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Appendix S1: Neural Mass Model

Neural mass models (NMMs) represent the mean macroscopic behavior of populations of neurons. In this
work, we employ the NMM developed by Weigenand et al [1]. This model consists of interacting excitatory
and inhibitory neuronal populations and aims to recreate activity observed on the electroencephalogram
(EEG) during non-rapid eye movement sleep.

The model dynamics are governed by differential equations that describe the change in activity (mem-
brane potentials and synaptic dynamics) over time. Two main operators are used to generate the
dynamics. The first transforms the average density of presynaptic input into a postsynaptic membrane
potential. This is modeled by convoluting an impulse response function with the arriving input. The
impulse response function used is given by the term αj(t) = γ2

j t exp(−γjt), for j = e, i representing
excitatory and inhibitory synapses, respectively. The second operator transforms the average mem-
brane potential of a population into an outgoing firing rate. This is modeled by a nonlinear sigmoidal
function, Sj(Vj) =

Qmax
j

(1+exp(−π
3 (Vj−θj)/σj)

, for j = e, i representing the excitatory and inhibitory firing rate
functions, respectively. The change in membrane potential of a population (excitatory or inhibitory)
is then expressed as a summation of the current flow obtained from afferent neural populations. An
example of an impulse response function and sigmoidal firing, along with a schematic of the model
highlighting the interaction between the population of excitatory and inhibitory neurons, is given in Figure
S1. In full, the model can be expressed as the following set of first and second-order differential equations:

τe
dVe(t)

dt
= −IeL(t)− see(t)Iee(t)− sie(t)Iie(t)− τeC

−1
m IKNa(t), (1)

τi
dVi(t)

dt
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, (6)

τNa
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= αNaSe(Ve(t))−Rpump

(
Na(t)3

Na(t)3 +K3
p

−
Na3eq

Na3eq +K3
p

)
. (7)

The terms on the right-hand side of Equation 1 and Equation 2 are synaptic currents. These are
derived as a consequence of Ohm’s law (current equals the conductance multiplied by the voltage).
Specifically, the term −IjL = −gL(Vj(t)− Ej

L) represents the passive leak current, with active currents
given by, −sjh(t)Ijh(t) = −sjh(t)gj(Vh(t) − Ej) and −IKNa(t) = −gKNa

0.37
1+(EC/Na(t))nH

(Ve(t) − EK),
with j = e, i and h = e, i. The voltage terms within the brackets indicate the difference between the
membrane potential and the synaptic reversal potential. The currents therefore incorporate that the
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postsynaptic current flow will be dependent on these values [1, 2]. The conductance terms consist of
a conductance parameter gj , for j = L, e, i,KNa and, in the case of the active currents, are scaled by
the synaptic activity, which is solved for in Equations 3-7. We note that in this model the KNa current
was specifically introduced for modeling the sleeping cortex [1]. Furthermore, in the right-hand side of
Equation 3, the term ϕ(t) acts as an external firing rate into the excitatory population of the model. This
function incorporates activity from external unmodeled brain regions and is assumed to be a Brownian
motion with variance scaled by ξ2. This means Equations 1-7 are stochastic differential equations (SDEs).

Figure S1: A) Example impulse response function used in the NMM. B) Example sigmoidal firing rate
function used in the NMM. C) Schematic of the NMM, which consists of a population of interacting excitatory
and inhibitory neurons. Nij for i, j = e, i indicate connections between populations. ϕ indicates the external
input to the excitatory population. In each population, red labels indicate excitatory acting currents and
blue labels indicate inhibitory acting currents (see model equations for further details). See Table S1 for a
full list of model parameters.

