THE LANCET

Supplementary appendix 1

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. *Lancet* 2024; published online Sept 16. https://doi.org/10.1016/S0140-6736(24)01867-1.

Appendix 1: supplementary methods and results for "Global burden of

bacterial antimicrobial resistance 1990-2021: a systematic analysis with

forecasts to 2050"

This appendix provides further methodological details and supplementary results for "Global burden of bacterial

antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050". Portions of this appendix have

8 been reproduced or adapted from the appendix of the paper "Global burden of bacterial antimicrobial resistance in

2019: a systematic analysis".¹ References are provided for reproduced sections.

Table of Contents

13	Section 1: List of abbreviations	5
14	Section 2: Data sources ¹	7
15	Section 2.1: Multiple causes of death and vital registration (MCoD-VR)	7
16	Section 2.2: Hospital discharge	7
17	Section 2.3: Microbial data with outcome	8
18	Section 2.4: Microbial data without outcome	9
19	Section 2.5: Literature studies	12
20	Section 2.5.1: Maternal sepsis, neonatal sepsis, and LRI aetiology	12
21	Section 2.5.2: Urinary tract infections aetiology	13
22	Section 2.5.3: Skin infections aetiology	13
23	Section 2.5.4: Intra-abdominal infection aetiology	13
24	Section 2.5.5: Bone and joint infections aetiology	13
25	Section 2.5.6: Meningitis infection aetiology	13
26	Section 2.5.7: Relative risk studies for specific drug-bug combinations	13
27	Section 2.5.8: Prevalence of resistance for specific organisms	14
28	Section 2.6: Single drug-resistance profiles	15
29	Section 2.7: Pharmaceutical sales and antibiotic use	16
30	Section 2.8: Mortality surveillance	16
31	Section 2.9: Linkage (mortality only)	16
32	Section 3: Summary of GBD 2021 estimation process ¹	16
33	Section 3.1: GBD 2021 cause of death estimation process	16
34	Section 3.2: GBD 2021 non-fatal estimation process	17
35	Section 4: Sepsis and infectious syndrome estimation ¹	17
36	Section 4.1: Input data	17
37	Section 4.1.1: Multiple causes of death	17
38	Section 4.1.2: Hospital record with multiple diagnoses and discharge status of death	17
39	Section 4.1.3: Linkage data	17
40	Section 4.1.4: Mortality surveillance (Child Health and Mortality Prevention Surveillance [CHAMPS])	17
41	Section 4.1.5: Claims data with multiple diagnoses and fatal outcome	18
42	Section 4.2: Data processing	20
43	Section 4.3: Mapping the data	20
44	Section 4.4: Intermediate cause and infectious syndrome mapping hierarchy	20
45	Section 4.4.1: Intermediate cause mapping	20
46	Section 4.4.2: Informative ranking	21
47	Section 4.4.3: Two modelling pathways	22
48	Section 4.5: First pathway: Estimating the envelope of sepsis	22

49	Section 4.5.1: Sepsis model	22
50	Section 4.6: Second pathway: Apportioning sepsis to specific infectious syndromes	24
51	Section 4.6.1: Aggregation to the sepsis mortality envelope	27
52	Section 4.6.2: Infectious syndromes using GBD 2021 results	27
53	Section 4.7: Model validation	27
54	Section 4.7.1: Incidence of infectious syndromes disaggregated by age, sex, location, and year	32
55	Section 5: Case fatality ratios ¹	
56	Section 5.1: Input data	32
57	Section 5.2: Data processing	32
58	Section 5.3: Modelling overview	32
59	Section 5.4: Modelling framework	33
60	Section 5.5: Predictions and uncertainty	35
61	Section 6: Pathogen distribution ¹	
62	Section 6.1: Input data	36
63	Section 6.2: Data processing	36
64	Section 6.2.1: Extraction and standardisation	36
65	Section 6.2.2: Assigning infectious syndrome	36
66	Section 6.2.3: Selecting pathogens for estimation	37
67	Section 6.2.4: Pathogen redistribution and aggregate pathogen categories	37
68	Section 6.2.5: Contaminants, opportunistic pathogens, and no aetiology detected	40
69	Section 6.2.6: Polymicrobial infections	40
70	Section 6.2.7: Estimating unbiased other categories	41
71	Section 6.2.8: Age-sex splitting	42
72	Section 6.2.9: Standardising measures	42
73	Section 6.3: Modelling framework	43
74	Section 6.3.1: Overview	43
75	Section 6.3.2: Model priors	46
76	Section 6.3.3: Outliering	48
77	Section 6.3.4: Redistribution of "other pathogens"	48
78	Section 6.4: Exceptions and special handling	48
79	Section 6.4.1: Diarrhoea	49
80	Section 6.4.2: Lower Respiratory Infections	49
81	Section 6.4.3: Infectious syndromes not modelled	49
82	Section 6.5: Model validation	50
83	Section 7: Prevalence of resistance ¹	50
84	Section 7.1: Input data	50
85	Section 7.1.1: Prevalence of Resistance in Mycobacterium tuberculosis	51

