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population and across clinical settings
 

Sean L. Zheng    1,2,3, Sean J. Jurgens    4,5, Kathryn A. McGurk    1,2, Xiao Xu1,2, 
Chris Grace6,7, Pantazis I. Theotokis    1,2,3, Rachel J. Buchan    1,2,3, 
Catherine Francis1,3, Antonio de Marvao    1,2,8,9, Lara Curran1,2,3, Wenjia Bai    10,11, 
Chee Jian Pua    12, Hak Chiaw Tang13, Paloma Jorda    14,15, 
Marjon A. van Slegtenhorst16, Judith M. A. Verhagen    16, Andrew R. Harper6,7, 
Elizabeth Ormondroyd    6,7, Calvin W. L. Chin    13, HCM GWAS Collaborators*,**, 
Antonis Pantazis3, John Baksi1,3, Brian P. Halliday1,3, Paul Matthews    11, 
Yigal M. Pinto    4,17,18, Roddy Walsh    4, Ahmad S. Amin    4,17,18, 
Arthur A. M. Wilde4,17,18, Stuart A. Cook2,13,19, Sanjay K. Prasad1,3, 
Paul J. R. Barton    1,2,3, Declan P. O’Regan2, R. T. Lumbers    20,21,22, Anuj Goel6,7, 
Rafik Tadros    14,15, Michelle Michels18,23, Hugh Watkins    6,7,26, 
Connie R. Bezzina    4,18,26 & James S. Ware    1,2,3,24,25,26 

Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity 
and mortality, with pathogenic variants found in about a third of cases. 
Large-scale genome-wide association studies (GWAS) demonstrate that 
common genetic variation contributes to HCM risk. Here we derive polygenic 
scores (PGS) from HCM GWAS and genetically correlated traits and test their 
performance in the UK Biobank, 100,000 Genomes Project, and clinical 
cohorts. We show that higher PGS significantly increases the risk of HCM 
in the general population, particularly among pathogenic variant carriers, 
where HCM penetrance differs 10-fold between those in the highest and 
lowest PGS quintiles. Among relatives of HCM probands, PGS stratifies risks 
of developing HCM and adverse outcomes. Finally, among HCM cases, PGS 
strongly predicts the risk of adverse outcomes and death. These findings 
support the broad utility of PGS across clinical settings, enabling tailored 
screening and surveillance and stratification of risk of adverse outcomes.

Hypertrophic cardiomyopathy (HCM) is a primary cardiac disease 
characterized by excessive hypertrophy of the left ventricle with a popu-
lation prevalence of 0.2%1. While many cases follow a benign course, 
HCM is an important cause of sudden cardiac death in young adults, 
and progressive disease is complicated by arrhythmia, stroke and heart 
failure2,3. Although HCM has classically been considered a Mendelian 
disease, a causal rare variant is identified in only one-third of cases4,5, 
with population studies highlighting the incomplete penetrance and 

variable expressivity of such variants6,7. Recent genome-wide associa-
tion studies (GWAS) demonstrated that common variants contribute 
substantially to HCM risk (SNP, h2 = 0.29), identified many contribu-
tory loci and highlighted the complex genetic architecture of HCM8–10. 
Polygenic scores (PGS) summarize the cumulative risk arising from 
common variants and may provide important utility for population risk 
prediction and prognostication9,11. Still, it remains unclear whether PGS 
can inform the risk of HCM and clinical outcomes across broad clinical 
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mean accounted for 46.4% (95% CI = 41.2–51.7) of cases (Fig. 2b). Hav-
ing demonstrated associations between PGS and HCM risk, we evalu-
ated effect sizes in the general population. Individuals with PGS in the 
highest centile (prevalence = 10.9 cases per 1,000 individuals) had sig-
nificantly higher risks of HCM compared with those in the median (prev-
alence = 0.8 cases per 1,000 individuals, OR = 14.5, 95% CI = 9.5–22.2,  
P = 3.5 × 10−35; time to HCM diagnosis—hazards ratio (HR) = 3.6, 95% 
CI = 2.6–4.8, P < 2 × 10−16) and lowest centiles (prevalence = 0.3 cases per 
1,000 individuals, OR = 36.6, 95% CI = 18.6–72.2, P = 2.9 × 10−25; Fig. 2c,d, 
Supplementary Fig. 2 and Supplementary Tables 2 and 3).

Exploring the role of polygenic risk on the expressivity of an HCM 
phenotype in 30,663 white British ancestry UKB participants who 
underwent CMR, PGSGWAS was associated with traits that are classically 
seen in HCM6: increased cardiac hypertrophy (maximum left ventricu-
lar wall thickness (maxLVWT) = +0.13 mm per PGS s.d., P = 1.1 × 10−80; 
highest versus lowest PGS centile = 9.8 versus 9.1 mm, P = 9 × 10−9), 
increased cardiac contractility (left ventricular ejection fraction 
(LVEF) = +0.6%, P = 2.7 × 10−64; 61.3% versus 57.7%, P = 2.7 × 10−13), 
reduced chamber volumes (left ventricular end-diastolic volume 
(LVEDV) = −2.0 ml, P = 1.2 × 10−46; 142.1 versus 154.9 ml, P = 8.3 × 10−8) 
and LVESV (−1.7 ml, P = 6.9 × 10−80; 55.9 versus 66.4 ml, P = 2.7 × 10−10), 
all of which were biventricular in nature (Supplementary Fig. 3 and Sup-
plementary Tables 4 and 5), and persisted when excluding participants 
with HCM (Supplementary Table 6).

Phenome-wide association study (PheWAS) of 1,839 clinical diag-
noses in the UKB identified PGS associations with hypertension and 
metabolic phenotypes (dyslipidemia and type 2 diabetes; Supple-
mentary Table 7). Mendelian randomization (MR) highlighted causal 
influence of blood pressure and body mass index, albeit with evidence 
of significant pleiotropy8, and no significant associations with lipid and 
glycemic traits (Supplementary Table 8 and Supplementary Fig. 4). 

and population settings. In this study, we develop and evaluate a PGS 
for HCM, assessing its utility for stratification of both disease risk and 
severity in (1) individuals diagnosed with HCM, (2) relatives of affected 
individuals who are currently recommended to undergo screening 
and long-term surveillance, and (3) the general population, including 
individuals carrying disease-associated rare variants such as those that 
might be identified as secondary findings.