In order to numerically solve the model, Equations 1–7 were converted into a set of eleven first-order
SDEs. The Euler–Maruyama method was then used to numerically solve this set of SDEs, with zero
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initial conditions. The model was simulated to match the length of the data (30 s for slow-wave activity,
2.5 s for spike-wave discharge) at a timestep of 0.2 ms to ensure accurate convergence. To account for
transient dynamics, a further 5s was calculated at the start of the model simulation and then removed.
The output of the model was taken to be the membrane potential of the excitatory population, Ve(t). The
model output was then downsampled to the same sampling frequency of the data (128 Hz), and the
power spectra from model simulations were estimated in an identical way to the data (see subsection 2.2
EEG data acquisition and pre-processing in the main text). We highlight that no filtering of the model
output was performed. When comparing experimental data and model output, both time series were
z-scored before the power spectra were estimated. We note that the spike-wave discharge was simulated
in the noise-free deterministic case (i.e. ξ = 0).

Table S1 provides a list of all the parameters in the model, along with a physiological interpretation,
typically used values and parameter bounds. In general, these bounds were set to a 25% deviation
from the typical values used (see Weigenand et al [1] and references therein). This is with the exception
of the timescale parameters, in which their bounds were set to 100% of the typical values, and the
synaptic reversal potentials for the excitatory and inhibitory populations, which were constructed to ensure
that excitatory currents were depolarizing and inhibitory currents were hyperpolarizing (see Table S1).
Moreover, Figure S2 shows the mean excitatory and inhibitory membrane potentials and synaptic currents
on the excitatory population obtained from simulations of random parameter values within the bounds
specified.

Figure S2: A) Mean excitatory membrane potential and B) mean excitatory synaptic currents obtained
from simulations of 1000 random parameter sets within the bounds specified in Table S1. This range in
membrane potentials is consistent with values stated from previous simulations with this model [1], and
from simulations in the original incarnation of the model [2]. C) Mean inhibitory membrane potential and
D) mean inhibitory synaptic currents obtained from simulations of 1000 random parameter sets within
the bounds specified in Table S1. Excitatory synaptic currents are exclusively depolarizing within these
parameter ranges (minimum current > 0) and inhibitory synaptic currents are exclusively hyperpolarizing
(maximum current < 0).
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Parameter Interpretation Typical Value Bounds
Nee, Nei,
Nie, Nii

Number of excitatory - excitatory/ excita-
tory - inhibitory/ inhibitory - excitatory/ in-
hibitory - inhibitory synaptic connections

120, 90, 72, 90 [90,150],
[67.5,112.5], [54,90],
[67.5,112.5]

γe, γi Excitatory/ inhibitory postsynaptic potential
rate constant

0.07 /ms,
0.0586 /ms

[0,0.14], [0,0.1172]

τe, τi Passive excitatory/ inhibitory membrane
time constant

30 ms , 30 ms
[22.5,37.5],
[22.5,37.5]

Qmax
e , Qmax

i Maximum mean firing rate of excitatory/
inhibitory population

0.03 /ms,
0.06 /ms

[0.0225,0.0375] ,
[0.045,0.075]

θe, θi Excitatory/ inhibitory firing rate threshold −58.5 mV,
−58.5 mV

[−73.1250,−43.8750],
[−73.1250,−43.8750]

σe, σi Excitatory/ inhibitory firing rate standard
deviation

5 mV,
6 mV

[3.75,6.25], [4.5,7.5]

Ee, Ei Excitatory/ inhibitory mean synaptic rever-
sal potential

0 mV, −70 mV [−50,50],
[−200,−100]

Ee
L, Ei

L Excitatory/ inhibitory mean synaptic rever-
sal potential associated with leak channels

−64 mV,
−64 mV

[−80,−48],
[−80,−48]

ge, gi, gL Excitatory/inhibitory/leak synaptic conduc-
tance

1 mS/cm2,
1 mS/cm2,
1 mS/cm2

[0.75,1.25],
[0.75,1.25],
[0.75,1.25]

