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A B S T R A C T

Improvements in computer processing power are facilitating the development of more detailed environmental
models with greater geographical coverage. We developed a national-scale model of outdoor air pollution
(Hybrid Air Dispersion Exposure System − HADES) for rapid production of concentration maps of nitrogen di-
oxide (NO2) and ozone (O3) at very high spatial resolution (10m). The model combines dispersion modelling
with satellite-derived estimates of background concentrations, land cover, and a 3-D representation of buildings,
in a statistical calibration framework. We developed an emissions inventory covering England and Wales to
implement the model and tested its performance using concentration data for the years 2018–2019 from fixed-
site monitoring locations. In 10,000 Monte Carlo cross-validation iterations, hourly-annual average R2 values for
NO2 were 0.77–0.79 (RMSE: root mean squared error of 5.3–5.7 µg/m3), and 0.87–0.89 for O3 (RMSE = 3.6–3.8
µg/m3) at the 95% confidence interval. The annual average R2 was 0.80 for NO2 (RMSE = 4.9 µg/m3) and 0.86
for O3 (RMSE = 3.2 µg/m3) from aggregating the hourly-annual estimates. The air pollution surfaces are freely
available for non-commercial use. In using these surfaces for exposure assessment, all residential locations, and
neighbourhoods in urban areas, are unlikely to be below the 2021 World Health Organisation Air Quality
Guidelines threshold (10 µg/m3) for annual average NO2 concentrations (10 µg/m3). Rural and suburban areas
are likely to exceed the peak-season 8-hour daily maximum O3 threshold (60 µg/m3).

1. Introduction

There is strong evidence published over decades linking outdoor air
pollution to harmful effects on human health (Brunekreef and Holgate,
2002; Dominski et al., 2021). In recent years, the gradual cessation of
fossil fuel combustion, the uptake of alternative cleaner fuels, and im-
provements in emissions technologies from a range of sources (i.e.,
motorised vehicles and industry), has resulted in lower levels of air
pollution, especially in developed countries, with poorer air quality
remaining in other parts of the world. Notwithstanding improvements to
air quality in many areas, harmful effects on health have been shown to
persist at relatively low levels of air pollution including gases and par-
ticles (Dominici et al., 2019; Brunekreef et al., 2021; Brauer et al., 2022).
The World Health Organisation (WHO) revised their guidelines on limit
values for air pollution in 2021 to reflect the need to safeguard human
health at lower levels of air pollution than previously recognised as safe

(WHO, 2021). The recommended annual average concentration for ni-
trogen dioxide, for example, was reduced from 40 μg/m3 in 2005 to 10
μg/m3.

To inform regulation and guidelines, air pollution monitoring has
increased globally, but the density of sites does not capture the vari-
ability in population exposures in many locations. Instead, methods
have been developed to produce maps of air pollution, especially for
exposure assessment. Most national-scale modelling at high spatial
resolution (< 100m) has used the principles of land use regression (LUR)
due to the computational barriers of running dispersion models. LUR
(Hoek et al., 2008) uses surrogates to represent air pollution sources (e.
g., distance from road, traffic intensity within a zone) and sinks (e.g.,
green space) calibrated to measurements of air pollution. LUR is a
conceptually simple and efficient technique for detailed mapping over
large geographical areas. The main inherent weakness of LUR and
related statistical techniques (e.g., machine learning and geostatistical
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methods), however, is in not reflecting well the effects of meteorology
and atmospheric processes on patterns of air pollution, and not dealing
well with discrete sources of lower density such as industrial area and
point sources. Ideally, detailed air pollution maps would use determin-
istic methods (i.e., dispersion modelling), reflecting environmental and
atmospheric processes. As computational barriers are now being over-
come more easily, examples of fine-scale, dispersion modelling, or
hybrid air pollution models (e.g., dispersion modelling, LUR, and sat-
ellite data), have been developed in recent years, but tend to be limited

to single cities (Korek et al., 2017; Tularam et al., 1987; Dimakopoulou
et al., 2022; Kilbo Edlund et al., 2024; Masey et al., 2018). There are
very few examples of high resolution, national-scale dispersion models
(Klompmaker et al., 2021).

For the United Kingdom (UK) and its nations, the only national-scale,
open data for outdoor regulatory air pollutants was ‘background con-
centration mapping’ available from the UK Government Department for
Environment Food and Rural Affairs (Defra) at https://uk-air.defra.gov.
uk/data/gis-mapping. The mapping to a 1km x 1km grid does not,

Fig. 1. HADES modelling procedure.
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however, provide the basis for representing local (intra-urban vari-
ability) air pollution patterns, nor does it provide a useful basis for
exposure assessment. There have been some higher resolution data
produced from statistical approaches for specific time points based on
LUR for Great Britain (Gulliver et al., 2013, Wang et al., 2022) and for
the UK as part of models for Europe (de Hoogh et al., 2018), however,
these datasets are not readily available. To address the limitation of
existing approaches and outputs, we developed a ‘Hybrid Air Dispersion
Exposure System’ (HADES) modelling framework to produce high
spatial resolution, national air pollution maps. HADES uses Gaussian
plume dispersion modelling to quantify the local and regional atmo-
spheric fate of emissions from individual air pollution sources (e.g.,
roads, housing, and industry), satellite derived long-range chemical
transport models (CTMs), and other surrogates of dispersion, retention,
and removal based on landform and use within a statistical calibration
framework. For the test application, the aim was to evaluate model
performance against data from a network of fixed-site monitors, and
then produce high resolution (10m), annual and hourly-annual air
pollution maps, covering England and Wales, for the main regulatory
outdoor gaseous air pollutants: oxides of nitrogen (NOx), nitrogen di-
oxide (NO2) and ozone (O3). HADES was developed to allow the use of
open-access input data with near-global coverage.

2. Methods

HADES comprises of a meteorological pre-processor, road-transport
emission model, emission inventory resampling, source-specific GIS-
based air pollution dispersion models, and topographic-atmospheric
concentration correction procedures via regression modelling. Fig. 1
shows the overall structure and data flow protocols within HADES via
three, main modules: (1) FUME – FUndamental Modelling Environment,
(2) SPARK – Sequentially Profiled Airshed Release Kernels, and (3) FIRE
– Field Informed Regression Estimates. In FUME, topographic and at-
mospheric data are integrated into the model and prepared for the
source specific dispersion modelling of NOx (SPARK). The downstream
regression analysis combines output from SPARK with local geometry,
climatic, and long-range air pollution influences to calculate the total
concentration of NOx, NO2, and O3 (FIRE). Appendix 1 provides an
overview of the data used in model development and calibration, com-
plementing the model flow established in Fig. 1.

FIRE, runs two local geometry calibration models on the NOx
dispersion surfaces (C1 and C2), which are followed by three models to
determine the cyclic photochemical conversion of NOx to NO2 and O3
(M1, M2, and M3). C1 calibrates the road-transport NOx dispersion
component to account for kerbside, street canyon, and relative elevation
influences. C2 calibrates the ‘Area’ and industrial ‘Point’ source NOx
dispersion components using ventilation and surface deposition pa-
rameters (i.e., building density, local and regional elevation). M1 com-
bines C1 and C2 to calculate total NOx concentrations. M2 and M3
account for the photochemical conversion to NO2 and O3 based on local
and long-range CTM contributions, photochemical reactions, and
pollutant sinks. The regression parameters found in HADES are con-
structed from air pollution measurements in the automatic monitoring
network of the UK.

HADES accounts for local (i.e., 10m x 10m road-transport emissions
within 500m), regional (i.e., 1km x 1km area source emissions and in-
dustrial point sources within 4km), and long-range (i.e., 10km x 10km
satellite derived CTM) contributions to the photochemical nitrogen
cycle, from data with varying spatial resolutions that reflect the rate of
divergence from source. Pollution surfaces are modelled at a 10m
resolution.

2.1. Data requirements

2.1.1. Topography
Topographic information can be obtained from a variety of open

access sources. However, datasets compiled by national mapping
agencies are preferable for reasons of spatiotemporal accuracy and
precision.

In this case we used data from the Ordnance Survey MasterMap
(OSMM) product as it has complete coverage of the permanent spatial
features in Great Britain (GB). OSMM is updated quarterly using ground
and aerial survey, with an absolute positional accuracy of 0.9m, 2.4m,
and 8.8m in urban, rural, and remote rural areas at the 99% confidence
level, respectively (OS, 2023). The relative positional accuracy (to other
local polygon features) in urban and rural areas is ±1.1m (0–60m) and
±2.5m (0–100m), respectively at the 99% confidence level. The dataset
contains height attributes modelled from synthetic-aperture radar for
95% of the buildings in Great Britain, with vertical measurement errors
<0.1m. Thematic records were reclassified to eleven classes reflective of
landcover in regions with a temperate climate: ‘Agricultural Land’, ‘Air
Traffic’, ‘Commercial Buildings’, ‘Grassland’, ‘Industrial Buildings’,
‘Industrial Land’, ‘Railways’, ‘Residential Buildings’, ‘Trees’, ‘Water-
ways’, and ‘Wetland’. This simplification ensures reproducibility with
other data, whilst maintaining sufficient detail to map against COR-
INAIR SNAP sector emissions by land use (EEA, 1996).