Results
Generation and evaluation of an HCM PGS in the general 
population
PGS was generated using the largest published GWAS comprising a 
total of 5,900 unrelated HCM cases and 68,359 controls of European 
ancestry from seven cohorts (PGSGWAS), and multitrait analysis of GWAS 
(MTAG) incorporating the HCM GWAS with GWAS of three genetically 
correlated cardiac magnetic resonance (CMR) imaging traits (left ven-
tricular concentricity, left ventricular end-systolic volume (LVESV) and 
left ventricular circumferential strain) in 36,083 European ancestry 
participants in the UK Biobank10 (UKB; PGSMTAG; Fig. 1). In an independ-
ent cohort of 343,182 unrelated white British ancestry participants in 
UKB, PGSMTAG was associated with the risk of HCM (defined using Inter-
national Classification of Diseases 9 and 10 (ICD-9 and ICD-10) codes, 
self-reporting and/or CMR imaging; Supplementary Note; odds ratio 
(OR) = 2.34 per PGSMTAG s.d., 95% confidence interval (CI) = 2.12–2.59, 
P < 2 × 10−16), provided better predictive performance than PGSGWAS 
(OR = 1.97 per PGSGWAS s.d., 95% CI = 1.81–2.15, P < 2 × 10−16; Supplemen-
tary Table 1) and was therefore used for all subsequent analyses unless 
otherwise stated (Supplementary Fig. 1). The distribution of PGS in 
the UKB population-based cohort is shown in Fig. 2a. Among HCM 
cases, 75.1% (95% CI = 71.4–79.5) have a PGS above the population mean, 
while those with a PGS greater than one standard deviation above the 
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Fig. 1 | Study overview. Bayesian genome-wide PGS were generated from 
a published European-ancestry HCM GWAS meta-analysis of seven case–
control studies (comprising 5,900 cases and 68,359 controls; PGSGWAS), and 
MTAG (analyzing HCM with three genetically correlated quantitative traits 
measured using CMR imaging in 36,083 European ancestry UKB participants—
LV concentricity (LVconc), LEVSV and left ventricular circumferential strain 
(straincirc); PGSMTAG)10. The value of PGS to support clinical decision-making was 

evaluated across three key settings: in the general population (including among 
carriers of pathogenic rare variants in HCM-causing genes (sarcomere-positive) 
that might be returned as secondary findings), in relatives of HCM probands 
currently recommended to undergo cascade screening and surveillance, and in 
confirmed HCM cases under longitudinal follow-up. The figure is created with 
BioRender.com. SARC-PLP, pathogenic or likely pathogenic variant in sarcomeric 
HCM genes.
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The inverse association with heart failure9 (Fig. 2e) and absence of 
expected associations (for example, atrial fibrillation or flutter4) may 
be explained by the reciprocal relationship of HCM common genetic 
risk with dilated cardiomyopathy (DCM)9 (UKB DCM—OR = 0.88 per 
PGS decile, 95% CI = 0.85–0.90, P < 2 × 10−16; OR = 0.69 per PGS s.d., 
95% CI = 0.64–0.74; Supplementary Fig. 2). MR analysis identified 
causal protective associations with heart failure (MR inverse variance 
weighted (IVW) β = −0.09, P = 1.3 × 10−3). For atrial fibrillation, MR analy-
sis showed no overall causal relationship (MR IVW β = 0.02, P = 0.39), 
with individual HCM-risk variants associated with both increased and 
decreased atrial fibrillation risk, highlighting the complex pleiotropic 
relationship (Supplementary Fig. 5).

PGS performance in non-European ancestry populations
PGS derived from one ancestry underperform when applied to dif-
ferent or more diverse ancestral populations12–15. We adapted the 
European-ancestry PGS (PGSGWAS) by applying ancestry-specific linkage 
disequilibrium references16 and evaluated its performance for HCM sta-
tus in 16,349 UKB participants of non-European ancestry (7,542 South 
Asian, 7,348 African and 1,457 East Asian ancestry), and for CMR quanti-
tative traits in a subset. PGS distributions differed between the different 
ancestry groups (ANOVA P < 2 × 10−16, Tukey adjusted P < 2.5 × 10−8 for 
between-group comparisons), with PGS highest in African ancestry 
(HCM prevalence = 0.4%), and lowest in South Asian ancestry (HCM 
prevalence = 0.1%; Supplementary Fig. 6). Although analysis within each 
ancestral group was limited by power, as expected, PGS performance 
appeared to be poorer (South Asian (9 HCM cases, OR = 1.82 per PGS 
s.d., P = 0.068), African (27 cases, OR = 1.21 per PGS s.d., P = 0.35) and 
insufficient East Asian ancestry cases to allow estimation (2 cases)) 
compared within white British (OR = 2.34 per PGS s.d., P < 2 × 10−16; 
Supplementary Fig. 6 and Supplementary Table 9).

To improve cross-ancestral polygenic prediction, we performed 
GWAS in an unrelated East Asian ancestry cohort of 174 HCM cases and 
776 controls recruited from Singapore (no individual SNPs reaching 
genome-wide significance, Supplementary Fig. 7), and combined them 
with PGSGWAS to generate a cross-population PGS (PGSEast Asian) using 
PRS-CSx16. In 111 East Asian ancestry individuals with CMR in the UKB, 
PGSEast Asian was nominally associated with left ventricular volumetric 
(LVESV, change per PGS s.d. = −3.6 ml, P = 0.025, Padj = 0.11) and wall 
thickness (maxLVWT = +0.28 mm, P = 0.017, Padj = 0.09) traits, which 
were not present when using the European only PGSGWAS (Supplemen-
tary Fig. 6 and Supplementary Table 10). This suggests that even a mod-
est ancestry-specific GWAS can improve performance when applying 
a PGS in a new population.

PGS modulates the penetrance of HCM-causing rare variants
Among 318,945 UKB participants with whole-exome sequencing (WES), 
640 were unrelated carriers of pathogenic or likely pathogenic vari-
ants in eight genes encoding components of the cardiac sarcomere 
(MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL3 and MYL2; 
‘sarcomere-positive’)17. A total of 336 HCM cases were identified, of which 
43 cases were sarcomere-positive (penetrance = 6.7%, 95% CI = 4.9–8.9) 
and 293 cases were sarcomere-negative (prevalence = 0.09%, 95% 
CI = 0.08–0.1). Among the UKB population, there was no difference in 
mean PGS in sarcomere-positive and sarcomere-negative participants 
(P = 0.60; Supplementary Fig. 8), arguing against any unmeasured 
relationship between rare sarcomeric variants and common variant 
polygenicity that might arise from selective ascertainment. PGS was 
associated with HCM in both sarcomere-positive (OR = 2.35 per PGS s.d., 
P = 1.1 × 10−6) and sarcomere-negative participants (OR = 2.15 per PGS 
s.d., P < 2 × 10−16; Fig. 3a). Among the 640 unrelated sarcomere-positive 
individuals in UKB, penetrance by middle-older age (median age = 72 
years, IQR ± 13 years) was markedly greater in those in the highest 
PGS quintile (HCM penetrance = 17.2%, 95% CI = 10.8–25.3) when com-
pared with the median (5.7%, 95% CI = 2.1–12.0; highest versus median 

quintile—OR = 3.69, 95% CI = 1.46–10.67, P = 0.009) and lowest quintiles 
(2.3%, 95% CI = 0.5–6.6; highest versus lowest quintile—OR = 9.56, 95% 
CI = 2.95–43.89, P = 7.3 × 10−4; Fig. 3b). In time-to-event analyses, the 
risk of HCM diagnosis (HR = 3.98, 95% CI = 1.66–9.52, P = 0.001) and 
adverse HCM outcomes (HR = 1.56, 95% CI = 1.1–2.34, P = 0.029) were 
similarly greater in the highest compared with median quintile (Fig. 3c 
and Supplementary Fig. 8).

