
Measurement error correction methods for the effects of ambient air 
pollution on mortality and morbidity using the UK Biobank cohort: the 
MELONS study

Dimitris Evangelopoulos a,b,*,1 , Dylan Wood a,b,1 , Barbara K. Butland c,  
Benjamin Barratt a,b , Hanbin Zhang a,d , Konstantina Dimakopoulou e, Evangelia Samoli e ,  
Sean Beevers a,b, Heather Walton a,b, Joel Schwartz f,g , Evangelos Evangelou h,  
Klea Katsouyanni a,b,e

a Environmental Research Group, MRC Centre for Environment and Health, Faculty of Medicine, Imperial College London, United Kingdom
b NIHR HPRU in Environmental Exposures and Health, Imperial College London, United Kingdom
c School of Health & Medical Sciences, City St George’s, University of London, United Kingdom
d European Centre for Environment and Human Health, University of Exeter, United Kingdom
e Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Greece
f Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
g Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
h Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom

A R T I C L E  I N F O

Keywords:
Air pollution
Exposure measurement error
Long-term exposure
Personal exposure
Mortality
Morbidity

A B S T R A C T

Epidemiological cohort studies associating long-term exposure to ambient air pollution with health outcomes 
most often do not account for individually assigned exposure measurement error. Here, we implemented Cox 
proportional hazards models to explore the relationships between NO2, PM2.5 and ozone exposures with the 
incidence of natural-cause mortality and several morbidity outcomes in 61,797 London-dwelling respondents of 
the UK Biobank cohort. Data from an existing personal monitoring campaign was used as an external validation 
dataset to estimate measurement error structures between “true” personal exposure and several surrogate 
(measured and modelled) estimates of assigned exposure, allowing for the application of two health effect es
timate correction methodologies: regression calibration (RCAL) and simulation extrapolation (SIMEX). Uncor
rected hazard ratios (HRs) suggested an increase in the risk of natural-cause mortality for modelled NO2 
estimates (HR: 1.028 [0.983, 1.074] per IQR increment of 14.54 μg/m3) and no statistically significant associ
ation was observed for PM2.5 surrogate exposure measures. Measurement error corrected HRs were generally 
larger in magnitude, although exhibited wider confidence intervals than uncorrected effect estimates. Chronic 
obstructive pulmonary disease (COPD) was associated with increased exposure to modelled NO2 (1.087 [1.022, 
1.155]). Both RCAL and SIMEX correction resulted in increased HRs (1.254 [1.061, 1.482] and 1.192 [1.093, 
1.301], respectively). SIMEX correction of modelled PM2.5 (IQR: 1.72 μg/m3) associations with COPD increased 
the HR (1.079 [1.001, 1.164]) in comparison to uncorrected (1.042 [0.988, 1.099]). These findings suggest that 
health effect estimates not corrected for exposure measurement error may lead to underestimation in the 
magnitude of effects.

1. Introduction

Numerous epidemiological studies have documented associations 

between long-term ambient air pollution exposure and mortality (Chen 
and Hoek, 2020; Huangfu and Atkinson, 2020), as well as morbidity 
outcomes, including cardiorespiratory illnesses (Forastiere et al., 2024). 
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A crucial issue in such analyses is the assignment of air pollution con
centrations as a measure of exposure. Most studies assign long-term 
average concentrations of ambient air pollutants to individuals using 
measurements from fixed-site monitoring networks or estimates derived 
from other approaches, such as dispersion or land-use regression 
models, machine learning approaches including satellite data or com
binations of these methodologies (Steinle et al., 2013; Shen et al., 2024). 
Concentration estimates derived using such methods are usually 
assigned to individuals in cohort studies at the residential postal/zip 
code level, aiming to investigate the associations between increased 
long-term exposure and health endpoints. Generally, concentrations are 
averaged over a period of time. However, the assignment of such esti
mates may not accurately reflect actual individual-level personal expo
sure to ambient air pollution, given the amount of time people spend 
within indoor environments and travelling through different transport 
microenvironments (Evangelopoulos et al., 2020). Error in the assigned 
exposure in epidemiological studies is referred to as exposure mea
surement error and likely leads to downward bias for resulting health 
effect estimates (Samoli et al., 2020; Butland et al., 2020; Wei et al., 
2022).

In an epidemiological analysis, the type and magnitude of mea
surement error in the exposure can result in varying biases (Katsouyanni 
and Evangelopoulos, 2022). Classical error assumes that the surrogate 
exposure is an imperfect estimate of the true exposure, and the average 
of these surrogate estimates equals the true exposure. Measurement 
error is uncorrelated with the true exposure under the classical error 
model. Berkson error occurs when the average value of the true exposure 
equals the surrogate estimate and applies when the surrogate represents 
a shared exposure across a group of participants whose individual ex
posures might differ. Zeger et al. (2000) suggest that classical error is 
observed when you compare measured ambient levels of pollution and 
the true values for a measuring device that is unbiased (Zeger et al., 
2000). Berkson error would be observed when you compare ambient 
levels from a reference monitor against multiple measurements from 
low-cost sensors located around the reference monitor.

Additive classical measurement error generally biases health effect 
estimates towards the null and decreases the coverage of 95 % confi
dence intervals, whereas additive Berkson error tends to inflate standard 
errors and, thus, reduce statistical power (Carroll et al., 2006), although 
there are exceptions to these “general” statements (Samoli et al., 2020; 
Butland et al., 2020). In environmental health studies, modelled 
ambient air pollution concentrations are prone to complex random 
measurement error involving mixtures of both classical/classical-like 
error from parameter estimation in the exposure approaches and 
Berkson/Berkson-like error from over-smoothing (Zeger et al., 2000). As 
a result of these errors in exposure estimation, it may be difficult to 
interpret health effect estimates reported for a given increment in 
ambient pollutant concentrations, particularly when comparing studies 
utilising various exposure assignment methodologies. Such errors likely 
lead to heterogeneity in effect estimates (e.g. (Strak et al., 2021; Wolf 
et al., 2023),). Furthermore, the likely presence and unknown magni
tude of exposure measurement error in the air pollution epidemiology 
literature presents further challenges when collating the existing evi
dence to provide accurate concentration-response functions (CRFs) in 
health impact assessments relevant for actionable policy (Forastiere 
et al., 2024). A meta-regression to estimate a CRF found larger effect 
sizes in studies with less exposure error but did not estimate the effect of 
the error on the shape of the CRF (Vodonos et al., 2018).

Estimating accurate “true” personal exposure to ambient air pollu
tion is inherently difficult. Large-scale personal monitoring campaigns 
are very limited to date, given the financial cost, as well as the incon
venience to participants themselves. For studies of the long-term effects 
of air pollution, personal monitoring for years is infeasible. A recent 
systematic review comparing static exposure assessment with exposures 
that integrate time-activity patterns showed high correlations between 
exposures, small to moderate bias in health effect estimates and modest 

differences in exposure level and contrast (Hoek et al., 2024). However, 
the review was based on a small number of identified studies (only 11) 
which performed indirect adjustment of exposure using time-activity 
data, rather than measuring exposures with portable monitors. In a 
similar analysis in London, we observed a consistent pattern of slightly 
increased adverse effect estimates of time activity-adjusted air pollution 
exposure with executive function scores (i.e., a domain-specific measure 
of cognitive function) compared to static exposures (Wood et al., 2025). 
It should be noted that personal exposure to ambient air pollution 
cannot be measured directly but can be estimated from total personal 
exposure measurements after the separation of indoor- and 
outdoor-generated pollution (Evangelopoulos et al., 2024). The pro
cesses required in conducting such separation entail several 
assumptions.