86	Section 7.2: Data processing	51
87	Section 7.2.1: Resistance Breakpoint Processing	
88	Section 7.2.2: Intrinsic Resistance Processing	53
89	Section 7.2.3: Tertiary Care Facility Adjustments	53
90	Section 7.3: Modelling framework	55
91	Section 7.4: Covariates	56
92	Section 7.5: Resistance profiles	56
93	Section 7.6: Model validation	58
94	Section 8: Relative risk ¹	60
95	Section 8.1: Input data	60
96	Section 8.2: Data processing	61
97	Section 8.3: Modelling overview	61
98	Section 8.3.1: Fatal modelling	61
99	Section 8.3.2: Nonfatal Modelling	62
100	Section 8.4: Model validation	63
101	Section 9: Counterfactuals and AMR estimation ¹	65
102	Section 9.1: Estimating associated AMR burden with counterfactual of no infection	65
103	Section 9.2: Estimating attributable AMR burden with counterfactual of infection with susceptible of	rganism68
104	Section 9.3: Excluded combinations	70
105	Section 9.4: Decomposition of factors contributing to change in AMR associated deaths	70
106	Section 9.4.1: Decomposition Methods Overview	71
107	Section 9.4.2: Decomposition results	71
108	Section 10: Forecasting AMR	73
109	Section 10.1: Future health scenarios platform overview	73
110	Section 10.2: Forecasting AMR population attributable fractions	73
111	Section 10.3: Computing future attributable and associated AMR burden	73
112	Section 10.4: Developing AMR alternative scenarios	74
113	Section 10.4.1: Gram-Negative Drug scenario	74
114	Section 10.4.2: Better Care scenario	74
115	Section 11: GATHER compliance	74
116	Section 12: References	75
117	Section 13: Appendix tables and figures	80
118		
119		
120		
101		

123 Section 1: List of abbreviations

Abbreviation	Full phrase
AGAR	Australian Group on Antimicrobial Resistance
AHC	Angkor Hospital for Children
AMASS	AutoMated tool for Antimicrobial resistance Surveillance System
AMR	antimicrobial resistance
APUA	Alliance for the Prudent Use of Antibiotics
ARSP	Antimicrobial Resistance Surveillance Program
ATLAS	Antimicrobial Testing Leadership and Surveillance
AUC	area under the receiver operating characteristics curve
AURA	Antimicrobial Use and Resistance in Australia
AWARE	Assessing Worldwide Antimicrobial Resistance Evaluation
BARNARDS	Burden of Antibiotic Resistance in Neonates from Developing Societies
BD	Becton, Dickinson, and Company
BSI	bloodstream infections
CAESAR	Central Asian and European Surveillance of Antimicrobial Resistance
CAI	community-acquired infection
CDC	Centers for Disease Control and Prevention
CFR	case fatality ratio
CHAIN	Childhood Acute Illness and Nutrition
CHAMPS	Child Health and Mortality Prevention Surveillance
cIAI	complicated intra-abdominal infection
CLSI	Clinical and Laboratory Standards Institute
COMRU	Cambodia Oxford Medical Research Unit
CODEm	cause of death ensemble model
CTMRF	CHILDS Trust Medical Research Foundation
cUTI	complicated urinary tract infection
DALYs	disability-adjusted life-years
DHS	Demographic and Health Surveys
EARS-Net	European Antimicrobial Resistance Surveillance Network
ECDC	European Centre for Disease Prevention and Control
EUCAST	European committee on antimicrobial susceptibility testing
GAM	generalised additive models
GBD	Global Burden of Diseases, Injuries, and Risk Factors Study
GBS	group B Streptococcus
GLASS	Global Antimicrobial Resistance Surveillance System
GLM	generalised linear model
GPR	Gaussian process regression
HAI	hospital-acquired infection