We confirmed the modulatory role of PGS on rare variants in 
100,000 Genomes Project (GeL)18 (Fig. 3d) a study that recruited indi-
viduals with rare diseases (including cardiomyopathies) and their 
relatives. Because a small proportion of the GeL cohort was ascertained 
based on cardiomyopathy, we cannot use these data to directly quan-
tify penetrance, but can nonetheless assess the effect size for PGS in 
combination with a rare variant on disease risk in this cohort. There 
were 599 sarcomere-positive participants, of which 72 were HCM cases 
(proportion affected = 12.0%, 95% CI = 9.6–15.0%). PGSGeL (generated 
from MTAG summary statistics leaving out the GeL cohort) was asso-
ciated with prevalent HCM (OR = 3.53 per PGSGeL s.d., 95% CI = 2.59–
4.80, P = 9.8 × 10−16; OR = 1.60 per PGSGeL decile, 95% CI = 1.41–1.85). 
Sarcomere-positive individuals with high PGSGeL (highest quintile) 
were more than 9 times as likely to have been ascertained as cases com-
pared with the median (OR = 9.50, 95% CI = 3.60–32.6, P = 4.3 × 10−5), 
and 25 times as likely compared with the lowest quintiles (OR = 25.1, 
95% CI = 7.3–160.3, P = 1.8 × 10−5; Fig. 3e). The hazards of HCM diag-
nosis was higher in the highest quintile than at the median (HR = 21.8, 
95% CI = 4.8–98.6, P = 0.0002) and lowest quintiles (HR = 42.8, 95% 
CI = 5.0–364.0, P = 0.002; Fig. 3f). Finally, of 527 sarcomere-positive 
individuals without a diagnosis of HCM on recruitment to the 100,000 
Genomes Project, a total of 7 were diagnosed with HCM on follow-up, 
5 of whom had PGSGeL in the highest quintile.

Pathogenic rare variant effects remain greater than PGS risk
It has been suggested for several diseases that extreme PGS risk 
confers a similar magnitude of increased risk as the presence of  
Mendelian pathogenic variants (for example, familial hypercho-
lesterolemia for coronary artery disease, and BRCA1 or BRCA2 for 
breast cancer12,19,20). In the UKB, while sarcomere-negative individu-
als with PGS at the uppermost extreme (defined as the top 0.25%—a  
frequency comparable to population estimates of pathogenic 
HCM rare variants (1 in 400)6) had an 18-fold increased risk of hav-
ing HCM compared with the median (OR = 18.1, 95% CI = 10.0–32.9, 
P = 1.6 × 10−21), they were at significantly lower risk of HCM and sever-
ity of imaging traits compared with sarcomere-positive individuals 
(OR = 5.4, 95% CI = 2.8–11.6, P = 2.2 × 10−8; Supplementary Table 11). 
These findings suggest that while PGS accounts for an important 
component of risk in sarcomere-negative individuals, genetic  
HCM risk is highest among carriers of rare pathogenic variants in 
sarcomeric genes.

PGS stratifies the risk of HCM in relatives of probands
Understanding the penetrance of HCM in relatives of probands will have 
important implications on clinical practice (for example, screening and 
longitudinal surveillance). We sought to assess whether PGS modulates 
penetrance in relatives of sarcomere-positive HCM cases, and stratifies 
risk in sarcomere-negative families, in two cohorts.

The 100,000 Genomes Project was initially designed to evalu-
ate genetically unexplained rare disease through the recruitment 
of cases and their relatives, and therefore, the cohort has a higher 
proportion of genetically unexplained sarcomere-negative cases 
than in the clinical setting (pathogenic rare variants were identi-
fied in 94 out of 919 HCM cases). In all, 288 relatives of 193 HCM 
index cases (262 gene-negative, and 26 gene-positive relatives of 14 
gene-positive HCM cases) were recruited, of whom 116 had prevalent 
HCM and 6 were diagnosed with HCM during follow-up. PGSGeL was 
higher in probands (P < 2 × 10−16) and affected relatives (P = 3.6 × 10−6) 

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02094-5

PGS

No HCM

HCM
a

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
Proportion of total HCM cases (%)

PG
S 

ce
nt

ile
 in

 p
op

ul
at

io
n 

(%
)

–2s.d.

–1s.d.

Mean

+1s.d.

+2s.d.
b

e

HR = 3.6 (95% CI = 2.6–4.8), P = 9.1 × 10−50

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70 80
Age (years)

C
um

ul
at

iv
e 

H
C

M
 d

ia
gn

os
is

68,497 68,496 68,496 68,493 68,487 68,384 58,769 38,172 6,628

3,427 3,427 3,427 3,427 3,426 3,420 2,886 1,882 314High
Median

0 10 20 30 40 50 60 70 80

Number at risk

PGS risk Median
40–60%

High
>99%

d

2

4

6

8

10

12

14

<1% 1–5
%

5–10
%

10
–2

0%

20
–4

0%

40–6
0%

60–8
0%

80–9
0%

90–9
5%

95–9
9%

>9
9%

PGS quantile

H
C

M
 p

re
va

le
nc

e 
(c

as
es

 p
er

 1,
00

0 
in

di
vi

du
al

s)

