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ABSTRACT
We demonstrate that quasi-diffusion imaging (QDI) is a signal representation that extends towards the negative power law 
regime. We evaluate QDI for in vivo human and ex vivo fixed rat brain tissue across b-value ranges from 0 to 25,000 s mm−2, de-
termine whether accurate parameter estimates can be acquired from clinically feasible scan times and investigate their diffusion 
time-dependence. Several mathematical properties of the QDI representation are presented. QDI describes diffusion magnetic 
resonance imaging (dMRI) signal attenuation by two fitting parameters within a Mittag–Leffler function (MLF). We present its 
asymptotic properties at low and high b-values and define the inflection point (IP) above which the signal tends to a negative power 
law. To show that QDI provides an accurate representation of dMRI signal, we apply it to two human brain datasets (Dataset 1: 
0 ≤ b ≤ 15,000 s mm−2; Dataset 2: 0 ≤ b ≤ 17,800 s mm−2) and an ex vivo fixed rat brain (Dataset 3: 0 ≤ b ≤ 25,000 s mm−2, diffu-
sion times 17.5 ≤ Δ ≤ 200 ms). A clinically feasible 4 b-value subset of Dataset 1 (0 ≤ b ≤ 15,000 s mm−2) is also analysed (acquisi-
tion time 6 min and 16 s). QDI showed excellent fits to observed signal attenuation, identified signal IPs and provided an apparent 
negative power law. Stable parameter estimates were identified upon increasing the maximum b-value of the fitting range to near 
and above signal IPs, suggesting QDI is a valid signal representation within in vivo and ex vivo brain tissue across large b-value 
ranges with multiple diffusion times. QDI parameters were accurately estimated from clinically feasible shorter data acquisition, 
and time-dependence was observed with parameters approaching a Gaussian tortuosity limit with increasing diffusion time. 
In conclusion, QDI provides a parsimonious representation of dMRI signal attenuation in brain tissue that is sensitive to tissue 
microstructural heterogeneity and cell membrane permeability.
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1   |   Introduction

Ultra-high b-value diffusion magnetic resonance imaging 
(dMRI) has the potential to provide more accurate and sen-
sitive detection of brain tissue microstructural characteris-
tics in healthy and pathological tissue [1–4]. For moderate 
diffusion-sensitisations (1000 ≤ b ≤ 3000 s mm−2), dMRI signal 
attenuation in tissue can be approximated by the second-order 
cumulant expansion, a signal representation provided by diffu-
sional kurtosis imaging [5, 6] (DKI), or by the stretched expo-
nential [7, 8], which depending on its form can be considered 
a model of space-fractional diffusion [9] or fractional motion 
[10, 11]. These signal representations approximate a transition 
from a Gaussian to non-Gaussian diffusion as the ensemble 
of diffusing water molecules explore heterogeneous tissue mi-
crostructure within the diffusion time. At high to ultra-high b
-values (3000 ≤ b ≤ 25,000 s mm−2), a negative power law decay 
is observed in directionally averaged dMRI signal [3, 12, 13] that 
cannot, in general, be explained by a simple extension of these 
signal representations. Herein, we refer to the negative power 
law exponent as �.

The negative power law arises from an impermeable intraneu-
rite space dominated by myelinated axons that leads to a neg-
ative power law exponent of � = 1∕2 as b→ ∞ (e.g., [14–17]), 
which was first demonstrated by Novikov et  al. [18, 19] and 
is related to the Debye–Porod law of diffractive behaviour in 
porous media [20]. Experimental studies of brain white mat-
ter (WM) tissue microstructure report � ≈ 1∕2 providing sup-
port to model predictions [3, 12, 13] and can be explained by 
the spherical mean of the Gaussian diffusion tensor model 
[21], and its higher order correction can be extended by the 
kurtosis term [3]. However, in grey matter (GM), � ≈ 0.8 is re-
ported, predominately due to a lack of myelinated axons [12]. 
Consequently, GM tissue compartment models have been 
developed that include intraneurite, intrasoma and extracel-
lular compartments (Soma and Neurite Diffusion Imaging 
[22], SANDI), an intraneurite and a soma/extracellular space 
compartment with exchange via a Kärger model (Neurite 
Exchange Imaging [23], NEXI) or a SANDI compartment 
model with exchange [24] (eSANDIX).

By varying the diffusion time, t , of dMRI data acquisition, 
the properties of tissue microstructural restriction can be 
probed at different length scales potentially allowing classifi-
cation of tissue microstructural properties based on temporal 
power laws [16, 18, 19, 25, 26]. The mechanisms underpin-
ning these results are encompassed within an effective me-
dium theory that relates cell size and diffusion length scales 
such that diffusion parameters approach a tortuosity limit as 
diffusion time increases and course-graining dominates the 
signal [16, 18, 19, 25]. Time-dependent changes in diffusion 
coefficient, D, and kurtosis, K , have been observed in brain 
tissue where D(t) decays to a constant, D

∞
, and K(t) tends to 0 

as t → ∞, representing a Gaussian tortuosity limit [24, 26–32] 
with tissue microstructure and cell permeability being factors 
in the rate of this transition.

Quasi-diffusion imaging (QDI) has been developed [33–35] 
from a stochastic model of diffusion dynamics that describes 
an ensemble of random walkers within an image voxel as a 

continuum from stretched exponential signal attenuation at 
low b-values to a negative power law at high b-values. Instead 
of modelling a signal based on an assumed set of discrete com-
partments with additional factors such as permeability, the 
quasi-diffusion process is represented as a continuous time 
random walk (CTRW) with a distribution of step lengths and 
waiting times, which for quasi-diffusion are coupled and rep-
resent a Gaussian mixture of walkers [36] that gives rise to a 
normal effective diffusion coefficient and a mean squared dis-
placement that linearly increases with time [33, 34]. Although 
CTRW models have been shown to be applicable to dynamics 
of animals [37], cell migration [38], diffusion in crowded en-
vironments [39] and movement of large molecular tracers in 
proteins [40], cytoplasm [41, 42] and brain tissue [43], these 
have not yet been fully justified in application to water mole-
cules in tissue microstructure.

