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1   |   INTRODUCTION

The electroencephalogram (EEG) in deep sleep is domi-
nated by slow waves of high amplitude, generated by 
widespread neurons alternating in synchrony between 
depolarized and hyperpolarized states.1 This slow-wave 

activity (SWA) correlates closely with sleep need, building 
up with time spent awake and dissipating with sleep.2 It has 
been proposed that the decrease in global SWA across the 
night reflects the process of synaptic renormalization,3 a 
homeostatic mechanism that regulates cortical excitability 
and facilitates neural plasticity.4 Furthermore, it is theorized 
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Abstract
Objective: The relationship between sleep and epilepsy is important but imper-
fectly understood. We sought to understand the mechanisms that explain the dif-
ferences in sleep homeostasis observed in children with epilepsy.
Methods: We used a neural mass model to replicate sleep electroencephalogra-
phy (EEG) recorded from 15 children with focal lesional epilepsies and 16 healthy 
age-matched controls. Different parameter sets were recovered in the model for 
each subject.
Results: The model revealed that sleep EEG differences are driven by enhanced 
firing rates in the neuronal populations of patients, which arise predominantly 
due to enhanced excitatory synaptic currents. These differences were more 
marked in patients who had seizures within 72 h after the sleep recording. 
Furthermore, model parameters inferred from patients resided closer to model 
parameters inferred from a typical seizure rhythm.
Significance: These results demonstrate that brain mechanisms relating to epi-
lepsy manifest in the interictal EEG in slow-wave sleep, and that EEG recorded 
from patients can be mapped to synaptic deficits that may explain their predis-
position to seizures. Neural mass models inferred from sleep EEG data have the 
potential to generate new biomarkers to predict seizure occurrence and inform 
treatment decisions.
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that the disruption of sleep homeostasis may be the basis of 
sleep-related epilepsies with childhood onset, ranging from 
self-limited childhood focal epilepsies to mesial temporal 
lobe epilepsy.5 In support of this notion, Eriksson et al.6 re-
cently observed that the dynamics of SWA in children with 
focal lesional epilepsies differed from age-matched healthy 
controls, with the epilepsy patients producing less SWA 
during the first hour of the sleep recording. Moreover, these 
differences were found to be exacerbated in patients with a 
higher propensity to seizures.6

Understanding the physiological mechanisms that con-
tribute to differences observed in the EEG in disease is a 
challenging problem.7 Computational models can help; if 
we can match the simulations generated by models to data 
recorded from human subjects, we can then examine which 
components, parameters, or settings of the model were cru-
cial to allow it to generate the data of interest. Several models 
of EEG have been developed and have been shown to gener-
ate dynamics similar to a variety of resting and pathological 
states.8 In particular, neural mass models parsimoniously 
capture synaptic interactions between populations of ex-
citatory and inhibitory neurons.8 This allows for EEG brain 
rhythms to be understood in terms of synaptic dynamics, 
connectivity, and firing rates at the level of brain tissue.8–10

An important technical challenge is how to match 
model dynamics to data. Various methods are available 
for this, including routines within dynamic causal mod-
eling.11 Such approaches often use linear models,12 com-
bined with prior beliefs on parameter values. The latter 
are difficult to ascertain for neural mass models, and the 
former does not capture the nonlinear dynamics of the 
brain and, in particular, the nonlinear mechanisms of 
epileptiform EEG.13 Recently, we have demonstrated the 
promise of multiobjective optimization as a global non-
linear approach that can be used to model resting and 
pathological EEG.14 This method enables the efficient 
search of parameter space to identify parameter values in 
the model that, when simulated, produce an output that 
recapitulates desired features of the data. This process 
can be applied to data from patients and healthy controls 
to understand the mechanisms (neural mass model pa-
rameters) that are responsible for changes observed in 
the EEG. Here, we apply this approach to decipher the 
mechanisms in the sleeping cortex15 that contribute to the 
differences in SWA observed in patients with epilepsy. We 
then explore perturbations to the model that could poten-
tially rectify the different dynamics observed in epilepsy. 
Finally, having identified mechanisms underpinning dif-
ferences in resting EEG, we link these mechanisms to the 
generation of seizures. Here, we do this by quantifying the 
proximity (in terms of similarity of recovered parameter 
values) of resting dynamics to dynamics of an archetypal 
seizure rhythm.