The identification of the health impacts of air pollution on mortality 
and morbidity in the UK has been the aim of multiple previous studies, 
with many applications based on the UK Biobank cohort dataset (e.g. 
(Hansell et al., 2024),). These studies used exposures developed by 
multiple research groups, were based on different approaches and 
showed adverse effects on lung function, cardiovascular disease and 
mortality associated with increased exposures to particulate matter up 
to 2.5 and 10 μm in diameter, as well as nitrogen dioxide (PM2.5, PM10 
and NO2, respectively (Wang et al., 2022; Guyatt et al., 2024);). How
ever, no study to our knowledge has assessed measurement error bias in 
these estimates or implemented a measurement error correction 
method.

The present study utilised data from an existing personal monitoring 
campaign to estimate the magnitude of measurement error present when 
assigning measured and modelled proxies of personal exposure to the 
same individuals. This information on measurement error structures was 
then applied in two separate correction methods, i.e., regression cali
bration (RCAL) and simulation extrapolation (SIMEX), aiming to adjust 
health effect estimates associating air pollution exposure with natural- 
cause mortality, chronic obstructive pulmonary disease (COPD) inci
dence and other morbidity outcomes in the UK Biobank cohort. The 
present study was conducted as part of the US Health Effects Institute- 
funded project entitled “Investigating the Consequences of Measure
ment Error of Gradually More Sophisticated Long-Term Personal Expo
sure Models in Assessing Health Effects: The London Study” (the 
MELONS project).

2. Methods

2.1. Study population

London-dwelling participants of the UK Biobank cohort (www.ukb 
iobank.ac.uk) were included in this analysis in order to match our 
exposure assessment methods with the personal monitoring campaign. 
UK Biobank is a national cohort of more than 500,000 participants aged 
40–69 years when recruited between 2006 and 2010 from general 
practice registers. The study sample consisted of 62,029 participants 
residing in the Greater London area, who were recruited between 13 
June 2006 and 24 September 2010, and followed up until 08 January 
2024. Of this sample, 0.4 % (n = 232) were initially excluded from the 
analysis as they were lost to follow-up for the following reasons: par
ticipants left the UK (n = 202), they withdrew consent for the UK Bio
bank database (n = 27), or their death was reported by a relative without 
any further information on the exact date and cause (n = 3). Thus, the 
final number of participants included in the analysis was 61,797 Greater 
London residents.

2.2. Health outcome data

Health outcomes of focus were the number of cases for mortality and 
COPD incidence, but we also examined other morbidity outcomes. 
Natural-cause mortality (ICD-10 codes: A00-R99) was defined based on 
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the primary cause of death recorded in mortality registries. Incident 
cases of COPD (J43-J44) were derived from linked hospital episode 
statistics data in the UK Biobank cohort. Additionally, incident cases of 
myocardial infarction (MI, I21-I23, I24.1, I25.2), asthma (J45-J46), 
stroke (I60-I61, I63-I64) and all-cause dementia (A81.0, F00-F03, F05.1, 
F10.6, G30-G31) were similarly derived. Prevalent cases at baseline for 
each outcome were excluded from the relevant analyses. The end of 
follow-up was defined as the date of death or diagnosis of outcome for 
the cases, the date we received the final dataset (08 January 2024) for 
those still alive or the date of death from external causes for censored 
observations.

2.3. Exposure assessment

2.3.1. Surrogate measures of exposure
We assigned long-term estimates of exposure to NO2, PM2.5 and 

ozone (O3) to London-dwelling UK Biobank participants, including 
predictions from spatio-temporal models, concentrations measured at 
the nearest fixed-site monitor and hybrid methods accounting for peo
ple’s mobility. Specifically, annually averaged 1-h resolution back
ground and roadside site measurements of NO2, PM2.5 and O3 from the 
London Air Quality Network (LAQN) monitors (within the Greater 
London area) were assigned to each participant for the year of recruit
ment into the UK Biobank study. These publicly available measurements 
were downloaded via the ‘openair’ R package (Carslaw and Ropkins, 
2012). Measurements from urban background and roadside monitors of 
the air quality network were used, with kerbside and industrial sites 
excluded.

Modelled NO2, PM2.5 and O3 concentrations were derived using the 
model from the “Comparative evaluation of Spatio-Temporal Exposure 
Assessment Methods for estimating the health effects of air pollution” 
(STEAM) project (long-term 2009–2013 averaged estimates 
(Dimakopoulou et al., 2022);) and assigned to the residential address of 
UK Biobank participants (within a 100m buffer of the home) at the time 
of recruitment. The STEAM model utilised a generalised additive model 
that combined data from spatio-temporal land-use regression and the 
Community Multiscale Air Quality urban (CMAQ-urban (Beevers et al., 
2012);) chemical transport model and, additionally for PM2.5 only, a 
prediction model using satellite-data on aerosol optical depth (Samoli 
et al., 2020; Butland et al., 2020). Models provided daily predictions, 
which were averaged annually and then for 2009–2013 to assess 
long-term exposures. The 10-fold cross validation R2 were 0.80 for NO2, 
0.79 for PM2.5 and 0.75 for O3 (Dimakopoulou et al., 2022).

Modelled and measured estimates of NO2 and PM2.5 were also indi
rectly adjusted to account for estimated time-activity patterns of UK 
Biobank participants by age group and area of residence. Specifically, 
we utilised the London Hybrid Exposure Model (LHEM (Smith et al., 
2016)), which combines time-activity patterns of Londoners with 
CMAQ-urban modelled ambient NO2 and PM2.5 concentrations (in 
2011) with in-building and in-vehicle modelled concentrations. The 
LHEM estimates personal exposure to outdoor-generated pollution 
reflective of time-activity and microenvironment exposure (Smith et al., 
2016). The model incorporated data from the London Travel Demand 
Survey (LTDS), which includes 69,673 individuals across the years 
2005–2010, ascertaining details of each persons’ daily trips, travel mode 
(s), trip purposes and demographic data. These individuals are a 
representative sample of London inhabitants. The ratio between the 
static concentrations estimated by CMAQ-urban at the residential 
address of LTDS participants and their LHEM personal exposure, ac
counting for time-activity and movement between microenvironments, 
were applied to modelled and measured exposure estimates assigned to 
UK Biobank participants to account for their hypothesised time-activity 
patterns. Further details on the time-activity adjustment can be found in 
(Wood et al., 2025).

2.3.2. “True” exposure derived from a personal monitoring campaign
Data from a previous exposure measurement campaign conducted in 

London between 2015 and 2017 for 71 COPD patients aged 53 years and 
older were utilised as an external validation sample. Total personal 
exposure measurements for NO2, PM2.5 and O3, as well as GPS data 
measured by portable monitors for up to six months, were used. Further 
details on the “Characterisation of COPD exacerbations using environ
mental exposure modelling” study (COPE) can be found in (Moore et al., 
2016).

