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Arterial spin labelling (ASL) magnetic resonance imaging (MRI) enables cerebral
perfusion measurement, which is crucial in detecting and managing neurological
issues in infants born prematurely or after perinatal complications. However,
cerebral blood flow (CBF) estimation in infants using ASL remains challenging due
to the complex interplay of network physiology, involving dynamic interactions
between cardiac output and cerebral perfusion, as well as issues with parameter
uncertainty and data noise. We propose a new spatial uncertainty-based physics-
informed neural network (PINN), SUPINN, to estimate CBF and other parameters
from infant ASL data. SUPINN employs a multi-branch architecture to
concurrently estimate regional and global model parameters across multiple
voxels. It computes regional spatial uncertainties to weigh the signal. SUPINN can
reliably estimate CBF (relative error −0.3 ± 71.7), bolus arrival time (AT)
(30.5 ± 257.8), and blood longitudinal relaxation time (T1b) (−4.4 ± 28.9),
surpassing parameter estimates performed using least squares or standard
PINNs. Furthermore, SUPINN produces physiologically plausible spatially
smooth CBF and AT maps. Our study demonstrates the successful
modification of PINNs for accurate multi-parameter perfusion estimation from
noisy and limited ASL data in infants. Frameworks like SUPINN have the potential
to advance our understanding of the complex cardio-brain network physiology,
aiding in the detection and management of diseases. Source code is provided at:
https://github.com/cgalaz01/supinn.
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1 Introduction

Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI)
technique that measures cerebral blood flow (CBF) without exogenous contrast agents
(Lindner et al., 2023). CBF maps can be computed on a voxel-by-voxel basis by fitting
mathematical models of haemodynamics based on ordinary differential equations (ODEs)
(Alsop et al., 2015). These models help capture the complex temporal dynamics of blood
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flow, which are essential for understanding the intricate cardiac-
brain network physiology. This understanding may aid in
diagnosing and managing various conditions, such as some forms
of dementia and stroke (Rossi et al., 2022; Tahsili-Fahadan and
Geocadin, 2017).

The bidirectional cardiac-brain network physiology operates as
an intricate system where the heart and brain continuously influence
each other (Candia-Rivera et al., 2024), a topic that has garnered
research interest for some time (Bashan et al., 2012). The heart
supplies oxygenated blood to the brain, affecting cerebral perfusion
and pulsatile flow (Silverman and Petersen, 2020; Jammal Salameh
et al., 2024), while the brain regulates cardiac function through the
two autonomic nervous systems, the sympathetic and
parasympathetic (Gordan et al., 2015). This network incorporates
feedback loops such as cerebral autoregulation and neurovascular
coupling to maintain optimal function (Claassen et al., 2021).

In infants, particularly those with conditions like congenital
heart disease (CHD) or preterm birth, this network is especially
vulnerable due to immature autoregulation and developmental
sensitivity (De Silvestro et al., 2024; Claassen et al., 2021). These
factors can result in altered cerebral haemodynamics, leading to
issues such as delayed brain maturation, an increased risk of cerebral
white matter injury, and potentially adverse long-term
neurodevelopmental outcomes (McQuillen et al., 2010). Preterm
neonates are often admitted to hospital to receive external
physiological support whilst their bodies mature, of which brain
perfusion must be sufficient during this period.

The infant demographic thus benefits from non-invasive CBF
monitoring techniques like ASL (Counsell et al., 2019). ASL can
provide insights into the complex physiological interplay between
the heart and brain, guiding interventions to support optimal brain
development and overall cardiovascular health (McQuillen et al.,
2010; Castle-Kirszbaum et al., 2022).

A thorough understanding of this cardiac-brain network is
crucial for managing infant health. Specifically, it is essential for
optimising neuroprotection strategies, improving surgical and
medical management, and enhancing the long-term
neurodevelopmental prospects of these infants (De Silvestro
et al., 2023). However, further research is needed to fully
understand the independent effects and mechanisms of cardio-
cerebral coupling (Castle-Kirszbaum et al., 2022; Meng et al.,
2015), particularly in the developing infant brain (Baik-Schneditz
et al., 2021). Achieving this understanding in infants will require the
development of even more accurate CBF monitoring techniques
than those currently available.