OR = 14.5, P = 3.5 × 10−35 
OR = 36.6, P = 2.9 × 10−25

  Type 2 diabetes
phenotypes

Dyslipidaemia phenotypes

  Abnormal heart sounds

  Hypertension

  Other forms of heart disease

Hypertrophic obstructive cardiomyopathy

Other HCM

  Secondary/extrinsic cardiomyopathies

  Nonhypertensive congestive heart failure

  Congestive heart failure

  Heart failure

  Varicose veins

0

5

10

15

20

25

30

35

40

45

50

Inf
ec

tio
us

 d
ise

as
es

Neo
plas

m
s

En
doc

rin
e/

m
et

ab
ol

ic
Hem

at
op

oie
tic

Ps
yc

hia
tri

c d
iso

rd
er

s
Neu

ro
lo

gica
l

Sen
se

 or
gan

s
Car

diov
as

cu
lar

Res
pira

to
ry

Gas
tro

int
es

tin
al

Gen
ito

ur
ina

ry

Dise
as

es
 of

 p
re

gna
nc

y
Der

m
at

ol
og

ic
Mus

cu
lo

sk
ele

ta
l

Con
gen

ita
l a

no
m

ali
es

Sym
pto

m
s

Inj
ur

ies
 an

d p
ois

on
ing

s

−l
og

10
 (P

)

c Infectious diseases
Neoplasms
Endocrine/metabolic
Hematopoietic
Psychiatric disorders
Neurological
Sense organs
Cardiovascular
Respiratory
Gastrointestinal
Genitourinary
Diseases of pregnancy
Dermatologic
Musculoskeletal
Congenital anomalies
Symptoms
Injuries and poisonings 

Fig. 2 | HCM PGS is associated with HCM disease status in the UKB. To validate 
the PGS, we analyzed associations with PGS in the UKB population. a, PGSMTAG 
distribution in 374,845 UKB participants with and without HCM, demonstrating 
higher PGS in those with HCM. b, Cumulative curve of HCM cases ranked across 
PGS centiles. For example, approximately 75% of HCM cases have a PGS above  
the population 50th centile. Dashed lines represent mean, ±1 PGS s.d. and  
±2 PGS s.d. Shaded line indicates 95% CI surrounding the cumulative estimate.  
c, Manhattan plot of HCM PGS phenome-wide association study in UKB, showing 
associations with cardiovascular and metabolic phenotypes. ICD-9 and ICD-10 
diagnostic codes are mapped to Phecode Map (v1.2). Mapped phenotypes 
exceeding phenome-wide significance threshold (P = 2.7 × 10−5, red line) are 

labeled. Blue line indicates nominal significance (P < 0.05). Direction of triangle 
indicates the direction of effect of the PGS association. d, HCM prevalence and 
risk in UKB across the spectrum of PGS, demonstrating significantly higher HCM 
prevalence in individuals with the highest PGS (top centile, n = 3,394), compared 
with the median (n = 68,587) and lowest groups (bottom centile, n = 3,431). Effect 
estimates generated using logistic regression adjusting for age, age2, sex and top 
ten genetic principal components (PCs), with unadjusted two-sided P value. Data 
are presented as effect estimates with 95% CI. e, Cumulative hazards for lifetime 
diagnosis of HCM stratified by high (highest centile, red) and median (middle 
quintile, orange) PGS risk in UKB. HR calculated using Cox proportional hazards 
model, adjusted for age, age2, sex and first ten genetic PCs, with two-sided P value.
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d–f, 100,000 Genomes Project (GeL) comprises a mix of participants recruited 
based on cardiomyopathy and participants recruited with other rare diseases, 
cancer or as relatives of patients with a rare disease. a,d, The PGS distribution is 
shown in 640 sarcomere-positive UKB participants (a) and 599 GeL participants 
(d) with and without HCM, validating that PGS is higher in cases than controls. 
b,e, Among sarcomere-positive individuals, the highest PGS quintile  

(UKB, n = 136; GeL, n = 116) was associated with increased HCM diagnosis 
compared with median (UKB, n = 111; GeL, n = 116) and lowest quintiles (UKB, 
n = 133; GeL, n = 118). Effect estimates generated using logistic regression adjusting 
for age, age2, sex and top ten genetic PCs, with unadjusted two-sided P value. Data 
are presented as effect estimates with 95% CI. c,f, The time to HCM diagnosis in 
highest, median and lowest quintiles, shows that those with higher PGS are at 
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model, adjusted for age, age2, sex and first ten genetic PCs, with two-sided P value.
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compared with unaffected relatives, with no difference between 
probands and affected relatives (P = 0.99). PGS was associated with 
increased risk of HCM (HCM—OR = 1.74 per PGSGeL s.d., 95% CI = 1.37–
2.21, P = 5.1 × 10−6; highest versus median quintile—OR = 4.17, 95% 
CI = 1.78–10.5, P = 0.0015; Fig. 4a). Of 178 relatives who did not have 
a diagnosis of HCM on recruitment, 6 were diagnosed on follow-up 
(mean = 5.1 years), all with PGS in the highest quintile.

The Erasmus Medical Center (EMC) cohort comprises 214 rela-
tives of 184 index HCM cases, all carriers of rare pathogenic variants in 
sarcomere-encoding genes. After clinical evaluation, 135 relatives were 
found to have HCM. Although the PGSEMC (derived using HCM MTAG 
omitting EMC cohort) was not significantly associated with HCM in 
relatives (OR = 1.4 per PGSEMC s.d., 95% CI = 0.97–1.98, P = 0.069; Fig. 4a), 
it was associated with increased maxLVWT (+1.4 mm per PGSEMC s.d., 
95% CI = 0.6–2.1, P = 5.0 × 10−4; highest versus lowest quintile—+3.5 mm, 
95% CI = 1.26–6.41, P = 0.0035) and, importantly, with increased risk of 
major adverse cardiovascular events after study enrollment (HR = 1.74 
per PGSEMC s.d., 95% CI = 1.03–2.91, P = 0.036; highest versus lowest 
quintile—HR = 17.7, 95% CI = 0.9–347, P = 0.058), prevention of which 
is the primary motivation for cascade screening and early diagnosis 
(Fig. 4b,c and Supplementary Fig. 9).