The quasi-diffusion approach provides a parsimonious de-
scription of dMRI signal attenuation as a stretched Mittag–
Leffler function [44] (MLF) with only two parameters [33, 34]: 
the quasi-diffusion coefficient, D1,2 (in mm2 s−1) and a frac-
tional exponent, �. D1,2 and � are both dependent on tissue 
microstructure, with D1,2 being similar in magnitude to the 
conventional apparent diffusion coefficient (ADC) and � rep-
resenting the ensemble-level effects of microstructural barri-
ers. � is also the negative power law exponent of the signal 
attenuation at high b-values [34]. QDI parameters have been 
shown to be sensitive to age-related tissue microstructural 
changes in the corpus callosum [45] and pathologies such as 
amyotrophic lateral sclerosis [46], small vessel disease [33] 
and brain tumour [33]. High-quality tensor maps of D1,2 and 
� have been obtained in clinically feasible acquisition times 
from only 13 diffusion-weighted images  [33] (a b = 0 s mm−2 
and two non-zero b-values in six directions) for which an ac-
quisition protocol has been optimised for a standard clinical 
MRI system [35] with b-values up to b = 5000 s mm−2.

In this study, we investigate whether QDI describes a much 
larger range of dMRI signal attenuation in brain tissue to in-
clude an ultra-high b-value range (up to b = 25,000 s mm−2), 
which includes b-values with power law behaviour of the MRI 
signal. We investigate how QDI provides information regard-
ing power law behaviour whilst defining a transition towards 
a negative power law regime. This transition is characterised 
by an ‘inflection point’ (IP) in the gradient of the logarithm 
of the signal decay. We present theory that includes the lim-
iting equations for quasi-diffusion as b→ 0 and as b→ ∞ 
and the analytical form of the IP. To determine whether 
QDI provides accurate data fitting, we apply it to orienta-
tionally averaged dMRI data from two open source human 
brain datasets (Dataset 1: Afzali et  al. [47], with b-values in 
the range 0 ≤ b ≤ 15,000 s mm−2; Dataset 2: Tian et  al. [48], 
0 ≤ b ≤ 17,800 s mm−2) and an ex  vivo rat brain (Dataset 3: 
Ingo et al. [49], 0 ≤ b ≤ 22,543 s mm−2) and compute novel sig-
nal IP maps. We also demonstrate that QDI could be applied 
to dMRI data acquired in clinically feasible time by compar-
ison of the full dMRI acquisition for dataset 1 (12 b-values, 
0 ≤ b ≤ 15,000 s mm−2) to a data subset with fewer b-values (4 
b-values, 0 ≤ b ≤ 15,000 s mm−2). Finally, we investigate the 
effect of increasing diffusion time on QDI parameters in the 
ex vivo rat data.
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2   |   Theory

2.1   |   The QDI Functional Form

We begin with Callaghan's classical result for directionally av-
eraged dMRI signal from a cylinder, which is the conventional 
equation for diffusion in an impermeable intraneurite space and 
has a negative power law exponent of � = 0.5 [14],

where Sb is the signal at a given b-value (in s mm−2), S0 is the 
signal at b = 0 s mm−2, D‖ is the diffusion coefficient (in 
mm2 s−1) along the cylinder, and D⊥ is the diffusion coefficient 
(in mm2 s−1) across the cylinder. Equation (1) describes the be-
haviour of diffusion in well-organised axons, where the myelin 
sheath is assumed to provide an impermeable barrier to water 
diffusion. The quasi-diffusion analogue of Equation  (1) when 
� = 0.5 is such that the signal decay is given by [17],

which is analogous to the conventional equation for diffusion in 
an impermeable intraneurite space [44]. The QDI technique pa-
rameterises dMRI signal by the quasi-diffusion coefficient, D1,2 (in 
mm2 s−1), and the fractional exponent � that indicates the nega-
tive power law behaviour as b→ ∞. Gaussian diffusion is pres-
ent when � = 1 and non-Gaussian diffusion when 0 < 𝛼 < 1 . The 
characteristic equation of the QDI signal decay is given by the MLF 
[33, 34], which is a generalisation of the exponential function [50],

where Γ( ⋅ ) is the gamma function. α provides a measure of tissue 
heterogeneity, such that lower α corresponds to increased het-
erogeneity [33–35]. Equation (3) is a convenient representation of 
dMRI signal attenuation, as it interpolates between a stretched 
exponential at low b-values and a negative power law at high b
-values, both with exponent �. The use of the MLF is the sim-
plest method for generalising such a transition to negative power 
law decay and is sensitive to tissue heterogeneity in healthy and 
pathological tissue.

Equation  (3) has asymptotic properties in the low and high b-
value regimes according to,

The transition between the stretched exponential and negative 
power law regimes is via an IP at a particular b-value. For a 

non-Gaussian exponent � (i.e., � ≠ 1), as b→ 0, the quasi-
diffusion functional form tends to a stretched exponential for 
which the derivative �log(S)

�b
→ − ∞. This is in contrast to the fi-

nite gradient indicated by the conventional Gaussian diffusion 
model, the diffusional kurtosis (second-order cumulant) repre-
sentation and signal models such as Neurite Orientation 
Dispersion and Density Imaging (NODDI) [51], SANDI [22] and 
NEXI [23]. When � = 1, the MLF reduces to a monoexponential 
Gaussian form, and the derivative behaves as expected. For 
� ≠ 1, the functional form is a representation of the signal atten-
uation of the ensemble diffusion process within a heterogeneous 
tissue environment for a wide range of b-values; QDI is applica-
ble to all healthy and pathological tissue voxels.

The QDI functional form (Equation  3) is also the solution of 
the quasi-diffusion fractional Fokker–Planck equation given by 
[33, 34] as,

where P(x, t) is the diffusion propagator, C
0


�
t
 is the Caputo 

fractional derivative (which is the �th fractional order time de-
rivative for 0 < 𝛼 < 1), �2� ∕�|x|2� is the Riesz fractional deriva-
tive (which is the (2�)th fractional order space derivative for 
0 < 2𝛼 < 2) and D�,2� is the normal effective diffusion coeffi-
cient in units of mm2α s−α. The quasi-diffusion coefficient in 
units of mm2 s−1 can be recovered as D�,2� = D�

1,2
=
(
D1,2

)�. The 
QDI signal attenuation as parameterised by the normal effec-
tive diffusion coefficient contains a continuous distribution of 
diffusion coefficients within a voxel [34]. There is only a single 
Gaussian ADC when � = 1. Conceptually, as � decreases, the 
diffusion environment becomes more heterogeneous, and the 
distribution of constituent diffusion coefficients in the QDI 
signal becomes broader [34]. Although QDI provides a normal 
effective diffusion coefficient that increases linearly with 
time, the technique is based on a model of anomalous diffu-
sion dynamics where step lengths have finite mean but in-
finite variance, and waiting times have infinite mean in 
the CTRW.