Long-term estimates of exposure to ambient air pollution were 
assumed as “true” personal exposure to each pollutant for COPE par
ticipants. The derivation of these estimates is described in (Barratt et al., 
2022). Briefly, previous work (as part of the MELONS project) classified 
the location of the participants into microenvironments including 
‘home’, ‘other indoor’, and ‘outdoor/transit’, using 15-min resolution 
GPS data. Personal air pollution exposures were also collected at 15-min 
intervals and averaged at 1-h resolution, while the location assigned was 
the one within which the participant spent the most time across the 1-h 
period. Total measured personal exposure to each pollutant was sepa
rated into exposure from indoor and outdoor sources (Evangelopoulos 
et al., 2024; Zhang et al., 2022) and outdoor-generated personal expo
sures were extrapolated to annual average using a random forest 
behaviour prediction model.

2.4. Statistical analysis

Cox proportional hazards models were applied to quantify the as
sociations between the incidence of each health outcome and exposure 
to NO2, PM2.5 and O3 derived from the aforementioned surrogate 
exposure metrics in single pollutant models without measurement error 
correction. Three complete case Cox models adjusting for confounders 
were constructed a priori, with UK Biobank participants missing any 
confounder information excluded. A basic model (Model 1) was adjusted 
for age (in years), sex (Male/Female) and year of recruitment (calendar 
year), with length of time from date of recruitment up until the date of 
outcome diagnosis, loss to follow-up or the end of the study period (08 
January 2024) used as the underlying measure of time. Model 2, a priori 
considered as our “main model”, further controlled for ethnic back
ground (Asian, Black/Black British, Mixed, White or ‘other’), smoking 
status (Current/Previous/Never), BMI (in kg/m2), household income 
(categorised in GB pounds (£) bands, as <18,000, [18,000–31,000), 
[31,000–52,000), [52,000–100,000), ≥100,000) and employment sta
tus (Employed/Unemployed/Retired/Other; including “doing unpaid or 
voluntary work”, “full- or part-time student”, “looking after home and/ 
or family”, “unable to work because of sickness or disability”). Model 3 
further included the index of multiple deprivation (IMD) score as a 
marker of area-level socioeconomic status. IMD score is comprised of 
eight factors of deprivation at neighbourhood level, including living 
environment (Noble et al., 2019). To avoid double adjustment for air 
pollution exposure, Model 3 was included as part of our sensitivity an
alyses. All hazard ratios were estimated per interquartile range (IQR) 
increase in pollutant concentrations (in μg/m3) and the threshold used 
for determining statistical significance was 0.05.

We applied two measurement error corrections on Models 1 and 2 
using RCAL and SIMEX. In brief, RCAL uses the linear relationship be
tween “true” and surrogate exposure estimates in a validation sub- 
sample in which accurate, “gold-standard” measurements are avail
able (the RCAL model) to predict “true” exposure data in the main study 
of cohort participants. The predicted “true” exposure estimates are then 
used in the full cohort analysis to estimate measurement error bias- 
corrected health effect estimates, assuming the “true”-surrogate expo
sure relationship in the validation sub-sample generalises to the full 
cohort. SIMEX uses simulation to explore and model changes in the log 
hazard ratio (HR) of interest as we increase the amount of classical error 
in the surrogate exposure data. A SIMEX tuning parameter “lambda” is 
used iteratively to adjust the levels of measurement error in the exposure 
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before back-extrapolating to the “no error” case and a curve is fitted to 
describe the back-extrapolated relationship (the extrapolant function). 
The “no error” projected value provides an adjusted estimate that cor
rects for bias introduced by the original amount of classical measure
ment error. Further details on both measurement error correction 
methods can be found in (Carroll et al., 2006).

Model 2 results were corrected as the main model with more 
individual-level confounder control. Model 1 HRs were also corrected 
using RCAL because confounder adjustment in Model 1 corresponded to 
the variables included in the RCAL model. No internal subsample vali
dation dataset was available in the UK Biobank, so we used the COPE 
measurement campaign dataset (personal “true” exposure described 
above) to inform the measurement error structures for correction. Both 
COPE and UK Biobank participants included in the present study resided 
in the Greater London area but did not overlap. Natural-cause mortality 
and COPD incidence were used as the primary outcomes of interest.

The present study assumed that the exposure errors observed were of 
additive mixed (classical and Berkson) type. For RCAL, calibration co
efficients were first estimated from a linear model of the assumed “true” 
exposure (annually extrapolated personal exposure from outdoor sour
ces derived from COPE) on each surrogate (modelled and measured 
concentration estimates as described above, which were also assigned to 
COPE individuals at the residential postcode centroid), controlling for 
age and sex. Regression calibration was implemented by using the RCAL 
model to predict corrected exposures for the study subjects and these 
corrected exposures were then used in the Cox analysis to obtain revised 
HRs. The standard errors derived from the Cox models were then used to 
estimate 95 % confidence intervals. As a sensitivity analysis, we calcu
lated standard errors for the health effect estimates using the Delta 
method and incorporated the uncertainty from the calibration co
efficients into the exposure-outcome model (Carroll et al., 2006). The 
Delta method accounts for the standard error of the pollutant parameter 
in the RCAL model when estimating the standard error of the 
RCAL-adjusted HR (Hart et al., 2015a). For SIMEX, we followed the 
methods described in (Reeves et al., 1998). Briefly, the additive classical 
error variance from the COPE validation dataset was estimated 
assuming the latent variable mixed error model, which represents “true” 
exposure by an unobserved latent variable plus Berkson measurement 
error, and the corresponding surrogate exposure by the same latent 
variable plus classical measurement error. The latent variable mixed 
error model provides a flexible framework through which we estimated 
the proportion of classical and Berkson error in the total mixture for each 
pollutant independently. This was expressed by the variance ratio of 
surrogate over "true" exposure, with ratios >1 indicating mostly classical 
error and ratios <1 mostly Berkson-like error. The model assumes that 
the three variables (latent, classical and Berkson) are assumed to be 
independent or at least mutually uncorrelated (Reeves et al., 1998). The 

SIMEX lambda parameter was set to take 20 values with a maximum 
value of 2 and 50 simulations performed for each lambda. We also 
assessed the sensitivity of results to these inputs. Jacknife estimated 
standard errors were calculated and the extrapolant used was the 
quadratic. SIMEX was implemented using the "simex" package in R 
(Lederer et al., 2019).

3. Results

Table 1 provides summary statistics for surrogate residential air 
pollution exposure estimates assigned to UK Biobank participants. 
STEAM model and nearest monitor mean (standard deviation) levels 
were relatively high for all three pollutants included in the analysis, i.e., 
39.0 (10.8) and 46.8 (14.8) μg/m3 for NO2, 15.8 (1.4) and 15.2 (1.9) μg/ 
m3 for PM2.5, as well as 58.8 (6.8) and 34.0 (6.5) μg/m3 for O3, 
respectively. The LHEM time-activity adjustment resulted in substan
tially lower mean exposures for both NO2 and PM2.5. Moderate corre
lation was observed between NO2 and PM2.5, dependent upon the 
surrogate measure, ranging from 0.30 (STEAM) to 0.44 (nearest 
monitor). Ozone was negatively correlated with both NO2 (− 0.99 and 
− 0.63 for STEAM and nearest monitor estimates, respectively), as well 
as with PM2.5 (− 0.29 and − 0.27 for STEAM and nearest monitor esti
mates, respectively).