PGS as a new prognostic marker in HCM
Although some individuals with HCM have a relatively benign disease 
course, an important proportion suffer adverse outcomes, including 
cardiovascular death, and risk stratification, especially for preventable 
sudden death, remains an urgent clinical need. We sought to investigate 
whether PGS was associated with adverse outcomes and clinical features 
of severity in individuals with HCM. In 382 HCM cases in the UKB, a PGS 
in the highest quintile was associated with an increased risk of death 
and adverse cardiovascular outcomes after HCM diagnosis (death—
highest versus lowest quintile, HR = 3.88, 95% CI = 1.33–11.29, P = 0.013; 
adverse outcomes (HCM composite)—HR = 3.50, 95% CI = 1.74–7.03, 
P = 4.4 × 10−4; Fig. 5a,b, Supplementary Fig. 10 and Supplementary 
Table 12). In 683 HCM cases in GeL, cases in the highest quintile had 
a sixfold increased risk of death after HCM diagnosis (HR = 6.30, 95% 
CI = 2.68–14.78, P = 1.4 × 10−6; Fig. 5c and Supplementary Fig. 10). In 101 
sarcomere-positive HCM cases from a clinical cohort (Royal Brompton 
& Harefield Hospitals, RBH), higher PGS was associated with a more 
severe hypertrophic phenotype (maxLVWT = +1.6 mm per PGS s.d., 95% 
CI = 0.61–2.63, P = 0.002; left ventricular mass = +13.8 g per PGS s.d., 
95% CI = 1.5–26.2, P = 0.03) with no difference seen in the overall cohort 
of 440 cases (Supplementary Fig. 10 and Supplementary Table 13).
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Fig. 4 | PGS associate with HCM risk and adverse outcomes in relatives of 
HCM cases. To evaluate applications of PGS in families undergoing screening 
and surveillance for HCM, we studied the relatives of HCM cases in two cohorts, 
GeL and EMC cohort. a, OR for HCM among relatives of HCM probands in the 
two cohorts (GeL, n = 288; EMC, n = 214), stratified by PGS. b, Violin and box and 
whisker plot of maxLVWT in sarcomere-positive relatives stratified by highest 
(n = 40) and lowest (n = 38) PGSEMC quintiles. Box plot indicate median and 
interquartile range, whiskers denote 1.5× the interquartile range, outliers shown 
separately, and the edges of violin plots indicate minimum and maximum values. 
Dashed line indicates a 13-mm cutoff used for guideline diagnosis of HCM in 

relatives of individuals with HCM. c, Cumulative major adverse cardiovascular 
events (MACE) among 214 sarcomere-positive relatives of HCM index patients 
stratified by PGSEMC above or below the median. MACE was defined as a 
composite of septal reduction therapy, cardiac transplantation, aborted cardiac 
arrest, appropriate defibrillator shock or sudden cardiac death. To avoid inflation 
of PGS performance resulting from sample overlap, PGS were rederived from 
GWAS leaving out the cohort that the PGS was being evaluated in (GeL–PGSGeL, 
EMC–PGSEMC). HR calculated using Cox proportional hazards model, adjusted for 
sex, first four genetic PCs, and genetic relatedness matrix, with two-sided P value.
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Discussion
In this study, we generated a PGS for HCM and validated it across sev-
eral independent populations, showing associations with categorical 
disease status, quantitative traits that define HCM and describe disease 

severity, and, most importantly, adverse cardiovascular events. We 
demonstrate broad potential clinical utility for PGS across a range 
of settings. Notably, PGS robustly stratifies penetrance in carriers of 
rare pathogenic variants in sarcomere-encoding genes and identifies 
those in the general population at the highest risk of developing HCM, 
associates with HCM risk in relatives of HCM probands and acts as a new 
risk marker for survival and adverse events in individuals with HCM.

Findings from this study emphasize the importance of the poly-
genic contribution to HCM disease risk, classically considered a Men-
delian disease caused by rare variants in sarcomere-encoding genes4,21. 
Among individuals with HCM, the recognition of polygenic, rather 
than sarcomeric HCM, will be of diagnostic importance, with potential 
implications for clinical management, reproductive counseling and 
family screening22.

One of the key challenges in clinical practice remains understand-
ing the variable penetrance and expressivity that characterize rare 
variants in HCM-causing sarcomeric genes2,3. In relatives of patients 
with HCM who have inherited a pathogenic variant, clinical screening 
and life-long surveillance from childhood are recommended, although 
many will not manifest until later life, if at all, and many of those who 
do manifest will follow a benign course without major adverse events. 
Increasingly, pathogenic variants are being identified in individu-
als with no personal or family history of HCM, as secondary findings 
through opportunistic screening alongside genetic testing for other 
indications23. We show that PGS has large and clinically meaningful 
effects (estimated to be approximately tenfold when comparing quin-
tiles but larger still at more extremes of distribution) in carriers of rare 
HCM-causing variants, which we expect would translate to effective 
risk-adjusted strategies for HCM screening and surveillance. Further-
more, while current medical treatments are only indicated in individu-
als with established HCM, any future development of therapies in the 
prevention of cardiac hypertrophy in at-risk or genetically susceptible 
individuals could be of particular significance in the groups with the 
highest risk of disease penetrance. This is especially true given that 
both rare variants and PGS are measurable before clinical phenotypes 
of HCM develop.

In relatives of individuals with HCM, PGS risk modulates HCM 
penetrance in carriers of rare variants and stratifies HCM risk in sarco-
meric gene-negative cases. Relatives with higher PGS were more likely 
to have HCM, adverse outcomes and increased wall thickness, with 
similar magnitudes of risk in relatives of both sarcomeric gene-positive 
and negative HCM. Importantly, relatives in the bottom PGS quintiles 
had low rates of lifetime adverse events. Directly quantifying PGS with 
genotyping arrays may guide ongoing surveillance strategies in close 
relatives of affected individuals, although further prospective work 
is required.

Within the general population, although PGS confers an increased 
risk of HCM at the extremes of distribution (OR = 15 for the highest 
centile compared with median), this risk was considerably lower than 
the risk arising from pathogenic rare variants (OR = 79). Our population 
estimates of PGS performance in the UKB are limited by recruitment 
targeting participants of middle age, with survival bias and incomplete 
ascertainment of cases likely to result in underestimation of the true 
effect of PGS in the general population. The applicability of routine 
and widespread use of PGS for disease screening remains uncertain24. 
As with any population screening approach, targeting PGS screening 
to individuals already at higher risk based on nongenetic factors can 
have a large impact on the numbers needed to test.

Among individuals with HCM, disease expressivity and prognosis 
are highly variable4,21,25. We demonstrate that PGS can stratify the 
risk of serious adverse events in individuals with HCM, including a 
roughly fourfold to sixfold difference in risk of death when comparing  
those with PGS in the highest and lowest quintiles. Despite the use 
of current clinical risk predictors of adverse outcomes3, many indi-
viduals do not benefit from interventions aimed at reducing this  
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Fig. 5 | PGS stratifies the risk of death and adverse outcomes in individuals 
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transplantation. HR calculated using Cox proportional hazards model, adjusted 
for age, age2, sex and first ten genetic PCs, with two-sided P value.
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(for example, an implantable cardioverter-defibrillator26). The addi-
tion of PGS to existing clinical risk factors will be an important area 
for future research.

One of the main limitations of this and other PGS is that it has been 
derived from and extensively tested in European ancestry populations 
only. Despite this, we show that PGS stratifies ancestral risk, with the 
highest PGS found in African ancestry groups where the prevalence of 
unexplained left ventricular hypertrophy is known to be highest27–30. 
Within each non-European ancestry group in the UKB, performance 
is reduced compared to European ancestry performance, although 
it still associates with HCM-related cardiac traits in South Asian and 
East Asian populations. Furthermore, the addition of a small and 
individually underpowered ancestry-specific GWAS (East Asian) can 
improve the predictive performance of PGS. This lends hope that 
performing modestly sized ancestry-specific GWAS could be sufficient 
to generate PGS with comparable performance to European ancestry 
populations16.