2.2   |   Determining the b-Value 
of the Inflection Point

The b-value of the IP may be calculated by estimating the 
zero crossing of the second derivative of the logarithm of 
Equation (3) with respect to ln(b). Analytical derivations are 
provided in the Supporting Information, but in brief, the 
mathematical analysis requires the single-parameter MLF 
(Equation 3) to be written as a two-parameter MLF [51, 52], 
which is given by,

with � = 1 defining the single-parameter MLF. To simplify nota-
tion in this section we substitute � = D�

1,2
 for the normal effective 

diffusion coefficient. The derivatives of,

(1)Sb
S0

= exp
�
− D⊥b

��𝜋

4

erf

��
b
�
D‖ − D⊥

��

�
b
�
D‖ − D⊥

� ,

(2)E1∕2

(
−

√
D1,2b

)
= exp

(
− D1,2b

)(
1 − erf

(√
D1,2b

))
,

(3)Sb
S0

= E�

(
−
(
D1,2b

)α)
=

∞∑
k=0

(−1)k
(
D1,2b

)αk
Γ(�k + 1)

,

(4)

E�

�
−
�
D1,2b

���
∼

⎧
⎪⎪⎨⎪⎪⎩

exp

�
−

�
D1,2b

��
Γ(�+1)

�
b→0,

�
D1,2b

�−�
Γ(1−�)

=
sin(��)

π

Γ(�)�
D1,2b

�� , b→∞.

(5)C
0


�

t
(P(x, t)) = D�,2�

�2�P(x, t)

�|x|2� ,

(6)E𝛼,𝛾 (z) =

∞∑
k=0

zk

Γ(𝛼k + 𝛾)
z ∈ ℂ, 𝛼 > 0 ∈ ℝ, 𝛾 ∈ ℂ,
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may be obtained using the equation for the derivative of the two-
parameter MLF [51, 52],

by application of the chain and quotient rules for differentiation. 
Throughout this paper we consider the function ln

(
b∕b0

)
 to be 

defined for b0 = 1 s mm−2 and hence equivalent to a unitless 
ln(b) . The analytical forms of the first and second derivatives 
with respect to ln(b) are,

and

with the b-value of the IP occurring when d2y

d(ln(b))2
= 0 such that

3   |   Methods

3.1   |   Image Acquisition

Three ultra-high b-value dMRI datasets were analysed: 
two human participant open-source datasets and one rat. 
Informed consent was obtained for human participants. All 
sample preparation and image acquisition parameters are 
presented in abbreviated form with full information in Afzali 
et al. [47] (Dataset 1), Tian et al. [48] (Dataset 2) and Ingo et al. 
[49] (Dataset 3).

3.1.1   |   Dataset 1

An open-source dataset of whole brain dMRI acquired from 
a single healthy participant [47]. dMRI data were acquired 
using a 3T Connectom MR imaging system with maxi-
mum gradient strength 300 mT m−1 (Siemens Healthineers, 
Erlangen, Germany, https://​www.​sieme​ns-​healt​hinee​rs.​
com/​). Sixty-six axial slices were acquired using a 2D sin-
gle refocussed pulsed gradient spin echo (srPGSE) se-
quence with acquisition parameters: TE/TR = 55/4000 ms, 
δ/Δ = 12/23 ms at 2 mm isotropic voxel resolution. Six 
b = 0 s mm−2 images and 11 diffusion-sensitised images were 
acquired at b={400, 800, 1200, 2000, 3000, 4000, 6000, 8000,

10000, 12000, 15000} s mm−2 with gradient strengths g=

{45, 64, 78, 101, 124, 143, 175, 201, 226, 248, 277} mT m−1 applied 
in 16, 16, 21, 31, 21, 21, 31, 31, 31, 31 and 46 diffusion gradient 
directions. All diffusion gradient directions were uniformly 
distributed on a sphere. Acquisition time was 20 min and 8 s. 
Image preprocessing is described in Afzali et al. [47].

3.1.2   |   Dataset 2

An open-source dataset of whole brain dMRI acquired from 
a single participant (Subject 001) [48]. Real and magnitude 
dMRI data were acquired using a 3T Siemens Connectom 
MR imaging system with maximum gradient strength 
300 mT m−1. Sixty-six sagittal slices were acquired using 
a srPGSE sequence: TE/TR = 77/3800 ms, δ/Δ = 8/49 ms 
at 2 mm isotropic voxel resolution. Fifty b = 0 s mm−2 im-
ages and eight diffusion-sensitised images were acquired at 
b={200, 950, 2300, 4250, 6750, 9850, 13500, 17800} s mm−2 with 
gradient strengths g = {31, 67, 104, 142, 178, 215, 253, 290} 
mT m−1 applied in 32 diffusion gradient directions for b < 2400 s 
mm−2 and 64 directions for b ≥ 2400 s mm−2. All diffusion gra-
dients were uniformly distributed on a sphere. Magnitude dMRI 
data were analysed in our study. Acquisition time was 55 min. 
Image preprocessing is described in Tian et al. [48].

3.1.3   |   Dataset 3

A single dMRI slice of an ex  vivo healthy fixed rat brain 
[49]. Prior to imaging, the rat brain was soaked overnight 
in phosphate buffered saline. The brain was placed in a 20 
mm imaging tube that was filled with Fluorinert and se-
cured with a magnetic susceptibility matched plug to mi-
nimise vibrational movement due to the pulsed gradients. 
Scanning was performed on a Bruker spectrometer at 
750 MHz (17.6 T, 89 mm bore) with the anterior–posterior 
brain orientation along the main B0 field (z-axis) the supe-
rior–inferior along the x-axis, and left–right along the y-axis. 
Pulsed gradient stimulated echo (PGSTE) images were ac-
quired: TE/TR = 28/2000 ms, δ/Δ = 3.5/17.5 ms, with mixing 
time 8 ms, in-plane resolution 190 μm and slice thickness 
1 mm. Diffusion-sensitised images were acquired at eleven b-
values b={0, 1000, 2000, 3000, 6000, 9000, 12000, 15000, 18000,

21000, 25000} s mm−2 with gradient strengths g17.5={0,264,

374,458,647,793,915,1023,1121,1211,1321} mT m−1 applied along 
the three perpendicular scanner axes. dMRI were acquired 
twice to improve signal to noise ratios. Variable TR data were 
acquired to correct for T1 relaxation effects (TE = 12.5 ms, 
TR = 300 to 3600 ms in increments of 300 ms).