Table 2 provides data for potential confounders, number of deaths 
from natural causes (n = 4,138), total person-years at risk (847,455.5) 
and the number of COPD incident cases (n = 2,081) observed 
throughout follow-up in the Greater London-dwelling UK Biobank par
ticipants. The mean (SD) age of participants was 55.9 (8.3) years, mean 
BMI was 27.0 (4.9) kg/m2, 55.8 % were female, 79.7 % were white and 
44.6 % were current or previous smokers. Incident cases for the other 
health outcomes were less than COPD cases and ranged from 1,044 for 
all-cause dementia to 1,677 for MI. Missing individual-level covariate 
information was relatively low and resulted in approximately 2 % of 
individuals being removed from main model analyses of natural-cause 
mortality and COPD (Model 2).

For the external validation sample of COPE participants, the surro
gate measures assessing ambient concentrations at the subjects’ resi
dence (both modelled and measured at the nearest monitor) were much 
higher in magnitude compared to personal exposures from outdoor 
sources (Table 3). The LHEM time-activity-adjusted estimates were 
closer to measured personal exposures to air pollution from outdoor 
sources. Compared with the exposure assessment of the UK Biobank 
participants, all surrogate exposure estimates of the validation sample 
were very similar, although greater variability was observed in STEAM 
NO2 estimates assigned to COPE participants. For example, the mean 
(standard deviation) STEAM estimates for COPE were 40.1 μg/m3 

(18.7), 15.6 μg/m3 (1.4) and 60.0 μg/m3 (7.2) for NO2, PM2.5 and O3, 

Table 1 
Descriptive statistics for surrogate exposure variables for the 61,797 participants of the UK Biobank cohort residing in the Greater London area.

Exposure (μg/m3) Mean SD Minimum 25th %ile Median 75th %ile Maximum IQR
NO2

STEAM 38.99 10.79 17.60 31.05 38.16 45.59 90.50 14.54
STEAM 
LHEM-adjusted

14.63 3.76 5.96 12.10 14.34 16.81 44.61 4.71

Nearest monitor (annual) 46.84 14.84 21.15 33.37 49.77 55.79 107.32 22.42
Nearest monitor 
LHEM-adjusted

17.63 5.44 6.94 13.48 18.23 20.94 54.20 7.46

PM2.5

STEAM 15.77 1.37 10.89 14.80 15.62 16.52 25.71 1.72
STEAM 
LHEM-adjusted

9.86 1.04 6.81 9.17 9.74 10.37 25.67 1.20

Nearest monitor (annual) 15.22 1.90 10.95 14.00 15.03 15.90 25.23 1.90
Nearest monitor 
LHEM-adjusted

9.51 1.22 6.51 8.72 9.42 9.97 21.55 1.25

Ozone
STEAM 58.79 6.81 34.70 54.26 59.34 63.96 71.46 9.70
Nearest monitor (annual) 33.97 6.50 18.66 28.99 34.24 38.94 51.56 9.95
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respectively, while the corresponding UK Biobank estimates were 39.0 
μg/m3 (10.8), 15.8 μg/m3 (1.4) and 58.8 μg/m3 (6.8). Also, the mean 
multiple deprivation score (IMD) was very similar between the two 
samples (COPE: 20.4 (11.3), UK Biobank: 20.1 (12.1)), as well as the 
female/male ratio (COPE: 50.7 % female (n = 38), UK Biobank: 55.8 % 
female (n = 34,465)). COPE participants were older on average than the 

UK Biobank participants included in our analysis, i.e., 70.5 (7.5) and 
55.9 (8.3) years of age, respectively. The variance ratios between sur
rogate exposures and outdoor-generated personal exposure (“true”) 
were >1 for NO2 and O3, and <1 for PM2.5 (except nearest monitor), 
indicating more classical-like error for the former and Berkson-like for 
the latter. The Pearson correlation coefficients between surrogate and 
true exposures were generally low (Table 3). Regression coefficients for 
each pollutant’s surrogate on true exposure from the COPE RCAL models 
are provided in Supplementary Table 8.

Results from the single exposure Cox regression models for natural- 
cause mortality are shown in Table 4. RCAL-corrected hazard ratios 
for Models 1 and Model 2 are shown, as well as SIMEX-corrected HRs for 
Model 2. The uncorrected HRs suggest an increase in the risk of mor
tality from natural causes for the STEAM (main and LHEM-adjusted) 
NO2 estimates with Models 1 and 2 (for Model 2 it did not reach the 
nominal level of statistical significance). The measurement error cor
rected HRs were larger in magnitude, and for the STEAM estimates were 
more than double in size. For SIMEX specifically, the corrected HR for 
LHEM-adjusted STEAM was statistically significant, i.e., 1.066 (1.004, 
1.131), compared to 1.032 (0.991, 1.075) per 4.71 μg/m3 increase, 
under the fully adjusted Model 2. Confidence intervals generally 
widened after correction in comparison to uncorrected effect estimates, 
suggesting a higher level of uncertainty in associations even in instances 
where correction greatly increased the magnitude of the effect estimate 
and/or resulted in statistical significance. Additionally, calculation of 
standard errors for RCAL-corrected HRs using the Delta method resulted 
in comparable, and in some cases widened, CIs (Supplementary Material 
Table S7).

For PM2.5, no association was statistically significant at the nominal 
level, however the LHEM-adjusted STEAM estimates showed an 
increased risk for mortality which was not statistically significant. In 
contrast, the nearest monitor surrogate provided associations close to 
null and were not statistically significant. The RCAL- and SIMEX- 
corrected estimates were again larger in size compared to the uncor
rected estimates, but not statistically significant. The SIMEX-corrected 
HR for LHEM-adjusted STEAM was not statistically significant (1.042 
(0.989, 1.098) per 4.71 μg/m3 increase).

For O3, reverse associations were observed, i.e., protective effects, 
but only the basic model with limited adjustment (Model 1) using the 
STEAM exposure estimates was statistically significant. Interestingly, 
this association became positive, i.e., suggesting adverse effects, after 
RCAL correction, and remained positive but not statistically significant 
in the fully adjusted RCAL-corrected Model 2. As expected, the RCAL 
confidence intervals were generally wider than those for the uncorrected 
and SIMEX-corrected HRs, due to the type of standard error estimation. 
To test the assumption of proportionality we assessed the Schoenfeld 
residuals for each covariate visually. No indication of heteroscedasticity 
was observed.

Similar results to the measurement error corrected natural-cause 
mortality estimates were observed for COPD incidence (Table 5). Both 
NO2 and PM2.5 were associated with an increased risk in COPD incidence 
based on all uncorrected Models 1 and 2 (except for LHEM-adjusted 

Table 2 
Descriptive statistics for individual- and area-level demographic and socioeco
nomic variables and health outcomes, for the 61,797 participants of the UK 
Biobank cohort residing in the Greater London area.