In conclusion, this study identifies multiple clinical applications 
for a PGS in HCM, including in general population screening, stratifi-
cation of rare variant carriers into higher and lower risk of penetrant 
HCM, and as a new risk predictor of adverse outcomes in individuals 
with HCM.
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Methods
Ethics declaration
All patients gave written informed consent, and all studies were 
approved by the relevant regional research ethics committees and 
adhered to the principles set out in the Declaration of Helsinki. The 
UKB study was reviewed by the National Research Ethics Service 
(11/NW/0382 and 21/NW/0157). The 100,000 Genomes Project was 
reviewed by the National Research Ethics Service (14/EE/1112 and 13/
EE/032). The RBH Biobank was reviewed and approved by the South 
Central—Hampshire B Research Ethics Committee (09/H0504/104+5 
and 19/SC/0257). The Erasmus Medical Center was reviewed and 
approved by the Erasmus MC Medical Ethical Review Committee. All 
Singaporean participants recruited from the National Heart Center 
Singapore gave written informed consent and the study was approved 
by the Singhealth Centralised Institutional Review Board (2020/2353) 
and the Singhealth Biobank Research Scientific Advisory Executive 
Committee (SBRSA 2019/001v1).

GWAS and multitrait analysis
The base data for the HCM PGS are from the largest HCM GWAS, 
consisting of 5,900 cases and 68,359 unrelated controls from seven 
cohorts (100,000 Genomes Project (471 cases, 2,355 controls), BioRe-
source Rare Diseases (239 cases, 7,203 controls), HCM Registry (2,431 
cases, 40,283 controls) and clinical cohorts from Canada (1,035 cases, 
13,889 controls), Italy (277 cases, 1,293 controls), the Netherlands (999 
cases, 2,117 controls) and the UK (448 cases, 1,219 controls)10. HCM 
was defined as primary left ventricular hypertrophy in the absence of 
secondary causes (uncontrolled hypertension, aortic valve disease, 
infiltrative cardiomyopathic processes and cases arising from com-
plex syndromes), using a combination of clinical, imaging and ICD-9 
and ICD-10 definitions. Detailed information on cohorts included in 
the GWAS is provided in the original publication10. Cases and controls 
included in the HCM GWAS were of European ancestry. The heritability 
of HCM attributable to common genetic variants was 0.25, assessed 
using genome-based restricted maximum likelihood31. Leveraging 
the increased power generated from jointly analyzing genetically 
correlated traits using the MTAG method32, MTAG of HCM was per-
formed using mtag32 with three genetically correlated quantitative 
left ventricular traits derived from CMR imaging in 36,083 participants 
in the UKB (left ventricular concentricity, LVESV and left ventricular 
circumferential strain)10. Traits were selected based on the hierarchi-
cal clustering of ten CMR traits and genetic correlation with HCM. 
Additional details of left ventricular trait GWAS and trait selection for 
MTAG are reported in the Supplementary Note.

PGS derivation and evaluation
Individual SNP weighted scores were generated from the primary dis-
covery GWAS and MTAG. The base GWAS and MTAG summary statistics 
were filtered to exclude rare and uncommon variants (minor allele 
frequency (MAF) < 1%), and ambiguous SNPs that were not resolvable 
by strand flipping. A locus on chromosome 11 surrounding MYBPC3 
was found to be associated with HCM in only sarcomere-positive HCM, 
specifically in one cohort (Netherlands), and was determined to rep-
resent a founder effect10. Variants with P < 1 × 10−5 on chromosome 11 
from 30,000,000 to 80,000,000 (GRCh37) were excluded from PGS 
calculation.

We calculated HCM PGS for unrelated (third degree or closer) 
white British participants in the UKB (application, 47602), using vari-
ants that passed genotyping QC (MAF > 1%, genotyping rate > 0.99, 
HWE P > 1 × 10−6). Variants overlapping the base, target and linkage 
disequilibrium reference set (1000 Genomes Project Phase 3 European 
ancestry) were included. The individual SNP scores were generated 
using PRS-CS v1.0, a package that uses a Bayesian framework to model 
linkage disequilibrium using an external linkage disequilibrium refer-
ence set and a continuous shrinkage prior on SNP effect sizes33. The 

phi constant was automatically selected by an unsupervised approach 
(PRS-CS auto). Whole-genome PGS scores for all included UKB indi-
viduals and testing cohorts were calculated using the ‘score’ function 
in PLINK v1.9 (ref. 34).

PGS was applied and tested within a range of cohorts and clinical 
settings. Given that a key factor in the predictive power of PGS is the 
power of the base GWAS35, we first compared the performance of PGS 
generated using GWAS (PGSGWAS = 376,730 SNP predictors) and MTAG10 
(PGSMTAG = 374,113 SNP predictors) summary statistics in 343,182 unre-
lated white British ancestry participants in the UKB. Predictive perfor-
mance of PGS was assessed by comparing Nagelkere’s R2, area under 
the receiver operating characteristic (AUROC) and association with 
HCM (OR per PGS s.d.).

Inclusion of participants in both the testing and GWAS datasets 
results in substantial inflation of PGS performance36. To prevent this, 
where case–control PGS testing was performed in a cohort that was 
included in the main GWAS (for example, GeL), PGS was generated 
using a leave-one-study-out GWAS and MTAG that did not include the 
cohort. All other methods for PGS generation remained the same. 
In situations where only cases are included in the assessment of PGS, 
the overall MTAG results were used.

Cohorts
UKB. UKB is a population-based cohort study from half a million UK par-
ticipants, with detailed clinical, imaging and genetic data. Participants 
from UKB that were included in testing were unrelated (third degree or 
closer) and of white British ancestry. HCM cases were identified from 
self-report clinical data (hospital admissions and death registry), and 
CMR imaging (maxLVWT > 15 mm). Time to clinical event was identified 
from UKB first occurrences data, operation dates, and death dates. 
Participants in the imaging substudy were randomly invited from the 
overall cohort. Each underwent CMR at 1.5-T. Segmentation of the 
cine images was performed by using a deep learning neural network 
algorithm and has previously been reported6.

100,000 Genomes Project. The 100,000 Genomes Project is a 
national UK program that recruited probands with rare diseases and 
cancer from clinical centers, together with family members, and per-
formed germline and somatic (for a subset of participants with cancer) 
WGS18,37. In total, 683 HCM cases were identified from Human Pheno-
type Ontology terms at the time of study recruitment, and ICD-9 and 
ICD-10 codes from preceding and subsequent clinical episodes.

