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Abstract
Stable isotope labelling is one of the best methods currently available for quantifying
cell dynamics in vivo, particularly in humans where the absence of toxicity makes it
preferable over other techniques such as CFSE or BrdU. Interpretation of stable isotope
labelling data (as for BrdU and CFSE) necessitates simplifying assumptions. Here we
investigate the impact of three of the most commonly used simplifying assumptions: (i)
that the cell population of interest is closed, (ii) that the population of interest is kineti-
cally homogeneous, and (iii) that the population is spatially homogeneous and suggest
pragmatic ways in which the resulting errors can be reduced.

Author summary
Our immune response is responsible for protecting us from infectious disease and can-
cer. The immune system is not static, immune cells are consistent proliferating and dying
even in healthy individuals. Understanding the rate at which immune cells proliferate
and die is an important to understanding how our immune systems function; for exam-
ple how immune memory is maintained or how a diverse repertoire of cells capable of
responding to any invading pathogen is generated. Cell dynamics are usually measured
using a tracer dye. A method called stable isotope labelling is one of the best methods for
quantifying cell dynamics in humans in vivo as it is nontoxic. However, interpretation
of any labelling experiment requires assumptions. In this paper we discuss the impact of
some commonly used assumptions and suggest ways in which the resulting errors can be
reduced.

Introduction
The quantification of cell dynamics is a key component of our understanding of human phys-
iology in health and disease. Stable isotope labelling is considered the gold standard for the
measurement of cell dynamics in humans in vivo. Stable isotope labelling has been used to
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ing neutrophils, monocytes and lymphocytes [1–6] and has led to fundamental discoveries
in both basic cell biology [7–11] and in the pathology of diseases including HIV-1, chronic
lymphocytic leukemia and type 1 diabetes [12–15].

In a typical stable isotope labelling experiment, volunteers will be given a stable isotope
(usually deuterium in the form of deuterated water or deuterated glucose) for a fixed period
of time: the labelling period. Blood will be drawn at multiple timepoints, during the labelling
and delabelling phase, the cells of interest will be sorted by flow cytometry, DNA extracted
and the fraction of deuterium-labelled nucleotides quantified by gas chromatography/ mass
spectrometry. Available deuterium is incorporated when DNA is synthesised and lost when
labelled cells disappear (die, change phenotype or exit the sampled compartment long-term).
In this respect, stable isotope labelling is simpler to interpret than techniques that count
labelled cells (as is common with BrdU) since, when relying on the count of labelled cells,
division of a labelled cell can result either in the production of an extra labelled cell (if both
daughter cells still have high enough concentration of BrdU to count as BrdU-positive) or
the loss of the labelled cell (if division and therefore dilution of the label means both daugh-
ter cells now fall below the threshold of “BrdU-positive”); i.e. upon division one BrdU labelled
cell can become either 2 or zero labelled cells. For stable isotope labelling, the fraction of
labelled nucleotides over time contains information about cell proliferation and cell disap-
pearance. To extract this information mathematical models are constructed and fitted to the
data [16].

Mathematical models for interpreting stable isotope labelling data are necessarily simple.
Over-complicated models would result in unidentifiable parameters and would not be fit for
the purpose of parameter estimation. Whilst essential, these model simplifications do, poten-
tially, impact on parameter estimates. Here we explore the impact of three widely used sim-
plifying assumptions and suggest pragmatic ways in which the resulting errors in parameter
estimates can be reduced.

The first assumption we investigate is that the cell population of interest is closed i.e. there
are no upstream or downstream compartments feeding into or out of the target compartment
of interest. The second assumption is that the population of interest is kinetically homoge-
neous i.e. all cells in the population have the same kinetics and the third is that the population
is spatially homogeneous i.e. a sample of a population from the blood would yield the same
kinetics as a sample of the same population from a spatially-distinct tissue.

Results
1. Upstream and downstream compartments
Cell populations are not isolated, closed systems: cells enter a target population as they
mature and change phenotype (to the phenotype of the target population) and leave the pop-
ulation as they die, exit the sampled compartment long-term or change phenotype (from the
phenotype of the target population). Labelling data will often only be collected for the target
cell population of interest and not for compartments upstream and downstream of the target
cell compartment. There are multiple reasons why this may be the case: sometimes the lineage
topology is unknown and so the identity of the upstream and downstream compartments
is unknown, sometimes it is because these compartments are difficult to access in humans
(e.g. maturation occurs in the bone marrow or thymus) and sometimes because blood vol-
ume is limited and so populations other than the target population cannot be sorted. We have
previously shown that having an upstream compartment can affect the fraction of measured
label, and potentially lead to incorrect estimation of the kinetic parameters [1,17]. Having a
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downstream compartment does not affect parameter estimation, provided that the disappear-
ance rate is interpreted as the loss of cells due to all causes including exit to the downstream
compartment.

Here, we investigate the conditions under which the kinetic parameters of the target cell
compartment can be estimated accurately despite assuming that the target compartment is
closed when model fitting. We also investigate whether fitting a model with an upstream com-
partment yields more accurate and/or precise estimates of the kinetic parameters compared to
fitting a single-compartment model in the event that data from the upstream compartment is
absent.

We consider a scenario (Fig 1) in which the target population of interest, E, is sampled but
its upstream, precursor compartment, C, is not. Upstream, precursor cells C proliferate at rate
pC, die at rate dC, and differentiate at rate r. Differentiation is allowed, but not required, to be
linked to clonal expansion. Each precursor cell divides k times before differentiation (the case
k=0 corresponds to differentiation in the absence of division). Clonal expansion is assumed to
occur outside of the sampled compartment (typically blood). Target population cells, E, pro-
liferate at rate pE and disappear (die or differentiate) at rate dE. The number of cells in the two
populations is assumed to be independently at equilibrium. Then the dynamics of the two cell
populations follow the equations

dC
dt
= pCC – dCC – rC (1a)

dE
dt
= r2kC + pEE – dEE. (1b)

Upon stable isotope labelling (discussed here without loss of generality for labelling with
deuterated water), then the fraction of label in each compartment (FC and FE respectively) is

dFC
dt
= pCbwU(t) – (dC + r)FC, (2a)

dFE
dt
= (2k – 1)bwU(t)r

C̄
Ē
+ r C̄

Ē
FC + pEbwU(t) – dEFE (2b)

where C̄ and Ē are the equilibrium population sizes for C and E, bw is the normalisation factor
for water [18] and U(t) is the fraction of label in body water.

Fig 1. Compartmental diagram for model with precursor (upstream) and target populations.

https://doi.org/10.1371/journal.pcbi.1012704.g001
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We describe the fraction of deuterium in body water using a simple empirical curve

U(t) =
⎧⎪⎪⎨⎪⎪⎩

f[1 – exp(–𝛿t)] if t≤ 𝜏
U(𝜏) exp(–𝛿(t – 𝜏)) otherwise

(3)

where, f is the plateau enrichment (expected to be the fraction of D2O in the daily intake of
water) and 𝛿 the rate at which the plateau is approached (expected to be equivalent to the
turnover rate of body water) and 𝜏 is the length of the labelling phase.

If each compartment (C, E) is kinetically homogeneous – that is, all cells in the compart-
ment have the same kinetics rate – then in Eqs 1 and Eqs 2, equilibrium constraints require
pC = dC + r and r2k C̄Ē + pE = dE. Kinetic heterogeneity in each compartment, where the precur-
sor and/or target populations are composed of subpopulations with different turnover rates,
can be approximated by replacing dC and dE in Eq 2 with d∗C and d∗E respectively where d∗C and
d∗E are the disappearance rates of the labelled cells in compartments C and E respectively, and
we typically expect d∗C ≥ dC, d∗E ≥ dE [19].