Variable Number of missing 
values

Age at recruitment in years (Mean 
(SD))

55.9 (8.3) 0

Sex (n, %) ​ 0
Male 27,332 

(44.2)
​

Female 34,465 
(55.8)

​

BMI in kg/m2 (Mean (SD)) 27.0 (4.9) 701
Area-level IMD score (Mean (SD)) 20.1 (12.1) 1,687
Smoking status (n, %) ​ 349

Current 7,348 (12.0) ​
Previous 21,258 

(34.6)
​

Never 32,504 
(52.9)

​

Prefer not to answer 302 (0.5) ​
Employment status (n, %) ​ 295

Employed 35,504 
(57.7)

​

Unemployed 2,066 (3.4) ​
Retired 18,019 

(29.3)
​

Other 5,916 (9.6) ​
Ethnicity (n, %) ​ 351

Asian 4,384 (7.1) ​
Black/Black British 4,113 (6.7) ​
Mixed 939 (1.5) ​
Other 3,037 (5.0) ​
White 48,973 

(79.7)
​

Average household income (n, %) ​ 649
Less than 18,000£ 9,736 (15.9) ​
18,000 to 30,999£ 10,863 

(17.8)
​

31,000 to 51,999£ 12,698 
(20.8)

​

52,000 to 100,000£ 12,741 
(20.8)

​

Greater than 100,000£ 5,938 (9.7) ​
Do not know/Prefer not to answer 9,172 (15.0) ​

Natural-cause mortality (n, %) 4,138 (6.7) ​
COPD incidence (n, %) 2,081 (3.4) ​
Myocardial infarction incidence (n, %) 1,677 (2.7) ​
Stroke incidence (n, %) 1,266 (2.0) ​
All-cause dementia incidence (n, %) 1,044 (1.7) ​
Asthma incidence (n, %) 1,597 (2.6) ​
Person years at risk (Total) 847,455.5 ​

Table 3 
Descriptive statistics of outdoor-generated personal exposure (“true”) and assigned surrogate concentration estimates for the participants of the external validation 
sample (COPE; n = 71). VR: Variance ratio between surrogate and “true” exposure. Corr: Pearson correlation coefficient between surrogate and “true” exposures.

Exposure estimate NO2 PM2.5 O3

Mean (SD) VR Corr Mean (SD) VR Corr Mean (SD) VR Corr

Outdoor-generated personal exposure 4.5 (1.5) – – 5.6 (2.0) – – 2.9 (1.1) – –
STEAM 40.1 (18.7) 155.4 0.16 15.6 (1.4) 0.49 0.04 60.0 (7.2) 42.8 − 0.21
STEAM 13.5 (4.3) 8.2 0.25 9.4 (1.0) 0.25 0.08 LHEM not applicable
LHEM-adjusted
Nearest monitor (annual) 44.5 (18.1) 145.6 0.13 12.6 (2.3) 1.32 0.10 32.6 (7.9) 51.6 − 0.01
Nearest monitor 15.7 (6.5) 18.8 0.08 7.6 (1.4) 0.49 0.09 LHEM not applicable
LHEM-adjusted
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nearest monitor estimates of PM2.5), with the opposite observed for O3. 
The association was statistically significant for STEAM estimated NO2 
after full adjustment, with a HR of 1.087 (1.022, 1.155) per 14.54 μg/m3 

increase. Again, widened CI ranges were observed after effect estimate 
correction.

In all statistically significant uncorrected effect estimates, the HRs 
remained statistically significant after SIMEX or RCAL correction, the 
magnitude of the effect of an IQR increase in pollutant concentrations 
increased and CIs widened. The largest statistically significant effects 
were observed for NO2, for which the SIMEX- and RCAL-corrected HRs 
suggested a 19.2 % (9.3, 30.1) and 25.4 % (6.1, 48.2) increase, 
respectively, in the risk of developing COPD per IQR increase in con
centrations (more than a two- or three-fold increase in that observed in 
the uncorrected main adjustment model; 8.7 % increase in risk). Finally, 
the O3 RCAL-corrected estimates showed statistically significant adverse 

effects, i.e., HR of 1.125 (1.033, 1.225) per 9.70 μg/m3 increase for 
STEAM estimates in the fully adjusted model, in contrast with the un
corrected (0.913 (0.855, 0.975)) and SIMEX-corrected (0.851 (0.774, 
0.936)) HRs.

While purely Berkson error would not result in bias in the effect 
estimates and would only inflate the confidence intervals, even small 
percentages of classical error in the mixture can introduce bias in the 
health effect estimates. This was observed for PM2.5 which had variance 
ratios <1, and as low as 0.25 for LHEM-adjusted STEAM. The SIMEX 
corrected estimates were higher than the naive ones, but the 95 % 
confidence intervals were inflated although not substantially.

The results observed for the other health outcomes (incidence of 
myocardial infarction, asthma, stroke and all-cause dementia) generally 
showed similar patterns in the corrected health effect estimates across 
surrogate exposure methods, although inconsistencies were apparent 
between pollutants for some outcomes (Supplementary Material 

Table 4 
Investigation of the association between natural-cause mortality and air pollu
tion exposures (entered alternatively), adjusting for confounders using three 
models with different levels of adjustment. Results from Cox proportional haz
ards regression models. ME corrected HRs are also presented. Results presented 
per IQR increase in exposurec.

Exposure 
(μg/m3)

Hazard ratio per IQR (95 % confidence interval)

Model 1a

(n =
61,797)

RCAL- 
corrected 
HR for 
Model 1

Model 2b

(n =
60,528)

RCAL- 
corrected 
HR for 
Model 2

SIMEX- 
corrected 
HR for 
Model 2

NO2

STEAM 1.061 
(1.017, 
1.107)*

1.144 
(1.017, 
1.288)*

1.028 
(0.983, 
1.074)

1.077 
(0.955, 
1.215)

1.063 
(0.998, 
1.134)

STEAM 1.045 
(1.006, 
1.087)*

1.068 
(0.998, 
1.143)

1.032 
(0.991, 
1.075)

1.055 
(0.985, 
1.131)

1.066 
(1.004, 
1.131)*

LHEM- 
adjusted

Nearest 
monitor 
(annual)

1.012 
(0.966, 
1.059)

1.021 
(0.930, 
1.121)

0.992 
(0.945, 
1.040)

0.983 
(0.894, 
1.081)

0.990 
(0.923, 
1.063)

Nearest 
monitor 
LHEM- 
adjusted

0.998 
(0.957, 
1.041)

1.000 
(0.865, 
1.155)

0.994 
(0.952, 
1.038)

0.979 
(0.846, 
1.134)

0.994 
(0.932, 
1.060)

PM2.5

STEAM 1.021 
(0.983, 
1.060)

1.039 
(0.908, 
1.188)

0.998 
(0.959, 
1.037)

0.991 
(0.865, 
1.136)

1.001 
(0.946, 
1.059)

STEAM 
LHEM- 
adjusted

1.021 
(0.985, 
1.059)

1.144 
(0.877, 
1.494)

1.022 
(0.985, 
1.060)

1.166 
(0.894, 
1.522)

1.042 
(0.989, 
1.098)

Nearest 
monitor 
(annual)

0.989 
(0.956, 
1.022)

0.898 
(0.731, 
1.105)

0.983 
(0.950, 
1.017)

0.901 
(0.731, 
1.111)

0.973 
(0.927, 
1.022)

Nearest 
monitor 
LHEM- 
adjusted

0.992 
(0.959, 
1.025)

0.928 
(0.717, 
1.201)

1.002 
(0.968, 
1.037)

1.014 
(0.782, 
1.315)

1.008 
(0.959, 
1.060)

Ozone
STEAM 0.939 

(0.898, 
0.983)*

1.071 
(1.009, 
1.137)*

0.969 
(0.924, 
1.016)

1.042 
(0.980, 
1.107)

0.949 
(0.885, 
1.017)

Nearest 
monitor 
(annual)

0.998 
(0.953, 
1.046)

0.989 
(0.423, 
2.312)

1.009 
(0.962, 
1.059)

0.849 
(0.356, 
2.022)

1.024 
(0.954, 
1.100)

*p < 0.05.
NO2: STEAM = 14.54, STEAM LHEM-adjusted = 4.71, Nearest monitor (annual) 
= 22.42, Nearest monitor LHEM-adjusted = 7.46.
PM2.5: STEAM = 1.72, STEAM LHEM-adjusted = 1.20, Nearest monitor (annual) 
= 1.90, Nearest monitor LHEM-adjusted = 1.25.
Ozone: STEAM = 9.70, Nearest monitor (annual) = 9.95.

a adjusting for age, time from date of recruitment (timescale variable) and sex.
b Model 1 adjustments, plus smoking status, BMI, employment status, 

ethnicity, household income.
c IQRs.