2   |   MATERIALS AND METHODS

2.1  |  Participants and study design

Participants consisted of 15 children with drug-resistant 
focal epilepsy of structural (or presumed structural) eti-
ology, and 16 age- and sex-matched typically developing 
controls. Patients were recruited prospectively from the 
EEG video telemetry unit at Great Ormond Street Hospital 
as described previously.6,16 Children were aged between 
6 and 16 years, and EEG was recorded continuously dur-
ing planned four-night hospital admissions. Control par-
ticipants were recruited by advertisements directed at staff 
working at the UK charity Young Epilepsy. Controls at-
tended the EEG department of Young Epilepsy to be set 
up for a single-night ambulatory sleep study. Compared to 
the previous cohort,6 four patients and two controls were 
excluded due to artifacts in the recordings. Group differ-
ences in demographic and clinical data were examined 
using independent samples t-tests for continuous variables 
and chi-squared tests for categorical variables.

2.2  |  EEG data acquisition and 
preprocessing

EEG polysomnography acquisition, visual sleep scoring, 
and the visual quantification and marking of seizures 
have been described in previous work.16 EEG data were 
recorded with the Xltek Trex system (Natus Medical 
Incorporated) at 512 Hz using a 10–10 montage (Fz, Cz, Pz, 
Fp1, Fp2, F3, F4, F7, F8, F9, F10, C3, C4, C5, C6, T5, T6, 
T7, T8, T9, T10, P3, P4, P9, P10, O1, O2) in patients and at 
256 Hz using an eight-electrode montage (F3, F4, C3, C4, 
O1, O2, A1, A2) in controls. Recordings were downsam-
pled to 128 Hz in Natus Sleepworks before exporting as an 

Key points

•	 The mechanisms that differentiate children 
with epilepsy from controls during slow-wave 
sleep can be understood using a mathematical 
model.

•	 The observed spectral power shifts in patients 
are predominately explained by greater excita-
tory synaptic currents.

•	 These differences in currents place patients 
closer to seizure rhythms in the model.

•	 Ultimately, this framework could help foster 
the development of biomarkers to guide inter-
vention in epilepsy.
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.edf file for offline analysis. The full EEG recording (all 
available channels) was reviewed visually for artifacts in 
EDFbrowser (version 1.88, https://​www.​teuniz.​net/​edfbr​
owser/​​), and channels marred by artifacts were excluded. 
No artifact removal was performed.

To identify early night SWA, the recordings were 
viewed on a whole night timescale with color density 
spectral array to identify segments with high amounts 
of 1–4 Hz with or preceded by high amounts of 10–12 Hz 
occurring within the first 2 h of sleep. The identified seg-
ments were reviewed again at a 10-s per-page scale with 
all channels for visual identification of SWA before crop-
ping. The mean activity recorded from the frontal elec-
trodes (F3, F4) was used for further analysis.

To estimate the subjects' power spectral density from 
the sleep EEG data, we split eligible segments into 30-s ep-
ochs, with each epoch filtered via a 4th order Butterworth 
filter between .3 and 10 Hz. Power spectra were estimated 
from each epoch across .6–10 Hz, with .025-Hz resolution. 
This was performed using Welch's method with 50% over-
lap. Spectra across epochs were then averaged to obtain a 
mean waveform for each subject. The power spectra were 
then normalized by dividing by the total area under the 
curve within .6–10 Hz. This normalization ensured the 
relative prominence of each frequency component was 
compared across subjects.17

2.3  |  Parent-rated sleep disturbance

Parents were asked to rate the frequency of various sleep 
behaviors as they would occur in a typical week using the 
Children's Sleep Habits Questionnaire.18