HAQ Index	Healthcare Access and Quality Index
HHS	U.S. Department of Health and Human Services
ICD	International Classification of Diseases
ICU	intensive care unit
INFORM	International Network for Optimal Resistance Monitoring
INICC	International Nosocomial Infection Control Consortium
iNTS	invasive non-typhoidal Salmonella
IORD	Infections in Oxfordshire Research Database
IQVIA	IMS Health and Quintiles
JANIS	Japan Nosocomial Infections Surveillance
KEMRI	Kenya Medical Research Institute
LRI	lower respiratory infection
MAE	mean average error
MCoD	multiple causes of death data
MEPCO	multinomial estimation of partial and composite observations
MICS	Multiple Indicators Cluster Surveys
MITS	minimally invasive tissue sampling
MMO	Myelitis, meningoencephalitis and encephalitis
MR-BRT	meta-regression-Bayesian, regularised, trimmed
MRC	Medical Research Council
NARMS	National Antimicrobial Resistance Monitoring System for Enteric Bacteria
NICD	National Institute for Communicable Diseases
OUCRU	Oxford University Clinical Research Unit
PPS HAI	Point Prevalence Survey on Nosocomial Infections and Antibiotic Use
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
ROC	receiver operating characteristics
RMSE	Root mean square error
SDI	Socio-demographic Index
SEV	summary exposure value
SGUL-GARPEC	St. George's Hospital, University of London - Global Antimicrobial Resistance, Prescribing and Efficacy Among Neonates and Children
SOAR	Survey on Antibiotic Resistance
ST-GPR	spatiotemporal Gaussian process regression
ТВ	tuberculosis
TESSy	The European Surveillance System
TEST	Tigecycline Evaluation Surveillance Trial
TSAP	Typhoid Fever Surveillance in Africa Program
UI	uncertainty interval
UPCH	Cayetano Heredia University

USDA	U.S. Department of Agriculture
UTI	urinary tract infection
VR	vital registration
WHO	World Health Organization
WRP	Walter Reed Project
YLDs	years lived with disability
YLLs	years of life lost

124 Section 2: Data sources¹

125 The data used for this study can be categorised into the following types: multiple causes of death (MCoD),

- hospital discharge, linkage, mortality surveillance, literature reviews, microbial, single drug-resistance profiles,
 pharmaceutical sales, and antibiotic use data; as well as estimates from the Global Burden of Diseases, Injuries,
- 128 and Risk Factors Study (GBD) 2021.² More detailed information on data inputs are available at
- 129 https://ghdx.healthdata.org/record/ihme-data/gbd-2021-bacterial-amr-estimates-forecasts-1990-2050.

130 Section 2.1: Multiple causes of death and vital registration (MCoD-VR)

Multiple cause of death (MCoD) data is a type of vital registration obtained from death certificates that contain
the underlying cause of death, intermediate and immediate causes of death, and contributing conditions. MCoD
data differ from other vital registration (VR) sources because many countries have VR systems that only
document and publish the underlying cause of death. MCoD data were used in the sepsis, infectious syndrome,
and pathogen distribution component models and data processing, and modelling methods can be found in
sections 4 and 6. MCoD-VR data came from the following sources.

137 United States National Vital Statistics System 138 Brazil Mortality Information System • National Institute of Statistics (Italy) 139 • 140 Statistics South Africa • 141 National Institute of Statistics and Geography (Mexico) • 142 • National Administrative Department of Statistics (Colombia) Taiwan Ministry of Health and Welfare 143 • 144 • United Arab Emirates Vital Statistics Mongolia Vital Registration 145 • 146 147 Section 2.2: Hospital discharge 148 Hospital admissions and discharge data are data sources collected from inpatient hospital and other clinical 149 settings. These data include information on the primary and other diagnosis for each patient, as applicable, and 150 were obtained from the sources listed below. Hospital data were used in the sepsis, infectious syndrome, 151 pathogen distribution, and case fatality ratio component models and data processing, and modelling methods can be found in sections 4-6. 152 153 USA National Hospital Discharge Survey • **USA State Inpatient Databases** 154 • 155 Brazil Hospital Information System • Italy Hospital Inpatient Discharges 156 • Sistema Automatizado de Egresos Hospitalarios (Mexico) 157 • Austria Hospital Inpatient Discharges 158 • 159 New Zealand National Minimum Dataset • 160 Georgia Hospital Data