Computing voxel-by-voxel CBF maps is achieved by fitting
mathematical models of haemodynamics based on ODEs (Alsop
et al., 2015). Many of these perfusion model ODEs assume very
simplified physiology (e.g., plug blood flow to the brain, single
magnetisation compartments in the brain) and can therefore be
solved analytically (Buxton et al., 1998; Alsop et al., 2015). It is often
further assumed that the perfusion model parameters are perfectly
known. In these conditions, CBF is estimated from a single
perfusion-weighted image (PWI). These assumptions do not
apply to CBF estimates in pathological conditions or groups with
heterogeneous physiological properties, such as infants.

Imaging infants, particularly those born preterm, presents
further challenges due to lower signal-to-noise ratio (SNR). This

is attributed to lower baseline CBF and longer arrival times (AT) of
the magnetically labelled bolus (Dubois et al., 2021; Varela et al.,
2015). Additionally, the need for higher spatial resolution in smaller
infant brains further reduces SNR (Dubois et al., 2021). Motion
during scanning is also common in infants, further degrading image
quality and leading to artifacts (Dubois et al., 2021; Varela
et al., 2015).

Unfortunately, voxel-by-voxel ASL analysis is susceptible to
spatial inconsistencies, amplified by the lower SNR noise in
infant perfusion weighted image (PWI) signals (Krishnapriyan
et al., 2021; Wang et al., 2022). Haemodynamic models are
challenging to parameterise in the infant population due to
dramatic physiological changes in the first weeks of life, during
which most physiological parameters differ substantially from adult
values. This is true of haemodynamic variables such as CBF, and also
tissue composition, reflected in MR relaxation time constants such
as T1 and T2. This is further complicated by the limited availability
of data in this demographic (De Silvestro et al., 2023).

In adult ASL, CBF estimation is commonly performed at a single
time point following labelling (Detre et al., 2012). This relies on
several assumptions about haemodynamics andMR parameters that
do not usually hold for infants. Given the complexity of the cerebral
blood flow network in infants, past ASL studies in infants have
therefore acquired PWIs at multiple time points following labelling
to enable the simultaneous estimation of haemodynamic parameters
beyond CBF, such as AT (Varela et al., 2015). Past studies estimated
CBF and other parameters using methods such as least squares
fitting (LSF) using the analytical solution to the perfusion ODE
(Varela et al., 2015). However, due to the complexity of
haemodynamic models, most model parameters need to be
estimated separately. The lack of methods capable of
simultaneously estimating both local and global parameters
presents a significant challenge.

CBF has been estimated from infant ASL data using optimisers
like LSF (Varela et al., 2015) and Bayesian estimation (Pinto et al.,
2023), where adult models are fitted to the PWI signal. These voxel-
by-voxel approaches often struggle with the very noisy PWIs typical
of infant data, especially when estimating several parameters at once.
Recently, neural network (NN)-based techniques for parameter
estimation have become increasingly popular. NNs have
demonstrated a remarkable ability to make accurate predictions
even from noisy and corrupt data (Tian et al., 2020; Hernandez-
Garcia et al., 2022). However, such performance typically requires
vast amounts of training data (Tian et al., 2020), which are currently
not available for infants (Korom et al., 2022; Hernandez-Garcia
et al., 2022; De Silvestro et al., 2023).

Physics-informed neural networks (PINNs) (Karniadakis et al.,
2021), an emerging branch of machine learning, integrate physical
laws (expressed as differential equations, DEs) into machine
learning models. This approach improves a network’s predictive
capabilities even with limited and noisy data, as the DE agreement
terms effectively act as a strong regulariser (Karniadakis et al., 2021).
PINNs can simultaneously solve DEs (forward problem) and
estimate system parameters (inverse problem) from sparse
experimental data. This makes them well-suited for biomedical
applications (Ghalambaz et al., 2024), evident by their increased
usage in fields such as cardiovascular (Moradi et al., 2023; Herrero
Martin et al., 2022; Sahli Costabal et al., 2020; van Herten et al., 2022;
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Kissas et al., 2020) and brain (Sarabian et al., 2022; Kamali et al.,
2023; de Vries et al., 2023; Min et al., 2023) research.

In cardiovascular studies, PINNs have been successfully applied
to predict electrophysiological tissue properties from action
potential recordings (Herrero Martin et al., 2022) and to
diagnose atrial fibrillation by estimating electrical activation maps
(Sahli Costabal et al., 2020). Additionally, PINNs have been used to
quantify myocardial perfusion using MR imaging (van Herten et al.,
2022) and to predict arterial pressure by analysingMRI data of blood
velocity and wall displacement (Kissas et al., 2020). However, while
PINNs are typically robust to noise, they suffer from the spatial
inconsistencies associated with voxel-by-voxel fitting. PINNs’
performance is notoriously variable, especially in inverse mode
(Bajaj et al., 2023).