OSMM spatial polygon features were converted to two 10m raster
surfaces – these are simply matrices with georeferenced gridded values
separated by a uniform distance. The first surface records primary land
use, as defined by the majority area coverage within each cell. The
second surface records building height, based on the area-weighted
average of intersected building footprints. Appendix 2 thematically
summarises the OSMM building height profiles, to assist model runs in
locations where such information is not readily available. A Digital
Elevation Model (DEM) representation the height of the earth’s surface
above sea level is also required. The European Environment Agency
(EEA) EU-DEM version 1.1 Pan-European raster surface recording
elevation at a 25m resolution was used in this analysis.

Open access topographic information for many countries can be
accessed from OpenStreetMap and thematically improved by Wikima-
pia, with varying levels of accuracy and completeness. Across Europe,
CORINE surfaces can be used to define land cover at a 100m resolution,
with the Urban Atlas providing partial coverage of building heights at a
10m resolution for 2012. Google with their ‘Open Buildings 2.5D Tem-
poral Dataset’, and Microsoft are also using machine learning to develop
open access building footprint and height datasets with global coverage.

2.1.2. Emissions inventories
The UK Government annually compiles a National Atmospheric

Emission Inventory (NAEI) for regulatory compliance with the European
Monitoring and Evaluation Programme (EMEP) and United Nations
Framework Convention on Climate Change (UNFCCC). The UK NAEI
collects ‘Point’ source emission records (from large industrial stacks),
and models releases that are too small and numerous to be inventoried at
a 1km x1km resolution (known as ‘Area’ sources) by CORINAIR SNAP
sector. ‘Area’ source emissions for individual SNAP sectors were
resampled to 10m raster surfaces, by equally allocating the releases in a
1km tile to relevant land use cells nested within. ‘Point’ source emissions
were summated on a 10m raster surface. Appendix 3 summarises the
distribution of ‘Area’ source emission releases (g/s) across England and
Wales in 2019, to assist model runs in locations with limited
information.

Road-transport emissions (SNAP sector 7) were not extracted from
the NAEI database. It is preferable to model these as individual ‘Line’
sources using spatiotemporally detailed local information. Annual
average daily traffic (AADT) flows in 2013 were modelled on all major
and minor roads in GB (Morley and Gulliver 2016). This simulated road
network approach can be replicated in other locations using Open-
StreetMap and traffic counts on major roads. AADT values were locally
scaled in accordance to spatiotemporal changes at 36,626 traffic count
sites across GB, creating annual traffic estimates for 2010–2020 (see
Appendices 4-5).
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Section 2.2.2 outlines the procedure to disaggregate modelled traffic
flows by vehicle class, and apply speed-emission equations to produce
NOx emission rates (g/s per meter) for each road link. The road trans-
port emission rates were then multiplied by road length and aggregated
to a 10m raster surface.

Annual-average emission releases from ‘Area’, ‘Point’, and ‘Line’
sources were scaled to hourly release estimates using relevant activity
profiles. ‘Area’ and ‘Point’ sources are assumed to be largely derived
from anthropogenic sources, and they were therefore linked to hourly
average energy demands in the national electricity grid (Appendix 6). A
distribution profile of total traffic counts by time-of-day, informed the
hourly release estimates on roads (Appendix 7).

2.1.3. Weather
Weather observations were obtained from the open access National

Oceanic and Atmospheric Administration Integrated Surface Database
(ISD) via https://www.ncei.noaa.gov/data/global-hourly (NOAA,
2018). The ISD currently contains hourly records at >14,000 active
surface meteorological sites from around the world, and historic data
(since 1901 in some instances) is available at >35,000 sites. ISD in-
tegrates data from >100 sources, using algorithms to provide records in
a consistent format, correcting for random and systematic errors (Lott
2003).

HADES requires hourly measurements of wind speed and direction,
dry air temperature, and dew point. Records of atmospheric pressure,
cloud cover, and the cloud base height can improve the definition of
atmospheric conditions, when available. Stineman (1980) interpolation
was used to update missing weather records, where less than six previ-
ous or subsequent hours of the time-series were missing. This method is
statistically more accurate than cubic splines, minimising overshoot and
inflection errors (Perillo and Piccolo 1991).

For context, there were 188–191 active stations across Great Britain
in 2018–2020, of which 96% collected hourly wind and temperature
data for ≥75% of the year. Hourly atmospheric pressure and cloud data
was recorded at 62.8–64.4% of these stations for ≥75% of the year. On
average, the minimum distance from one weather station to another is
23.9km (SD = 15.7km).

Relative humidity (RH) is calculated from the temperature records.
Firstly, vapour pressure (e) is estimated in Pascals using an enhanced
Magnus-Tetens formula with a <0.4% relative error (Alduchov and
Eskridge 1996):

e =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

610.94*exp

(
T * 17.625
T + 243.04

)

where T ≥ 0

611.21*exp

(
T * 22.587
T + 273.86

)

where T < 0

(1a)

Where T is the dry air temperature measured in degree Celsius. Equation
(1a) is then repurposed to calculate the saturated vapour pressure (es),
by using the dew point temperature (Td) recorded by the measurement
station instead of T. Finally, RH is determined by:

RH(%) = 100*
(

e
es

)

(1b)

RH measures the amount of water vapour present in air, expressed as a
percentage of the amount needed for saturation at the current air tem-
perature. When RH reaches 100%, the air is totally saturated, increasing
the likelihood of rain and the wet deposition of nitrogen. The removal of
gaseous air pollutants by vegetation is also increased under high RH
levels.

2.1.4. Remote sensing
Satellite informed long-range chemical transport model data was

accessed from the Copernicus Atmosphere Monitoring Service (CAMS)
at https://ads.atmosphere.copernicus.eu. The ‘CAMS European air

quality reanalyses’ dataset provides hourly surface level model esti-
mates of nitrogen dioxide and ozone at a 0.1◦ resolution (approximately
10km x 10km). CAMS observations are used to account for the long-
range transportation of air pollutants, and its (regional and interna-
tional) influence on background concentrations by time of day. This
open access dataset has pan-European coverage, temporally backdated
to 2013.

For other applications, CAMS global pollutant observations can be
accessed at 3-hour intervals at a 0.1◦ resolution (approximately 80km x
80km) via its ‘ECMWF Atmospheric Composition Reanalysis 4’ product.
There is the potential to improve the spatial resolution of these records,
if harmonised with alternative satellite products. For instance, NO2 can
be estimated from MODIS 8-day average surface reflectance values at a
1km resolution (Zhou et al 2010).

2.1.5. Demography
Annual global population count raster surfaces at a 100m resolution

for 2000–2020, are available through the WorldPop open repository
https://www.worldpop.org. WorldPop gridded datasets are created
with machine learning dasymetric mapping techniques to resample
census and survey records to residential related land uses described by
local vector data, aerial, and satellite imagery (Stevens et al 2015).

We have devised a hybrid classification scheme called the Urban
Index, which is based on established European Commission (EC, 2014)
and OECD (OECD, 2016) urban–rural population density thresholds
(Appendix 1). This scheme considers population counts in local and
adjacent cells of the gridded surface to create a 0–1 index that records
urban centres with a value of 1.

2.2. Model development

2.2.1. Data Preparation
Several of the collected datasets may need to be resampled to a

common spatial resolution, based on the Inverse-Distance Weighting
(IDW) of nearby observations (Fig. 1; FUME). This linear interpolation
technique is fast, and preferred if there are large volumes of densely
sampled and evenly distributed spatial data to process.

HADES model parameters are created with the subsequent dispersion
models, or by spatial statistics that reflect influences within the nearby
vicinity of a given location. The final set of land use parameters capture
the urban canyon effect (i.e., surface roughness, building-downwash,
and containment effects), the effects of elevation contrast (i.e., atmo-
spheric flow and plume deposition), weather influences on photo-
chemical oxidants, vegetation sinks, and long-range transportation
processes. Appendix 1 describes how the model parameters are created,
their upper and lower limits (reflective of the training data), and the
required transformation procedures to account for nonlinear relation-
ships. The following equation is used to conduct neglog transformations
(Whittaker et al 2005, p.866):

neglog(x) =
{

− 1*log(( − 1 * x) + 1 ) where x ≤ 0
log(x + 1) where x > 0 (2)

2.2.2. Traffic emissions model
UK Department for Transport (DfT) vehicle statistic tables were

accessed via https://www.gov.uk/government/collections/vehicles-st
atistics. Cross-tabulations were used to split the modelled AADT
counts into five vehicle categories by road class and geography: Cars,
Buses, Heavy Goods Vehicles (HGVs), Light Goods Vehicles (LGVs) used
by commercial transport, and Motorcycles. Geographic variations in
fleet profiles were then accounted for across 205 local authority counties
and by urban–rural status in GB.