A similar dMRI protocol was acquired for Δ of 17.5, 50, 100 
and 200 ms with a diffusion gradient applied along the y-axis. 
Corresponding diffusion gradient strengths were g50={0, 153,

216, 265, 374, 459, 529, 592, 648, 700, 764}, g100={0, 107, 152, 186,

263, 322, 372, 416, 456, 492, 537} and g200={0, 76, 107, 131, 186,

227, 262, 293, 347, 379} mT m−1 with mixing times 40, 90 and 
190 ms, respectively.

3.2   |   Image Pre-Processing

Magnitude dMRI data were corrected for background Rician 
noise properties estimated from regions of interest (ROIs) con-
taining no tissue signal. An ROI in ventricular cerebrospinal 
fluid (CSF) at b = 17,800 s mm−2 was used for Dataset 2, and all 
voxels outside the tissue sample was used for Dataset 3. The 
standard deviation of Gaussian noise, σ, was estimated by sub-
tracting dMRI signal in each gradient direction from every other 

(7)y = ln
(
E�,1( − �b�)

)

(8)d

dz

[
E�,� (z)

]
=

E�,�−1(z) − (� − 1)E�,� (z)

�z
,

(9)
dy

d(ln(b))
=
E�,0( − �b�)

E�,1( − �b�)

(10)d2y

d(ln(b))2
=

(
E�,−1(−�b�)+E�,0(−�b�)

)
E�,1(−�b�)−

(
E�,0(−�b�)

)2
(
E�,1(−�b�)

)2 ,

(11)

(
E�,−1( − �b�) + E�,0( − �b�)

)
E�,1( − �b�) −

(
E�,0(−�b�)

)2
= 0.
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and calculating the standard deviation within the ROI. Mean 
Rician noise, �R, was estimated by [53],

and Rician noise correction was performed using [53],

where S is the acquired dMRI signal and SC is dMRI signal cor-
rected for Rician noise.

3.3   |   Model Fitting

Orientationally averaged signal (when available) was used in 
data fitting. To provide balanced weighting of the residuals 
across four orders of magnitude of signal decay and to enable 
robust fitting of the signal tail, the data were fitted in the natural 
logarithmic space using,

Data fitting was performed to estimate D1,2 (in mm2 s−1) and α 
(unitless) using the trust-region-reflective algorithm in Matlab 
(https://​www.​mathw​orks.​com). The MLF was computed using 
Garrappa's numerical algorithm [54, 55].

The gradient (first derivative) of the natural logarithm of 
E�

(
−
(
D1,2b

)α) with respect to ln(b) was calculated using 
Equation (9). b-value IPs were calculated numerically by estimat-
ing the zero crossing of Equation (11) for 0 < ln(b) < 50 in steps 
of 0.001. The maximum value of ln(50) was chosen to ensure that 
b-value IPs could be calculated for low D1,2 as α→ 0.5. The two 
parameter MLF was estimated numerically [54, 55]. To enable 
rapid estimation of b-value IPs from D1,2 and α a lookup table of 
b-value IPs was constructed for 0.001 ≤ D1,2 ≤ 3 × 10−3 mm2 s−1 
and 0.5 ≤ α < 1.0.

3.4   |   Image Analysis

3.4.1   |   Dataset 1

To assess the QDI functional form of dMRI signal attenuation, 
D1,2 and α were estimated between b = 0 s mm−2 and maximum 
b-values (bmax) in the range 1200 ≤ bmax ≤ 15,000 s mm−2. To en-
able computation of tissue properties, the brainstem and cere-
bellum were manually removed and tissue segmentation (of GM, 
WM and CSF) was performed using the FSL fast technique [56] 
on input of D1,2, α and IP maps that were estimated across the 
full b-value range (bmax = 15,000 s mm−2). Median and quartile 
values for D1,2, α and IPs were calculated in cerebral GM and 
WM ROIs for each subject.

Quality of model fitting to observed signal was computed for 
the natural logarithm of the estimated quasi-diffusion signal 
attenuation (determined by data fitting across each bmax range, 
0 ≤ b ≤ bmax s mm−2 for 1200 ≤ bmax ≤ 15,000 s mm−2) in com-
parison to the natural logarithm of the observed normalised 
signal attenuation over the full b-value range (0 ≤ b ≤ 15,000 s 
mm−2) using mean squared error (MSE). Median and quartiles 
of the MSE were calculated in cerebral GM and WM voxels.

To investigate whether quasi-diffusion parameters can be accu-
rately and reliably estimated from dMRI acquired in clinically 
feasible time (defined here as approximately 5 min), D1,2, α and IPs 
were estimated from bshort = {0, 1200, 4000, 15000} s mm−2 data 
(acquisition time 6 min and 16 s, 31% of the full dMRI acquisition 

(12)�R = σ

√
π∕2,

(13)S2 = S2C + �2R,

(14)ln

(
Sb
S0

)
= ln

(
E�

(
−
(
D1,2b

)α))
.

FIGURE 1    |    Predicted signal attenuation for the quasi-diffusion 
model. The stretched Mittag–Leffler function is illustrated in the loga-
rithmic space of ln

(
E�

(
−
(
D1,2b

)�)) against ln(b). This shows its tran-
sition between a stretched exponential at low b-values and a negative 
power law at high b-values. The transition is marked by an inflection 
point (cross) in the logarithmic space. Predicted signal attenuation is 
shown for a typical grey matter voxel (a) with D1,2 = 0.8 × 10−3 mm2 s−1 
and � = 0.88 with Gaussian and diffusional kurtosis approximations 
shown. Signal attenuation is also shown for a white matter voxel (b) 
with D1,2 = 0.7 × 10−3 mm2 s−1 and � = 0.5 in comparison to the be-
haviour of the intraneurite stick model.
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6 of 17 NMR in Biomedicine, 2025

time). b-values were chosen to provide observed data over three 
decades of the natural logarithm of the b-value, with two b-values 
prior to expected IPs and one afterwards. Measurement bias was 
calculated for D1,2, α and IP measures as the mean of the voxel-
wise estimates for the short acquisition measures minus those for 
the full acquisition (referred to here as the voxel-wise difference). 
Measurement uncertainty was calculated as the standard devia-
tion of the voxel-wise difference. Intraclass correlation coefficients 

(ICCs) were also calculated. Bias, uncertainty and ICC were calcu-
lated across all GM and WM tissue voxels for D1,2, α and IP.