Focusing on the target compartment (our cell population of interest), we describe its kinet-
ics in terms of three descriptors:

i its proliferation rate, defined to be pE
ii its turnover rate, defined to be the total rate of inflow into the target compartment, T =

r2kC̄/Ē + pE, which is equal to the rate of outflow (disappearance rate across all cells), dE,
at steady state

iii its rate of production by division defined to be P = r(2k – 1)C̄/Ē + pE.

Fig 2 shows the relationships between target compartment parameters for four cases. In
case A, k>0 and the influx of labelled cells from C to E is large. In case C, k = 0 and the influx
of unlabelled cells from C to E is large. In cases B and D, the influx of cells from C to E is
small; k>0 and k = 0 respectively. The ratio between the influx of cells from C to E and the
total turnover can be written as X = r2kC̄

dEĒ
. In cases A and C, this is significantly larger than 0

(but smaller than 1 by definition); in cases B and D, it is close to 0.
Fitting a one-compartment model to the target data When we only have measure-

ments of FE (i.e. label in the target population), one commonly used option is to neglect the
existence of the precursor population and to fit a one-compartment model. In this study we
will focus on fitting the version of the model with implicit kinetic heterogeneity, as it is a
more general version of the homogeneous model but retains parameter identifiability (unlike
models which explicitly describe multiple sub-populations within the target population, see

Fig 2. Relationships between target compartment parameters for four cases.

https://doi.org/10.1371/journal.pcbi.1012704.g002
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next section):
dF
dt
= pbwU(t) – d∗F. (4)

In Eq 4, proliferation, production by division and turnover are described by a single rate
p. This will evidently cause problems when fitting to the target data, as Fig 2 shows that these
terms are not equal when the influx of cells into the target compartment is large. In S1 File,
we show that the estimated p (which we will refer to as p̂) most closely approximates the pro-
duction rate by division, which for cases A, B and D is approximately equal to the turnover
rate, and for cases B, C and D is approximately equal to the proliferation rate. Thus for case A
when there is a large influx of labelled cells into the target compartment, the proliferation rate
is underestimated by p̂, and for case C when there is a large influx of unlabelled cells into the
target compartment, the turnover rate is overestimated by p̂. As the error occurs due to the
conflation of the proliferation rate, production rate by division and turnover rates, its magni-
tude is equal to that of the true discrepancy between these rates in the target compartment,
which is not possible to assess with information from the target compartment only.

If we know the identity of the upstream compartment, we may have some information
about pC (its proliferation rate) and C̄

Ē (the ratio between the two population sizes) from the
literature. As pC is an upper bound for r, pC C̄

Ē is an upper bound for the difference between
the rates of turnover and production by division. However, without knowledge of k, it is dif-
ficult to find a bound for the difference between the rates or proliferation and production by
division.

We demonstrate these results with simulated data. S2 File shows 100 parameter sets sam-
pled from the prior distribution (Table 1, S1 Fig “optimal data”), and Figs A-D in S3 File show
the target compartment labelling data simulated using the two compartment precursor-target
model and these parameters. Fig 3 shows the results of then fitting the one compartment
kinetic heterogeneity model (Eq 4) to these data (Methods). p̂ and ̂d∗ are the estimated val-
ues of p and d*, respectively. The top row shows results for 1≤ k≤ 20 (cases A and B in Fig 2).
As expected, p̂ is a good estimate of the turnover rate of the target compartment r2kC̄/Ē+ pE
and of the rate of production of target cells by division r(2k –1)C̄/Ē+ pE. However, it is a
poor estimate of the true proliferation rate of the target compartment pE. The bottom row
shows results for k = 0 (cases C and D in Fig 2). Turnover is now underestimated by p̂ but the
proliferation rate and the rate of production by cell division are accurately captured.

Fig 3D and H show that if k = 0, estimates of d* are potentially inaccurate, i.e. differ from
the true disappearance rate of labelled cells. This observation is further analysed in S1 File.
This is arguably less problematic as d* is not a stable, intrinsic descriptor of the population as
it depends on the labelling protocol.

In Fig 4, we break down the errors by influx ratio in addition to k. Fig 4A shows the error
in the production rate by division when fitting a one-compartment model to the simulated
data sets, defined as a percentage 100 p̂–P

P . As expected from the theoretical results in S1 File,
the error in the production rate by division is small, unless k = 0 and the influx ratio is large
(case C in Fig 2). In this case, the FC term in dFE

dt in Eq 2 is relatively large, leading to error
in estimating P. In Fig 4B, for each value of the influx ratio X on the x-axis and k indicated
by the colour, the lines show the theoretical error from assuming that the production rate
by division is equal to the proliferation rate, i.e. 100 P–pE

pE
. This error can be rearranged into

100X(2k–1)
(1–X)2k , so it is a function of X and k only. We can see, for example, that if an error of less

than 10% is needed, this can be achieved with an influx ratio X<0.1 regardless of k; but the
requirement becomes less stringent for k = 0. Hence, proliferation is well approximated by the
production rate by division for cases B, C and D in Fig 2. The dots show 100 p̄–pE

pE
estimated
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Fig 3. Estimated p̂ (all columns except rightmost column) and ̂d∗ (right column) compared to (from left to right) the rates of proliferation, turnover, pro-
duction by division and the disappearance rate of labelled cells in the target compartment. Top: for the case when k (the number of rounds of cell division
associated with differentiation) varies in the range [1,20]; bottom: when k is constrained to zero.

https://doi.org/10.1371/journal.pcbi.1012704.g003

from the data. For k > 0, the estimated errors agree well with the theoretical results. For k = 0,
the theoretical result is zero error, but in reality there is still some error due to the error in
the estimation of p as shown in Fig 4A. In Fig 4C, the lines show the theoretical error from
assuming that the production rate by division is equal to the turnover rate,T, i.e. 100 |P–T|

T .
This error can be rearranged into X

2k , so it is a function of X and k only. It increases with X
and decreases with k; for example, if an error of less than 25% is needed, this can be achieved
with k≥ 2 for all values of X, or X≤ 0.5 for k = 1, or X≤ 0.25 for k = 0. The dots show 100 p̂–T

T
estimated from the data, which agree with the theoretical results. Hence, turnover is well
approximated by the production rate by division for cases A, B and D in Fig 2.

In a companion article by Swain et al. [35], the special cases k = 0 and k = 1 with kinetic
homogeneity (d∗C = dC, d∗E = dE) are examined. These studies agree with us that for k = 0,
turnover is underestimated by p̂, unless the precursor cells turn over quickly.