UK DfT records of vehicle ownership by category, specific model, and
year of manufacture were used to create annual fleet profiles based on
fuel type, emission standard, engine capacity, and age. These profiles
considered the vehicle attributes of 45.0 thousand car, 11.1 thousand
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LGV, 9.1 thousand motorcycle, 1.5 thousand HGV, and 0.3 thousand
unique models of buses operating on UK roads between 2010 and 2020.
For additional context, there were 32.9 million cars (84.1%), 4.4 million
LGVs (11.2%), 1.2 million motorcycles (3.2%), 0.5 million HGVs (1.4%),
and 0.1 million buses (<0.1%) licensed across the UK in 2019. These
national fleet profiles were used to further disaggregate the spatially
resolved AADT counts into 206 vehicle categories. Fleet profiles were
updated when a road links falls within a low emission zone, to ensure
full compliance with local restrictions.

Vehicle speeds were initially defined by UK national speed limits of
30mph for restricted access (residential and unclassified), 60mph for
single-carriageway (tertiary, secondary, and primary roads), and 70mph
for motorways and trunk roads. Heavy vehicles are restricted to 50mph
on single carriageways, and 60mph on motorways and trunk roads.
Road link speeds were set to half the limit for general vehicles. Road
speeds were then restricted in populated urban locations, using a scaling
factor created by multiplying the Urban Index fraction by 0.33 (i.e., a
maximum soft speed limit reduction of 33% in urban locations creates a
20mph zone).

EU standard road vehicle emission factors for NOx were obtained
from COPERT v5.0 speed-emission equations (BEIS, 2017). Emission
functions were allowed to differ by road incline (-6% to +6%) for the 63
different HGV categories. The interquartile range of NOx emission from
the HGV fleet increases by 34-117% on high incline roads (with bidi-
rectional traffic). Scaling factors were then applied to account for fuel
purity, and emission degradation due to vehicle age and projections of
accumulated mileage in the UK fleet (DfT, 2009). Electric vehicles are
without a combustion source, and therefore have zero tailpipe emissions
when modelling oxides of nitrogen.

A workbook containing the resulting UK vehicle fleet profiles and
emission formulas is provided as supplementary materials, to assist with
HADES applications in locations with sparse vehicle records (see the
‘HADES traffic toolkit’). Alternatively, Appendix 8 summarises the dis-
tribution of emission releases as ‘grams per second per meter of road
length’, across England and Wales in 2019 by road class.

The road transport emission rates were then multiplied by road
length, intersected with, and aggregated to a 10m raster surface. HADES
treats road-transport as a series of point releases along the road network.
Annual-average emission rates were scaled to hourly-annual average
releases using a distribution profile of hourly total traffic counts on all
road types in Great Britain, for a typical weekday in the specified year
(Appendix 7).

2.2.3. Meteorological pre-processor
The direction and magnitude of plume dispersion in HADES is

informed by hourly estimates of atmospheric stability, and measure-
ments of wind speed and direction. Atmospheric stability measures the
tendency for an air parcel to rise or resist vertical motion, as it is hori-
zontally displaced by the prevailing wind. These three processes are the
main determinants of how pollutants released into the lower atmosphere
are dispersed.

The United States Environmental Protection Agency (USEPA, 2000)
recommends that regulatory air quality modelling applications use
Pasquill (1961) stability categories with Turner’s (1964) revised method
for routinely collected surface station weather data. Pasquill-Turner
categories cover highly turbulent (A), neutral (D), and extremely sta-
ble day (F) or night-time (G) conditions.

Firstly, the solar elevation angle (Ψ), or the angle of the sun above
the local horizon, is calculated in degrees via (Stull 1988, p.257–258):

δ = 0.49* cos
(
2π * (d − 173)

365.25

)

(3a)

h = π *
(tUTC

12

)
− λ (3b)

Ψ = sin− 1
(sinϕ* sinδ − cosϕ* cosδ* cosh)*

180
π (3c)

Where, δ records the angle of the sun above the equator in radians (the
solar declination angle), d is the Julian day number (1 to 366), h is the
solar hour angle in radians, tUTC is the coordinated universal time, with
φ and λ recording latitude (positive north) and longitude (positive east)
in radians. The solar elevation angles are then converted to solar inso-
lation codes, where 0◦ = 0 (none), 1-15◦ = 1 (weak), 16-35◦ = 2 (slight),
36-60◦ = 3 (moderate), and >60◦ = 4 (strong) (USEPA 2000, p.61).

The Pasquill-Turner scheme also requires hourly measurements of
the following sky conditions: wind speed (m/s), cloud base height (ft
above ground level), and estimates of how many eighths of the sky are
covered in cloud (0 Oktas = clear, 8 Oktas = overcast). Appendix 9
describes how these four components are consolidated into Pasquill-
Turner categories.

Within the UK, approximately a third of all weather stations fail to
regularly collect all components of the Pasquill-Turner scheme (i.e.,
missing instruments or through measurement and record errors).
Therefore, HADES calculates a second stability scheme that only re-
quires measurements of wind speed and direction. The United States
Nuclear Regulatory Commission (USNRC, 1972) has historically
measured standard deviations in horizontal wind fluctuations (Sigma-
Theta) to approximate stability, where small deviations are associated
with stable conditions. This approach was later adapted to account for
wind speeds, known as the Modified-Sigma-Theta (MST) approximation
of atmospheric stability (Mitchell 1982).

Standard deviations in wind direction (σθ) are calculated according
to Yamartino (1984, p.1363–5):

ε=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −

⎛

⎝

(
1
n

*
∑n

i=1
sin
(

θi*
( π
180

))
)2

+

(
1
n

*
∑n

i=1
cos
(

θi*
( π
180

))
)2
⎞

⎠

√
√
√
√
√

(4a)

σθ = sin− 1
(ε)*

(
1+ 0.1547 * ε3)*

(
180

π

)

(4b)

Where θi represents the wind angle for observation i, and n is the total
number of observations considered. ε accounts for the east–west and
north–south components of wind.

Sigma-Theta is typically calculated from measurements at 10-minute
intervals over a 1-hour averaging time (Mitchell 1982). HADES employs
an experimental MST approach for hourly surface measurements,
whereby a moving time window of ±2 hours is centred on the hour of
interest (i.e., SD of five hourly observations). Sigma-Theta, measured
wind speed, and the solar angle (see equations 3a-3c) determining if it is
day or night for the hour of interest, are then checked against the MST
stability table to return an approximate Pasquill stability category
(Appendix 10).

HADES computes an arithmetic average of the Pasquill-Turner
(where available) and the MST stability schemes for dispersion model-
ling. The two schemes appear to adequately capture diurnal changes in
stability and their profiles have reasonable agreement, which typically
deviate by a single class (Appendix 11). MST corrects the Pasquill-
Turner classifications tendency to favour neutral conditions, and the
Pasquill-Turner scheme reduces the frequency of extreme stability
conditions recorded by MST. The use of the MST stability scheme in-
creases the spatial resolution of weather influences, and allows for
model applications in locations with sparse data.

2.2.4. Dispersion modelling
HADES uses gaussian dispersion plume models to quantify the at-

mospheric fate of individual air pollution sources at ground level
(Turner 1970, p5):
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C(x, y, z) =
(

Q
2π*σy*σz*U

)

* exp
[

− 0.5*
y2

σy
2

]

*

(

exp
[

− 0.5*
(z − H)

2

σz
2

]

+ exp
[

− 0.5*
(z +H)

2

σz
2

]) (5)

Where C is the pollutant concentration at a receptor location that has a
height of z meters above ground level (set at 1m to reflect air entering
the human respiratory system), at a measured distance in meters
downwind of the pollutant source on the x and y axis. The x-axis is the
centreline direction of the plum, and the y-axis is lateral to wind di-
rection. Q is the emission source rate (g/s), U is the wind speed (m/s),
and H is the effective height of the plume above ground at source (m).

The effective plume height (H) is a summation of the stack height
(Hs) and the initial plume rise (Hr), which is calculated using (Carson &
Moses 1969, p866):

H = Hs +Hr (6a)

Hr = λ*
[(

− 0.029*
(
V*D
U

))

+

(

5.35*
Qh

2

U

)]

(6b)

Where V is the stack gas exit velocity (meters per second), D is the stack
exit diameter (m), U is the wind speed at stack exit (m/s), Qh is the heat
emission rate (KJ/s), and λ is a stability correction factor. The following
function was fitted to extend Carson &Moses (1969) stability correction
factors across the Pasquill stability categories (Ps), which are converted
from alphabet letters to descending numbers (i.e., A = 1, D = 4 and G =

7):

λ = 2.6845*(ps
− 0.689) (6c)

The parameters required to calculate plume rise are source specific.
Parameters for cars were used to derive road-transport plume heights,
where a tailpipe height (Hs) of 0.2m and exhaust diameter (D) of 0.06m
is typical. We approximate Qh as 12.96 KJ/s for cars operating across
gears 3–6 in environments of 1013mb and 15◦C, where V equals 15 m/s
(Madaro et al 2020). H was set to a minimum height of 1.5 m to reflect
traffic-induced turbulence. Based on these parameters, road-transport
effective plume heights of 24.4, 10.1, and 6.4m are expected for wind
speeds of 2 m/s at stability classes A, D, and G, respectively (Appendix
12).