161	Mongolia H-Info Health System Data
162	• India - Mysore JSS Hospital Inpatient Data
163	 India - Punjab Davanand Medical College and Hospital Data
164	 India - Bangalore St. John's Medical College Hospital Data
165	Davanand Medical College and Hospital Innatient Data (India)
166	 Dayanana Weatean Conege and Hospital Inpatient Data (India) Pakistan - Aga Khan University Hospital Data
167	 Libya Tripoli Central Hospital Data
169	Kurguzstan Bichkak Clinical Palated Groups Hospital Claims
169	• Kyrgyzstan - Disnkek Chinear-Kelated Groups Hospital Claims
107	
170	Section 2.3: Microbial data with outcome
171	Microbial data are data sources from hospital and lab networks that collect pathogen cultures from patients. The
172	cultures are tested for both pathogen and the pathogen's resistance to antibiotics. The culture results are linked
173	to patient outcome, diagnoses, or both. Microbial data without these outcomes or diagnoses are listed in section
174	2.4. These data also include the specimen from which the pathogen was isolated and whether the infection was
175	community- or hospital-acquired, if available. When hospital versus community acquisition was not specified,
176	we used the difference between admission or diagnosis date and the specimen collection date, and if 48 hours or
177	less had passed between those two dates, then the infection was assumed to be community-acquired. We
178	assumed the infection was hospital-acquired when more than 48 hours had passed, consistent with
179	CDC/National Healthcare Safety Network guidelines. ³ Microbial data with outcome were used in the case
180	fatality ratio, pathogen distribution, prevalence of resistance, and relative risk component models and data
181	processing, and modelling methods can be found in sections 5–8. Microbiology data types, with outcome and
182	diagnoses were obtained from the sources below.
183	• USA Becton, Dickinson, and Co. (BD) Insights, Research and Analytics Database microbiology
184	test and in-patient hospital data: data procured by BD via MedMined. Covers a range of regions in
185	the USA from 2011 to 2017.
186	• UK Infections in Oxfordshire Research Database (IORD): patient microbiology and episodes data
187	from Oxford University Hospitals NHS Foundation Trust.
188	• International Nosocomial Infection Control Consortium (INICC) surveillance online system: data
189	from the INICC data collection software. ICU patient microbiology and hospital data from 50
190	countries across Latin America, Asia, the Middle East, eastern Europe, and Africa from 2009 to 2020.
191	• Medical University of Varna, Varna, Bulgaria: Antimicrobial resistance data from 2014–2020.
192	• St. George's Hospital, University of London - Global Antimicrobial Resistance, Prescribing and
193	Efficacy Among Neonates and Children (SGUL-GARPEC) Project bloodstream infection data:
194	Penta-sponsored global surveillance network focusing on neonatal and paediatric antimicrobial
195	resistance and the organisms causing bloodstream infections.
196	Burden of Antibiotic Resistance in Neonates from Developing Societies (BARNARDS):
197	BARNARDS includes locations in Nigeria, South Africa, Pakistan, Rwanda, Bangladesh, Ethiopia,
198	and India from 2015 to 2018.
199	Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU): information from
200	children and adults with fever who were admitted as inpatients between 1996 and 2019 to Mahosot
201	Hospital, Vientiane, Laos. Microbial analysis was carried out by the Microbiology Laboratory at
202	Mahosot Hospital.
203	• Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
204	(together with the Bernhard Nocht Institute for Tropical Medicine): Data on children and adults
205	with fever admitted as inpatients in Ghana between 2007 and 2015.
206	• Vietnam Hospital for Tropical Diseases, Ho Chi Minh City. Hospital-acquired infections in ICU
207	patients: prospective observational study at the Oxford University Clinical Research Unit (OUCRU)
208	in the Ho Chi Minh City Hospital for Tropical Diseases, Vietnam, from November 2014 to January
209	2016 to assess the ICU-acquired colonisation and infections among adult patients with more than 48
210	hours of ICU stay.