EMC cohort. To evaluate the role of PGS in modulating penetrance 
of sarcomeric variants in relatives of HCM cases, we used a subset of 
214 relatives of 184 HCM probands from an ongoing HCM registry at 
the EMC38,39. All individuals were carriers of pathogenic sarcomeric 
variants, with the exclusion of homozygous carriers or those carrying 
multiple pathogenic or likely pathogenic variants.

Royal Brompton and Harefield Hospitals cohort. A total of 440 unre-
lated white British HCM cases from RBH40 were used to assess the effect 
of PGS on CMR imaging traits. Data from the clinical CMR scan taken 
at or before study recruitment were used, and where sequential CMR 
scans were available, follow-up imaging data was recorded to identify 
changes in imaging traits.

Statistical analysis
In the UKB, PGS model performance was assessed using Nagelkerke’s 
R2, adjusting the null model for age, age2, sex and first ten principal 
components. The predictive AUROC was determined using a randomly 
subsetted training (70%) and validation (30%) cohort using R-package 
pROC (v1.18.0)41. For association between PGS and HCM status in UKB 
and GeL, logistic regression was performed adjusting for age, age2, sex 
and first ten principal components. In EMC, this was assessed using 
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Wald logistic mixed-effects model using GMMAT (v1.3.2) adjusting 
for fixed-effects of sex, age, age2 and first four principal components 
and incorporating a genetic relatedness matrix estimated using GCTA 
(v1.92.2beta)42 as a random effect. For quantitative imaging traits in 
UKB and RBH, PGS association was evaluated using linear regression 
adjusting for age, age2, sex, first ten principal components, systolic 
blood pressure and body surface area, and differences between means 
in stratified groups were performed with ANCOVA testing adjusted for 
age, age2, sex, body surface area, systolic blood pressure and first ten 
principal components. In EMC, the association of PGS with maxLVWT 
was assessed using a linear mixed-effects model using coxme (v2.2-17)43, 
adjusting for sex, age at imaging, age at imaging2, imaging modality 
(CMR versus transthoracic echocardiogram), first four principal com-
ponents and the genetic relatedness matrix. Time-to-event data in UKB 
was evaluated using the Cox proportional hazards model, adjusting 
for age, age2, sex and first ten principal components using survival 
(v2.44-1.1). Hazards assumption for proportionality was assessed, 
and for outcomes that did not include death, a competing risk analy-
sis was performed. In EMC, the association between PGS and clinical 
events was assessed using a Cox proportional hazards mixed-effects 
model using R-package coxme (v2.2-17)43 adjusted for sex, first four 
principal components, genetic relatedness matrix and presence of 
MYH7 rare variant genotype status. Time-to-event analysis was per-
formed using survival (v3.5-7) and survival curves were created using 
survminer (v0.4.9). Although clinical data were complete for most 
individuals in all cohorts, where missing data was present, individuals 
were excluded from analysis. All statistical analysis was performed in 
R. For multi-ancestry analysis, ancestry as categorical variable was 
included in the regression model.

Rare variant status
The pathogenicity of rare variants in eight definitive HCM-causing 
genes17 (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL3 and MYL2) 
was determined using broadly similar approaches across cohorts 
in line with ACMG guidelines44 (Supplementary Note). Individuals 
without pathogenic or likely pathogenic variants were identified as 
gene-negative individuals.

Outcomes
For a diagnosis of HCM in the UKB, HCM cases were identified from 
self-reporting, ICD-9 and ICD-10 codes from hospital encounters and 
the national death register, and CMR imaging (maxLVWT > 15 mm), in 
the absence of aortic stenosis (Supplementary Note). For the analysis 
of imaging traits in HCM cases, we further refined the diagnosis by 
restricting only to individuals with a maxLVWT of at least 13 mm. PGS 
association with a range of HCM-relevant cardiac imaging traits asso-
ciated with cardiac structure (maxLVWT, LVEDV, LVESV, left atrium 
volume and fractal dimensions) and function (LVEF, and strain meas-
urements) was tested. Longitudinal risk of time to HCM diagnosis and 
for major adverse cardiovascular events was assessed. Clinical and 
operative outcomes were selected based on their relevance to HCM, 
incorporating self-reported diagnoses, hospital admission events, 
primary care records and death records (Supplementary Note). Diag-
nosis of HCM in additional cohorts (EMC, GeL and RBH) and clinical 
outcomes in EMC are reported in Supplementary Note.

PGS generation and testing in diverse ancestry groups
PGS generated using European ancestry GWAS have weaker perfor-
mance when tested in more diverse ancestry populations12–15. We first 
aimed to evaluate PGS performance in participants of Afro-Caribbean 
(n = 661), East Asian (n = 504) and South Asian (n = 489) ancestry groups 
in UKB by applying ancestry-specific 1000 Genomes Project linkage dis-
equilibrium reference sets to the European ancestry GWAS and MTAG 
when generating PGS. Ancestries of UKB participants were determined 
based on self-reported ancestry, followed by visualization of principal 

component plots and manual selection of principal component thresh-
olds. Given that PGS are not comparable between differing ancestries 
due to underlying differing genetic architecture, analyses using PGS 
as a continuous variable were restricted within single ancestry groups. 
For analysis stratifying by quantiles, quantile stratification was first 
performed within each ancestry before being combined with other 
ancestries.

PRS-CSx v1.0 was used to extend the Bayesian polygenic mod-
eling and prediction methods of PRS-CS by combining GWAS sum-
mary statistics from multiple ancestry groups and has been shown to 
improve cross-ancestry prediction16. We aimed to evaluate the per-
formance of PGS generated using this approach for the prediction of 
HCM-associated CMR traits in East Asian ancestry participants in the 
UKB by combining the European ancestry GWAS with a small East Asian 
ancestry GWAS (Singapore cohort).

Singapore HCM GWAS
GWAS was performed on 184 cases and 776 controls of East Asian ances-
try. Genotyping was performed using Infinium OmniExpress-24 kit (Illu-
mina). Imputation was performed on the Michigan Imputation Server45 
using Minimac4 (v1.5.7) and East Asian reference genomes (1000 
Genomes Phase 3 (v5)46, 1000 Genomes Phase 1 (v3)46 and Genome Asia 
Pilot47). Postimputation QC was performed at variant (HWE P > 1 × 10−7, 
genotyping > 0.95, information score > 0.5 and MAF > 1%) level. East 
Asian ancestry individuals were identified using principal component 
analysis and one of a pair of second degree or closer relatives was 
retained. GWAS was tested using SNPTEST (v2.5.6)48 adjusting for age, 
sex and first ten principal components.