UK and European emission inventories tend to only record pollutant
emission rates, with other stack parameters not routinely collected or
made freely available. Representative plume rise profiles for ‘Area’ and
‘Point’ sources were derived from the US state of Pennsylvania’s emis-
sions inventory, which contained detailed records for 7,332 vertical
stacks in 2019 (Appendix 13). The subsequent parameters used for
‘Area’ sources are: Hs = 5m, D = 0.6m, V = 13.64 m/s, and Qh = 225.19
KJ/s. For ‘Point’ sources: Hs = 10m, d = 0.6m, V = 13.21 m/s, and Qh =

413.64 KJ/s. Based on these parameters, effective plume heights can
range from 32.2-111.1m and 46.9–153.9m at wind speeds of 2 m/s for
‘Area’ and large industrial ‘Point’ sources, respectively. Regulatory
pollutant models typically use a default effective plume height of 10m
for all sources to reflect typical stack heights and uplift over rooftops
(Abbot & Stedman 1999, AQMAU, 2016), however, these assumptions
are clearly insufficient.

Returning to equation 5, the vertical (σz) and horizontal (σy)
dispersion parameters reflective of the standard deviation in plume
concentration, were calculated using Briggs-McElroy-Pooler functions
for built-up areas (McElroy & Pooler 1968, Briggs 1973) and Pasquill-
Gifford functions for flat rural locations (Turner 1970).

Dispersion parameters for unstable conditions (A and B stability
classes) in urban settings, regardless of receptor distance, are calculated
with (USEPA, 1995, p.33):

σz = 0.24x*(1+ 0.001x)− 0.5 (7a)

σy =
0.32x

(1+ 0.0004x)− 0.5 (7b)

Dispersion parameters for unstable conditions (class A) in rural settings
within 100m of the pollution source, are calculated with (USEPA, 1995,
p.30–32):

σz = 122.8 *
( x
1000

)0.9447
(8a)

σy = 465.1163 *
( x
1000

)
*

tan
(
0.0175 *24.167 −

[
2.5334 * log

( x
1000

) ]) (8b)

Where x is meters downwind distance from the source. A complete list of
dispersion parameter functions by setting are provided in Appendix 14.

HADES uses the plume model to create a database of source specific
(area, line, and point) dispersion kernels, for urban and rural locations,
under all possible combinations of atmospheric condition. HADES con-
siders 2,016 unique atmospheric combinations, based on 7 stability
classes, 36 wind direction bands (by 10◦ increments), and across 8 wind
speed groups (1, 2, 3, 4, 6, 8, 10, and 12 m/s). These dispersion kernels
quantify how concentrations experienced at a central location are
influenced by any nearby pollution source within a set search radius.
The kernel matrices have a 10m x 10m resolution, and extend from the
central location by 500m, 2km, and 4km for road-transport, area, and
point sources, respectively.

The meteorological pre-processor (see section 2.2.3) then converts
the hourly measurement data recorded at each weather station, into
crosstabulations of wind speed, direction, and stability for the time
period of interest (i.e., hourly-annual, seasonal, monthly, or weekly). By
default, HADES constructs ‘hourly-annual average’ profiles (n = 24).
These profiles are then applied to the dispersion database, to create a
series of weighted-average urban and rural source specific kernels for
the location and time period of interest (see Appendices 15-17). The
dispersion model in HADES is implemented via a ‘moving-window’
approach, where a source specific kernel reflective of the atmospheric
conditions, centres on a receptor location, is multiplied with the corre-
sponding cells of an emission grid, and then summed. A process known
in GIS as focal statistics, or as convolution by image filtering applica-
tions. This grid-based approach allows for very fast processing of large
numbers of emission sources, with no significant loss of detail in the
underlying emission source geography.

For demonstration purposes, Fig. 2 displays the 24-hour annual
average dispersion kernels for road-transport for the city of Nottingham.
In this example, the prevailing south-westerly wind (typical for the UK)
increases the influence of distant pollution sources from the south-west
quadrant. Elevated concentrations are also associated with near-source
contributions from gentle north-easterly winds (i.e., anticyclonic
stagnation).

Weather stations are typically separated by tens of kilometres in
urban locations, and by greater distances in predominantly rural loca-
tions. To model local dispersion processes, HADES implements the
following procedure using sequentially profiled airshed release kernels
(SPARK):

a) Divide the study area into a series of 1km x 1km ‘airsheds’, each
containing 100 receptor cells;

b) Locate the three nearest weather stations to the centroid point of an
airshed;

c) Use ‘Inverse Distance Weighting’ (IDW) to calculate the geographic
influence of each physical weather station on the airshed (i.e.,
triangulation to create a pseudo weather station).

d) Create a time series of weighted-average dispersion kernels for a
specified pollutant source in built-up (Urban Index = 1), and rural
(Urban Index = 0) locations;
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e) Apply the convolution kernels to the hourly emission surfaces, and
using the Urban Index fraction recorded at each location weight the
time-series of exposure surfaces.

Typically, commercial dispersion modelling software uses a single
weather to represent atmospheric conditions. An assumption that could
result in model errors when dealing with large areas.

2.2.5. Topographic-atmospheric calibration
Model calibration was made using hourly measurement data from

Defra, collected at sites used for compliance reporting in the Automatic
Urban and Rural Network (AURN): https://uk-air.defra.gov.uk/intera
ctive-map.

NOx contributions from the road-transport dispersion model (Fig. 1;
SPARK) had a nonlinear (log–log) relationship with the measurement
data. Whilst capturing the overall trend, the resulting concentrations
were several orders lower than expected (Spearman’s Rho = 0.75). Euro
emission standard testing is known to underestimate real-world driving
conditions, and there are other factors at play with local geometries
influencing the containment and dispersion of pollution. Therefore,
road-transport contributions are calibrated in accordance with urban
driving conditions (reduced performance), building volume (contain-
ment), local elevation (dispersion), road/kerbside locations (slower
plume release), and a minor temporal activity profile correction.

NOx contributions from the dispersion models of ‘Point’ (large in-
dustrial stacks) and ‘Area’ (i.e., commercial, domestic, other industrial,
and natural) sources are combined and calibrated in accordance to
urban environments (containment), deposition at elevated locations
(likelihood of plume height equalling ground level), and a temporal
activity profile correction.

Total NOx concentrations were therefore calculated by a three-stage
process using measurement data from across England and Wales in
2018–19: (1) hourly-annual average atmospheric dispersion surfaces of
road-transport were calibrated to 5,592 hourly-annual measurements at
120 kerbside and background locations; (2) domestic-commercial-
industrial dispersion surfaces were calibrated to 3,480 measurements
at 74 industrial and background locations; (3) the calibrated compo-
nents enter a regression model with urban canyon parameters at all 129
measurement locations.

Topographic and atmospheric parameters are then used to model the
photochemical reactions and pollutant sinks that determine the cyclic
conversion of NOx to NO2 and O3 (Fig. 1; FIRE). All model variables are
summarised in Appendix 1, with the full set of calibration and regression
parameters provided for future applications in Appendices 18-22.

2.2.6. Modelling environment
HADES has been developed in the R programming language (version

4.3.1) using open-source scientific computing libraries for the parallel
computation of spatial features and matrixes: doParallel, foreach, raster,
and sf. HADES can compute 24 sets of hourly concentrations at 25
million discrete receptors (10m cells within a 50km x 50km study area)
in less than 14 h on a High-Performance Computing system, with modest
requirements: 14 threads (AMD EPYC 7002-Series processor) and 64 GB
of memory implemented via SLURM. The Ordnance Survey separates
the landmass of England and Wales into ninety-four 50km x 50km grids.
By running jobs in parallel across all 128 available threads, it is possible
to generate concentration surfaces across England and Wales within 1-
week. Run times are linearly dependent on the number of receptors,
and are unaffected by the number of emissions sources in the domain. In
contrast, commercial Gaussian based pollution models are linearly
dependent on both receptor and source counts, with expected city-scale
run times in the order of several days/weeks.

2.3. Model evaluation

2.3.1. Model performance
Model validation was undertaken by comparing predicted NOx, NO2,

and O3 hourly-annual average concentrations to up to 6,024 comparable
measurements recorded at up to 136 locations across England and Wales
in 2018–19. Extreme outliers within the hourly measurements of each
pollutant were truncated prior to model development, defined as devi-
ating from the median by three times the interquartile range (Tukey,
1977). Outlier analysis resulted in the truncation of 57 (0.9%) NOx and
17 (0.3%) NO2 hourly-annual average measurements. The resulting
NOx, NO2, and O3 models in HADES were developed using concentra-
tions ranging from 3.4 to 175.0 (IQR: 18.7–54.3), 3.3–80.0 (IQR:
14.2–29.8), and 14.6–74.7 (IQR: 40.6–56.5) µg/m3, respectively. Mea-
surements of industry activity were limited to 9 locations (433 modelled
hours), which recorded ground-level NOx and NO2 concentrations
ranging from 9.8 to 66.6 and 8.7–45.2 µg/m3. HADES has been devel-
oped to predict NOx, NO2, and O3 concentrations up to values of 175 µg/
m3, 80 µg/m3, and 80 µg/m3, respectively.