A significant challenge in PINN development is that they are
often tested using synthetic data, which may not be a robust
benchmark for performance on experimentally-acquired data.
This is because few biomedical problems described by differential
equations have known analytical solutions. Consequently,
applications like CBF estimation using ASL data present rare
opportunities to test PINNs’ performance directly on
experimental data and compare it to established parameter
estimation methods such as LSF. Such real-world applications are
crucial for validating and improving PINN methodologies in
biomedical research.

This study introduces and evaluates PINNs as a tool for reliably
estimating haemodynamic parameters from noisy infant ASL
images. We propose a novel PINN framework, named Spatial
Uncertainty PINN (SUPINN), which incorporates two key noise-
mitigating improvements: 1) Regional: We assume neighbouring
voxels share similar local parameters (e.g., CBF and AT) and
therefore similar time courses. We thus propose weighting the
confidence in each measurement by its spatial variability. 2)
Global: For global parameters (e.g., T1b), which are identical
across all voxels within a subject, our multi-branch SUPINN
learns from multiple voxels simultaneously to estimate a shared
global parameter. Our method is particularly suited for imaging data
acquired with limited and noisy samples over a given time period.

2 Methods

Our source code is publicly available at: https://github.com/
cgalaz01/supinn.

2.1 Dataset

ASL brain MRI studies were conducted on seven infants aged
32–78 weeks postmenstrual age. An additional five infants were
scanned but excluded due to significant motion artifacts or because
they awoke during the scan, rendering the data unusable. The final
cohort included three infants with no pathology, one with
periventricular leukomalacia, one with basal ganglia and white
matter atrophy along with mild ventriculomegaly, one with
agenesis of the corpus callosum, brain atrophy, and mild
ventriculomegaly, and one with mild ventriculomegaly. Although
this study does not include infants with known cardiac impairment,

it is sufficient as our focus at this stage is on evaluating PINNs within
the available diverse cohort.

All images were acquired in a Philips 3T Achieva scanner using an
8-element head coil under ethical approval following informed parental
consent (REC: 09/H0707/83). PWIs were acquired on a single mid-
brain transverse plane at 12 time points (every 300 ms) following a
single pulsed labelling event (Petersen et al., 2006), at a spatial resolution
of 3.04 × 3.04 × 5.5 mm3. The 300 ms time interval between PWI
acquisitions was deemed suitable for this demographic (Varela et al.,
2015), as it provides a practical balance between SNR and temporal
perfusion signal sampling. For a representative PWI time series and
accompanying signal plot, refer to Figure 1.

To improve the SNR, the acquisition was repeated multiple
times, with the number of repeats ranging from 30 to 90 depending
on the remaining scanning session duration and the subject’s ability
to remain still. Images identified as having motion artefacts were
excluded from the averaging process based on manual inspection.
Notably, no signal filtering was applied in this study to further
reduce noise.

In all subjects, our analysis focused on a manually segmented
region of interest that includes the thalami and basal ganglia
(Figure 2). This deep grey matter region shows better SNR and
fewer partial volume effects than cortical grey matter.

2.2 Mathematical model for ASL

The relationship between the PWI signal, S(t), and CBF can be
expressed as the temporal convolution between an arterial input
function, AIF(t), and a tissue response function, R(t): S � AIF pR
(Buxton et al., 1998). AIF is a top-hat function, here with a known
duration τ � 900ms, that arrives at each voxel at a variable t � AT,
and R(t) is dominated by magnetisation relaxation over venous
outflow. As in Alsop et al. (2015), we assume that the longitudinal
magnetisation relaxation of the blood is well described by T1b

throughout.
We neglect the effect of the repeated excitation pulses on

apparent T1b and assume that all PWI scaling constants are
known, as in Varela et al. (2015). Then:

S t( ) �
0 if t<AT

CBF × t − AT( ) × e
−t
T1b if AT≤ t<AT + τ

CBF × τ × e
−t
T1b if AT + τ ≤ t

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

This model can be differentiated to yield an ODE defined
in 3 branches:

dS

dt
�

0 if t<AT

CBF × e
−t
T1b × 1 − t − AT

T1b
( ) if AT≤ t<AT + τ

−CBF × e
−t
T1b ×

τ

T1b
if AT + τ ≤ t

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(2)