3.4.2   |   Datasets 2 and 3

To further demonstrate the utility of QDI, it was applied to the 
full b-value range of b-values for Datasets 2 (0 ≤ b ≤ 17,800 s 

FIGURE 2    |    Predicted signal attenuation for the quasi-diffusion model when D1,2 = 0.7 × 10−3 mm2 s−1 and 0.5 ≤ � ≤ 1. Graphs show (a) the nor-
malised signal attenuation for the family of curves, (b) signal attenuation in a log–log plot of the natural logarithm, and (c) the gradient of the log–log 
plot. At high b-values, the gradient tends to a value of − �. Inflection points are shown as crosses in (b) and (c). The contour map (d) shows the b-values 
at which inflection points occur for different combinations of D1,2 (0 ≤ D1,2 ≤ 3 × 10−3 mm2 s−1) and � (0.5 ≤ 𝛼 < 1).
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7 of 17

FIGURE 3    |    Signal attenuation for representative (a) grey matter and (b) white matter voxels is shown with axial slices of (c) D1,2, (d) �, and (e) IP 
maps for in vivo human Dataset 1. Signal attenuation is shown for normalised signal (left graphs) and on a log–log plot (right graphs). The quasi-
diffusion model fit (black line) and estimated D1,2 and � values are indicated on the graphs. The b-value of the IP (dotted black line), the stretched 
exponential (red) and power law (blue) limits, and the gradient of the quasi-diffusion signal (dashed black line) are shown in the log–log plots. (f) Box 
and whisker plots for median values of mean squared error (MSE) for QDI fitting across grey matter (green) and white matter (blue) voxels against 
increasing maximum b-value (1200 ≤ bmax ≤ 15,000 s mm−2). (g) An axial slice of the MSE map for bmax = 15,000 s mm−2.
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mm−2) and 3 (0 ≤ b ≤ 25,000 s mm−2). Median and quartiles of 
D1,2, α and IP were calculated in cortical GM, WM and corpus 
callosum (CC) ROIs.

4   |   Results

4.1   |   Quasi-Diffusion Signal Behaviour

A feature of signal attenuation described by quasi-diffusion is a 
transition between stretched exponential and negative power law 
regimes via an IP in the logarithmic space. Figure 1a shows this 
behaviour for predicted quasi-diffusion signal attenuation in a 
representative GM voxel given by D1,2 = 0.8 × 10−3 mm2 s−1 and 
� = 0.88 on a log–log plot. The illustrated stretched exponential 
and power law behaviour characterise the limits as b→ 0 and 
b→ ∞, respectively. Gaussian (free diffusion) and diffusional 
kurtosis representations do not capture the power law behaviour. 
Figure 1b shows quasi-diffusion attenuation in a WM voxel with 
D1,2 = 0.8 × 10−3 mm2 s−1 and � = 0.5 in comparison to the in-
traneurite stick model. Both models identify the negative power 
law behaviour, but differences are apparent as b→ 0 where the 
stick model follows Gaussian signal attenuation.

Figure 2 shows predicted quasi-diffusion signal attenuation for 
D1,2 = 0.7 × 10−3 mm2 s−1 with 0.5 ≤ � ≤ 1 (Figure  2a) and IPs 
in the logarithmic space (Figure 2b). Figure 2c shows the first 
derivative, or slope, in the log space. Signal inflections become 
increasing shallow at increasing b-values for decreasing values 
of α, and after inflection, the signal enters a negative power law 

signal decay where the gradient tends to − α. The b-value of the 
IP is shown as a contour map in Figure 2d as a function of D1,2 
for 0 < D1,2 ≤ 3 × 10−3 mm2 s−1 and � for 0.5 ≤ � ≤ 1. Contours 
are smooth and indicate that lower D1,2 and/or � leads to higher 
b-value IPs, with higher D1,2 and/or � leading to lower b-value 
IPs. Higher b-value IPs are also observed as � → 1. Specifically, 
as D1,2 increases the b-value of the IPs decrease for a given �, 
with the contrary for decreasing D1,2.

4.2   |   Human and rat Brain Data

4.2.1   |   Dataset 1

Figure  3 shows excellent QDI fits (black line) to dMRI signal 
within representative GM (Figure 3a) and WM (Figure 3b) vox-
els for 0 ≤ b ≤ 15,000 s mm−2 with the stretched exponential (red) 
and power law (blue) showing the model fit as b→ 0 and b→ ∞, 
respectively. IPs (dotted black line) occur before the maximum 
b-value (b = 15,000 s mm−2) in each voxel. The gradient of the 
model fit (dashed black line) shows that modelled signal changes 
substantially around the IP and the negative power law expo-
nent, �, is reached at ultra-high b-values (right axis).

Maps of D1,2 (Figure 3c), α (Figure 3d) and IP (Figure 3e) cal-
culated for the range 0 ≤ b ≤ 15,000 s mm−2 demonstrate tis-
sue specific values and high tissue contrast in α and IP maps. 
Figure  4f plots the MSE in quasi-diffusion model fitting for 
each bmax range, 0 ≤ b ≤ bmax s mm−2 (for 1200 ≤ bmax ≤ 15,000 s 
mm−2) compared to observed signal over the full b-value range 

FIGURE 4    |    Box and whisker plots are shown of estimated (a) D1,2, (b) �, and (c) IP with increasing maximum b-value for grey (green) and white 
matter (blue). Maximum b-value ranges are shown between 1200 ≤ bmax ≤ 15,000 s mm−2. Axial slices for (d) D1,2 and (e) � maps are also shown when 
computed for different maximum b-values (2000 ≤ bmax ≤ 15,000 s mm−2).
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9 of 17

FIGURE 5    |    Comparison of D1,2, �, and IP calculated from in vivo human Dataset 1 for the full acquisition (12 b-values, 0 ≤ b ≤ 15,000 s mm−2) and 
a subset of the data (4 b-values, b = {0, 1200, 4000, 15000} s mm−2). Axial slices of (a) D1,2, (b) �, and (c) IP maps are illustrated for the full acquisition 
(left column) and data subset (middle column). Graphs (right column) show scatter plots of voxel values estimated for D1,2, �, and IP for the data subset 
against the full acquisition in grey (green) and white (blue) matter.
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10 of 17 NMR in Biomedicine, 2025

FIGURE 6    |     Legend on next page.
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(0 ≤ b ≤ 15,000 s mm−2). The quality of model fitting increases 
as bmax increases with highly accurate fitting achieved for 
bmax ≥ 6000 s mm−2 in brain tissue (Figure 3g).

