, research charities and other key organisations 
in rare disease research to accelerate the understand-
ing, diagnosis and treatment of rare diseases. The mTOR 
Pathway Diseases node aims to unite rare individual 
mTOR pathway diseases as a single group based on a 
common underlying molecular mechanism: hyperactiva-
tion of the mTOR pathway. The node brings together cli-
nicians, researchers, charities, industry and not-for-profit 
organisations to improve the diagnosis, treatment and 
clinical outcomes for mTOR pathway disease patients.

Research within the mTOR Pathway Diseases node tar-
gets many of the challenges and exploits the opportuni-
ties described in the preceding sections. These include: 
(1) building a comprehensive patient registry for all 
mTOR pathway diseases with the NDRS that will facili-
tate demographics and epidemiology, studies of drug 
responsiveness and provide natural history data for clini-
cal trials; (2) building a tissue repository and analysing 
patients’ tissue using phosphoproteomics to identify new 
mTOR targets and give insight into tissue-specific mech-
anisms; (3) generation of mTORopathy patient-derived 
iPSCs with different responses to anti-seizure medi-
cations to reveal mechanisms underlying phenotypic 
heterogeneity.

PPIE is a key part of the mTOR Pathway Diseases node. 
Successful engagement from all mTOR pathway disease 
communities, including patient organisations and peo-
ple with direct lived experience, is important to ensure 
proactive, balanced and proportionate representation 
and assessment of the impact of involvement. Incorpora-
tion of a variety of participatory active research methods, 
such as workshops with patient organisations, advisory 
panels of people with lived experience and governance 
roles on the steering committee, ensures diverse voices 
are heard.

The node has partnered with nine patient organisations 
representing mTOR pathway diseases. A PPIE advisory 
panel advises on all aspects of the node including study 
design, patient-facing materials, co-producing lay arti-
cles and media and co-authoring scientific papers. Effec-
tive PPIE practice in the mTOR Pathway Diseases node 
is inclusive (e.g. transparent PPIE recruitment process, 
accessibility of meetings), collaborative (e.g. co-produced 
terms of reference), supportive (e.g. identifying training 
needs on either side) and clear (e.g. regular and relevant 

communication) [310]. The higher prevalence of intellec-
tual disability and neurodevelopmental conditions, such 
as ASD (see also Sect. “Diagnosis and prognosis”), neces-
sitates a specialised approach to assessing care needs 
and promoting inclusivity in PPIE. In particular, patient 
organisations have direct access and insight into how to 
work effectively with patients and therefore can facili-
tate and encourage participation. Importantly, progress 
towards specific aims is documented and continuously 
evaluated with pre-defined assessment tools, to ensure 
prompt and effective problem-solving [308].

Examples of feedback from mTOR node PPIE advisory 
panel members:

“Involvement [with the mTOR node] enhances exist-
ing understanding of mTOR pathway in terms of 
biology and then the increased understanding of 
how this impacts the body and ultimately the indi-
vidual with the condition or for the carer. This higher 
level of understanding provides a little comfort.”
“Effective involvement [with the mTOR node] 
enhances patient’s and carer’s existing understand-
ing of the mTOR pathway and its implication in 
impacts on the body and ultimately the individual 
with the condition or their carer.”
“I feel personally this project [the mTOR node] 
doesn’t just empower but makes you feel you are 
doing something positive where you can feel alone 
and incapacitated. Such complex medical condi-
tions can leave you feeling unable to affect positive 
change whereas being involved in a project such as 
this one [the mTOR node] gives you purpose. It is 
also important that it provides a voice for those who 
often do not have one.”

Conclusions
mTOR pathway diseases are a subset of around 7000 rare 
and ultrarare diseases that affect 1 in 17 in the popula-
tion, or over 3.5 million people in the UK alone. Rare dis-
ease research was for many years neglected but is now an 
energised and growing field. Recent funding of the RDR 
UK Platform and LifeArc Rare Disease Research Cen-
tres and similar international initiatives, including the 
European Joint Programme on Rare Diseases and the 
NIH Rare Diseases Clinical Research Networks, repre-
sent a step change in the rare disease field. The current 
challenges and opportunities in basic and clinical mTOR 
pathway disease research is a microcosm of the field 
overall. The future directions we have outlined here can 
therefore be applied to rare diseases in general.
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