PheWAS and MR
PheWAS was performed in the UKB to investigate the pleiotropic 
effects of the HCM PGS. ICD-9 and ICD-10 codes from death records 
and hospital admission episodes were translated to Phecodes (Phecode  
Map 1.2)49,50. For phenotypes with at least 20 cases, PGS-phenotype asso-
ciation was tested using logistic regression adjusted for age, age2, sex 
and first ten principal components as covariates. Significance threshold 
was adjusted for the total number of phenotypes tested (P < 2.72 × 10−5), 
and data were presented with Manhattan plots grouping by body sys-
tem. PheWAS was performed using the PheWAS (v0.99.5-5)51 in R (v4.0.3).

To further evaluate the directionality of effect for select significant 
PheWAS associations (hypertension, dyslipidemia, type 2 diabetes), 
two-sample bidirectional MR was performed for relevant quantitative 
traits (systolic and diastolic blood pressure, hypercholesterolemia, 
glycated hemoglobin and body mass index). To maximize MR power, 
the exposure trait GWAS with the largest number of significant SNPs 
after harmonization from the IEU GWAS database was used as the 
instrument52–55 (Supplementary Table 8). To further evaluate asso-
ciations with atrial fibrillation and heart failure, post hoc MR was per-
formed using summary statistics of the two largest available published 
GWAS56,57. For all MR analyses, instruments were harmonized with the 
HCM MTAG after linkage disequilibrium pruning. Two-sample MR using 
the IVW method was performed using the TwoSampleMR (v0.6.4)58,59 
and MRInstruments (v0.3.2) in R (v4.0.3).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data from UKB can be requested from the UKB Access Manage-
ment System (https://www.ukbiobank.ac.uk/enable-your-research/
apply-for-access). Data from the 100,000 Genomes Project can be 
accessed following the application to join the Genomics England Clini-
cal Interpretation Partnership (https://www.genomicsengland.co.uk/
research/academic/join-research-network). The PGS are available for 
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download from the Polygenic Score Catalog (https://www.pgscata-
log.org) under accessions PGS004910 and PGS004911. GWAS and 
MTAG results10 used to generate PGS are available for download from 
the GWAS Catalog (https://www.gwascatalog.org) under accessions 
GCST90432127 and GCST904321230.

Code availability
Custom analysis code is available from Zenodo (https://doi.org/10.5281/
zenodo.11204463)60.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis PGS was generated from GWAS summary statistics using PRS-CS v1.0 (https://github.com/getian107/PRScs) and PRS-CSx v1.0 (https://
github.com/ getian107/PRScsx). PGS scores for individuals were calculated using PLINK version 1.9. Statistical analysis was performed using R 
version 4.0.3. PGS model performance was assessed using pROC v1.18.0 package in R. Association testing between PGS and outcomes in 
Erasmus Medical Centre Cohort was performed using GMMAT v1.3.2 and coxme v2.2-17 packages in R, with a genetic relatedness matrix 
calculated using GCTA v1.92.2b). Survival analysis was performed using survival v3.5-7 and survminer v0.4.9 in R. Singapore genotyping data 
was imputed using Minimac4 (v1.5.7) and GWAS was performed using SNPTEST version 2.5.6. PheWAS was performed using PheWAS 
(v0.99.5-5) in R. Two-sample Mendelian randomisation was performed using TwoSampleMR (v0.6.4) and MRInstruments (v0.3.2) in R. R 
version 4.0.3 was used. Custom analysis code is available from Zenodo (https://zenodo.org/records/11204463).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data from UK Biobank can be requested from the UK Biobank Access Management System (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access). 
Data from 100,000 Genomes Project can be accessed following application to join the Genomics England Clinical Interpretation Partnership (https://
www.genomicsengland.co.uk/research/academic/join-research-network). The PGS are available for download from the Polygenic Score Catalog (https://
www.pgscatalog.org) under accession IDs PGS004910 and PGS004911. GWAS and MTAG results10 used to generate PGS are available for download from the GWAS 
Catalog (https://www.gwascatalog.org) under accession IDS GCST90432127 and GCST904321230.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender The article uses the term sex when referring to biological attribute, and was determined using genetic sex where available. 
Sex was included as a covariate in all multivariate analyses. Findings are relevant to both male and females. 

Population characteristics Population characteristics include age, sex, ancestry (self-reported and genetic) and genetic principal components for all 
individuals. Blood pressure and body surface area was available for individuals in the cardiac magnetic resonance imaging 
substudy of the UK Biobank.

Recruitment Participants were recruited to the UK Biobank from a large number of national sources (e.g. GP, leaflets and advertising, 
hospitals, and recruitment drives in the community), and targeted individuals from middle age onwards. This results in the 
enrichment of less penetrant variants. 100,000 Genomes Project recruited patients with rare disease and cancer along with 
their relatives, from clinical centres, initially with an emphasis on genetically unexplained disease. This results in enrichment 
of individuals with sarcomere-negative HCM. HCM cases were recruited from the Royal Brompton Hospital, Erasmus Medical 
Center and National Heart Center Singapore directly from clinics. 

Ethics oversight All patients gave written informed consent, and all studies were approved by the relevant regional research ethics 
committees, and adhered to the principles set out in the Declaration of Helsinki. The UK Biobank study was reviewed by the 
National Research Ethics Service (11/NW/0382, 21/NW/0157). The 100,000 Genomes Project was reviewed by the National 
Research Ethics Service (14/EE/1112 and 13/EE/032). The Royal Brompton Biobank was reviewed and approved by the South 
Central – Hampshire B Research Ethics Committee (09/H0504/104+5 and 19/SC/0257). The Erasmus Medical Center was 
reviewed and approved by the Erasmus MC Medical Ethical Review Committee. All Singaporean participants recruited from 
the National Heart Center Singapore gave written informed consent and the study was approved by the Singhealth 
Centralised Institutional Review Board (2020/2353) and the Singhealth Biobank Research Scientific Advisory Executive 
Committee (SBRSA 2019/001v1). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The polygenic score was initially evaluated in the UK Biobank, a population-based cohort with >500K individuals. For additional analyses, we 
used all available cases where possible and made efforts to maximise case numbers where possible.

Data exclusions No data were excluded from the analysis.

Replication Polygenic scores were generated using a Bayesian approach (PRS-CS) that negates the need for replication. Nonetheless, we ensured 
robustness and generalizability of our findings by testing the effects of PGS in several cohorts - including UK Biobank, 100,000 Genomes 
Project, and 2 clinical cohorts (Royal Brompton and Harefield NHS Foundation Trust, and Erasmus Medical Center).

Randomization Observational study - not applicable
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Blinding Observational study - not applicable

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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