Cm Specific membrane capacity 1 µF/cm2 [0.75, 1.25]
Rpump Sodium pump capacity 0.09 mMm/s [0.0675,0.1125],
τNa Sodium time constant 1.3 ms [0.975,1.625]
αNa Sodium influx 2 mMm/s [1.5,2.5]
Naeq Sodium resting state 9.5 mM [7.125,11.875]
gKNa Synaptic conductance associated with

sodium-potassium pump
3 mS/cm2 [2.25,3.75]

Ek Mean synaptic reversal potential associ-
ated with sodium-potassium pump

−100 mV [−125,−75]

EC Sodium for half activation 38.7 [29.025,48.375]
nH Hill coefficient 3.5 [2.625,4.375]
Kp Pump constant 15 [11.25,18.75]
ξ Standard deviation of noise perturbation - [3.75,6.25]

Table S1: Model parameters with interpretation, a typically chosen value [1] and parameter bounds.

4



Appendix S2: Multiobjective Optimization

In this study, we used a multiobjective evolutionary algorithm to recover parameters from EEG data. In
particular, we used the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [3]. A central reason
for using NSGA-II is because of the complex bifurcation structure that is known to exist in an NMM.
Evolutionary algorithms, such as NSGA-II, are stochastic search methods inspired by natural selection.
They aim to solve an optimization problem by combining a number of individuals into a population,
where each individual is a set of parameters that produce a model simulation. The model simulation
is then compared to data, and based on preassigned objectives, the ‘fitness’ of the given individual is
calculated. A group of individuals forms a population at a given generation. The algorithm then iterates
through generations by applying various mutation and crossover operators on individuals that present
better fitness values, in an aim to find the best individuals that can minimize the fitness. The algorithm
is terminated when the number of iterations is high enough to ensure the fitness values obtained are
minimized. Due to nonidentifiable parameters, when using these algorithms for parameter estimation in
neural mass models, this process is often repeated to obtain a distribution of parameters that generate
a model simulation with a good approximation (or fitness) of the data. We refer the reader to previous
work for further information on the use of evolutionary algorithms in parameter estimation of neural mass
models in simulating data from patients with epilepsy [4, 5, 6].

In general, multiobjective optimization aims to minimize F(x) = (f1(x), f2(x), ..., fd(x)), given a set
of constraints on the inputs x = (x1, x2, ..., xg). F(x) forms the d-dimensional objective space and x
forms the g-dimensional decision space. In this study, the decision space (or model parameter inputs)
is bounded by the constraints on parameters (as defined in Table S1). Following our previous work [6],
we define two objectives (i.e. d = 2) to describe the difference between the model simulation and the
data. The first objective is the sum of squared error between the normalized power from the model
simulation and the normalized power from the data (after the data was filtered by a 4th order Butterworth
filter between .3 Hz and 10 Hz). This is defined by,

Obj1 =
∑
ω1

(µω1

data − µω1

model)
2, (8)

where µω1

data gives the data normalized power at frequency ω1 and µω1

model gives the model normalized
power at frequency ω1. In the interest of modeling slow-wave sleep, ω1 was calculated across .6 Hz to 10
Hz, with a resolution of .025 Hz.

The second objective used is based on the horizontal visibility graph (HVG) algorithm, which provides a
mapping from a time series to an undirected network [7]. Here, each time point becomes a node in the
network and an edge is drawn between two nodes in the network if it is possible to trace a horizontal
line between the two data points, without intersecting an intermediate point. Formally, for a time series
{ai}i=1,....,N of N data points, the HVG algorithm sets nodes V = {1, ..., N} and edges between nodes i

and j iff ai, aj > ak ∀ i < k < j. In this study, we used the extended version of this algorithm known as
the weighted HVG, whereby if there exists an edge between two nodes, then that edge is weighted by
the difference in amplitude between the time points (latter time point minus former time point). Retaining
properties of the weighted HVG in NMM simulations have previously been shown to be useful in terms of
refining the plausible dynamics [6]. We use the two-sample Kolmogorov-Smirnov test statistic to generate
the objective for the difference between the weighted HVG from the model simulation and the data. In
particular, for F : R → [0, 1] and G : R → [0, 1] representing the weighted HVG sum of node weights
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cumulative distribution function of the data and model simulation respectively, and y ∈ R, the second
objective is defined as,