We conclude that, when there is a significant flow of labelled cells into the target popula-
tion of interest (k≫ 0, precursor population very large or proliferating rapidly), then we (1)
cannot estimate proliferation of the target population but (2) can calculate an upper bound
on the proliferation rate and (3) can also estimate target cell production by division which is
approximately equal to the turnover. The approximation between turnover and production by
division holds provided there is division linked differentiation. The larger the value of k (the
number of cell divisions upon differentiation) the better this approximation. Conversely, for
low values of k, the influx of cells into the target population from the upstream population
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Fig 4. Errors in estimating the rates of production by division, proliferation and turnover, as a function of the influx ratio X and the number of divisions
linked to differentiation k. (A) The error in the production rate by division when fitting a one-compartment model to the simulated data sets, defined as a per-
centage 100 p̄–P

P . (B) For each value of the influx ratio X on the x-axis and k indicated by the colour, the lines show the theoretical error from assuming that the
production rate by division is equal to the proliferation rate, i.e. 100 P–pE

pE
. The dots show 100 p̄–pE

pE
estimated from the data. (C) Same as (B) but for the turnover

rate.

https://doi.org/10.1371/journal.pcbi.1012704.g004

will be unlabelled and therefore invisible to the experiment. In this scenario, we can (1) esti-
mate the proliferation rate (2) estimate the production by division (3) obtain an upper bound
on the turnover rate. It is straightforward to understand these results intuitively. When fit-
ting a one compartment model, label from any source, be it proliferation of the target popu-
lation, proliferation of the precursor or clonal division upon differentiation is subsumed into
one term (i.e. there is no way to distinguish between these sources of label) and quantified by
the parameter p. The correct interpretation of this is label that has arisen by division which
we refer to as the production by division. p̂ is therefore in all cases an accurate estimate of the
production by division. In the past, p̂ has been incorrectly interpreted as the proliferation of
the target population. The total label arising from division is the sum of the label arising from
the target population proliferation and the label arising from the upstream population; there-
fore, in the case where there is little label from the upstream population (k = 0), then the pro-
duction by division is approximately equal to the proliferation and p̂ approximates the prolif-
eration rate. This approximation breaks down as the amount of label from the upstream pop-
ulation increases. On the other hand, turnover is equal to the gain (or loss) of all cells by the
target population. Flow of unlabelled cells from the upstream population will be invisible in
the labelling experiment, so if this flow is relatively large (e.g. the k = 0 case), then turnover
will be underestimated by the production by division. However, if this term is small (e.g. k≫
0) then production by division will be similar to the turnover and therefore turnover will be
accurately approximated by p̂. These relationships are summarised in Fig 5.

Comparing fits using models with and without an upstream compartment Next we
investigate whether, if proliferation rather than turnover is the quantity of interest, and clonal
expansion contributes significantly to label (k≫ 0), there is any benefit in fitting the two com-
partment precursor/target model (Eq 2) despite an absence of data from the upstream precur-
sor compartment. That is, we consider the same simulated data as in the previous section, but
fit the precursor/target model. When performing Bayesian inference, the chains do not con-
verge so we utilised a maximum likelihood approach instead. This allows us to obtain point
estimates p̂E and d̂∗E , but fit diagnostics indicate that parameters are not identifiable due to col-
inearity and the covariance matrix is singular. Although the diagnostics indicated that the fits
are unreliable, the point estimates of the proliferation rate from fitting the two compartment
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Fig 5. Summary of errors in estimation of target population descriptors when fitting a one-compartment model
to data from the target compartment.

https://doi.org/10.1371/journal.pcbi.1012704.g005

precursor/target model are closer to the true values than when fitting the one compartment
model.

The errors in the proliferation rate estimates are significantly lower when fitting the precur-
sor/target model than when fitting the one population model (median 83% and 201% respec-
tively; P = 2.10–9, N = 98, Wilcoxon signed rank), Fig 6A. We reason that in an experimental
setting where the identity of the precursor compartment is known but not sampled then the
ratio of sizes of the precursor and target compartments can be added as a fixed parameter
and that this might aid parameter estimation; we refer to this as the precursor/target model
with ratio. Unexpectedly, providing the ratio of the size of the upstream to target compart-
ments does not result in a reduction in error. If anything the errors in parameter estimates
from the precursor/target model with ratio are slightly higher than the estimates from the pre-
cursor/target model without the ratio (median 109% and 83% respectively; P = 0.04, Wilcoxon
signed rank). However, errors still remain significantly lower than for the one compartment
model, Fig 6A.

For each of the three models, for the 100 data sets we also estimate the accuracy, i.e. what
proportion of times the true parameter values lay within the 95% confidence intervals (CI)
of the estimated values (calculated by bootstrapping the data, Methods), Fig 6B. For all three
models, the proportion of runs where the true parameter value lies within the 95% CI of the
estimate is low (3.6%, 8.3% and 27% for the one compartment model, precursor/target model
and precursor/target with ratio model respectively). The proportion is significantly higher for
the precursor/target with ratio model than for either the one compartment model (P = 6 ×
10–5, Fisher’s exact test) or the precursor/target model (P = 0.003, Fisher’s exact test). The low
proportion of runs where the estimate lies within the CI indicates that for all three models, for
the data set in question, estimating the CI by bootstrapping the data leads to a considerable
underestimate of the CI; the asymptotic covariance matrix method on the other hand finds
infinite intervals.
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Fig 6. Error in estimates of the proliferation rate. A Discrepancy between point estimate of the proliferation rate
and the true value for optimal data (expressed as a proportion of the true value) for the one compartment target
model (red), precursor/target model (blue) and precursor/target with ratio model (green). Note the y axis has been
truncated to show the bulk of the data more clearly; the same graph but with no y axis truncation is given in S3 Fig.
P values are calculated by Wilcoxon signed rank, two-tailed; not corrected for multiple comparisons (number of
independent comparisons ≤ 3). B 95% confidence intervals (CI) were estimated by bootstrapping the data (Methods)
and the fraction of runs where the true value lay within the CI is reported. Colours as for A. P values are calculated by
Fisher’s Exact Test; not corrected for multiple comparisons (number of independent comparisons ≤ 3). The analysis
in A and B was then repeated for more realistic data in C and D.

https://doi.org/10.1371/journal.pcbi.1012704.g006

When fitting the precursor/target model, ̂pE now only corresponds to proliferation and not
production by division or turnover, so as expected, the latter quantities are poorly estimated
by ̂pE (5S Fig).

To this point we have been fitting optimal data in order to have a simpler system to aid
analytical work and to focus on the effect of an upstream compartment rather than on imper-
fect data. There are three main respects in which our simulated data so far has been opti-
mal: 1) noise is low 2) sampling is frequent 3) heterogeneity in the target compartment is
represented by a single exponential with d*>p rather than explicitly with subpopulations).
We therefore repeat the analysis using more realistic data by relaxing these three constraints
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(Methods). The parameters for model simulation are in S2 File, and the simulated data sets
are in Figs E-H of S3 File. On calculating the errors for all three models fitted to this more
realistic data we find the same pattern: i.e. the errors in the estimates of the proliferation rate
obtained by fitting the precursor/target model are significantly lower than those obtained by
fitting either the one compartment model or the precursor/target model with ratio (Fig 6C).
Additionally, as for the optimal data, we also find that the highest proportion of runs where
the true value of the parameter lies within the 95% CI of the estimated value is seen for the
precursor/target model with ratio (Fig 6D). However, when changing the parameter ranges
with which the simulated data are produced so that the mean proliferation of the target pop-
ulation is pE = 0.02 (compared to a mean of pE = 0.002 for the previous data sets) then relative
errors produced by all models are much smaller and there are no longer any significant differ-
ences in the errors between the models (S4 Fig). We find then that, at least for values of prolif-
eration that are typically seen with T cells (i.e. the results shown in the main text rather than
S4 Fig), fitting a precursor/target model, even when only target cell data is available produces
estimates of the target cell proliferation rate with a lower percentage error.