2.4  |  Modeling framework

A neural mass model was used to simulate the temporal 
dynamics of mean membrane potentials and firing rates 
in a cortical region.19 Specifically, we used a conductance-
based neural mass model developed to model non-rapid 
eye movement sleep EEG by Weigenand et  al.15 Here, 
neurons are grouped into interacting excitatory and in-
hibitory populations, and excitatory, inhibitory, leak, 
and sodium-dependent potassium (KNa) synaptic cur-
rents (at the level of the neural mass) are tracked over 
time. We note that excitatory synaptic currents exhibit 
efferent depolarization (labeled as α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid [AMPA] in Weigenand 
et  al.15) and inhibitory synaptic currents exhibit effer-
ent hyperpolarization (labeled as γ-aminobutyric acid 
[GABA] in Weigenand et  al.15). Furthermore, KNa syn-
aptic currents have been suggested as a mechanism for 

slow oscillations.15,20 We used MATLAB21 to numerically 
solve the model. Additional details of the model, includ-
ing model equations, can be found in Appendix S1.

The model comprises 32 parameters. These param-
eters describe the mean synaptic interactions between 
excitatory and inhibitory neuronal populations. These 
facilitate a mechanistic interpretation of the neuronal ac-
tivity analogous to an EEG recording, without explicitly 
modeling the activity generated by single cells.8 However, 
parameters at this scale are difficult to constrain, and 
simulating the model with different parameter values re-
sults in different dynamics. Therefore, we implemented a 
previously developed multiobjective genetic algorithm14 
to search model parameter space for combinations of 
parameters that yield model simulations with properties 
similar to those of the EEG. Table S1 defines the model 
parameters, gives a brief description of their interpreta-
tion, and defines the lower and upper parameter bounds 
that form the search space.

To quantitatively compare model output with data, 
objectives that describe the difference between the model 
and data were defined, and the algorithm was used to re-
cover solutions that minimized these objectives. Following 
our previous work,14 we defined two objectives: (1) the 
difference in normalized power and (2) the difference in 
node degree of the weighted horizontal visibility graph 
(HVG). The latter objective maps the EEG time series to 
a network and has been shown to distinguish between 
stochastic processes and nonlinear dynamics, including 
epileptiform rhythms.14,22,23 Figure S3 shows an example 
simulation recovered using the single objective optimiza-
tion approach. The addition of the weighted HVG objective 
more accurately refines plausible simulations recovered 
and improves model parameter identifiability, as discussed 
in Appendix S2. The optimization was repeated 100 times 
for each subject to obtain a distribution of parameters that 
could describe the subject's EEG data. These repeats in the 
optimization allow for the parameter unidentifiability to 
be accounted for. Figure  1 provides an overview of how 
parameters were recovered by comparing the model out-
put to the recorded EEG. For further details regarding the 
definition of objectives, and information on how the model 
output is aligned to data, see Appendix S2.

2.5  |  Comparison of resting activity to 
seizure activity

We additionally optimized the model to generate spike–
wave discharges (SWDs). We note that this waveform 
consisted of a single 2.5-s segment of data. A 4th order 
high-pass Butterworth filter was applied to this time se-
ries to remove low-frequency artifacts. We used the same 
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optimization algorithm and objectives to recover the 
model parameters that simulate the SWD as we did for 
the control and patient SWA resting data. Optimizing to 
this rhythm therefore enabled us to compare (in silico) 
how the mechanisms of a resting state relate to mecha-
nisms of a seizure state by contrasting model param-
eters (or emergent properties) that were inferred from 
simulating each of the states. Further information on the 
optimization process used is provided in Appendix  S2. 
Although some other approaches have used thalamo-
cortical models to simulate SWDs,24 cortical neural mass 

models and simpler neural mass models with slow–fast 
dynamics have also demonstrated SWDs, suggesting dif-
ferent mechanisms in principle (e.g., see Goodfellow 
et  al.,9 Wang et  al.25). In this work, we use a cortical 
model, as it enables us to directly relate parameters from 
the resting state to the seizure state and allows for a more 
computationally efficient simulation of the SWD.