Model performance was assessed by goodness-of-fit (R-squared − R2;
Pseudo-R-squared – PR2), residual (root mean squared error – RMSE;
and RMSE normalised by the mean, range, or inter-percentile concen-
tration range – NRMSE; overall and site-weighted mean average per-
centage error – MAPE), and chi-squared tests. PR2 was included as the
assumption of independent errors is violated in multilevel modelling.
Thus, PR2 tests the robustness of traditional goodness-of-fit tests with
log-likelihood measures that should return comparable results where a
valid model exists. Chi-squared log-likelihood ratios ensure that model

Fig. 2. Urban-rural variations in the annual average (24-hour) road-transportation dispersion kernels across Nottingham in 2019. These kernels record contributions
to the central cell from NOx releases of 0.25 g per second, in each 10m x 10m cell within a 500m radius.
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complexity is offset by gains in predictive power (where P < 0.05):
Validation with a Null (intercept only OLS) model, and if required, a
second test confirms that the inclusion of hierarchical structures is
appropriate (i.e., OLS vs multilevel model).

Performance tests were run on the base models and via cross-
validation (CV) protocols. The first CV test was based on 10,000
Monte Carlo simulations, whereby 20% of the model’s data was
randomly withheld from the model development to be used in the model
validation. A second CV test considered a new set of measurement data
from 2020, to evaluate model robustness in an unusual scenario (i.e.,
during the 2020 COVID pandemic, draconian travel and workplace re-
strictions saw a radical redistribution and diminished levels of anthro-
pogenic activities). HADES can account for uncertainty in its estimates
based on either the 95% Confidence Interval (CI), or the 75% Highest
Density Interval (HDI) of the Monte Carlo model development simula-
tions (see Appendices 18-22).

2.3.2. Mapping and exposure assessment
HADES exposure surfaces of hourly-annual average (N = 24) and

annual average (N = 1) NO2 and O3 concentrations were created for
England and Wales on a 10m x 10m grid for 2018–20. We also produced
a statistical approximation of the annual-average daily maximum 8-hour
rolling mean O3 concentration, calculated by combining the 24-hour
mean with the standard deviation of the hourly annual-average sur-
faces (N = 24). Exposures were calculated using two methods: (1) The
‘Area-weighted’ average of designated geographic zones, and (2) ‘Pop-
ulation Weighted’ exposures calculated from residential postcode de-
livery point locations, which on average represent the lived environment
of 44 residents (SD= 39) from 19 households (SD= 15). Exposures were
then summarised by nation, region, and community type, constructed
from 188,880 UK Census Output Area community boundaries in 2021
(COA21). The Townsend Index (Townsend et al. 1989) was used to

describe community levels of relative socioeconomic deprivation in
2021 (Appendix 23), and the Urban Index appears to suitability convert
into a traditional rural–urban classification scheme when averaged at a
census community level (Appendix 24). We assessed exposure in rela-
tion to the current UK and EU legislative framework, and the 2021 air
quality guidelines (AQG-2021) proposed by WHO.

3. Results

3.1. Summary of the source emission contributions

Total annual-average NOx emissions across England and Wales in
2018, 2019, and 2020 were recorded at 677.8, 655.6, and 544.3 kilo-
tonnes, respectively (Appendix 25). In 2018–19, large industrial stacks
(traditional point sources), area sources, and road-transport individually
accounted for 21.1%, 36.6%, 42.3% of the total primary NOx emissions.
Road-transport is the largest producer of NOx and these emissions
typically occur within lived environments where plume rises approxi-
mate human height. HADES estimates that road-transport is accountable
for 76.3% of primary NOx concentrations 1-meter above surface level,
where the combined contribution of area and point source emissions
equals that of road-transport (Appendix 20).

3.2. Model performance

Model performance and summary statistics for the prediction of
hourly-annual NOX, NO2, and O3 measurements in 2018–19 are sum-
marised in Table 1. Cross-validation summary statistics are reported for
the upper and lower 95% Highest Density Interval (95% HDI) of model
simulations. For NOx and NO2, there were 124 measurements sites in
2018 and 127 in 2019, resulting in 6,024 site-hours (i.e., [24-hours x
124 sites] + [24-hours x 127 sites]) for hourly-annual-average and 251

TABLE 1
HADES 2018–19 model performance and summary statistics for the prediction of NOx, NO2, and O3.

Summary Statistics Hourly-Annual Average Concentration (µg/m3) Annual Average Concentration (µg/m3)

Model 1: NOx Model 2: NO2 Model 3: O3 NOx NO2 O3

Description Model Family OLS Multilevel Multilevel − − −

Model Relation Linear Linear Linear 24-Hour Mean 24-Hour Mean 24-Hour Mean
Observations (N) 6,024 6,024 2,832 251 251 118

Goodness-of-Fit R-Squared (R2) 0.71 0.79 0.89 0.72 0.80 0.86
Nagelkerke’s Pseudo-R-Squared (PR2) 0.71 0.79 0.88 0.72 0.80 0.86

Residuals * Root Mean Square Error (RMSE) 18.01 5.63 3.76 15.52 4.90 3.17
Normalised RMSE (NRMSERANGE) 10.5% 7.3% 6.2% 9.6% 6.9% 7.1%
Normalised RMSE (NRMSEIPR) 17.5% 14.3% 10.0% 16.9% 14.2% 11.4%
Normalised RMSE (NRMSEMEAN) 43.2% 24.4% 7.8% 37.2% 21.2% 6.6%
Mean Absolute Percentage Error (MAPE) 32.3% 18.4% 6.5% 29.7% 15.5% 5.3%
Site-Weighted MAPE (SW-MAPE) 13.1% 4.5% 3.4% 29.3% 14.8% 4.8%

Chi-Square
(p-value)

Full Model < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Hierarchical Effects − < 0.01 < 0.01   

Cross-Validation
(95% HDI) **

CV-R2 Upper 0.71 0.79 0.89   
Lower 0.68 0.77 0.87   

CV-RMSE Upper 18.02 5.67 3.82   
Lower 16.81 5.33 3.63   

CV-NRMSERANGE Upper 10.5% 7.4% 6.3%   
Lower 9.8% 6.9% 6.0%   

Cross-Validation
(2020 Dataset) ***

Observations (N) 3,072 3,068 1,416   
CV-R2 0.70 0.78 0.82   
CV-RMSE 12.12 4.71 4.17   
CV-NRMSERANGE 8.7% 9.1% 7.5%   

* NRMSERANGE is the normalisation of the RMSE by the range of measured concentrations (max–min); NRMSEIPR is the normalisation of the RMSE by the inter-
percentile (95th-5th) range of measured concentrations.
** Cross-Validation (CV) was achieved by 10,000 Monte Carlo simulations, with 20% of the hourly data from 2018 to 19 randomly withheld from model development
for use in model validation. Summary statistics from the 95% Highest Density Interval (HDI) of model simulations are presented.
*** CV was achieved by using the 2018–19 model to predict concentrations in 2020 (not seen by HADES). A linear calibration was applied to adjust the NOx emission
trend predicted by Model 1: NOx = 0.841 + (“Model 1” x 0.741). Identical R2 values were reported without calibration, with reduced NRMSERANGE values of 11.8%
(NOx), 13.5% (NO2), and 8.6% (O3).
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sites for annual-average assessments. For O3, there were 60 measure-
ments sites in 2018 and 58 in 2019, resulting in 2832 site-hours for
hourly-annual-average and 118 sites for annual-average assessments.
Fig. 3 shows plots of measured versus predicted hourly-annual average
NO2 and O3 (2018–2019), which were then aggregated into annual-
average comparisons in Fig. 4.

Values of R2 and PR2 are within 1%, confirming model robustness.
The NOx model explained 71% of the variation in the hourly-annual
measurement data. CV-R2 values were 0.68–0.71 under Monte Carlo
simulation and future prediction tests. The CV-RMSE was 16.8–18.0 µg/

m3 across an observed NOX concentration range of 3.3 to 175 µg/m3.
This equates to a 9.8–10.5% error in the estimates under the CV-
NRMSERANGE test (i.e., normalised by the range of measured concen-
trations). The NO2 model explained 79% of the variation in the hourly-
annual concentrations with an RMSE of 5.6 µg/m3. In cross-validation,
the NO2 model explained 77–79% of the variation in the hourly-
annual measured concentrations at 129 locations, and RMSE between
5.3–5.7 µg/m3, across a NO2 concentration range of 3.3 to 80 µg/m3.
Overall NRMSERANGE was 7.3% (95% HDI: 6.9–7.4%). The O3 models
explained 89% of the variation in measured concentrations in model

Fig. 3. Modelled (HADES) versus monitored hourly-annual average concentrations of nitrogen dioxide (NO2) and ozone (O3) in 2018–19.