Table 5 
Investigation of the association between COPD incidence and air pollution ex
posures (entered alternatively), adjusting for confounders using three models 
with different levels of adjustment. Results from Cox proportional hazards 
regression models. ME corrected HRs are also presented. Results presented per 
IQR increase in exposurec.

Exposure 
(μg/m3)

Hazard ratio per IQR (95 % confidence interval)
Model 1a

(n =
61,797)

RCAL- 
corrected 
HR for 
Model 1

Model 
2b (n =
60,528)

RCAL- 
corrected 
HR for 
Model 2

SIMEX- 
corrected 
HR for 
Model 2

NO2

STEAM 1.164 
(1.098, 
1.234)*

1.506 
(1.280, 
1.773)*

1.087 
(1.022, 
1.155)*

1.254 
(1.061, 
1.482)*

1.192 
(1.093, 
1.301)*

STEAM 
LHEM- 
adjusted

1.096 
(1.039, 
1.157)*

1.166 
(1.062, 
1.281)*

1.051 
(0.993, 
1.112)

1.088 
(0.988, 
1.198)

1.101 
(1.016, 
1.194)*

Nearest 
monitor 
(annual)

1.073 
(1.007, 
1.145)*

1.142 
(1.001, 
1.302)*

1.017 
(0.951, 
1.088)

1.035 
(0.904, 
1.184)

1.039 
(0.943, 
1.146)

Nearest 
monitor 
LHEM- 
adjusted

1.022 
(0.963, 
1.084)

1.061 
(0.865, 
1.300)

0.992 
(0.933, 
1.055)

0.973 
(0.791, 
1.198)

0.991 
(0.906, 
1.083)

PM2.5

STEAM 1.075 
(1.021, 
1.132)*

1.304 
(1.084, 
1.569)*

1.042 
(0.988, 
1.099)

1.155 
(0.958, 
1.394)

1.079 
(1.001, 
1.164)*

STEAM 
LHEM- 
adjusted

1.031 
(0.980, 
1.084)

1.285 
(0.887, 
1.863)

1.028 
(0.977, 
1.081)

1.222 
(0.847, 
1.762)

1.052 
(0.981, 
1.129)

Nearest 
monitor 
(annual)

1.016 
(0.971, 
1.063)

1.169 
(0.877, 
1.559)

1.010 
(0.964, 
1.058)

1.065 
(0.796, 
1.424)

1.023 
(0.958, 
1.094)

Nearest 
monitor 
LHEM- 
adjusted

0.989 
(0.944, 
1.036)

0.991 
(0.69, 
1.422)

1.003 
(0.956, 
1.052)

1.021 
(0.711, 
1.465)

1.009 
(0.943, 
1.080)

Ozone
STEAM 0.850 

(0.798, 
0.905)*

1.232 
(1.133, 
1.339)*

0.913 
(0.855, 
0.975)*

1.125 
(1.033, 
1.225)*

0.851 
(0.774, 
0.936)*

Nearest 
monitor 
(annual)

0.967 
(0.906, 
1.032)

1.829 
(0.550, 
6.081)

1.002 
(0.935, 
1.074)

0.964 
(0.278, 
3.339)

1.010 
(0.914, 
1.117)

*p < 0.05.
NO2: STEAM = 14.54, STEAM LHEM-adjusted = 4.71, Nearest monitor (annual) 
= 22.42, Nearest monitor LHEM-adjusted = 7.46.
PM2.5: STEAM = 1.72, STEAM LHEM-adjusted = 1.20, Nearest monitor (annual) 
= 1.90, Nearest monitor LHEM-adjusted = 1.25.
Ozone: STEAM = 9.70, Nearest monitor (annual) = 9.95.

a adjusting for age, time from date of recruitment (timescale variable) and sex.
b Model 1 adjustments, plus smoking status, BMI, employment status, 

ethnicity, household income.
c IQRs.
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Tables S3–S6). For example, SIMEX-corrected associations between 
STEAM modelled NO2 estimates and all-cause dementia incidence 
(1.115 (0.980, 1.268)) increased the size of the uncorrected HR in the 
main model (1.062 (0.973, 1.160)), while the observed RCAL-corrected 
associations were even greater (1.179 (0.928, 1.496); Supplementary 
Material Table S6). However, associations between PM2.5 estimates and 
all-cause dementia incidence provided more inconsistent patterns of 
effect estimate change after correction between exposure surrogates. 
The majority of the associations observed in these morbidity outcomes 
were not statistically significant, likely due to the low number of counts 
for disease incidence in our analysis.

4. Discussion

In the present study, several surrogate exposure estimates were 
compared assessing the effect of air pollution exposure on natural-cause 
mortality and COPD incidence both with/without measurement error 
correction methods applied. The effect estimates indicated increased 
risks with half of the surrogate measures, using the main adjustment 
model (Model 2), for all natural-cause mortality and with most measures 
for COPD incidence in the London-dwelling UK Biobank participants 
associated with long-term exposure mainly to NO2, but also to PM2.5. 
However, only the modelled estimates of ambient levels of NO2 at the 
participants’ residence were found to have statistically significant ef
fects on COPD incidence, indicating an 8.7 % increase in risk per IQR 
increase in exposure. When SIMEX correction for measurement error 
was applied, all HRs increased (indicating a two-to four-fold increased 
risk of death or COPD incidence) and the associations for some surro
gates of both NO2 and PM2.5 became statistically significant. A similar 
pattern was observed when the HRs were corrected using RCAL, but the 
confidence intervals of the corrected HRs were wider and the associa
tions were not statistically significant in cases where uncorrected HRs 
were also not statistically significant. Health effect estimate correction 
also consistently resulted in widening 95 % CIs and therefore greater 
uncertainty, likely due to the small personal monitoring campaign 
(validation dataset) available. In some instances this observation was 
more pronounced when calculating standard errors via the Delta method 
for RCAL-corrected HRs, most likely due to the incorporation of the 
uncertainty in the calibration coefficients into the health effect estima
tion (Carroll et al., 2006; Richardson et al., 2025). The observed 
widening of confidence intervals is due to the implementation of the 
RCAL model (Keogh et al., 2020) and other previous analyses have 
shown confidence intervals to increase by more than 100 % after RCAL 
correction and use of the sandwich variance estimator (Hart et al., 
2015b).