The three branches in Equations 1, 2 depict three distinct signal
evolution phases: the periods before, during, and after the arrival of
labelled blood at each voxel. We found that approximating the
discontinuous three-branched ODE in Equation 2 using a NN leads
to poor convergence properties. To circumvent this issue, we
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FIGURE 1
A representative 32-week postmenstrual case showing: (A) T2-weighted image highlighting the ASL imaging slice (orange); (B) Subsampled
perfusion-weighted image time series; and (C) The measured perfusion signal of a single voxel over the entire duration, along with the corresponding
ground-truth analytical model (see Equation 2).

FIGURE 2
Overview of our proposed SUPINN model, depicted here in a two-branch variant for illustration purposes, but adaptable to larger configurations.
This study employs a three-branch model based on empirical findings.
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combine the three phases using smoothing hyperbolic tangent
functions (see Supplementary Table S1).

2.3 Ground truth estimation

An auxiliary MRI scan was used to estimate ground-truth T1b in
each subject (Varela et al., 2011). Then, a robust LSF was performed
using the analytical haemodynamic model in Equation 2 to estimate
ground-truth CBF and AT on a voxel-by-voxel basis.

Most biomedical problems described by DEs do not have an
analytical solution and can only be solved numerically. For these, the
accuracy of parameter identification methods is typically estimated
using in silico data, which do not capture the complexities of
experimental measurements. The existence of an analytical ASL
haemodynamic model (Equation 2) presents a unique opportunity
to test on experimental data the accuracy of model parameter
estimation methods such as PINNs.

2.4 Loss function and training scheme

PINNs are optimised to learn a solution that both matches the
data and satisfies known cardiac-brain network physiology
principles. They minimise the combined loss function defined as:
L � LODE + γLdata. Due to the high noise in the data, Ldata is
weighted using an empirically set coefficient γ � 0.005. Initial
conditions, S(t � 0) � 0, are enforced by rescaling S(t) using a
hyperbolic tangent function (Lu et al., 2021).

LODE measures the agreement with Equation 2. This loss is
calculated by evaluating the residual of the differential equation at a
set of collocation points (NO) using the network’s predictions and
taking the mean squared error:

LODE � 1
NO

∑NO

i

dŝ

dt
ti( ) − f ti, ŝ ti( )(( )2

(3)

Ldata is the data loss, which measures the mean squared error
between the network’s PWI estimation and the values measured
across the 12 time points (ND) acquired in each voxel:

Ldata � 1
ND

∑ND

i

wti ×‖Ŝ ti( ) − S ti( )‖2( ), (4)

where w � 1 is the weight of each PWI time point. w is used in
SUPINN with details available in Section 2.6.

When optimising the PINNs’ weights, we propose a three-tier
hierarchical optimisation scheme (see Supplementary Table S2). We
initially optimise the PINNs in forward mode, focusing on aligning
the network approximately with the underlying ODE without
estimating specific parameters. We then solve the ODE in inverse
mode to estimate the local parameters CBF and AT, and the global
parameter T1b. We finalise by fine-tuning the parameter estimation.

2.5 PINN architecture

PINNs are implemented using DeepXDE v1.11 (Lu et al., 2021)
and TensorFlow v2.15 (Abadi et al., 2016). As a baseline PINN

architecture (Raissi et al., 2019; Karniadakis et al., 2021), we use a
fully connected neural network with hyperbolic tangent activation
functions and two hidden layers, each consisting of 32 units. It
includes one input unit for time t and one output unit for the PWI
signal S(t).

2.6 SUPINN architecture

The baseline PINNmodels the signal from each voxel separately,
ignoring the spatial relationships between the different sets of
measurements. We expect, however, that neighbouring voxels
have similar CBF and AT values, with deviations primarily due
to noise. To incorporate this information in the model, we propose a
spatial uncertainty PINN, SUPINN (Figure 2). SUPINN inversely
weighs the contribution of each PWI time point, w (see Equation 4),
by their uncertainty levels. The uncertainty is estimated by
calculating the standard deviation of the PWI signal in
immediate neighbouring voxels within the region of interest at a

given time point: wt � 1/

���������∑(S(ti)−μti)
2

8

√
, where w is the weight at time

point t. The weights for each voxel across time are then scaled such
that the highest uncertainty corresponds to a weight of w � 0.1 and
the smallest uncertainty to w � 1. The weights in data loss Ldata

(Equation 4) are updated accordingly.
SUPINN uses a multi-branch architecture to reliably estimate

global (subject-specific) parameters, such as T1b by pooling
information from more than one voxel. It simultaneously
estimates voxel-specific parameters CBF and AT. The
subnetworks’ graphs are merged, allowing information sharing
through backpropagation.