In summary, we recommend that where it is suspected that there may be an upstream
compartment but this compartment has not been sampled then the one compartment implicit
kinetic heterogeneity model (Eq 4) is fitted and the estimated parameter p̂ is interpreted as
the production rate by division. This interpretation will always be correct independent of
the dynamics or relative size of the upstream compartment. If p̂ is equated with proliferation
and/or turnover then the necessary assumptions should be spelt out (that there are no labelled
cells entering from an upstream source and that there are no unlabelled cells entering from an
upstream source respectively). Ideally, further information should be obtained about the size
and dynamics of the upstream population. In the case where there is considerable label enter-
ing from the upstream compartment and we wish to quantify how much of the production by
division is attributable to the proliferation of the target population then an improved estimate
of the proliferation can be made by fitting the precursor/target model though this may suffer
from large errors.

2. Kinetic heterogeneity
The second assumption we consider is the assumption of kinetic homogeneity. When estimat-
ing rates of cell turnover, a common assumption is that the population is kinetically homoge-
neous, i.e. all cells of the population proliferate and disappear at the same rate. However, the
population may actually be composed of subpopulations which each have different kinetics,
which is termed kinetic heterogeneity in the literature [19,20].

Kinetic heterogeneity can be modelled explicitly. If we assume the simplest form of kinetic
heterogenity in which there are N unconnected subpopulations then the dynamics of the
subpopulations obey

dCi

dt
= piCi – diCi, i = 1, 2, ...,N (5)

If each subpopulation is independently at equilibrium, pi = di, and we can define the rela-
tive size of each population as 𝛼i = Ci

∑N
j=1 Cj

. This model is illustrated for two subpopulations in
Fig 7.

The fraction of labelled cells in this explicit kinetic heterogeneity model is [20]

dFi
dt
= pibwU(t) – diFi, i = 1, 2, ...,N, (6a)
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Fig 7. Compartmental diagram for two-compartment model with explicit kinetic heterogeneity.

https://doi.org/10.1371/journal.pcbi.1012704.g007

F =
N
∑
i=1
𝛼iFi. (6b)

Here, Fi is the fraction of labelled cells in subpopulation i and F is the fraction of labelled
cells in the total population. The companion article by Swain et al. [35] notes that the tar-
get compartment labelling curve in the precursor/target model is identical in form to the
labelling curve for the two subpopulations case if the target cells turn over faster than the pre-
cursor population. In this case it is not possible to distinguish between the two possible sets of
dynamics underlying the labelling curve.

In Eq 6 the number of parameters scales linearly with the number of subpopulations
and moreover there are strong correlations between the parameters, so some parameters
may not be identifiable with limited data. A simplification can be made to yield the implicit
kinetic heterogeneity model Eq 7 [19], where F is the overall fraction of labelled cells, p is the
(weighted) mean proliferation rate across subpopulations and d* is the disappearance rate of
labelled cells, which is biased towards cells with the fastest turnover.

dF
dt
= pbwU(t) – d∗F (7)

Previous studies have addressed the implications of kinetic heterogeneity on parame-
ter estimation [6,21–23]. For a cell population consisting of subpopulations individually in
equilibrium then the explicit kinetic heterogeneity model encapsulates the true dynamics of
the system. By reducing the number of model parameters, the implicit kinetic heterogeneity
model represents an approximation that potentially results in inaccurate estimates. This was
shown by Westera et al. [23]. They further showed that the estimation of average proliferation
could be improved by fitting an explicit heterogeneity model with multiple, explicitly mod-
elled, subcompartments and demonstrated this by comparing parameter estimates obtained
by fitting this model [23]. However, this study used a single parameter set; we now explore the
generalisability of the results.

Implicit kinetic heterogeneity model parameter estimates are more precise. We simu-
lated data using a two-compartment explicit model, for baseline parameters given in Table 2,
varying p1, p2 and 𝛼1 (Methods, 125 simulations in total). We then fitted the homogeneous,
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implicit heterogeneous and explicit heterogeneous (two-compartment) models to the simu-
lated data. Fig 8A shows the percentage error (as previously defined) in estimates of the mean
proliferation rate for each of the three models (“model selection” will be discussed later in the
manuscript). Surprisingly, the errors tended to be larger for the explicit model compared to
the implicit model (p = 0.0047, Wilcoxon signed rank test), inconsistent with the results of
Westera et al. [23]. However, the explicit model does have a higher proportion of parameter
sets for which the 95% CI for the mean proliferation rate contains the true value (Fig 8B), as
the width of the CIs tends to be larger (Fig 8C). Parameter estimates for individual data sets
are shown in S6–S11 Figs.

We investigated how the performance of each model depended on the parameters used to
generate the simulated data. Fig 9 shows that when p1 ≤ 10p2, the implicit kinetic heterogene-
ity model has a low percentage error regardless of the other parameter values, while when p1 >
10p2, the errors for the implicit kinetic heterogeneity model are large when 𝛼1 is small, but
decrease when 𝛼1 is large. Westera et al. [23] simulated using the parameters p1 = 0.72, p2 =
0.016 and 𝛼1 = 0.1, which falls in the region of parameter space (p1 ≫ p2 and 𝛼1 small) where
the estimate of the mean proliferation rate from the implicit kinetic heterogeneity model has a
large error.

This result illustrates a fundamental problem with estimating the mean proliferation rate
using stable isotope labelling: that it is difficult to rule out the existence of a fast, small com-
partment which, while not changing the overall proportion of labelled cells much, does drive
up the mean proliferation rate. S12 Fig shows pairs plots of the posterior distribution for
fitting the two-compartment model to data generated with two different sets of parameter
values; both show this lack of identifiability for p1 and 𝛼1.

The implicit kinetic heterogeneity model uses a single parameter for the disappearance rate
of labelled cells, even though the proportion of labelled cells with a fast turnover decreases
during the delabelling period [19]. Thus, it encodes an implicit assumption that the amount
of kinetic heterogeneity is small, which narrows down the posterior distribution of the mean
proliferation rate compared to the explicit model. When the true amount of kinetic hetero-
geneity is indeed small, then the implicit kinetic heterogeneity model thus produces both

Fig 8. Evaluating model fits for different models of kinetic heterogeneity. (A) The percentage error in the mean proliferation rate, (B) the percentage of simu-
lations for which the true value of the mean proliferation rate lies within the 95% CI, and (C) the width of the 95% CI of the mean proliferation rate, across 125
simulations of the two-compartment model, when the models on the x-axis are fitted to the data.

https://doi.org/10.1371/journal.pcbi.1012704.g008

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1012704 June 3, 2025 12/ 28

https://doi.org/10.1371/journal.pcbi.1012704.g008
https://doi.org/10.1371/journal.pcbi.1012704


ID: pcbi.1012704 — 2025/6/3 — page 13 — #13

PLOS COMPUTATIONAL BIOLOGY The impact of model assumptions in interpreting cell kinetic studies

Fig 9. Evaluating model fits for different models of kinetic heterogeneity, stratified by the ratio between p1 and p2. (A) The percentage error in the mean
proliferation rate for (A) p1 ≤ 10p2 and (B) p1 > 10p2, for different values of 𝛼1 (subplots), across 125 simulations of the two-compartment model, when the
models on the x-axis are fitted to the data.

https://doi.org/10.1371/journal.pcbi.1012704.g009
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more precise and accurate estimates; however, when the true amount of kinetic heterogeneity
is large, the implicit kinetic heterogeneity model can be inaccurate.