Tissue D1,2 distributions (Figure 4a) overlapped with higher val-
ues in GM (median D1,2 = 0.796 × 10−3 mm2 s−1) than WM (me-
dian D1,2 = 0.684 × 10−3 mm2 s−1) and greater interquartile range 
due to partial volume effects at the GM/CSF boundary. Tissue � 
distributions (Figure 4b) revealed higher values in GM (median 
� = 0.882) than WM (median � = 0.751) and similar interquartile 
ranges. The range of � extended towards Gaussian properties in 
GM but did not extend to � = 0.5 in WM. Signal IP distributions 
(Figure 4c) had lower values in GM (median IP = 5271 s mm−2) 
than WM (median IP = 8185 s mm−2) with greater positive skew 
observed for WM as b→ 15,000 s mm−2. Figure 4a,b,d,e shows 
that D1,2 and α estimates tend to stable values as bmax increases, 
an effect related to the quality of model fitting (Figure 3f,g), with 
α estimates tending towards a Gaussian diffusion exponent of 1 
at lower bmax values. Fitted QDI parameters stabilise when bmax 
approaches or exceeds the IP, which is at lower b-values in GM 
(b ≥ 3000 s mm−2) than WM (b ≥ 6000 s mm−2).

Figure  5 demonstrates that D1,2, � and IP estimation are 
highly accurate, although slightly noisier, when fitted from 
bshort = {0, 1200, 4000, 15000} s mm−2 compared to all data 
(0 ≤ b ≤ 15,000 s mm−2). Measurement bias was small, 
approximately 1.1% of median D1,2 across brain tissue 
(bias = − 0.008 ± 0.031 × 10−3 mm2 s−1), approximately 0.3% 
of median � (bias = 0.002 ± 0.014), and approximately 1.4% of 
median IP (bias = 94 ± 388 s mm−2). ICCs were extremely high 
across brain tissue for D1,2 (ICC = 0.970), � (ICC = 0.982) and IP 
(ICC = 0.985) indicating that a subsample of the acquired dMRI 
data provides reproducible parameter estimation compared to 
the full acquisition.

4.2.2   |   Datasets 2 and 3

Figure  6 shows results for the second human participant 
(0 ≤ b ≤ 17,800 s mm−2) and an ex  vivo rat (0 ≤ b ≤ 25,000 s 
mm−2). QDI provided excellent fitting to dMRI signal in cor-
tical (green) and CC (blue) voxels (Figure  6,b) and low MSE 
fitting (Figure  6c,d). Similar tissue contrast (Figure  6c) and 
parameter distributions (Figure  6e–g) were found for Dataset 
2 compared to Dataset 1 (median D1,2: GM 0. 861 × 10−3 
mm2s−1, WM 0.819 × 10−3 mm2 s−1; median α: GM 0.904, WM 
0.731; median IP: GM 4779 s mm−2; WM 7469 s mm−2). In the 
CC, median D1,2 (1.219 × 10−3 mm2 s−1) was higher due to par-
tial volume effects with CSF, and median � (0.670) was closer 
to the intraneurite power law. The ex vivo rat data had greater 
tissue contrast (Figure  6d) and lower median D1,2 and � val-
ues than in  vivo human data (D1,2: GM 0.439 × 10−3 mm2 s−1, 
WM 0.368 × 10−3 mm2 s−1, Figure  6e; �: GM 0.813, WM 0.689, 

Figure 6f). A lower median D1,2 was found in the CC compared 
to WM (0.186 × 10−3 mm2 s−1) due to reduced CSF partial vol-
ume effects at high image resolution. Median � (0.517) in the CC 
corresponded to the intraneurite power law. As D1,2 and � were 
lower in the ex vivo rat than in vivo human data, the median 
IPs were substantially higher (GM 10,915 s mm−2, WM 28,427 s 
mm−2, CC 14,707,969 s mm−2).

Figure  7 shows time dependence of D1,2 (Figure  7a) and � 
(Figure 7b) maps for the ex vivo rat data. QDI provided excel-
lent data fitting in representative cortical (Figure  7c) and CC 
(Figure 7f) voxels despite greater noise at longer diffusion times. 
Median D1,2 decreased as the tortuosity limit was approached 
in GM (Δ = 17.5, 50, 100, 200 ms, 0.350, 0.330, 0.325, 0.323 × 10−3 
mm2 s−1), WM (0.214, 0.203, 0.193, 0.175 × 10−3 mm2 s−1) and CC 
(0.342, 0.300, 0.339, 0.317 × 10−3 mm2 s−1) as shown in Figure 7d 
and 7g. Median � increased as power law exponents tended to-
wards a Gaussian tortuosity in GM (0.817, 0.907, 0.923, 0.922) 
and WM (0.712, 0.794, 0.827, 0.873) with the CC exhibiting slower 
passage to the tortuosity limit than WM (0.528, 0.588, 0.560, 
0.694); see Figure 7e and 7h.

5   |   Discussion

We have shown that the dMRI signal acquired from low b-values 
to those within the power law regime can be fitted with excellent 
agreement to the parsimonious QDI functional form. This form 
includes only two parameters, D1,2 and �. Stable parameter esti-
mates were identified upon increasing the maximum b-value of 
the fitting range to above the IPs to enable accurate definition of 
the full decay curve, suggesting that QDI is an accurate repre-
sentation of dMRI signal in healthy brain tissue. Furthermore, 
QDI parameters computed from a four b-value acquisition that 
samples only one data point beyond the IP are accurate when 
compared to the full acquisition (12 b-values), indicating that 
QDI measurements may be estimated from dMRI acquired in 
clinically feasible times. Time dependence of QDI parameters 
has also been demonstrated.