Obj2 = sup
y

| F (y)−G(y) | . (9)

Qualitatively different dynamics can yield the same normalized power, for example, due to differences
in amplitude or phase distributions [8]. Following our previous work [6], incorporating properties of the
weighted HVG as an objective enabled the types of model simulations to be refined and improved model
identifiability. Figure S3 shows an example simulation recovered from a single objective (difference
in normalized power) and a two-objective (difference in normalized power and difference in weighted
HVG distribution) optimization. The single objective approach produces simulations that accurately
reproduce the normalized power of the data, but that produce spurious waveforms in the time domain.
This is reflected by a different weighted HVG degree distribution compared to the data. Conversely, the
two-objective approach still produces a simulation with good agreement to the normalized power, but also
a simulation that better resembles the data in the time domain, as evidenced by a good agreement in the
weighted HVG distribution. We refer the reader to Schindler et al [9] for further information on the use of
the weighted HVG for refining simulated nonlinear brain rhythms in epilepsy.

Figure S3: A) Example time series, B) normalized power and C) weighted HVG distribution for an example
model simulation after optimizing to the data using the one-objective and two-objective approaches. In this
example, the one-objective approach produces a simulation that, in the time series, does not appear to
recapitulate the data (the simulation appears to have periodic spiking). Incorporating the weighted HVG for
the second objective helps to refine the type of model dynamics recovered.
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Due to the stochasticity of the model simulation, and to ensure accurate objective calculations, we
simulate the model and calculate each objective function twenty times and then assign the mean value
obtained from these repeats as the objective for that parameter set. We note that all parameters were
varied in the optimization, and a fixed population size of 500 and a generation number of 50 were used
for accurate convergence.

Appendix S3: Epilepsy Characteristics

Table S2 gives details on the individual patient characteristics.

Patient
ID

Age Age of
epilepsy
onset

Duration
of
epilepsy

Sex Etiology Seizure
focus

Seizure
fre-
quency

Seizure(s)
during ad-
mission

Antiseizure
medica-
tion(s)

1 9.8 4.8 5 F Occipital Weekly No Levetiracetam
2 15.5 6 9.5 M Focal Corti-

cal Dyspla-
sia

Temporal Monthly No Lamotrigine

3 15.3 13.5 1.8 M Glioneuronal
tumour

Temporal Monthly No Lamotrigine,
Sodium val-
proate

4 9.2 2 7.2 F MRI nega-
tive

Undetermined Weekly Yes Clobazam

5 10.4 3 7.4 M MRI nega-
tive

Frontal Daily Yes Carbamazepine

6 12.6 2 10.6 M Ganglioglioma Temporal Weekly Yes Levetiracetam
7 6.6 2 4.6 F Focal Corti-

cal Dyspla-
sia

Fronto-
temporal

Monthly No Carbamazepine

8 14.8 12 2.8 F Parietal Weekly No None
9 12.6 4 8.6 M Fronto-

temporal
Daily Yes Lamotrigine

10 14.8 8 6.8 M Focal Corti-
cal Dyspla-
sia

Fronto-
temporal

Weekly Yes Levetiracetam,
Sodium val-
proate, Oxcar-
bazepine

11 11.1 2 9.1 M MRI nega-
tive

Fronto-
temporal

Weekly Yes Carbamazepine,
Topiramate

12 7.8 2 5.8 M Undetermined <1 per
month

No Levetiracetam,
Topiramate,
Clobazam

13 11.3 8 3.3 M MRI nega-
tive

Undetermined <1 per
month

No Levetiracetam,
Sodium val-
proate

14 12.8 8 4.8 M MRI nega-
tive

Frontal Daily Yes Lacosamide

15 7 0.9 6.1 M Focal Corti-
cal Dyspla-
sia

Frontal <1 per
month

No Levetiracetam,
Sodium val-
proate

Table S2: Patient demographics.
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Appendix S4: Results from comparing control and patient models