Explicit kinetic heterogeneity model parameter estimates are very sensitive to the
choice of prior distributions. Although the explicit two-compartment model had a higher
proportion of simulations where the true value of the mean proliferation rate was within the
95% CI, this was achieved because the CIs were so wide. As wide CIs could be influenced by
the width of the prior distribution, we repeated the fitting procedure using uniform prior
distributions of different widths for p (or pi for the explicit model). First, we reproduced the
scenario proposed by Westera et al. [23], fitting implicit and explicit models to data gener-
ated using the explicit model and model parameters p1 = 0.72, p2 = 0.016, 𝛼1 = 0.1, using uni-
form priors [0,1] or [0,10] for pi (Fig 10A–10B). Note that to match the methods of West-
era et al. [23], for Fig 10A–10B we assumed perfect labelling i.e. U(t) = 1 for 0≤ t≤ 𝜏 and
U(t) = 0 otherwise. Upon widening the prior, the accuracy of the explicit kinetic heterogene-
ity models broke down resulting in very inaccurate estimates and extremely wide credible
intervals. We then explored a wider range of parameters by fitting the homogeneous, implicit
kinetic heterogeneity and two-compartment models to the previously simulated 125 data
sets. Fig 10C shows that the errors in the estimates for the mean proliferation rate are prior-
independent for the homogeneous and implicit kinetic heterogeneity models, but grow with
the prior width for the two-compartment explicit heterogeneity model. The widths of the 95%
CIs also grow with the prior width for the two-compartment model, approaching those of the
prior (Fig 10D). This indicates that the estimates of mean proliferation rate obtained using
the explicit heterogeneity models are heavily dependent on prior assumptions rather than the
data, consistent with the high correlations between model parameters. Given that CFSE dilu-
tion studies of T cells, NK cells and B cells, both in vitro and in vivo, routinely report small
subpopulations of cells undergoing large numbers of divisions (e.g. ≥ 6 divisions in 3 days,
where 6 divisions represents the limit of detection in this case) it is hard to justify a conserva-
tive prior [24–26].

Model selection does not improve parameter estimates. We have shown that the
implicit kinetic heterogeneity model and the explicit two-compartment model each pro-
duce good fits for different regions in parameter space, but we do not know to which region
of parameter space a particular dataset corresponds. Also, if we choose to use an explicit
model, we do not know the number of kinetically distinct subpopulations. One interesting
approach, suggested by de Boer et al. [22], is to increase the number of compartments in the
fitted explicit kinetic heterogeneity model until the goodness of fit is no longer improved. We
investigate the effectiveness of this approach.

For the 125 simulated datasets above, we fit an n-compartment explicit kinetic hetero-
geneity model to the data (with a prior width of 1 for pi). Model selection is implemented by
first considering the two simplest models (with the fewest compartments). We use Δelpdloo =
elpdloo,i – elpdloo,j, which is a metric related to the expected log pointwise predictive density,
as the criteria to compare these two models (Methods). Where there is insufficient evidence
to select the more complex model, the simpler model is selected; where there is evidence to
select the more complex model, the next most complicated model is added to the set of mod-
els under consideration, and model comparison is repeated. This process is repeated until
the most complex model within the set of models under consideration is no longer favoured
statistically, leading to selection of the second most complex model in the set.

Fig 8 compares the error in the model selection estimate, the width of the 95% CI and the
percentage of accurate estimates of the mean proliferation rate versus using either the homo-
geneous, implicit heterogeneous or the two-compartment model as previously discussed.
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Fig 10. Dependence of parameter estimates on the prior distribution. (A–B): Estimated mean proliferation rates when fitting models with different priors
to data generated using a two-compartment explicit heterogeneity model. Error bars indicate 95% credible intervals. On the x-axis, ‘implicit’ is the fit using the
implicit kinetic heterogeneity model, while the others are using explicit models with the number of compartments indicated. (A) uses a uniform prior distribu-
tion across [0,1] day–1 for pi (explicit model), p and d* (implicit model), and (B) uses a uniform prior distribution across [0,10] day–1 for these parameters. The
horizontal line indicates the value used to simulate the data. (C–D): (C) The percentage error in the mean proliferation rate, and (D) the width of the 95% CI
of the mean proliferation rate, across 125 simulations of the two-compartment model, when the models in the subplot titles are fitted to the data, with uniform
priors for p (or pi) with upper bounds as indicated on the x-axis.

https://doi.org/10.1371/journal.pcbi.1012704.g010
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Model selection performs very similarly to the explicit two-compartment model in both its
advantages and disadvantages. However, S13 Fig shows that the homogeneous model tends
to be selected when the degree of heterogeneity is small, so this approach may lend additional
evidence to the degree of heterogeneity. Results may vary if the stringency of the model selec-
tion is changed. We also note that as explicit heterogeneous models are considered, param-
eter estimates using the model selection method is likely be sensitive to the choice of prior
distribution and that repeating the above analysis with less informative priors would results
in degradation of the performance of the explicit two compartment model and the model
selection approach.

We thus recommend choosing a model based on prior data rather than through model
selection. If prior data is limited or uninformative then the implicit model should be used,
but we should be aware that this model assumes a small degree of heterogeneity; greater het-
erogeneity may be present but undetectable in the data. On the other hand, if an informative
prior can be generated, an explicit n-compartment model may be better. Where possible, we
should constrain parameter space using additional data, such as telomere length [17,27] or
Ki-67 expression data [28].

3. Spatial distribution of T lymphocytes
The final assumption we consider is the assumption of spatial homogeneity. Studies of T cell
dynamics, at least for humans, are most often based on samples from the blood. Directly ex
vivo, most peripheral blood T lymphocytes are in G0 \G1 [29,30]. Nevertheless high levels of
deuterium are typically detected in peripheral blood lymphocytes following a labelling period.
This indicates that division occurs outside the blood, most likely in lymphoid tissue, and that
dividing cells take up label outside the blood stream and then travel through the blood where
they are sampled. Here we ask whether cell proliferation and disappearance rates, estimated
from the timecourse of labelled peripheral blood cells are accurate estimates of proliferation
and disappearance of cells in lymphoid tissue. That is, do labelled cells in the blood provide
a window into cell dynamics in lymphoid tissue? We address this question using the model
represented by Eqs 8 and depicted in Fig 11.

dA
dt
= pA – dA – gA + fB (8a)

dB
dt
= gA – fB. (8b)

In which A is the number of cells (of the cell population of interest) in lymphoid tissue and
B the number of cells of the same population in the blood. Cells in lymphoid tissue prolifer-
ate at rate p, disappear (die/ differentiate/ exit the circulation long-term) at rate d, enter the
blood at rate g and leave the blood at rate f. Upon labelling, then the fraction of label in each
compartment (FA and FB respectively) is

dFA
dt
= pbwU(t) – (d + g)FA + fFB

B̄
Ā

, (9a)

dFB
dt
= gFA

Ā
B̄

– fFB (9b)

where Ā and B̄ are the steady state sizes of the populations A and B (i.e. B̄/Ā is the blood to
lymph ratio for the population of interest, which is of the order of 2/98 for lymphocytes [31])
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Fig 11. Flow diagram for model with lymphoid tissue and blood.

https://doi.org/10.1371/journal.pcbi.1012704.g011

and U(t) is the fraction of deuterium in body water (Eq 3). We assume that only label in the
blood, FB can be observed.

We simulate this system using parameters from physiological ranges (Methods) and calcu-
late the discrepancy between the label in the lymph and the observed label in the blood D =
max [ FA–FB

FA
] for a range of values of f and p. The maximum discrepancy is plotted in Fig 12

and a representative labelling plot for a particular set of parameters in Fig 13.
It can be seen that, for our best estimate of the lymphocyte recirculation rate (f=28 per

day) then for all values of proliferation considered, the maximum discrepancy at any time-
point is extremely small. Even if the lymphocyte recirculation rate is ten-fold slower (f=0.28
per day), and the proliferation rate is high (p=0.1 per day) then the maximum discrepancy
is still less than 2%. We conclude that, for freely recirculating T lymphocytes, then dynamics
quantified from the blood will be representative of dynamics in lymphoid tissue.