Fig. 4. Modelled (HADES) versus monitored annual average concentrations of nitrogen dioxide (NO2) and ozone (O3) in 2018–19.
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fitting with an RMSE of 3.8 µg/m3. In cross-validation, the O3 model
explained 87–89% of the variation in the hourly-annual measurement
data at 60 locations with RMSE between 3.6–3.8 µg/m3, across a O3
concentration range of 14.5 to 74.7 µg/m3. Overall CV-NRMSERANGE
was 6.2% (95% HDI: 6.0–6.3%). The chi-squared tests show that the
predictive power of all models has not been compromised by either the
complexity of parameter or hierarchical structures (P < 0.05).

Some variation in model performance was observed by time of day.
R2 values calculated for each temporal subset of the hourly-annual
average data (i.e., independently calculated for 01:00, 2:00, etc) were
0.68–0.76 and 0.70–0.87 for NO2 and O3, respectively (Appendix 26).
NRMSERANGE values for the hourly-annual average subsets returned
relative errors of 6.4–9.6% for NO2, and 7.2–10.1% for O3. Diminished
NO2 model performance (R2 < 0.70) appears restricted to the hours of
03:00 and 04:00, outside of periods of high activity and when concen-
trations are at their lowest. Diminished O3 model performance (R2 <

0.80) is restricted to the night-time period of 01:00 to 05:00. Likewise,
the NOx model performed best during peak activity hours (R2 ≥0.70
from 07:00 to 19:00), reporting NRMSERANGE test errors of 7.7–13.4%
over the course of a typical day.

Differences in model errors were seen by site type. The subsets of
background, industrial and traffic (kerbside) measurement locations
recorded MAPE values of 7.6%, 12.2%, and 26.4% in their NOx pre-
dictions, respectively. The increased level of uncertainty at traffic sites is

due to the large variation in hourly NOx measurements, which range
from 9.7 to 175 µg/m3 (IQR: 37.4 to 84.7 µg/m3). Traffic sites account
for 41% of the hourly observations in the model. The dispersion around
the line of unity for NO2 concentrations (Fig. 3) reveals some sites,
especially traffic sites, with relatively large errors. However, only 4.7%
of site-hours had NO2 MAPE values > 50%, with < 0.5% of site-hours >
100%. For O3, there were only 3 site-hours (0.1%) where MAPE
exceeded 50%. Values of site-weighted MAPE (Table 1) were notably
lower for hourly-annual average concentrations, due to the reduced
influence of traffic sites (i.e., for each site a single average absolute
percentage error value is considered, rather than up to 48 hourly-annual
average values over the 2-years).

The NOx model explained 72% of the variation in the annual average
measured concentrations, with an NRMSERANGE of 9.6% (Table 1). The
NO2 model explained 80% of the variation in the annual average
measured concentrations with an RMSE of 4.9 µg/m3 and NRMSERANGE
of 6.9% (see Table 1 and Fig. 4). The O3 model explained 86% of the
variation in the annual average measured concentrations, with a RMSE
of 3.2 µg/m3 and NRMSERANGE of 7.1%. Values of RMSE and NRMSER-

ANGE are comparable to the hourly-annual assessments. For annual
average concentrations, predictions at all sites were within 100% MAPE
for both NO2 and O3. Predictions at 5 sites were greater than 50% MAPE
for NO2 but all O3 predictions were less than 50% MAPE.

HADES was robust to the unexpected emissions scenarios related to

Fig. 5. Annual average (24-hour) nitrogen dioxide concentrations across England and Wales in 2018–19. Insert displays the City of Leicester located within the East
Midlands region.
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the COVID pandemic, predicting across the nitrogen cycle in 2020 with
minimal diminishment in performance: The NOx, NO2, and O3 models
explained 70%, 78%, and 82% of the variation in the hourly-annual
average measurements, respectively. Calibration of NOx (Model 1) via
linear regression against measured concentrations for 2020, prior to the
calculation of NO2 (Model 2) and O3 (Model 3) further reduced model
errors in this unusual year: NRMSERANGE modelling errors were reduced
from 13.5% to 9.1% for NO2, and from 8.6% to 7.5% for O3. Appendices
27-28 summarise the performance of the preliminary calibration models
and the total NOx emission model on the 2018–19 training data, and for
forecasting concentrations in 2020.

3.3. National exposure assessment (2018–19)

Fig. 5 shows the annual average NO2 concentration surface for 2018
and 2019 (combined), with the legend marking related to the current UK
and EU annual limit of 40 µg/m3 set in 2010 (EC, 2008), and the recently
proposed AQG-2021 of 10 µg/m3 (WHO 2021). Appendix 29 shows the
equivalent surface for O3. To support their interpretation, Table 2 con-
tains population-weighted exposures at residential postcode delivery
point locations and Appendices 30-31 provide area-weighted exposures
by nation, region, and community area type.

Area-weighted (or background) NO2 concentrations of 8.6–9.9 µg/
m3 were estimated across England and Wales in 2018–19. A clear
urban–rural divide exists with, urban community spaces typically
experiencing concentrations of 19.3–21.1 µg/m3, levels that are twice as
high as their rural counterparts. Rural areas constitute approximately
89% of the overall land mass, but contain a relatively small proportion of
the population. Area-weighted NO2 concentrations of 22.3–25.9 µg/m3

within London, are twice as high as the South-East region that borders
the capital. A clear social divide is also observed, with land across
deprived communities typically experiencing NO2 concentrations that
are 11.4–12.3 µg/m3 higher than affluent spaces. In terms of legislative
compliance, <0.1% of the England and Wales landmass currently ex-
ceeds the 40 µg/m3 limit, with 64.5% of the land meeting the proposed
AQG-2021 of 10 µg/m3.

It is estimated that 66%, 21% and 13% of the population respectively
live in urban, suburban, and rural locations (Table 2). As such, the
typical residential annual-mean exposure to NO2 across England and
Wales in 2018–19 is estimated at a substantially higher concentration of
18.2–20.2 µg/m3. Typically, exposures at residential locations are
noticeably higher than across community spaces, differing by 1 µg/m3 in
urban and 4.5 µg/m3 in rural locations. In terms of legislative compli-
ance, 0.2% of the population for England and Wales reside in locations
exceeding the 40 µg/m3 limit, with only 4.3% of the population housed
in locations exposed to ≤ 10 µg/m3. Based on these results, meeting the
AQG-2021 is a major challenge for NO2 exposure.

Fig. 6 shows hourly-annual average NO2 concentrations at selected
(3-hourly) time intervals across the day, and the annual average for the
city of Leicester in 2018–19, as an example of the capability of the
modelling in terms of spatial and temporal resolution. Concentrations
above 40 µg/m3 appear limited to a few kerbside locations and are
heavily influenced by commuter patterns (Appendix 32).

O3 is a regional pollutant that tends to reach high concentrations far
from pollutant sources during prolonged warmer periods. Within the
UK, modelled annual-average levels of O3 for 2018–19 did not exceed
75 µg/m3, with <0.1%, 72.7%, and 27.3% of the landmass respectively
reported concentrations <30, 30–60, and >60 µg/m3. These O3 levels
are considerably lower than any prescribed safety limit for immediate
risk to the general population. Legislative health-based limits for O3 are
set around a maximum daily 8-hour rolling mean of 120 µg/m3, not to be
exceeded for>25 days per year (EC 2008). All 78 monitoring sites across
the UK were compliant throughout 2018 and 2019, recording on
average only 5 days of exceedance.

AQG-2021 has recommended additional compliance with a 60 µg/
m3 peak-season (6-month) average daily maximum 8-hour mean O3
concentration. We conservatively benchmark against this standard using
a statistical approximation of the annual-average maximum daily 8-hour
rolling mean (see Table 2 and Appendix 33). Only the South-West and
Wales have regional population-weighted exposures that exceed 60 µg/
m3. In total, 15.2% of the population across England and Wales reside in
locations expected to exceed this guideline. Area-weighted exposures

TABLE 2
Population-Weighted annual-average residential exposures across England and Wales. Constructed from 1,377,387 postcode centroids, which on average represent the
lived environment of 44 residents (SD = 39) in 19 households (SD = 15).