Each SUPINN branch employs the baseline PINN architecture
described in Section 2.5. We have experimentally found that using a
three-branch SUPINN for this task results in an optimal balance
between estimation accuracy and computational efficiency.
Increasing the number of branches leads to minimal decreases in
estimation error with exponentially larger computation times (see
Supplementary Figure S1). In addition to the voxel of interest, two
additional voxels are randomly selected within the whole region of
interest that was manually delineated for the remaining branches.
This delineated sampling region has an average width of
52.55 ± 7.74 mm and height of 39.09 ± 6.59 mm. While voxel-
specific CBF and AT parameters are estimated independently in
each branch, T1b is shared across the selected voxels. The loss
function, L, for this architecture is the sum of the data
agreement and ODE agreement losses (Equations 3, 4) for each
branch: L � ∑N�3

i Li,ODE + Li,data.

2.7 Experimental setup

We compared SUPINN against several benchmarks: a
standard PINN (Section 2.5), a robust LSF method (Varela
et al., 2015), and a modified LSF (LSF-multi) that averages
parameter estimations from three selected voxels. As we have
limited data, evaluation against deep NN is not currently
possible. All computations were performed on a 3XS Intel
Core i7 CPU. The average execution times per voxel were
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approximately 0.05 s for LSF/LSF-multi, 31 s for PINN, and 40 s
for SUPINN. Given an average voxel size in the region of interest
of 110 ± 46 voxels, this corresponds to average total execution
times per case of 5.5 s for LSF/LSF-multi, 56.8 min for PINN, and
73.3 min for SUPINN. We note that substantial improvement in
training time can be obtained on PINN/SUPINN if trained
on a GPU.

Evaluation metrics include the mean and standard deviation of
the relative error (RE), computed as (predicted −
target)/target × 100 for each parameter. When a method led to
CBF estimates that increasingly diverged from ground truth CBF by
more than one order of magnitude after 50K iterations, it was
deemed not to have converged. These failed estimates were not taken
into account when assessing the quantitative performance of each
method. We compute a method’s convergence rate as
|total − failed|/total × 100. The spatial smoothness of CBF and
AT was assessed using the mean and standard deviation of the
Laplacian variance across subjects (Pertuz et al., 2013), where lower
variance signifies greater spatial parameter homogeneity. We also
estimate the mean squared error (MSE) between the prediction and
ground truth PWI signal (forward mode).

3 Results

Our proposed SUPINN architecture, designed to address
variable data noise levels and simultaneously estimate local and
global parameters, showed excellent performance on infant ASL
data (see Table 1). SUPINN showed improvements in both PWI
signal (forward) and parameter (inverse) estimations compared to
the standard PINN and LSF/LSF-multi methods at the cost of
increased computational time.

SUPINN led to more accurate parameter estimates, especially
for CBF. Specifically, SUPINN achieved a RE of −0.3 ± 71.7 for
CBF, 30.5 ± 257.8 for AT, and −4.4 ± 28.9 for T1b. Additionally,
the predicted PWI signal closely matched the ground truth, as
evidenced by the smallest MSE of 0.4 ± 0.8, as shown in Table 1.
Finally, both the base PINN and SUPINN achieved high
parameter convergence rates, with rates of 99.9% and 100%,
respectively.

We typically observe higher noise levels in the PWI signal of
younger infants. Despite this challenge, Supplementary Figure S2
shows that SUPINN consistently achieved lower RE in CBF across
all subjects compared to other methods despite low SNR.

Additionally, SUPINN achieved the most accurate estimates of
AT and T1b in the majority of cases. Notably, SUPINN also
demonstrated resilience in estimating parameters for infants with
neurological disorders (indicated with an asterisk in the figure).