Discussion
We have investigated the impact of three widely used simplifying assumptions when mod-
elling stable isotope labelling data. The first is the assumption that the target subpopulation
being studied is closed. We considered the situation that there is an upstream precursor pop-
ulation flowing into the target cell population but that the upstream compartment is not sam-
pled. When fitting a one compartment model to labelling data from the downstream com-
partment, label from any source, be it proliferation of the target population, proliferation of
the precursor or clonal division upon differentiation is captured by the single parameter p.
The correct interpretation of this parameter is therefore label that has arisen by division which
we refer to as the production by division. p̂ is therefore in all cases an accurate estimate of
the production by division. In the past, p̂ has been incorrectly interpreted as the proliferation
of the target population. The total label arising from division is the sum of the label arising
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Fig 12. Maximum discrepancy, D, between label in blood and label in secondary lymphoid tissue for varying
lymphocyte proliferation rates (different coloured lines), varying f + g along the x axis. The central vertical dashed
line marks the physiological recirculation rate of f=28 per day, lines to left and right mark 10 fold lower and higher
(2.8 per day and 280 per day) respectively. It can be seen that unless recirculation is unrealistically slow and the
lymphocyte kinetics are very fast then the label in the blood is a very good approximation of label in the lymphoid
tissue.

https://doi.org/10.1371/journal.pcbi.1012704.g012

Fig 13. A comparison of label in lymph node (solid line, FA) and label in blood (dashed line, FB). It can be seen
that, for all proliferation rates considered, they overlay. Here f=28 per day.

https://doi.org/10.1371/journal.pcbi.1012704.g013
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from the target population proliferation and the label arising from the upstream population;
therefore, in the case where there is little label from the upstream population (k = 0 and small
influx ratio), then the production by division is approximately equal to the proliferation and
p̂ approximates the proliferation rate. This approximation breaks down as the amount of label
from the upstream population increases. On the other hand, turnover is equal to the gain (or
loss) of all cells by the target population. Flow of unlabelled cells from the upstream popu-
lation will be invisible in the labelling experiment, so if this flow is relatively large (k = 0 and
large influx ratio), then turnover will be underestimated by the production by division. How-
ever, if this term is small (k≫ 0 or small influx ratio) then production by division will be sim-
ilar to the turnover and therefore turnover will be accurately approximated by p̂. As we usu-
ally do not know k or the influx ratio, we recommend that the estimated parameter p̂ be only
interpreted as the production rate by division. Attempts to directly estimate proliferation by
fitting the precursor/target model may suffer from large errors.

Swain et al. [35] addressed the same question but restricted to kinetically homogeneous
upstream/target compartments, and for the special cases of k = 0 and k = 1, using different
analytic derivations. As the kinetically homogeneous k = 0 and k = 1 cases are special cases
of our model (heterogeneous k∈ [0, 20]), the results of our two studies should agree for this
case. For k = 0, we agree that the turnover rate may not be well estimated if the target com-
partment is assumed to be closed. Swain et al. [35] agrees with us that the turnover rate is well
estimated when the turnover rate of the upstream compartment is fast, or when the inflow
into the target compartment is small (i.e. there are few unlabelled cells from the precursor
compartment).

The second assumption we analysed is that all lymphocytes in a population have the same
turnover rate. Although previous studies have used implicit or explicit models to address
kinetic heterogeneity, the circumstances under which each model should be used, and their
limitations, have not been investigated.

We found that, even though the explicit model is the generative model then, compar-
ing the estimates of proliferation obtained by fitting the implicit and explicit models, the
implicit model had significantly smaller errors across the parameter range (P = 0.0047, Fig 8).
The proportion of estimates falling in the CI was higher for the explicit heterogeneity model
though at the cost of very wide CI. The only region of parameter space where the explicit
heterogeneity model produced estimates with lower error was when there was considerable
heterogeneity in the population (p1 ≫ p2 and 𝛼 small; Fig 9). Perhaps more worryingly, the
estimates from the explicit heterogeneity model were heavily dependent on the prior, this
was not seen for the implicit heterogeneity or homogeneous model (Fig 10). This indicates
that the performance of the explicit heterogeneity model just discussed could degrade even
further if we hadn’t been using a prior which was closely aligned with the generating values.
Additionally, we investigated whether a model selection approach was useful in the case when
the number of subcompartments was unknown. We found little evidence that this approach
yielded more accurate estimates of the mean proliferation and was liable to be dependent
on the prior assumptions. We recommend that if prior data is limited or uninformative then
the implicit heterogeneity model should be used; though this can lead to errors for popula-
tions with a high degree of heterogeneity. If an informative prior can be constructed then an
explicit heterogeneity model may be preferable.

The third assumption is the assumption that lymphocytes are spatially homogeneous and
in particular the assumption that the fraction of labelled lymphocytes quantified in the blood
is representative of the fraction of labelled lymphocytes in the secondary lymphoid tissue. We
found that this assumption was reasonable for lymphocytes that recirculated between blood
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and lymphoid tissue at a rate of about 0.3 per day or faster. This is slow compared to the aver-
age rate of lymphocyte recirculation, so, provided a subpopulation is not recirculating much
slower than average its kinetics should be reliably quantified from blood samples. If a lympho-
cyte population is sequestered in lymphoid tissue or only recirculating very slowly then label
in the blood will be poorly representative of label in the secondary lymphoid tissue.

In section 1 (the upstream/downstream compartment section), we avoid the issue of the
transient identity of cells undergoing clonal expansion (i.e. do they contribute to label as
phenotype C or phenotype E cells) by assuming clonal expansion occurs in the lymph node
and that by the time we sample in the blood the cells can be classified as belonging to the
downstream compartment, i.e. phenotype switching is complete. Thus, in this case the spatial
heterogeneity in the system is to our advantage.

In section 2 (the kinetic heterogeneity subsection) we restricted our study of heterogeneity
to unconnected sub populations. It is possible to conceive of more complicated substructures
in which there is flow between the subpopulations. The large number of possible models puts
a wider investigation outside the scope of this manuscript but we suspect that, the conclusions
will be broadly similar to what we have found with independent subpopulations, perhaps with
a greater tendency towards favouring the implicit kinetic heterogeneity model as the flow will
tend to reduce heterogeneity in the population.

More broadly, although we have discussed the processes of upstream and downstream
compartments, kinetic heterogeneity and spatial heterogeneity separately, they may occur in
tandem for a given situation. As there are many combinations of potential biases, we would
first consider evidence for each of them separately. Given the complexity of the situation this
evidence would need to be something other than the labelling data itself i.e. knowledge of the
biological system.

In summary, we find that some frequently used assumptions can have profound impact
on the interpretation and estimates of parameter values. Whilst these assumptions are typi-
cally unavoidable it is important to be aware of their implications when conducting labelling
studies.

Methods
Code to reproduce results can be found at https://github.com/ada-w-yan/cellkineticmodels.