To calculate the statistical significance of differences between distributions of parameters recovered
from controls and patients, in Figure S6, we generated surrogate Jensen-Shannon divergences by
randomly permuting labels from the combined distributions. We repeated this process 1000 times via
bootstrap sampling. We compared the surrogate Jensen-Shannon divergences to the Jensen-Shannon
divergence obtained from control vs patient distributions to obtain a p-value. This p-value was corrected
for multiple comparisons via Bonferroni correction (i.e. corrected by multiplying by 32, due to there being
32 parameters, *p<0.05 after this correction). As described in the manuscript, pairwise comparisons
were computed using a Mann-Whitney U test in Figures S7 and S8.

Figure S4: A) Example time series, B) normalized power and C) weighted HVG distribution for a control
data subject and model output, after optimizing the model to data. The example shows the model dynamics
closely replicate properties of the EEG data.
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Figure S5: A) Example time series, B) normalized power and C) weighted HVG distribution for a patient
data subject and model output, after optimizing the model to data. The example shows the model dynamics
closely replicate properties of the EEG data.
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Figure S6: Parameter distributions recovered from fitting to all control and patient subjects. A) Univariate parameter distributions. B)
Jensen-Shannon Divergence between controls and patients for each parameter. * Gives parameters with significant differences
between controls and patients after Bonferroni correction.
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Figure S7: A) Leak and B) KNa synaptic currents on the excitatory neuronal population, obtained from model simulations. In each
case, each point on a violin plot gives the mean value of a subject. No significant differences were found (NS = not significant) after
Bonferroni correction.

Figure S8: A) Excitatory, B) inhibitory and C) leak synaptic currents on the inhibitory neuronal population, obtained from model
simulations. In each case, each point on a violin plot gives the mean value of a subject. No significant differences were found (NS =
not significant) after Bonferroni correction.

11



References

[1] Weigenand A, Schellenberger Costa M, Ngo HV, Claussen JC, Martinetz T. Characterization of K-
complexes and slow wave activity in a neural mass model. PLoS Comput Biol. 2014;10(11):e1003923.

[2] Liley DT, J CP, Dafilis MP. A spatially continuous mean field theory of electrocortical activity. Netw
Comput Neural Syst. 2002;13(1):67–113.

[3] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans Evol Comput. 2002;6(2):182–197.

[4] Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F. Interictal to ictal transition in human
temporal lobe epilepsy: insights from a computational model of intracerebral EEG. J Clin Neurophysiol.
2005;22(5):343–356.

[5] Nevado-Holgado AJ, Marten F, Richardson MP, Terry JR. Characterising the dynamics of EEG
waveforms as the path through parameter space of a neural mass model: Application to epilepsy
seizure evolution. NeuroImage. 2012;59(3):2374–2392.

[6] Dunstan DM, Richardson MP, Abela E, Akman OE, Goodfellow M. Global nonlinear approach for
mapping parameters of neural mass models. PLoS Comput Biol. 2023;19(3):e1010985.

[7] Luque B, Lacasa L, Ballesteros F, Luque J. Horizontal visibility graphs: Exact results for random time
series. Phys Rev E. 2009;80(4):046103.

[8] Stam C, Pijn J, Suffczynski P, Lopes da Silva F. Dynamics of the human alpha rhythm: evidence for
non-linearity? Clin Neurophysiol. 1999;110(10):1801–1813.

[9] Schindler K, Rummel C, Andrzejak RG, Goodfellow M, Zubler F, Abela E, et al. Ictal time-irreversible
intracranial EEG signals as markers of the epileptogenic zone. Clin Neurophysiol. 2016;127(9):3051–
3058.

12