The robustness of our model is further demonstrated in
Supplementary Figure S3, where we evaluated its performance on
synthetic signals. White Gaussian noise was added to each
synthetically generated PWI signal to simulate stationary noise,
as motion artefacts are expected to be manually removed during
the averaging process. The standard deviation progressively
increased in increments of 0.1, up to a maximum of 0.5. Despite
increasing the standard deviation of the noise, SUPINN maintained
stable parameter estimations, especially for CBF and AT. This
highlights the model’s ability to handle noisy data effectively. In
comparison, the baseline PINN also exhibited resilience in
estimating AT and T1b, but its CBF estimations deteriorated
progressively as the noise level increased. On the other hand, the
LSF method showed the greatest sensitivity to noise, with parameter
estimations degrading noticeably even with a small amount of
added noise.

Figure 3 illustrates the spatial maps of the CBF and AT
predictions for a representative infant. The SUPINN estimates,
shown in the first column, exhibit higher spatial consistency for
both CBF and AT compared to other methods. This consistency is
quantified by the lowest Laplacian variance achieved, as detailed in
Table 1. Specifically, SUPINN attained a Laplacian variance of
0.4 ± 0.4 for CBF and 0.1 ± 0.1 for AT across all cases, indicating
smoother and more reliable spatial predictions.

The average normalised CBF in the region of interest, as
estimated by SUPINN, showed a general increase with age, which
aligns with expectations. The youngest infant, with a postmenstrual
age of 38 weeks, had a CBF of 0.12 ± 0.11, while the oldest, at
78 weeks, had a CBF of 0.56 ± 0.29. The CBF values for all subjects
are presented in Supplementary Figure S4. However, due to the
limited number of cases and the high variability in modelling this
demographic, drawing definitive conclusions about the effects of
pathology compared to healthy subjects remains challenging. For
instance, within the same age group, a subject aged 49 weeks
exhibited a CBF drop of approximately 0.12 compared to other
infants in the same age range. On the other hand, an infant aged
32 weeks with pathology had a CBF value similar to that of a healthy
infant aged 34 weeks. On the other hand, normalised AT values were
similar across subjects and ranged from 0.32 to 0.49 s, with the oldest
subject exhibiting the lowest value.

TABLE 1 Summary of the convergence rate, relative error and Laplacian variance for CBF, AT and T1b, and mean squared error of the predicted solution. A
model’s quality is indicated by a low standard deviation and a mean error close to 0.

Model Convergence rate (%) Relative error (%) Laplacian variance Mean squared error

CBF AT T1b CBF AT PWI signal (×10−3)
LSF 62.6 390.7 ± 1306.7 53.8 ± 510.7 −43.1 ± 32.2 29.1 ± 11.8 3.1 ± 2.7 26.9 ± 22.7

LSF-multi 96.4 549.7 ± 1272.0 121.9 ± 467.0 −31.4 ± 29.9 12.4 ± 5.7 1.2 ± 1.0 38.3 ± 31.4

PINN 99.9 96.0 ± 475.8 68.6 ± 283.9 8.6 ± 35.9 0.5 ± 0.4 0.5 ± 0.8 1.1 ± 1.3

SUPINN 100.0 −0.3 ± 71.7 30.5 ± 257 .8 −4.4 ± 28.9 0.4 ± 0.4 0.1 ± 0.1 0.7 ± 0.8
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4 Discussion

We introduce SUPINN, a novel multi-branch PINN technique
for estimating parameters from noisy data. By solving ODEs over
neighbouring regions with similar properties and estimating
uncertainty through voxel comparisons, SUPINN simultaneously
estimates local and global parameters with high accuracy. We test it
on the challenging task of estimating haemodynamic parameters
from extremely noisy infant multi-delay ASL data, where it
outperforms both standard PINNs and LSF.

SUPINN’s strong performance is also underpinned by our three-
tier optimisation regime, use of hard initial conditions and the
replacement of non-differentiable transitions in the baseline model
(Equation 2) by a smoothly interpolated version. These
enhancements are crucial for accurately capturing the complex
cerebral haemodynamics in infants, in whom subtle alterations in
perfusion can have implications for brain development.

LSF is widely used for parameter identification from various
medical images, including ASL. It performs reliably when estimating
a small number of parameters, particularly multiplicative factors or
temporal intervals (such as CBF or AT in Equation 2). Following the

literature (Varela et al., 2015; Hernandez-Garcia et al., 2022), we
used robust LSF to estimate ground-truth CBF and AT when
separate ground-truth measurements of T1b were available. LSF is
nevertheless extremely unreliable when estimating exponents such
as T1b in conjunction with CBF and AT.