QDI provides a simple representation for signal attenuation 
that fits well to data and identifies a transition to an experi-
mentally observed power law behaviour. Our results show ex-
cellent data fits by QDI across b-values (up to max b = 25,000 
s mm−2), and the technique has recently been shown to fit 
data acquired perpendicular to recently deceased mouse spi-
nal cord (max b = 858,022 s mm−2, �∕ Δ = 11∕400 ms) [46]. 
Many dMRI signal representations and models cannot define 
this transition and provide signal representation below the b-
value IP, including the monoexponential, biexponential [57], 
stretched exponential [7, 8, 58], second-order cumulant rep-
resentation (diffusional kurtosis) [5, 6] and diffusion models 
with characteristic equations given by a stretched exponential 

FIGURE 6    |    Quasi-diffusion imaging for in vivo human Dataset 2 (0 ≤ b ≤ 17,800 s mm−2) and ex vivo rat Dataset 3 (0 ≤ b ≤ 25,000 s mm−2). (a, b) 
Signal attenuation and QDI fits for representative cortical (green) and midsagittal corpus callosum white matter (blue) voxels for the human and rat 
data, respectively. IPs are marked on the decay curves by a vertical black line. (c, d) Axial slices (clockwise from top left) of D1,2, �, IP, and MSE maps 
for each dataset, respectively. Box and whisker plots are shown for (e) D1,2, (f) �, and (g) IP in grey matter (green), white matter (blue), and corpus 
callosum (magenta) regions of interest for both datasets.
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FIGURE 7    |     Legend on next page.
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(i.e., space-fractional superdiffusion [9], fractional motion 
[10, 11] and transient subdiffusion and superdiffusion [59, 60]).

The ability of QDI to define an experimentally observed power 
law is in contrast to other signal representation techniques and 
tissue compartment models that have not explicitly demon-
strated this effect despite estimating greater numbers of pa-
rameters (i.e., higher order cumulant functions [15, 61], mean 
apparent propagator imaging [62], q-space diffusion propagator 
imaging [63], diffusion spectrum imaging [64], Laplacian eigen-
functions [65, 66], DBSI [67], NODDI [68] and VERDICT [69]). 
For instance, as more tensors are added to tensor distribution 
models, the signal attenuation tends to a negative power law, but 
no signal inflection is observed [70, 71]. Furthermore, a recent 
extension to the NODDI technique has included an impermeable 
intraneurite stick compartment [72], which potentially enables 
modelled signal to include an IP and transition to a negative 
power law at high b-values. Nevertheless, a limitation of each of 
these techniques is that a greater number of fitting parameters 
risks problems of parameter degeneracy and high sensitivity to 
effects of noise on parameter estimation [73].

Stochastic models with characteristic equations given by a MLF, 
such as general CTRW diffusion [45, 49, 74] and time-fractional 
subdiffusion [45, 75, 76], will identify transition between stretched 
exponential and power law behaviour via a signal IP. However, 
QDI is unique in being based on a stochastic model of anomalous 
diffusion with a normal effective diffusion that is neither superdif-
fusive nor subdiffusive [33, 34]. Afzali et al. [47] have demonstrated 
transition to the localisation regime using a higher order cumulant 
expansion but this involves estimation of five parameters that do 
not have clear mathematical or physical meaning. GM tissue com-
partment models [22–24] can identify transition from Gaussian to 
power law regimes via a signal IP as shown in experimental data 
when plotted against 1∕

√
b. This is due to either assumption of 

an impermeable intraneurite stick compartment [22, 24] or the in-
clusion of a Kärger model [77] to quantify cell membrane perme-
ability [23, 24], which subtly alters Gaussian phase approximation 
assumptions within the modelled signal. In QDI, the � exponent 
does not transition from a Gaussian (� = 1) at b = 0 s mm−2 to an in-
traneurite power law scaling of 1∕

√
b (� = 0.5) as b→ ∞. Despite 

this, we have shown that the QDI functional form provides an 
excellent representation of signal across a large range of b-values, 
diffusion gradient durations and diffusion times.

Negative power law exponents estimated by QDI in human 
GM of � ≈ 0.9 are similar to previously reported exponents 
[12, 33, 35, 45]. Olesen et al. [24] have shown in GM simulation 
studies that the intraneurite power law is obscured by proper-
ties of the soma and an apparent power law is observed in neu-
rites plus soma, which increases with � to 0.8 at �∕ Δ = 9∕30 
ms. Olesen et al. [24] suggest this effect is caused by substan-
tial exchange between soma and the extracellular space, 

non-negligible neurite exchange and a small population of my-
elinated impermeable axons. Furthermore, they investigated 
whether intraneurite power laws could be observed in fixed 
rat brain at 16.4 T for data acquired at 37°C at short diffusion 
times and found dMRI signal attenuation to be well approxi-
mated by eSANDIX for �∕ Δ = 4∕16 ms with an intraneurite 
power law observed for b-values > 25,000 s mm−2. Our fixed 
brain rat data at room temperature revealed � ≈ 0.8 in GM at a 
similar diffusion time (�∕ Δ = 3.5∕17.5 ms) but with b-values 
≤ 25,000 s mm−2. This suggests the QDI technique is capable of 
observing a transition to an apparent power law but would be 
unable to define a final transition to an intraneurite power law 
as b→ ∞. Consequently, the QDI technique is sensitive to tis-
sue heterogeneity as well as effects of semipermeable cell mem-
branes in GM prior to transition to an intraneurite power law.

In WM, our negative power law exponents were higher than 
previously reported � ≈ 0.5 [3, 12, 13] with the exception of the 
ex vivo data. Our in vivo results are consistent with higher ex-
ponents reported in WM for human participants analysed by 
QDI [33–35, 45]. Furthermore, they are consistent with nega-
tive power laws found in WM for water signal in diffusion MRS 
experiments estimated using the time-fractional subdiffusion 
model (� = 0.67) [78] than for total NAA, a metabolite exclu-
sively found within neurons, for which the intraneurite stick 
model (� = 0.5) provides excellent fits to brain tissue signal 
[79, 80]. Negative power law exponents estimated by QDI in our 
experiments were lower in data that were acquired with shorter 
� (Dataset 1 �∕ Δ = 12∕23 ms, Dataset 2 �∕Δ = 8∕49 ms and 
Dataset 3 �∕ Δ = 3.5∕17.5 ms) potentially suggesting an effect 
of cell permeability on apparent � exponents estimated by QDI 
[24]. They were also higher in dMRI data acquired with longer 
Δ, further suggesting the sensitivity of QDI to cell permeabil-
ity [24]. Theoretical modelling of water exchange between in-
tracellular and intramyelin compartments suggests there are 
subsecond exchange times that can affect measured diffusion 
parameters, with greater permeability effects on ADC for longer 
effective diffusion times [81] and at higher b-values [82, 83]. Cell 
permeability effects will break the intraneurite power law and 
increase observed negative power law exponents [13], an effect 
that has been demonstrated in simulation for presence in the 
presence of permeable sticks [84] and used to infer pathologi-
cal mechanisms that include increased WM cell permeability in 
damaged axons due to multiple sclerosis [84]. An ex vivo mouse 
study of amyotrophic lateral sclerosis also reported � measured 
by QDI above 0.5 in affected mice [46] for dMRI acquired per-
pendicular to mouse spinal cord up to a maximum b-value of 
858,022 s mm−2 (�∕ Δ = 11∕400 ms). If a non-negligible ex-
change between intracellular (which includes axons, oligoden-
drocytes, astrocytes, microglia and oligodendrocyte precursor 
cells [85], for which astrocytic processes cover approximately 
48% of the voxel, a similar volume to myelin [85]) and extra-
cellular spaces occur in healthy or pathological tissue during 