We specifically used the SWD in this work as it is the 
archetypal waveform seen on surface EEG during a gen-
eralized seizure26 and is thought to have a cortical ori-
gin.27 SWDs are activated across a spectrum of common 

F I G U R E  1   Illustration of the process of comparing model output with data to obtain parameters that explain the electroencephalogram 
(EEG). (A) Sample patient EEG recording during sleep. The means from the F3 and F4 electrodes are used in the analysis. (B) Schematic 
of the neural mass model used, consisting of interacting excitatory (E) and inhibitory (I) populations of neurons. The output of the model 
is a 30-s time series of simulated EEG. (C) Model output is compared to the data by defining objectives to recapitulate in the simulations. 
These objectives are based on the normalized power (objective 1) and the weighted horizontal visibility graph (HVG; objective 2). Model 
parameters are adjusted to find simulations that aim to minimize the objectives (see Section 2). (D) Several properties of the neural mass 
model are analyzed, including firing rates and synaptic currents. KNa, sodium-dependent potassium.
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childhood epilepsies, such as self-limited epilepsy with 
centrotemporal spikes28 and various genetic generalized 
epilepsies.29 The SWD also bears a special relationship 
with sleep slow waves, particularly in the pediatric age 
group. SWDs occur more frequently during sleep across 
the epilepsies and, in the spectrum of epileptic encepha-
lopathies with continuous spike–wave during sleep, may 
sometimes replace slow waves altogether.30 Our sample 
falls both within the age range and within the range of 
underlying etiologies in which this phenomenon may 
be seen. In animal models, SWDs have been observed to 
develop from sleeplike slow rhythms.31 Furthermore, pa-
tients with epilepsy can exhibit a wide range of seizure 
onset patterns, but often these seizures progress electro-
graphically to SWDs. The relative temporal stability of 
SWD dynamics facilitates model fitting, and the SWD has 
been recreated in a variety of cortical and thalamocortical 
neural mass models.9,14,24,25 Therefore, in this work, we 
chose to focus on the SWD as the generic rhythm to simu-
late seizures in the model.

2.6  |  In silico prediction for intervention

To understand how intervention may alter the dynamics 
observed on the EEG, we investigated the sensitivity of the 
power spectrum to changes in model parameters. In par-
ticular, we recorded the simulated power spectrum after 
individually adjusting the parameters governing each syn-
aptic channel conductance (excitatory, inhibitory, leak, and 
KNa). We focused on perturbing the conductance param-
eters in the model because these parameters most directly 
relate to a key mechanistic target of antiseizure medications 
(e.g., see Sills32). This includes benzodiazepines, which have 
been shown to increase the opening probability of chlo-
ride channels activated by GABA,33 as well as potentially 
increasing the conductance of GABAA channels directly.34 
Furthermore, recent work has shown perampanel can block 
AMPA-mediated synaptic conductances.35 Hence, to simu-
late the effects of treatment at the scale of the model, we de-
creased the excitatory and leak conductances and increased 
the inhibitory and KNa conductances in the model param-
eters derived from patient data.

2.7  |  Statistical testing

Throughout this work, unless stated otherwise, we use a 
nonparametric Mann–Whitney U-test to compare among 
groups. In cases where multiple comparisons were made 
(e.g., four types of synaptic currents were compared), we 
state a Bonferroni-corrected p-value to compensate for the 
multiple comparisons problem.

3   |   RESULTS

3.1  |  Clinical characteristics of 
participants

Participant demographics and patient clinical character-
istics are summarized in Table 1. In particular, no signifi-
cant differences in age or sex were recorded between the 
cohorts. Further information on the epilepsy characteris-
tics of patients is provided in Table S2.

3.2  |  Normalized power spectra in 
controls and patients

Spectral analysis of the normalized EEG revealed that 
patients had less relative power in the higher delta range 
(1.5–4 Hz) than controls (Figure  2A) and more relative 
power in the lower delta range (.6–1.5 Hz) than controls 
(Figure 2A). Patients who had a seizure during their hos-
pital admission (referred to herein as "patients with sei-
zures") had even less power in this range than those who 
did not (referred to herein as "patients without seizures"; 
Figure  2B). The mean and SE normalized power from 
model simulations are shown in Figure 2C,D. It can be seen 
that the simulations qualitatively re-create the normalized 
power of the data and the difference observed between 
each of the groups. Furthermore, for sample control and 
patient subjects, normalized power and time series from 
the model output are given in Appendix S4.