Simulating data for precursor/target model (Section Upstream and
downstream compartments)
Transformed versions of the upstream and downstream parameters were sampled from a mul-
tivariate uniform distribution using Latin hypercube sampling. Table 1 shows the bounds of
the distribution. Bounds above the line in Table 1 are bounds that were chosen to reflect phys-
iological estimates. They include the bounds on pC and pE which were chosen in line with typ-
ical estimates of T cell proliferation in healthy individuals [32]. 0.01pC ≤ r≤ pC was chosen so
that the differentiation rate of the upstream population is smaller than its proliferation rate,
as would be expected in homeostasis (the lower bound is imposed so there is flow between
the two compartments; otherwise the problem reduces to the trivial solution of two indepen-
dent compartments). The number of rounds of clonal expansion k was initially chosen to lie
between 0 and 20. 0 represents the scenario when cells flowing from C to E are unlabelled.

Bounds below the line are necessary to reflect model constraints. 1≤ d∗C/(pC – r)≤ 100
enforces the condition that dC ≤ d∗C ≤ 100dC ; i.e. the upstream population C has the freedom
to be kinetically heterogeneous (with the maximum heterogeneity constrained such that the
death rate of labelled cells is not greater than 100 times the average death rate). 0≤ (log10 dE –
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Table 1. The bounds of the distribution from which transformed parameters are sampled. All rates are in units
day–1.
Parameter Bounds

log10 pC [–4,–2]
log10 pE [–4,–2]
log10(r/pC) [–2,0]
k [0,20]

log10(d
∗
C/(pC – r)) [0,2]

(log10 dE – log10 pE)/(log10 𝛿 – log10 pE) [0,1]
(log10 d

∗
E – log10 pE)/(log10 𝛿 – log10 pE) [0,1]

https://doi.org/10.1371/journal.pcbi.1012704.t001

log10pE)/(log10 𝛿 – log10 pE)≤ 1 and 0≤ (log10 d
∗
E – log10pE)/(log10 𝛿 – log10 pE)≤ 1 impose

pE ≤ dE ≤ 𝛿 and pE ≤ d∗E ≤ 𝛿 respectively. The lower bounds are necessary for the target pop-
ulation to remain in equilibrium and the upper bounds reflect the design of stable isotope
labelling experiments which mandates that the loss of the isotope from the body (𝛿) must be
more rapid than the loss of the population of interest. In addition, we only keep samples that
fulfil d∗E > dE. This allows the target population to be kinetically heterogeneous. The value of 𝛿
was fixed to 0.07 which is a realistic value from the literature [2].

S1 Fig shows the shape of the distribution in terms of the original parameters.
We generate 100 parameter samples from the above distribution and 100 parameter sam-

ples from the version with k = 0. For each sample, we substituted parameter values into the
analytic solution of Eq 2 assuming a labelling period of 49 days. We take data points daily up
to day 100.

Optimal data. Initially we simulated an optimal experimental situation with a large num-
ber of points with a small standard deviation because the aim is to determine the effect of
the upstream compartment and not the effect of uncertainty in the data. We take data points
daily. Each data point is lognormally distributed with parameters 𝜇 = log(x) where x is the
true value of the fraction of label, and 𝜎 = 0.005.

Realistic data. Although our focus was on “optimal data” we also investigated how our
conclusions varied with more realistic data. The realistic data differed from the optimal data
in three main respects. First, data sampling was assumed to be much sparser: we assumed
measurements once every week, resulting in 15 measurements over the 100 day period of the
experiment. Second, we allowed for considerably more noise: noise was normally distributed
with mean zero and standard deviation 0.1×max value of label in that data set. Finally, we
explicitly modelled heterogeneity in the target compartment. That is, we modelled two sub-
populations within the target compartment (each independently in equilibrium) rather than a
single population with d*>p. The equations to describe label in this model are as follows:

dFC
dt
= pCbwU(t) – (d∗C + r)FC, (10a)

dFE1
dt
= 𝛾(2k – 1)bwU(t)r

C̄
Ē1
+ 𝛾r C̄̄E1

FC + p1bwU(t) – d1FE1 (10b)

dFE2
dt
= (1 – 𝛾)(2k – 1)bwU(t)r

C̄
̄E2
+ (1 – 𝛾)r C̄̄E2

FC + p2bwU(t) – d2FE2 (10c)

Where FC is the fraction of label in the upstream compartment and FE1 and FE2 is the frac-
tion of label in the two target subpopulations. Cells in the upstream compartment proliferate
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Table 2. Parameter values used to simulate the kinetic heterogeneity data. All rates have units day–1.
Parameter A, D B, E C, F
p1 varied 0.018 0.72
p2 0.016 varied 0.016
𝛼1 0.7 0.1 varied
f 0.032
𝛿 0.064
bw 4.18

https://doi.org/10.1371/journal.pcbi.1012704.t002

at rate pC, are lost at rate d∗C and differentiate at a rate r. Upon differentiation, cells undergo k
rounds of clonal division and a fraction 𝛾 enter target subpopulation E1 (with the remainder,
1 – 𝛾, entering subpopulation E2). Cells in the two subpopulation proliferate at rates p1 and p2

respectively and are lost at rates d1 and d2 respectively. The steady state sizes of the three pop-
ulations are denoted C̄, Ē1 and Ē2. U(t) is the availability of label in the body water and bw the
normalisation factor as in Eq 2.

Fitting simulated data (Section Upstream and downstream compartments)
When fitting the one compartment model alone to the simulated data then rstan version
2.19.2 was used. Code is written in R version 3.6.3. The prior distributions for pE and d∗E were
uniform between 0 and 5/bw, and between 0 and 1 respectively.

When fitting the two compartment precursor/target model we switched to a frequentist
approach due to convergence problems with stan. This was implemented via the Pseudo func-
tion in the R package FME. In order to ensure fits were comparable, whenever performing a
direct comparison with the two compartment model (i.e. Section Comparing fits using models
with and without an upstream compartment) then the one compartment model was also fit-
ted using FME. The 95% confidence intervals of the parameter estimates were found by boot-
strapping the data. That is, 500 bootstrap data sets the size of the original data set were cre-
ated by randomly sampling with replacement from the original data set. Each bootstrap data
set was fitted and the parameters estimated. The 95% CI were taken to be the 0.025 and 0.975
percentiles of the 500 parameter estimates.

Simulating data for two-compartment explicit heterogeneity model
(Section Kinetic heterogeneity)
Data were simulated using Eq 6 with N = 2, and all combinations of p1 = 0.0072, 0.018, 0.036, 0.12,
0.24,0.36,0.72; p2 = 0.0036, 0.0072, 0.0108, 0.0160; 𝛼1 = 0.1, 0.3, 0.5, 0.7, 0.9 where p1 > p2 (that
is a total of 125 parameter combinations). The other parameters were fixed at 𝛿 = 0.07, f =
0.032, bw = 4.18 and the labelling period is 49 days. Errors on simulated data were lognormally
distributed with 𝜎 = 0.005. Data points were taken every 7 days up to 98 days.

Fitting data for two-compartment kinetic heterogeneity model (Section
Kinetic heterogeneity)
The data were fitted using the No U-Turn sampler implemented in the rstan package. Three
models were considered: the explicit heterogeneity model (Eq 6), the implicit heterogene-
ity model (Eq 7) and a homogeneous model (i.e. p = d∗ in Eq 7). The body water parameters
f and 𝛿, the amplification factor bw, and the standard deviation for the sampling error, were
assumed to be known.
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The homogeneous model only has one fitted parameter, p, and its prior distribution was
uniform between 0 and 1.