FIGURE 7    |    Effect of increasing diffusion time on quasi-diffusion images for the ex vivo rodent dataset. Axial slices are shown for (a) D1,2 and 
(b) � maps at diffusion times of Δ = 17.5, 50, 100 and 200 ms with fixed � = 3.5 ms. QDI fits to signal attenuation are presented in log–log plots for 
representative (c) cortical grey matter and  (d) corpus callosum voxels for Δ = 17.5 ms (black), Δ = 50 ms (blue), Δ = 100 ms (red) and Δ = 200 ms 
(magenta). Time-dependence of D1,2  (graphs d and g) and (graphs e and h) are is shown for grey matter (green) and white matter (blue) regions of 
interest as box and whisker plots.
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experimental diffusion times, the diffusion environment will 
not obey the intraneurite model until extremely high b-values 
that are outside the experimental ranges analysed in our study. 
This suggests that QDI provides an apparent � that is sensitive to 
tissue heterogeneity and cell permeability in WM.

Our finding of time-dependent QDI parameters in fixed rat 
brain tissue that tend towards Gaussian tortuosity limits as 
diffusion time increases indicates that QDI is sensitive to tis-
sue heterogeneity and cell permeability. These results are com-
parable to findings of time-dependent diffusion and kurtosis 
for in vivo GM [23, 26] and WM [28, 30, 32] and ex vivo tissue 
[24, 29, 31] and are further supported by observation of waiting 
time exponents increasing with diffusion time in application of 
the general CTRW model to the same ex vivo data as analysed 
in our study (Ingo et al. [49], for analysis of � = 3.5 ms, Δ = 17.5 
and 50 ms). Our results suggest that QDI provides tissue specific 
time dependence of D1,2 and � such that tortuosity limits are ap-
proached faster in GM than WM, with the slowest changes oc-
curring within the more restricted diffusion environment of the 
CC where an intra-neurite power law was found at Δ = 17.5 ms 
(median � = 0.528) that slowly increased to � = 0.692 at Δ = 200 
ms. Our results do not indicate how high acquired b-value 
ranges would have to be to observe transition to an intraneurite 
power law at long diffusion times up to 200 ms, but they suggest 
that QDI offers an alternative representation of time-dependent 
diffusion to DKI from which tissue specific time dependence 
may be elucidated. Future studies will investigate the specificity 
of these time-dependent effects in healthy and diseased tissue.

QDI parameters converge towards stable apparent values when 
maximum b-values are approached in Dataset 1, indicating it pro-
vides an accurate representation of dMRI signal attenuation up to 
bmax = 15,000 s mm−2. Furthermore, � tends towards a Gaussian 
limit (� = 1) as bmax → 0. Signal IPs have been previously shown to 
exist in GM signal [24] and can be identified using QDI. Although 
our signal IPs are a novel method for identifying tissue contrast be-
tween healthy tissue, they are a feature of the QDI functional form 
that is dependent on D1,2 and �. As QDI provides a representation 
of dMRI signal, we caution against using this technique to make 
signal IP predictions outside experimentally acquired b-value 
ranges [86]. This is particularly apparent in WM structures where 
low � leads to QDI IPs that are both shallow and located at b-values 
higher than bmax. Nevertheless, the QDI technique fits data excep-
tionally well over the analysed b-value ranges suggesting that QDI 
can be used to identify a lower bound for the maximum b-value 
that must be achieved at acquisition for accurate estimation of ap-
parent signal power law behaviour. For directionally averaged sig-
nal in healthy tissue (with acquisition parameters δ/Δ = 12/23 ms, 
0 ≤ b ≤ 15,000 s mm−2), this corresponded to bmax ≥ 8000 s mm−2; 
if lower maximum b-values are acquired, such as on clinical MR 
scanners [33, 35], a systematic inaccuracy will be observed on � 
values for bmax ≥ 3000 s mm−2 that decreases with higher bmax. We 
have shown here for dataset 1 that accurate QDI parameter esti-
mation is possible for directionally averaged dMRI over 4 b-values 
(b = {0, 1200, 4000, 15000} s mm−2) within a clinically feasible 
acquisition time of 6 min and 16 s. Future studies will optimise 
QDI acquisition protocols for a minimum of three b-values [33] or 
from four b-values for greater accuracy and precision of parameter 
estimation [35] to provide clinically feasible acquisition protocols 
based on data cohorts.

We have shown that QDI is a parsimonious representation of the 
diffusion decay curve and introduced properties of the signal IP, 
which is as an important feature of dMRI signal attenuation. By 
demonstrating that QDI provides an excellent fit to dMRI data 
of brain tissue over a wide range of diffusion times and b-values 
from low to ultra-high we have shown that it is sensitive to het-
erogeneous microstructure and semipermeable membranes. 
Furthermore, QDI provides time-dependent parameters that 
may be specific to healthy and pathologically damaged tissue 
microstructure. QDI allows assessment of dMRI signal atten-
uation before its ultimate transition to an intraneurite power 
law. In this regime, the apparent negative power law exponent 
provided by QDI offers a more general approach to measure-
ment of signal power laws than the intraneurite model alone 
and provides a continuous functional description of signal for b
-value ranges, diffusion gradient durations and diffusion times 
currently accessible in clinical research. This may enable ratio-
nal development of clinically optimised acquisitions for tissue 
microstructural models as well as biomarkers of brain develop-
ment, ageing and disease. As the technique provides stable, high 
SNR images that represent non-Gaussian diffusion signal the 
technique will be sensitive to changes in the microstructural en-
vironment and have applications in disease diagnosis and mon-
itoring disease progression.
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