The increases in the HRs after measurement error correction iden
tified in the present analysis are in close agreement with previous 
studies. Hart et al. (2015b) assessed the effects of a 10 μg/m3 increase in 
PM2.5 exposure on all-cause mortality and showed that the uncorrected 
HR increased from 1.13 (1.05, 1.22) to 1.18 (1.02, 1.36), and from 1.12 
(1.05, 1.21) to 1.22 (1.02, 1.45) for modelled or nearest monitor mea
surement exposures, respectively, when RCAL was applied. Similar to 
the findings of the present study, the observed increase in HR magnitude 
was accompanied with greater uncertainty in effect estimates, evident 
from the increased standard errors and confidence interval width. 
Another study utilising the US Medicare cohort used stratified RCAL and 
assessed the impact of exposure measurement error, defined as the dif
ference between modelled and measured ambient concentrations, on 
mortality effect estimates (Feng et al., 2023). The estimated measure
ment error bias resulted in underestimation of the true effect, but rela
tively small compared to our findings, i.e., up to 5.2 % towards the null, 
but this is probably due to the error definition which only included error 
in ambient exposure outside of residences and did not account for per
sonal exposures (Wei et al., 2022; Katsouyanni and Evangelopoulos, 
2022). Furthermore, simulation studies using London data have previ
ously shown that for both NO2 and PM2.5, measurement error can bias 

the exposure-response associations by up to 98 % and 68 % towards the 
null, respectively, which is closely aligned with our findings (Samoli 
et al., 2020; Butland et al., 2020).

Interestingly, suggestive negative associations, i.e., protective effects 
of O3 with both natural-cause mortality and COPD incidence (which in 
some cases reached the nominal level of statistical significance) changed 
direction, indicating adverse effects which were statistically significant 
after measurement error correction methods were applied. This finding, 
together with some evidence in the epidemiological literature that 
shows protective effects of O3 on health (Hvidtfeldt et al., 2019; Liu 
et al., 2021), may suggest that measurement error bias in the health 
effect estimates of O3 could be substantial and lead to false negative 
associations. However, this finding may be due to the high inverse 
correlation between NO2 and O3 often observed in measurements and 
models. The Pearson correlation coefficients for NO2 and O3 were − 0.63 
and − 0.99 for nearest monitor and STEAM estimates, respectively. More 
personal exposure measurement campaigns for O3 would provide 
further insight and could be used as validation samples for measurement 
error corrections in large epidemiological studies. Additionally, given 
the large number of associations tested, the potentially higher likelihood 
of observing statistically significant results due to multiple testing is a 
potential issue in our findings that should be noted.

We further assessed other morbidity outcomes, including incidence 
of MI, asthma, stroke and dementia but the analyses showed no effects 
(using the main adjustment model) of long-term exposure to NO2 and 
PM2.5, except for a suggestive increased risk for dementia related with 
increased NO2 exposures (Supplementary Material Tables S3–S6). 
Similar to mortality and COPD incidence, SIMEX and RCAL corrections 
resulted in health effect estimates that moved away from the null, with 
two-to three-fold differences in some exposure-response associations. 
The fact that incidence was used and prevalent cases at baseline were 
excluded had an effect on the number of cases the present study was able 
to analyse and may have affected statistical power for some outcomes.

Most studies in the literature using UK Biobank data investigated 
morbidity outcomes but relatively few assessed air pollution effects on 
mortality. All such studies used UK-wide data and modelled air pollution 
exposure assessment already available in the UK Biobank database, such 
as the land-use regression models developed in the ESCAPE project 
(Eeftens et al., 2012; Beelen et al., 2013). Exposure variables in the 
present study were linked to the UK Biobank database as part of the 
MELONS project and it is the first time that a model taking time-activity 
data into account (LHEM-adjustment (Smith et al., 2016);) has been 
used in this dataset. Both exposure contrasts and residual confounding is 
expected to be different in the whole of the UK compared to the analysis 
provided here, which only included residents of London. Doiron et al. 
(2019) evaluated air pollution exposure, lung function and COPD in UK 
Biobank in a cross-sectional analysis and reported an increase in COPD 
prevalence associated with higher PM2.5 and NO2 exposures. However, 
the results were not directly comparable to ours, which assessed COPD 
incidence. Li et al. (2024) conducted an analysis on the risk of air 
pollution exposure with ischemic stroke incidence and reported statis
tically significant increased risks associated with both PM2.5 and NO2 
exposures, in contrast with the findings presented here. For dementia 
incidence, Chen et al. (2023) observed HRs of 1.09 (1.06, 1.13) and 1.13 
(1.09, 1.16) for IQR increases in PM2.5 (2.3 μg/m3) and NO2 (about 20 
μg/m3), respectively, which are comparable to the results presented 
here.

Few publications have assessed the effects of air pollutants on UK- 
wide all-cause mortality, compared to London-wide natural-cause 
mortality (which was our main health outcome) using UK Biobank Data 
(Wang et al., 2022; Guyatt et al., 2024; Li et al., 2023). Wang et al. 
(2022) and Li et al. (2023) reported HRs per 10 μg/m3 increase in 
pollutant concentrations, which is a large increment for PM2.5 (when the 
IQR was reported as approximately 2 μg/m3), but it is a reasonable 
contrast for NO2 estimates. Guyatt et al. (2024) reported HRs per IQR of 
9.7 μg/m3 for NO2 (not statistically significant) which are slightly higher 
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to those presented here (1.04 for never smokers and 1.05 for 
ever-smokers vs 1.03 in the present analysis per 14.54 μg/m3 increase in 
STEAM estimates), but larger for PM2.5. Interestingly, Wang et al. (2022)
and Li et al. (2023) reported different HRs, perhaps due to different 
exposure modelling approaches, with Li et al. (2023) observing larger 
HRs. Both papers reported larger HRs compared to the present analysis. 
Converting the effect estimates in these studies to reflect the exposure 
increments used in the present analysis for STEAM estimates (IQRs of 
14.54 and 1.72 μg/m3 for NO2 and PM2.5, respectively), the HRs were 
1.07 (1.01, 1.12) and 1.04 (1.01, 1.08) in Wang et al. (2022), as well as 
1.18 (1.15, 1.21) and 1.11 (1.09, 1.14) in Li et al. (2023), for NO2 and 
PM2.5, respectively, compared to the uncorrected HRs of 1.03 (0.98, 
1.07) and 1.00 (0.96, 1.04) reported in the present study.

The application of exposure measurement error correction methods 
in a survival analysis conducted on the UK Biobank cohort presented 
here offers several strengths over previous similar work. The size of the 
cohort presents a unique opportunity to assess both RCAL and SIMEX 
correction methods in a large (n = 61,797 participants) real-world 
setting. The use of multiple correction methods itself, which both pro
vided increased HRs in comparison to uncorrected, is a strength of the 
present study although the two methods do differ in their underlying 
assumptions. Briefly, RCAL assumes that the “true” and surrogate ex
posures are linearly related and replaces surrogate values with the 
predicted “true”. In comparison, SIMEX relies on finding a good fitting 
extrapolation equation and adds simulated error. These differences in 
approach may lead to differences in bias correction or variance esti
mation. SIMEX correction applies to the classical error component in the 
mixture, so it might not be the most appropriate method if the observed 
errors are predominantly of Berkson-like type. Additionally, if the errors 
were purely Berkson, a correction method would not be necessary, but 
our simulation work under review shows that even if the classical 
component is only 20 % of the mixture, RCAL/SIMEX corrections tend to 
provide more accurate health effect estimates.