3.3  |  Comparison of model simulations 
recovered from controls and patients

Parameter distributions recovered from optimizing to con-
trol and patient data are shown in Figure S6. This figure also 
ranks the Jansen–Shannon divergence between the control 
and patient distributions of each parameter. Significant dif-
ferences were found (see Appendix S4 for information on 
statistical testing across distributions) in synaptic time scales 
(γe and γi), excitatory connectivity to excitatory and inhibi-
tory neuronal populations (Nee and Nei), firing rate thresh-
olds (θe and θi) and the excitatory synaptic reversal potential 
(Ee). Of these, parameter θe showed the largest difference 
between controls and patients, with patient values lower 
than controls. This difference results in a greater excitatory 
firing rate in patients than in controls for a given membrane 
potential. Combined, these parameters contribute to differ-
ences in the emergent properties of the membrane potential 
and excitability. To interpret the differences observed, we 
analyzed the mean firing rates and mean synaptic currents 
obtained from the model simulations that best fit the data 
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6  |      DUNSTAN et al.

(Figure 3). It can be seen that patients, and specifically pa-
tients who had seizures during their admission, had higher 
mean firing rates in the excitatory and inhibitory neuronal 
populations (Figure 3A,B). Patients had significantly larger 
excitatory synaptic currents onto the excitatory neuronal 
population than controls (Figure  3C). These differences 
were driven by the subset of patients who had a seizure dur-
ing their admittance. Patients with seizures also displayed 
significantly larger (more negative) inhibitory synaptic cur-
rents onto excitatory neurons than controls (Figure 3D). We 
note that no significant differences were observed in the 

leak and KNa synaptic currents on the excitatory neuronal 
populations (Figure S7), nor any of the synaptic currents on 
the inhibitory neuronal populations (Figure S8).

3.4  |  In silico predictions for 
intervention

To further understand the influence that each of the syn-
aptic currents has on the power spectrum, we adjusted 
the conductance of each synapse and simulated the 

Characteristic

Cohort

p
Patients, 
n = 15

Controls, 
n = 16

Male (female) 11 (4) 7 (9) .0953

Age, years, mean (SD) 11.4 (2.97) 9.86 (2.72) .132

CSHQ, mean (SD) 49.9 (9.14) 37.5 (3.62) <.001

Full-scale IQ, mean (SD) 85.6 (11.0) 111 (9.66) <.001

Epilepsy characteristics

Age at onset of seizures, years, mean (SD) 5.21 (3.92)

Duration of epilepsy, years, mean (SD) 6.23 (2.57)

MRI positive (negative) 10 (5)

Nocturnal seizures

Every night 3

Sometimes 8

Never 4

Reported seizure frequency

Daily 3

Weekly 6

Monthly 3

<1 per month 3

Seizure focus

Frontal 3

Temporal 3

Frontotemporal 4

Parietal 1

Occipital 1

Undetermined 3

Number of antiseizure medications

None 1

One 8

Two 4

Three 2

Seizure(s) during admission, yes (no) 7 (8)

Note: Probability values were generated from independent samples t-tests for continuous variables and 
chi-squared tests for categorical variables.
Abbreviations: CSHQ, Children's Sleep Habits Questionnaire; IQ, intelligence quotient; MRI, magnetic 
resonance imaging.