Scheme Group Population Annual-Average Concentrations (µg/m3)

24-Hour NO2 24-Hour O3 8-Hour O3 *

2018 2019 2020 2018 2019 2020 2018 2019 2020

National All 100% 18.2 20.2 17.0 49.1 46.9 51.4 56.7 54.4 59.1
England 95% 18.5 20.5 17.3 48.8 46.6 51.1 56.4 54.2 58.9
Wales 5% 13.7 14.6 12.3 54.0 53.0 56.0 60.5 59.8 62.8

Rural-Urban Urban 66% 20.1 22.2 18.6 47.8 45.5 50.4 55.4 53.1 58.2
Peri-Urban 12% 16.9 18.6 15.8 49.7 47.7 51.9 57.1 55.0 59.5
Peri-Rural 9% 15.4 17.1 14.6 50.8 48.8 52.7 58.2 56.1 60.2
Rural 13% 12.0 13.5 11.8 53.9 52.0 55.2 61.5 59.4 62.9

Regional East Midlands 8% 17.8 19.6 17.0 48.2 46.0 50.5 55.8 53.0 58.1
East England 11% 16.6 18.2 15.9 49.5 47.9 51.6 57.9 56.2 60.4
London 15% 25.3 29.0 24.1 44.9 41.2 47.6 53.3 49.8 56.3
North East 4% 16.8 15.7 14.7 48.7 50.5 52.9 54.5 56.2 58.8
North West 12% 18.9 20.9 17.2 49.0 45.3 50.6 56.0 51.7 57.5
South East 16% 17.6 20.0 16.4 49.7 47.0 51.8 57.8 55.8 60.4
South West 10% 13.4 14.9 12.6 53.6 52.0 55.1 61.0 60.0 62.7
Wales 5% 13.7 14.6 12.3 54.0 53.0 56.0 60.5 59.8 62.8
West Midlands 10% 18.3 20.1 17.1 49.1 46.8 51.9 56.9 53.8 59.4
Yorkshire & The Humber 9% 17.5 18.9 16.3 48.0 47.2 50.7 54.7 53.4 57.2

Deprivation (Quantiles) Q1: Affluent 20% 15.6 17.2 14.8 51.1 49.0 52.9 58.7 56.4 60.6
Q2 20% 16.1 17.8 15.2 50.7 48.7 52.7 58.3 56.3 60.5
Q3: Expected 20% 17.6 19.4 16.4 49.5 47.5 51.8 57.1 55.1 59.6
Q4 20% 19.4 21.3 17.9 48.2 46.0 50.7 55.8 53.5 58.5
Q5: Deprived 20% 22.4 24.8 20.8 46.1 43.4 48.9 53.7 50.9 56.7

* Statistical approximation of the annual-average daily maximum 8-hour rolling mean ozone concentration, calculated by combining the mean with the standard
deviation of the hourly annual-average surfaces (n = 24).
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indicate that most rural and affluent community spaces will exceed such
guidelines (Appendix 30). It is important to note that this AQG-2021
only considers the warmest 6-months of a year; our analysis covers
12-months and therefore likely underestimates the level of exceedance
for O3.

3.4. Covid-19 interventions in 2020

The pandemic ‘lockdown’ policies led to the temporary closure (or
“mothballing”) of many industrial and commercial premises, and the
restriction of travel to varying degrees throughout the year.

In 2020, NOx concentrations across England and Wales fell by 22.0%
(Appendix 31). Across Great Britain, reductions in road traffic of
23–25% and 18% were reported on major and minor roads, respectively
(Appendix 34). This corresponded to a 22.6% reduction in NOx emis-
sions across the entire 351,573 km road network in England and Wales.

NOx emissions from ‘Area’ sources fell by 19.3%, whereas large indus-
trial ‘Point’ source emissions only fell by 1% on 2019 levels (Appendix
25). Activity at large industrial operations varied by region, reducing by
18.3% in the East Midlands, and increasing by >20% in London and the
South West. Non-road transport (i.e., air, rail, and waterways), small-
medium industrial activity, and domestic-commercial heating typically
account for 42.4%, 25.7%, and 21.2% of ‘Area’ source NOx emissions –
activity in these sectors fell by 23.6%, 19.3%, and 12.2%, respectively
(Appendix 35).

However, this overall reduction and redistribution of polluting ac-
tivities only corresponded to a 5.9% fall in NO2 concentrations, and a
3.3% increase in O3 concentrations was observed across 2020 (Table 2).
Modest ‘improvements’ in overall air quality, disproportionate to the
reduction in polluting activities were previously reported for the initial
pandemic ‘lockdown’ in the Spring of 2020, largely offset by changes in
the local atmospheric chemistry and weather events (Jephcote et al

Fig. 6. Hourly annual-average nitrogen dioxide concentrations across Leicester in 2018–19, projected in the British National Grid coordinate system (10
m resolution).
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2021).
In London, average air temperatures across 2020 were 0.3◦C higher

than in 2019, there was an 8% increase in heatwave events (hourly re-
cords>20◦C), and high-pressure weather systems associated with north-
easterly winds were more prevalent (Appendix 36). Therefore, the
29.1% reduction in NOx across London in 2020 coincided with only a
11.2% reduction in NO2, and an unusual 9.4% increase in O3 because of
favourable weather conditions and limited street level emissions
entering the nitrogen cycle (Appendix 30). Similar trends were observed
in many urban environments. Appendix 37 shows the mapped per-
centage change in annual average NO2 and O3 concentrations for 2020,
with respect to modelled concentrations in 2018–19 across England and
Wales. The exact location, extent, and magnitude of this anthropogenic
change was previously unknown, restricted to the analysis of select
monitoring sites or regional satellite-based models.

The NO2 and O3 models explained 78% and 82% of the variation in
the overall set of hourly-annual average measurements in 2020,
respectively. R2 values calculated for each subset of the hourly-annual
average data were 0.63–0.79 and 0.57–0.77 for NO2 and O3, respec-
tively. NRMSERANGE values for the hourly-annual average subsets
returned relative errors of 10.1–14.4% for NO2, and 9.1–13.8% for O3.

4. Discussion

We produced a new approach to air pollution modelling (HADES)
that combines the dispersion modelling (of a detailed source emissions
inventory), satellite observations, and other topographical data, within
a statistical calibration framework. We demonstrated HADES for hourly-
annual and annual average concentrations mapping (10m surfaces) and
exposure assessment. We have made the concentration surfaces for En-
gland and Wales open access for non-commercial use (see ‘Availability
of Data’). We believe these to be the most accurate, freely available
national-scale surfaces within the UK that reflect the influence of
meteorology on patterns of air pollution. The methods and supplemen-
tary materials (Appendices and traffic emission toolkit) provide detailed
guidance for others wishing to employ HADES, including the generation
of synthetic data where required. HADES is an efficient dispersion model
that facilitates the rapid (i.e., compared to previous approaches
including dispersion modelling) production of national-scale air pollu-
tion maps.

4.1. Comparison of model performance with other studies

National-scale studies have mostly used statistical modelling based
in around LUR (Ma et al., 2024) with a few exceptions, as noted earlier
(Klompmaker et al., 2021). Earlier LUR studies were limited to topo-
graphical variables to represent proximity to air pollution source and
sinks (Hoek et al., 2008). Satellite data and/or chemical transport
models are increasingly included in modelling as a source of background
concentrations alongside topographical data, and have been referred to
as ‘hybrid’ approaches (de Hoogh et al., 2018). We believe our national-
scale hybrid model including dispersion modelling, satellite data, and
topographical data in a statistical calibration to be unique.

In terms of the performance of national models, Novotny et al.
(2011a),Novotny et al. (2011b) satellite-derived 30m LUR models for
the USA, explained 72% of the variation in annual average NO2 surface
concentrations. National LUR models for China and Australia using
satellite products and meteorological data, report R2 values ranging
from 0.73 to 0.81 for NO2 (Xu et al., 2019; Knibbs et al., 2014).
Compared to other approaches our annual average predictions had
excellent performance: R2 of 0.80 for NO2 and R2 of 0.86 for O3 in
relation to measurements made in 2018–2019. As far as we are aware,
there are no studies to have reported performance of hourly-annual
average models. Our models had similar overall performance between
hourly annual and annual average models.

Many studies report RMSE (the average difference between

predictions and measurements), but values are difficult to compare due
to differences in measured concentration variability between study
areas. NRMSE allows comparison, however, normalisation may use the
mean, range, IQR, or percentile. In Great Britain, NO2 LUR models for
2009 reported a NRMSEMEAN of 34%, NRMSERANGE of 12%, and
NRMSEIPR of 20% (Gulliver et al., 2013). Models for 2011–2015 report a
NRMSEMEAN of 25–27%, NRMSERANGE of 13–14%, and NRMSEIPR of 8%
for NO2, and a NRMSEMEAN of 7–10%, NRMSERANGE of 6–11%, and
NRMSEIPR of 10–16% for ozone (Wang et al. 2022). Across Western-
Europe, LUR models yielded a NRMSEMEAN of 35% and NRMSEIPR of
21% for NO2, and NRMSEMEAN of 10% and NRMSEIPR of 18% for annual
average O3 (de Hoogh et al. 2018). In the Netherlands, LUR O3 models
reported a NRMSEMEAN of 10% and NRMSERANGE of 15% (Kerckhoffs
et al., 2015). In the USA, Lu et al. (2021) reported NRMSEMEAN ranges of
29–33% and 8–9% for NO2 and O3, respectively. HADES recorded a
NRMSEMEAN of 21%, NRMSERANGE of 7%, and NRMSEIPR of 14% for
NO2, and a NRMSEMEAN of 7%, NRMSERANGE of 7%, and NRMSEIPR of
11% for O3 (Table 2). Our results are favourable compared to the results
from other studies, but a robust assessment would require comparison
between different methods using the same measurement data.