The explicit heterogeneity model has 2N–1 fitted parameters, where N is the number of
compartments. The prior distributions for the proliferation rates pi are independent; each has
a uniform prior of [0,1]. The prior distribution for 𝛼i is symmetric Dirichlet with concentra-
tion parameter 𝛼 = 1. This prior distribution enforces∑N

i=1 𝛼i = 1. Without loss of generality
we order the vector 𝛼i from smallest to largest. For example, for N = 2 this is equivalent to
a uniform prior for 𝛼1 between 0 and 0.5, and setting 𝛼2 = 1 – 𝛼1. The implicit heterogene-
ity model has two fitted parameters, p and d*. The prior distribution is independent between
parameters, with a uniform prior of [0,1] for p and d*. The one exception to these priors is in
Fig 10 where we explored the impact of prior assumptions. Here the prior distribution for p
in the homogeneous model is [0,x] where x = 2, 5, or 10. For the implicit heterogeneity model,
priors are [0,x] for p and d*. For the explicit heterogeneity model with N = 2, priors are [0,x]
for p1 and p2 (the prior for 𝛼1 is unchanged at [0,0.5]).

Model comparison (Section Kinetic heterogeneity)
We compare the fits between models with i and j compartments by computing the point esti-
mate and standard error for Δelpdloo = elpdloo,i – elpdloo,j using the loo package version 2.4.1
in R. elpdi is the expected log pointwise predictive density for a model with i compartments,
and elpdloo,i is its estimate using leave-one-out cross-validation [33]. We define support for
model i over model j when the point estimate for Δelpdloo is positive and exceeds its standard
error. We define that two models are tied if the standard error for Δelpdloo is greater than the
magnitude of its point estimate.

Calculating the discrepancy between label in the blood and in the
lymphoid tissue (Section Spatial distribution of T lymphocytes)
The discrepancy between label in blood and label in lymphoid tissue was calculated for
parameters in the ranges in Table 3.

We set B̄/Ā, the blood to lymph ratio of interest, to 2/98. Bounds on p were chosen in line
with typical estimates of T cell proliferation in healthy individuals [32]. Our baseline estimate
of f is calculated from the observation that there are 1010 lymphocytes in the blood and that
every day 2.5 × 1011 lymphocytes exit blood for the spleen and 0.3 × 1011 lymphocytes per day
exit the blood for the lymph node; giving an estimate of f = 2.8 × 1011/1010 = 28d–1. Estimates
taken from Kuby Immunology [34] are a similar order of magnitude: there it is reported that
it takes 30 mins for a lymphocyte to transit the blood compartment and that 87% of lympho-
cytes exit for lymphoid tissue giving f = 42d–1. These estimates of f are then varied over sev-
eral orders of magnitude (log10f∈ [–4, 8]) to ensure that results are robust. Given a value of
p then d is constrained by the equilibrium constraint Ȧ = 0 which requires d = p and so the
bounds on d are the same as the bounds on p but only p is independently sampled. Similarly,

Table 3. The parameter ranges for calculating the discrepancy between label in blood and label in lymphoid
tissue. All rates are in units day–1.
Parameter Bounds
log10 p [–4,–1]
log10 f [–4,+8]

https://doi.org/10.1371/journal.pcbi.1012704.t003
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the equilibrium constraint Ḃ = 0 together with the assumption that approximately 2% of lym-
phocytes are in blood means that g = fB̄/Ā.

Supporting information
S1 Fig. Distribution from which simulation parameters are sampled for the Upstream and
Downstream Compartments section.
(PDF)

S2 Fig. The relationship between model parameters and error in ̂d∗E . Top: the ratio between
r C̄Ē and the production rate by division, for (A) 1≤ k≤ 20 and (B) k = 0. Bottom: the ratio
between pC C̄

Ē and the production rate by division, for (C) 1≤ k≤ 20 and (D) k = 0.
(PNG)

S3 Fig. Error in estimates of the proliferation rate. This shows the same data as in Fig 6A
but without the y axis truncation.
(PDF)

S4 Fig. Error in estimates of the proliferation rate for realistic data but with a high pro-
liferation rate. A Discrepancy between point estimate of the proliferation rate and the true
value (expressed as a fraction of the true value) for the one compartment model (red), precur-
sor/target model (blue) and precursor/target with ratio model (green).On increasing the val-
ues of pE used to generate the labelling data two effects were noticed compared to the results
depicted in Fig 6: first, errors were now much lower, second, there was no longer any signif-
icant difference in the size of the errors associated with each of the three models. P values
are calculated by Wilcoxon signed rank, two-tailed; not corrected for multiple comparisons
(number of independent comparisons ≤ 3). B 95% confidence intervals (CI) were estimated
by bootstrapping the data (Methods) and the fraction of runs where the true value lay within
the CI was reported. Colours as for A. Compared to the corresponding figure for realistic
data but with a lower value of pE (Fig 6) the proportion of runs where the estimate fell within
the CI was still very low but the pattern across the models was quite distinct, for this set of
parameters the one compartment model outperformed the other two models.
(JPG)

S5 Fig. Relationship between p̂E and the target population descriptors. Estimated ̂pE com-
pared to (from left to right) the rates of proliferation, turnover and production by division of
cells in the target compartment. Top: for the case when fitting the one compartment model;
middle: for the case when fitting the precursor/target model bottom: for the case when fitting
the precursor/target model with ratio.
(PDF)

S6 Fig. Median and 95% credible intervals for the mean proliferation rate when fitting the
implicit model to data generated using the two-compartment explicit model. The value of
p1 used to simulate the data is shown on the x-axis. Within each plot, the values of p2 and 𝛼1

used to simulate the data are held constant at the values on the top and right respectively.
(PDF)

S7 Fig. Median and 95% credible intervals for the mean proliferation rate when fitting the
implicit model to data generated using the two-compartment explicit model. The value of
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𝛼1 used to simulate the data is shown on the x-axis. Within each plot, the values of 𝛼1 and p1

used to simulate the data are held constant at the values on the top and right respectively.
(PDF)

S8 Fig. Median and 95% credible intervals for the mean proliferation rate when fitting the
implicit model to data generated using the two-compartment explicit model. The value of
𝛼1 used to simulate the data is shown on the x-axis. Within each plot, the values of p2 and p1

used to simulate the data are held constant at the values on the top and right respectively.
(PDF)

S9 Fig. Median and 95% credible intervals for the mean proliferation rate when fitting the
two-compartment explicit model to data generated using the same model. The value of
p1 used to simulate the data is shown on the x-axis. Within each plot, the values of p2 and 𝛼1

used to simulate the data are held constant at the values on the top and right respectively.
(PDF)

S10 Fig. Median and 95% credible intervals for the mean proliferation rate when fitting
the two-compartment explicit model to data generated using the same model. Median and
95% credible intervals for the mean proliferation rate when fitting the the two-compartment
explicit model to data generated using the same model. The value of 𝛼1 used to simulate the
data is shown on the x-axis. Within each plot, the values of 𝛼1 and p1 used to simulate the
data are held constant at the values on the top and right respectively.
(PDF)

S11 Fig. Median and 95% credible intervals for the mean proliferation rate when fitting
the two-compartment explicit model to data generated using the same model. Median and
95% credible intervals for the mean proliferation rate when fitting the the two-compartment
explicit model to data generated using the same model. The value of 𝛼1 used to simulate the
data is shown on the x-axis. Within each plot, the values of p2 and p1 used to simulate the data
are held constant at the values on the top and right respectively.
(PDF)

S12 Fig. Pairs plots of the posterior distributions for fitting the two-compartment model
to data generated with two different sets of parameter values.
(PDF)

S13 Fig. The model which is selected for each combination of true parameter values, when
performing model selection for kinetic heterogeneity.
(PDF)

S1 File. Derivation of approximations for upstream and downstream compartment
model.
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