T A B L E  1   Population demographics.
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      |  7DUNSTAN et al.

resulting power spectrum. We adjusted each conduct-
ance by 40%, 50%, or 60% of its bound (see Table  S1), 
starting from the baseline recovered from simulating 
patient EEG. Note that the parameters governing the 
excitatory and leak synaptic conductance were reduced, 
whereas the parameters governing the inhibitory and 
KNa synaptic conductance were increased, in line with 
the trends observed in Figure 3. Also note that whereas 
the results of Figure 3 were specific to synaptic currents 
on the excitatory neuronal population, here we adjust 
the excitatory synaptic conductance in general. This al-
lows for the simulation of the effects that drugs (such as 
antiseizure medications) have on the power spectrum. 
Figure  4 shows that reducing the excitatory synaptic 
conductance produced the largest change in the power 
spectrum. A 50% reduction in the excitatory conduct-
ance was sufficient to shift the mean patient power 
spectrum toward the mean control power spectrum, 

simulating a “normalization” of the sleep dynamics of 
patients (see Figure 4A,E). Moreover, the sensitivity of 
the power spectrum to changes in synaptic conductance 
was found to be significantly higher for the excitatory 
conductance than all of the other conductances in the 
model (Figure 4F–H).

3.5  |  Comparison of model 
configurations obtained between 
resting and seizure dynamics

Hitherto, we used the model to reveal hidden firing rates 
and synaptic dynamics underlying SWA. We found that 
alterations to the interactions between excitatory and in-
hibitory neuronal populations could be revealed from this 
resting EEG, which was free of overt pathological rhythms. 
We next sought to understand how these differences might 

F I G U R E  2   (A) Normalized power from control and patient data (mean and SE across subjects). (B) Normalized power across patients 
after splitting patients who had a seizure during their admission (patients with seizures) and patients who did not have a seizure during 
their admission (patients without seizures). (C, D) Same as panels A and B, but for model simulations after optimizing the dynamics to data. 
Differences in the mean and SE normalized power between groups were recapitulated in the model simulations.
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8  |      DUNSTAN et al.

be related to the generation of seizures, which is the defin-
ing characteristic of the patient group. To do this, we per-
formed another in silico experiment, matching the model 
output to a prototypic seizure dynamic, the SWD. Figure 5A 
shows a 2.5-s data segment during an SWD, along with a 
typical model simulation generated using parameters that 
were recovered by fitting the model to this rhythm. We note 
that as seen in the figure, the simulation from the cortical 
model used could accurately recapitulate the waveform of 
the SWD. We compared the mean excitatory synaptic cur-
rents inferred from the SWD data to those inferred from 
patient and control data (obtained from resting SWA). 
We observed that, compared to controls, patients, and in 
particular the subset of patients who had a seizure dur-
ing their admission, had excitatory synaptic currents more 

similar in magnitude to the mean excitatory synaptic cur-
rents recovered from SWD simulations (Figure  5B). This 
implies that smaller changes to excitatory synaptic cur-
rents would cause patients to generate SWDs, compared to 
controls. Hence, the model parameters inferred only from 
SWA dynamics revealed a hidden ictogenicity, as well as 
a mechanistic explanation (enhanced excitatory synaptic 
currents and excitability).

4   |   DISCUSSION

We have used a neural mass model to recapitulate the 
EEG during deep sleep in children with epilepsy and 
age-matched healthy controls. These models encapsulate 

F I G U R E  3   (A) Excitatory and (B) inhibitory mean firing rates obtained from model simulations. Patients had greater mean excitatory 
and inhibitory firing rates than controls, as did the subset of patients with seizures during their admission. The mean firing rate of patients 
without seizures during their admission was not significantly different from controls. (C) Excitatory and (D) inhibitory synaptic currents 
on the excitatory neuronal population, obtained from model simulations. In each case, each point on a violin plot gives the mean value of a 
subject. *p < .05 after Bonferroni correction, NS = not significant.
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essential features of the system of interest and, by opti-
mizing their parameters to data, allow for inferences to be 
made about the mechanisms that are altered in disease.