PINNs have several advantages over LSF other than improved
overall performance. Evidently from SUPINN, they offer a
framework for more flexibly combining data from different brain
and, in the future, cardiac regions. Contrary to standard PINNs,
SUPINN is able to handle data with high noise to further improve
performance. SUPINN leads to spatially smoother CBF and AT
maps within the same brain region, aligning more closely with
physiological expectations. Moreover, PINNs can be applied to
ODEs with no known analytical solutions, opening up the
possibility of using more sophisticated and personalised
perfusion ODEs.

Recent advancements in PINN architectures, such as those
described by Zou et al. (2025), Pilar and Wahlström (2024), Zou
et al. (2024), further improve their utility by facilitating uncertainty
quantification, particularly under conditions of heavy noise.
Additionally, efforts are made towards adapting PINNs for model

FIGURE 3
(A) Shows spatial maps of parameter estimation in deep grey matter for a subject aged 32 weeks. Each row corresponds to the normalised CBF (top)
and AT (bottom) parameters. The columns display the estimation results from four methods (left to right): SUPINN, PINN, LSF, and LSF-multi. (B) Depicts
the parameter relative error of the models for a single voxel.
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personalisation (Chen et al., 2021), which is useful especially when
there could also be uncertainty in the assumptions used to derive the
model itself. These capabilities are especially valuable when
modelling the infant demographic, where data can be highly
variable and noisy. Changes affecting the perfusion signal curve
must be incorporated into the ODE parameters, and we expect these
operator-controlled changes to result in less uncertainty than
physiological unknowns. However, motion artefacts remain a
challenge, requiring manual inspection and removal before
averaging the PWI signal. Recent efforts have used deep learning
techniques to reduce artefacts and improve overall SNR (Hales et al.,
2020; Hernandez-Garcia et al., 2022).

Although SUPINN achieves spatially smoother CBF and AT
maps, we employed a relatively simple sampling strategy - random
sampling. This was due to the use of a single PWI plane and its lower
resolution, which limited the practicality of alternative sampling
approaches. In the future, we plan to acquire multiple PWI planes
across the infant brain, enabling the implementation of spatially
dependent sampling methods.

Since SUPINN, and to an extent LSF-multi, relies on sampling
within the designated grey matter region, segmentation inaccuracies
are expected to degrade overall performance due to the inclusion of
lower SNR points in the branches. Such degradation for PINNs and
LSF will only be observed for points outside the true region, while
the true points remain unchanged. This issue could be mitigated for
SUPINN by increasing the number of branches, under the
assumption that the proportion of mislabelled voxels would be
small, at the cost of computational time.

The multi-delay ASL data are well-suited for testing
parameter identification methods, as the existence of an
analytical solution allows for easy application of LSF.
SUPINN’s performance can therefore be directly evaluated on
real, noisy clinical data. This is in contrast to most PINN studies,
which are typically evaluated on synthetic data with known noise
distributions. Although our current dataset does not include
cases of CHD in infants, the techniques developed here are
likely to be applicable to such cases, given the similar
challenges in analysing cerebral haemodynamics. Furthermore,
it is encouraging to see that other research efforts have
successfully utilised PINNs to estimate CBF (Ishida et al.,
2024; Rotkopf et al., 2024; de Vries et al., 2023), reinforcing
the potential of these methods in addressing similar challenges.

Future work will expand the evaluation to include a larger infant
cohort of both healthy and CHD cases to validate the robustness and
generalizability of SUPINN. This will enable us to assess the efficacy
of the improved CBF estimation specifically in the context of CHD
and explore its relation to the disease. Optimising voxel selection
strategies and exploring alternative PINN architectures, such as
graph-based approaches, can further improve performance by better
representing spatial relationships critical in various clinical
scenarios, including CHD.

SUPINN’s applicability extends to other problems where ODEs
are solved over neighbouring regions with similar parameters.
SUPINN can, for example, contribute to estimating quantitative
MRI properties (such as T1 or T2) by simultaneously solving the
Bloch equations in neighbouring voxels within the same tissue
(Zimmermann et al., 2024).

This paper proposes SUPINN, a PINN method able to handle
noisy data by leveraging spatial information. We demonstrate its
potential to improve the characterisation of haemodynamics using
infant ASL. With further refinement and validation, SUPINN can
become a valuable clinical tool, providing precise and accurate
physiological data for diagnosis, monitoring, and treatment
planning in various clinical contexts, including potential
applications in infants with CHD.
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