4.2. Applying hades to other locations

HADES was developed to allow the use of open-access input data
with potentially near-global coverage. As noted above in describing the
various input data, many of the required datasets (e.g., population,
topography, land use, area-level emissions data), are readily available
and sufficiently detailed to apply HADES elsewhere. The main exception
to this is data on road traffic flows. To fill this gap is challenging as
detailed traffic datasets are not common, even for major roads in many
countries. Traffic count data is available commercially but is prohibi-
tively expensive for academic research and the public sector. Applying
traffic assignment modelling (Kučera and Chocholáč, 2021) at national
scale is not computationally feasible for this exercise. There is, however,
a growing body of studies that have shown statistical models of traffic
flows to be promising. Most examples so far have been for individual
cities or regions (Apronti et al., 2016; Sfyridis and Agnolucci, 2023;
Alvarado-Molina et al., 2023) but also nationally (Morley & Gulliver,
2016), and more recently the first international-scale model, for Europe
(Shen et al., 2024). To produce data on road traffic speed, we suggest
using national speed limits by road type described above, which can be
determined by OSM road types by country.

As is the case in our application for England and Wales, we don’t
expect data to be available for other explicit sources (i.e., depicted by
individual points or areas), except for major industrial installations such
as power plants. It is assumed therefore that most domestic and indus-
trial emissions sources will be summarised on a grid and treated in
HADES as a diffuse source. For England and Wales this data is published
on a 1km grid; also available for the rest of the UK. For other countries,
where these data are only available nationally or regionally by sector (e.
g., in EMEP) it is theoretically possible to get an estimate of emissions on
a suitable grid by disaggregating the emissions totals using a form of
areal weighting (e.g., weighted by population density). In this presen-
tation, we applied a land use informed disaggregation approach to a
10m grid for modelling for each emissions sector. This relates well to the
spatial resolution of discrete emissions sources such as road links or
industrial point or area sources, but we recognise that 10m is a ‘false
resolution’ imposed on the 1km gridded emissions used here. We also
rendered the data used in the statistical calibration (e.g., CAMS surfaces,
land use, population) component of HADES to a 10m grid. It makes sense
from a modelling perspective, however, to run HADES using a consistent
grid that reflects the scale of the most detailed source(s) to prevent
increased levels of uncertainty. We chose CAMS data to represent long-
range transportation of air pollutants, and it’s (regional and interna-
tional) influence on background concentrations in HADES, but other
datasets are suggested in section 2.1.4 for global application.
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4.3. Alternative approaches

There has been a rise in recent years in the number of studies using
machine learning, especially tree-based (e.g., random forest, extreme
gradient boosting, and stochastic gradient boosting) as well as other
types of method (e.g., support vector regression, neural networks, and
kernel-based regularised least squares). In a recent study (Vachon et al.,
2024) tree-based methods performed the best in 12 out of 17 multi-
model comparisons. However, one of the main weaknesses of tree-
based methods is that they are constrained to predicting values within
the range of observed values (Vachon et al., 2024). Machine learning, as
with other statistical methods, can also suffer from overfitting and may
not transfer well to other locations (Tang et al., 2024). Even where
models are trained on concentration data from hundreds of measure-
ment locations this does not ensure out-of-sample representativeness,
even following held-out validation or extensive cross-validation. A
further limitation of machine learning is that it cannot be directly used
for assessing interventions, unlike with dispersion modelling where it is
possible to change emissions within a source sector and study the impact
on changes in air pollution surfaces. Thus, approaches incorporating
dispersion modelling provide a stronger basis for interpretability.
Another advantage of HADES, and dispersion modelling in general, is
that the patterns of air pollution reflect the effects of meteorology. Some
statistical methods have applied pseudo meteorological variables such
as wind terms (Naughton et al., 2018) but these represent a simplifica-
tion of the relationship between meteorology and atmospheric
processes.

Despite some shortcomings, however, machine learning and other
statistical approaches (e.g., stepwise regression, generalised additive
mixed models, etc.) offer an accessible method for producing air
pollution surfaces where detailed information on emissions is not
available and there is a sufficiently detailed series of concentration
measurements sites. Machine learning may offer a faster means of pro-
ducing air pollution estimates than HADES. Statistical methods are a
popular choice in epidemiological research (Jie et al., 2021), especially
where relative ranking of exposures may be more important than ab-
solute accuracy.

4.4. Limitations and future work

As part of a hybrid approach, we included 3-D building data as a GIS
surrogate (i.e., street canyon) for the effect of ventilation on pollutant
dispersion. Buildings were used in the statistical calibration, as it would
not be practical to produce a physical model of the effects of buildings at
national scale. In modelling concentrations of NOx for London, Masey
et al. (2018) compared the performance of GIS surrogates, including sky-
view factor (i.e., amount of sky visible from each location), following
Eeftens et al. (2013), with established street canyon models: the STREET
model (Johnson et al., 1973) and the AEOLIUS Model (Vardoulakis
et al., 2002). Although the street canyon models provided slightly lower
bias at fixed site monitoring locations within street canyons, there was
little difference between modelled and measured concentrations of NOx
when all types of receptor locations were considered. Qi et al. (2022)
present novel methods for constructing GIS surrogates of street config-
urations via google street imagery in two cities in the USA which
although promising are currently impractical for nationwide
applications.

Reduced model performance was observed at some traffic (kerbside)
locations, but these represented a small part of dataset. Kerbside con-
centrations are difficult to capture due to their high levels of spatio-
temporal variability (i.e., NOx ranges from 9.7 to 175 µg/m3) and
immediate proximity to the source. The increased error at these traffic
sites may relate to relatively weak performance of the traffic flow model
at specific locations, which future research will seek to address. Indeed,
7.5% of the hourly-annual average NO2 estimates at traffic locations had
MAPE values above 50%.

At present, HADES outputs are limited to annual average assessments
(hourly and 24-hour) for NOx, NO2 and O3 across England and Wales.
We intend to extend the modelling to the rest of the UK (Scotland and
Northern Ireland) and develop modelling capacity for fine particulates
with the additional consideration of non-tailpipe emissions and back-
ground concentrations of PM2.5 (i.e., chemistry and secondary particle
formation). Periods of interest for finer temporal assessments may
include seasons, or specific months of the year for studies of pregnancy
and infancy in epidemiologic research. It is unlikely that we or others
will be able to obtain reliable estimates of the seasonal variability in
local-scale sources emissions to support deterministic modelling for sub-
annual averaging periods. A more realistic approach would be to either
include statistical terms for the combinations of hour, day and month in
the FIRE ‘regression calibration’ component of HADES (see Fig. 1), or
calibrate the annual-average model output using sub-annual (e.g., daily
or monthly) concentrations from monitoring networks as others have
shown (Ndiaye et al., 2024).

All environmental modelling applications are limited by the spatial
accuracy and precision of the emission data that underpins them.
HADES contains its own traffic modelling platform, which applies
detailed and established speed-based emission testing functions to
observation-informed models of traffic activity at a high spatial resolu-
tion. Operational records for large industrial stacks (‘Point’ sources) are
also typically well maintained to ensure compliance with environmental
regulation. Uncertainty can exist in the ‘Area’ source data, where the
location and extent of individual activities may be missing, and when
sector contributions are based on national or regional level estimates.
Such uncertainty is difficult to account for and is often overlooked in the
construction of the emission data and by environmental models. HADES
has been developed with Monte Carlo simulation and can therefore ac-
count for overall uncertainty (not source specific) in its estimates of
NOx, NO2, and O3 through using the 95% CI and 75% HDI regression
parameters provided in Appendices 20-22.

The 2018–20 national pollution surfaces will be used to improve the
exposure records of two major biomedical databases: (1) UK Longitu-
dinal Linkage Collaboration containing participants from 20 cohorts,
and (2) The UK Biobank containing >475,000 participants. HADES may
be used to explore pollutant exposures beyond the legislative re-
quirements of annual average concentrations. This is useful from a
policy perspective to understand why exceedances may occur, and from
an epidemiological perspective to: (a) replace residential with activity-
weighted exposures minimising issues of misclassification, and (b)
coincide with other time dependent exposures such as noise pollution.

4.5. Air quality guidelines and policy support

Our study represents a comprehensive analysis of long-term air
pollutant exposures conducted for England and Wales, with pollutant
exposures estimated at >1.5 billion locations for mapping. For context,
the UK governments 1km x 1km annual background pollutant maps only
consist of 154,649 land cells in England and Wales, a resolution which
raises concerns of severe exposure misclassification. We suggest that our
model output may be used for research and policy support in the UK,
including health impact assessment. The modelling framework could be
applied elsewhere for the same purposes. Our analysis has shown that
many areas in England and Wales would not meet the WHO AQG-2021
for NO2. The AQG-2021 for maximum 8-hour average ozone may also
not be met in many places, especially in suburban and rural areas.
Although not currently adopted as air quality targets in the UK, theAQG-
2021 represents a major challenge for outdoor air quality.
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Jeanette, Klea, K., Matthias, K., Klompmaker Jochem O., Anton, L., Karin, L., Shuo,
L., Petter, L., MacDonald Conor J., Magnusson Patrik, K.E., Amar, M., Gabriele, N.,
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