In the cohort studied, optimizing the model parameters 
for each subject revealed that the differences observed in 
sleep homeostasis6 at the group level were explained by hy-
perexcitability in patients, driven predominantly by greater 
firing rates and excitatory synaptic currents. By comparing 
the excitatory synaptic current obtained from the resting 
sleep data with the excitatory synaptic current obtained 
from simulating an SWD, we were additionally able to show 

that patients were closer to a seizure state than controls. Our 
findings demonstrate that hypotheses regarding the mecha-
nisms that contribute to the propensity of the brain to gen-
erate seizures, which is hidden from a visual analysis of the 
EEG, can be revealed by mathematical modeling. Crucially, 
by modifying the parameters governing ion channel con-
ductances in the model, we were also able to simulate the 
effects that clinical intervention might have.

Experiments have indicated that cortical excitation/
inhibition balance is not fixed, but rather changes across 
different brain states and across the sleep–wake cycle.36,37 

F I G U R E  4   (A–D) Normalized power spectra of model simulations from all patients, along with the normalized power spectra 
obtained after adjusting the excitatory, inhibitory, leak, and sodium-dependent potassium (KNa) synaptic conductances by 50% of their 
range, respectively. (E) Normalized power spectra of recorded control and patient electroencephalogram, for reference. (F–H) Change in 
normalized power spectra after adjusting the synaptic conductance parameter for 40%, 50%, and 60% of the specified parameter bounds (see 
Table S1), respectively. **p < .01 and ***p < .001.
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In particular, it has been observed that slow-wave sleep has 
the largest excitation/inhibition ratio across all the sleep 
stages.36,37 In line with this, we have found that slow-wave 
sleep EEG can reveal synaptic deficits associated with in-
creased excitation in epilepsy, a condition thought to arise 
from an enhanced excitation/inhibition ratio. In our study, 
we additionally showed that these differences in excitation 
placed patients closer to seizures than controls, thereby 
demonstrating that a smaller adjustment to the patient 
model could lead them to have seizures in silico. We found 
that the differences in excitatory currents obtained were ex-
acerbated in patients who had a seizure within 72 h after 
the recording. Our findings indicate that further experi-
mental work to investigate the links between sleep and sei-
zure states may be a valuable line of enquiry for elucidating 
the pathways underlying seizure transitions.

Differences in brain activity outside of seizure states are 
well known to occur between patients with epilepsy and 
healthy controls.6,38 Moreover, the distribution of interictal 
epileptiform activity is influenced by circadian rhythms,39 
and the provocation of epileptiform discharges by sleep–
wake transitions is already widely utilized to improve the 
diagnostic yield from visual EEG analysis in the clinical 
setting.40 Here, we propose that EEG during sleep can be 
used to uncover mechanistic differences in the brains of 
people with epilepsy. Future work should explore this hy-
pothesis further by using mathematical models to generate 
predictions about the mechanisms underlying differences 
in brain activity observed in people with epilepsy across 

different states and timescales,  and testing these predic-
tions by quantifying treatment response.

4.1  |  Limitations

Limitations of our study include the small sample size and 
retrospective sample. Conversely, this meant that all sei-
zures had been recorded as part of continuous study with 
the period of deep sleep used for analysis. The age range 
of subjects spanned the developmental period where SWA 
peaks then falls.41,42 We minimized bias by ensuring that 
the control and patient groups were matched for age, al-
though it is not possible to exclude that delays in the mat-
uration of sleep homeostasis unrelated to seizure burden 
may have contributed to the observed differences. It was 
not possible to match patients and controls for full-scale 
intelligence quotient or to control for variation in medi-
cation between patients in the seizure and nonseizure 
groups. These factors will be addressed in future studies 
using within-patient comparisons.

4.2  |  Digital twinning to facilitate 
personalized antiseizure management

EEG remains the key investigation for the diagnosis and 
monitoring of epilepsy, with interpretation in the clini-
cal setting by visual pattern recognition. However, recent 

F I G U R E  5   (A) Spike–wave discharge 
(SWD) data segment and example model 
simulation obtained after optimizing 
the model dynamics to SWD data. (B) 
Comparison of the absolute difference in 
excitatory synaptic current obtained from 
control and patient simulations (inferred 
from slow-wave activity), compared to 
the excitatory synaptic current inferred 
from SWD simulations. This formed a 
continuum of seizure susceptibility, as 
shown on the left of panel B. Patients, and 
in particular the subset of patients who 
had a seizure during their admittance, 
had excitatory synaptic current more 
similar to the SWD than controls. *p < .05, 
**p < .01. NS, not significant.
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advances in technology are improving biomarkers to help 
achieve the goals of seizure localization38 and forecast-
ing.43 A further important question concerns the efficacy 
of treatment; a daily dilemma facing the clinician is how 
to select the best treatment for a specific patient, which 
can be conceptualized as an n-of-1 trial.