Confounding adjustment was consistent across all outcomes and was 
decided a priori. The aim of the analyses presented here was to quantify 
exposure measurement error bias in epidemiological analysis. Although 
omitting an important confounding variable may have an impact on the 
observed quantified exposure-response relationships, the present study 
adjusted for an extensive set of potential confounders such as age, sex, 
ethnicity, smoking status and socioeconomic status, providing a robust 
analysis comparable to previous work from the ELAPSE project on 
morbidity outcomes such as COPD (Liu et al., 2021) and stroke (Wolf 
et al., 2021). Furthermore, we selected Model 2 as our main model as it 
accounted for multiple individual-level confounders. However, Model 1 
comparisons with RCAL-correction were also included here to show the 
impact of confounding adjustment, as well as providing a comparison 
between corrected and uncorrected health effect estimates which share a 
common set of confounders across both the epidemiological and cali
bration models. We applied RCAL in Model 1 because the available set of 
confounders for the calibration model from the validation data was 
limited, and we wanted to assess the impact of applying RCAL in such 
instances. SIMEX does not require a calibration equation, so the 
correction was applied only on the final epidemiological model. To our 
knowledge, there is no previous publication that has compared the 
performance of these two methods on the correction of health effect 
estimation for exposure measurement error. However, limited previous 
work does exist comparing RCAL to multiple imputation correction, 
finding little difference in the associations between long-term PM2.5 
exposure and all-cause mortality in the US; likely due to the low vari
ability observed in classical error (converse to that of the present study), 
as well as the definition of error given the lack of personal exposure in 
the validation dataset used (Josey et al., 2023).

Here, the utilisation of a validation dataset with long-term follow-up 
drawn from participants living in the same area (Greater London) as the 
study dataset and with similar surrogate exposure assessment, socio
economic status and female/male balance, is a major advantage. The 

long follow-up of COPE participants allowed for the estimation of long- 
term personal exposures from outdoor sources only, an exposure metric 
not available in other panel studies in London. However, low correla
tions were observed between surrogate and "true" exposures, and we 
explored other panel studies to see if the correlations were similar or 
higher. In our recent paper (Zhang et al., 2025) we assessed four per
sonal exposure measurement campaigns, i.e., COPE, one on school
children (measuring personal exposure to PM2.5), one on professional 
drivers (black carbon), one on healthy adults (black carbon) and parti
tioned total personal exposure into indoor- and outdoor-generated ex
posures (Zhang et al., 2025). We found low correlations between 
personal exposures and surrogate measures. Similar low correlations 
have been reported in previous studies in the US (Kioumourtzoglou 
et al., 2014). Thus, we considered COPE to be an appropriate personal 
monitoring campaign for this analysis. However, if the correlations be
tween surrogate and "true" exposures were higher, it is likely that 
smaller differences between uncorrected and corrected health effect 
estimates would be observed (Samoli et al., 2020; Butland et al., 2020; 
Zeger et al., 2000).

Additionally, some potential limitations of using the COPE dataset do 
exist. For example, COPE individuals are older compared to UK Biobank 
participants who were about 56 years old on average at recruitment 
(2006-10). After approximately 15 years of follow-up they are of com
parable age, however, COPE participants are individuals living with 
COPD and may therefore exhibit differing time-activity patterns which 
could affect personal exposure. This may impact the correction of sur
rogates towards a defined “true” measure of personal exposure in the 
validation dataset. Methodologies do exist in the measurement error 
literature to be implemented in cases where such differences are large 
(mainly borrowed from the survey statistics literature; e.g. (Oh et al., 
2021; Barnatchez et al., 2024),), however, given the aforementioned 
similarities between COPE and UK Biobank we decided not to employ 
such methods and deemed the datasets similar enough. In the UK Bio
bank sample of Londoners used here, 2,081 (3.4 %) of participants were 
diagnosed with COPD throughout the course of follow-up (largest fre
quency in the outcomes under investigation), and thus, COPD was 
included in the main analysis of the present study.

A limitation of the present study is the lack of similar covariate in
formation in the external validation dataset (COPE) to the data incor
porated into the epidemiological analysis performed on the UK Biobank 
participants. Only Model 1 adjusted for the same covariates as the RCAL 
model, and this is the reason the present study also presented corrected 
HRs for this model in addition to the primary model (Model 2). Uneven 
adjustment between validation and study models may affect the error 
correction methods. However, good agreement was generally observed 
in the relative change in the estimates after RCAL adjustment between 
Model 1 and Model 2. In absolute values, the HRs of RCAL-corrected 
Model 1 and RCAL-corrected Model 2 were generally different, but 
this also held for the uncorrected HRs and is likely a result of the better 
confounding control. In addition, good agreement was observed be
tween SIMEX-corrected Model 2 and RCAL-corrected Model 2 with 
considerable overlap in the confidence intervals between the two HRs. 
Additionally, a major strength of the use of COPE as a validation dataset 
is the long follow-up and compliance within the personal monitoring 
campaign itself. The COPE study followed up participants for a long 
period of time (up to six months) which is rare for such personal expo
sure studies due to cost and the inconvenience to participants (Moore 
et al., 2016). The inclusion of such a dataset potentially offers as strong 
an estimation of personal exposure as possible and therefore provides 
both RCAL and SIMEX correction methods with the best estimation of 
personal exposure to ambient sources, despite the relatively low corre
lations observed between “true” measured exposure and surrogate 
measures (e.g., 0.16 and 0.04 for NO2 and PM2.5 STEAM modelled es
timates, respectively). Moreover, we assessed single exposure models 
and applied measurement error corrections separately for PM2.5, NO2 
and O3. However, measurement error bias may be more profound in 
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multi-pollutant models, where effect transfer can occur from the more 
poorly to the better measured exposures (Zeger et al., 2000) and mea
surement error correction could become more complex (e.g., error in 
one pollutant’s exposure might distort another pollutant’s effect esti
mate). Our future work will focus on quantifying measurement error 
bias in the effect estimates of long-term exposure to air pollution under a 
multi-pollutant model framework, given that the corrected HRs here 
pertain to single-pollutant effects and residual confounding by 
co-pollutants is still possible.

In conclusion, the present study showed that measurement error 
correction in the health effect estimates of long-term exposure to air 
pollution strengthens previous evidence that bias is generally towards 
the null, provided there is information on the error structures of the 
pollutants under investigation. Reported estimates not corrected for 
exposure measurement error may, in many instances, lead to underes
timation of the magnitude of effects. We utilised a previous exposure 
measurement campaign of COPD patients with intensive follow-up and 
used personal exposures to outdoor-generated air pollution as the 
assumed “error-free” or “true” exposure. SIMEX- and RCAL-corrected 
HRs were substantially higher than the uncorrected “naïve” estimates, 
showing the importance of accounting for measurement error in our 
epidemiological analyses. These findings also have major implications in 
health impact assessment of air pollution exposure used to assess rele
vant policies. The use of corrected concentration-response functions 
may result in greater impacts which can justify more ambitious policies 
for improved air quality.
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