Building virtual simulations and integrating them 
with data to make inferences about clinical operations 
has been termed "digital twinning."44 Applying the mod-
eling framework presented, the parameters optimized 
for each subject could serve as an in silico "twin" on 
which pharmacological, as well as nonpharmacologi-
cal, interventions could be trialed virtually to aid clin-
ical decision-making. As an example, in this work we 
found the sensitivity of model dynamics was highest 
for changes in the excitatory conductance. This indi-
cates that in this cohort the abnormal balance between 
excitation and inhibition, thought to underlie epilepsy, 
might be most effectively corrected by adjusting the ex-
citation component. Therefore, to perturb slow-wave 
sleep, the findings at the group level from the patients 
studied herein suggest that utilizing antiseizure medi-
cation that specifically modulates excitatory synapses, 
such as perampanel (a known AMPA receptor antago-
nist35,45), could be most impactful and ultimately most 
beneficial for seizure control in children with focal le-
sional epilepsies. Further work will include assessing 
the use of the model on prospective data to determine 
whether it can predict the effects of interventions with 
known mechanisms. In this approach, within-patient 
comparisons would counter bias due to variations in the 
maturity of SWA dynamics for age. This clinical valida-
tion will be essential in confirming the hypotheses de-
rived from mathematical modeling.

4.3  |  Perspectives for guiding 
stimulation protocols

A further promising area of research concerns the ma-
nipulation of slow waves using targeted stimulation pro-
tocols. This approach has been implemented through 
various noninvasive methods, such as transcranial mag-
netic46 and acoustic47 stimulation. Deep brain stimula-
tion could also be used with enhancement of SWA as a 
target outcome.48 Studies exploring stimulation to modu-
late activity have shown varied levels of success, from no 
systematic effect on the occurrence of spike–wave activ-
ity,47 to some significant improvements in patients with 
benign epilepsy.49 In the future, stimulation protocols 
could be tested by first implementing them in a math-
ematical model, such as the one discussed herein. For 
example, the parameters in deep brain stimulation, such 

as the stimulation frequency, amplitude, or duration, are 
currently dictated through a process of trial and error.50 
It could be possible to optimize these parameters in a 
mathematical model, similar to the model used herein, 
by observing how the propensity to seizure changes in 
the model as a function of the stimulation parameters. 
The findings discussed in this study could help to explore 
ways of comparing resting data to seizure rhythms for 
quantifying this proximity. This could ultimately help dic-
tate which combination of parameters is predicted to be 
most efficacious for alleviating seizures. Using a model to 
help systematize stimulation parameters would therefore 
be an interesting avenue for future research and could be 
crucial to help improve success rates for the nonpharma-
cological treatment of epilepsy.

5   |   CONCLUSIONS

By recovering parameters of a neural mass model from data, 
we demonstrate the feasibility of using mathematical mod-
els to elucidate mechanisms that may contribute to seizure 
burden in patients with epilepsy. Our results suggest that 
hyperexcitability underpins the discrepancies observed be-
tween children with epilepsy and healthy controls during 
slow-wave sleep. Furthermore, by simulating seizures in 
the model, we provide evidence that the observed differ-
ences in this resting state may have a causative association 
with seizure propensity. This approach could generate new 
biomarkers for seizure susceptibility. Finally, by adjusting 
synaptic conductances in silico, we demonstrate a proof 
of concept for using mathematical models to hypothesize 
about the most efficacious interventions needed to rectify 
differences observed on the EEG, with the ultimate goal of 
improving patient outcomes.
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