211	•	Medical Research Council (MRC) Unit, The Gambia. Diagnostic antimicrobial susceptibility
212		testing: information on hospital admission and discharge, pathogens cultured, resistance susceptibility
213		test and antibiotics prescribed between 2005 and 2015 from the MRC Unit, The Gambia, now part of
214		the London School of Hygiene and Tropical Medicine.
215	•	Cambodia Oxford Medical Research Unit (COMRU) and Angkor Hospital for Children (AHC).
216		Suspected invasive bacterial infection hospitalisations: reports children aged 0-21 years who were
217		hospitalised with suspected invasive bacterial infection between 2015 and 2018.
218	•	Taiwan hospital-acquired infections and outcomes: infectious disease surveillance linked to vital
219		registration from Taiwan (province of China).
220	•	Childhood Acute Illness and Nutrition (CHAIN) Network antimicrobial resistance data: CHAIN
221		Network study informs on hospitalised children under 2 years old with acute illness in Bangladesh,
222		Burkina Faso, Pakistan, Kenya, Malawi, and Uganda.
223	•	Lima, Peru, Cavetano Heredia University (UPCH) antimicrobial resistance data: data from
224		UPCH hospital sites across Lima, Peru, with discharge disposition for infectious pulmonary disease.
225	•	Jordan King Abdulla University Hospital culture and sensitivity tests: information on inpatients at
226		the King Abdulla University Hospital in 2020 part of the Jordan University of Science and
227		Technology.
228	•	Iran antimicrobial resistance in burn patients and identified in blood, cerebrospinal fluid, and
229		urine cultures: data from inpatients across different hospital sites in Iran between 2016 and 2020.
230	•	Dhaka, Bangladesh, Bangabandhu Sheik Mujib Medical University hospital inpatient data: data
231		from 201 inpatients in 2017 at the Bangabandhu Sheikh Muijb Medical University. Dhaka
232		Bangladesh.
233	•	Chiangrai Prachanukroh Hospital, Chiangrai Clinical Research Unit and Mahidol Oxford
234		Tropical Medicine Research Unit: data from inpatients with positive cultures at the Chiangrai
235		Prachanukroh Hospital from 2017 to 2019
236	•	KEMRI/US Army Medical Research Directorate. Kenva.
237	•	Chennai India Kanchi Kamakoti CHILDS Trust Medical Research Foundation (CTMRF)
238	-	hospital inpatient data
230	•	Mortality from Bacterial Infections Resistant to Antibiotics (MBIRA): A case-control trial for
237	-	optimisation of treatment of resistant <i>F</i> coli and <i>K</i> pneumoniae infections with retrospective data
241		from six African Hospitals in Nigeria (2011–2016), Ghana (2016), Senegal (2012–2016), Zimbabwe
242		(2012–2017), Kenva (2002–2017), and South Africa (2010–2016).
243	•	The Surveillance for Enteric Fever in Asia Project (SEAP) study data from Bangladesh India
243	-	Indonesia Nepal and Pakistan provided by the Sabin Vaccine Institute
245	•	HCL Lyon Sud Hospital Centre (HCL): data from France
245	•	Institute Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ) hospitalised
240	•	natients of referral center in Mexico City
248	•	Shahaad Banazir Bhutta University Hespital data from Sharingal Pakistan
240	•	Clobal Noopetal Songie Observational Study (NooORS) is a collaboration between CAPDD St
249	•	George's University of London Penta University of Antwern MPC Clinical Trial Unit at University
251		College London, and 10 hospitals mainly in limited resource settings
251	-	United Kingdom Health Security Agency (IKHSA): mendetery and voluntery reports on investive
252	•	infactions linked to hospitalisation data and outcomes
233 254	-	nnections mixed to nospitalisation data and outcomes.
204 255	•	Sabaha nospital, Bogota, Colombia: nospitalised patients of this tertiary nospital.
255	•	Aga Knan University Hospital from Karachi, Pakistan.
256		
257	Section	2.4: Microbial data without outcome

258 Microbial data were also obtained from laboratories, which do not necessarily link to patients' hospital records 259 or information on their discharge disposition. These sources report specimen or site of infection, pathogens

260 isolated, antimicrobial susceptibility tests, age and gender, and other demographic characteristics. This

information proved useful to inform pathogen distribution and prevalence of resistance component models and
 data processing, and modelling methods can be found in sections 6 and 7. Microbial data without outcome and
 diagnoses were obtained from the sources below.

264	•	SENTRY: SENTRY Antimicrobial Surveillance Program established by JMI Labs in 1997. Sites are
265		in the USA, Europe, Latin America, parts of Asia, and the Western Pacific.
266	•	Germany National Point Prevalence Survey on Nosocomial Infections and Antibiotic Use (PPS
267		HAI): Point Prevalence Survey for 2016 data reporting the pathogen distribution for hospital-acquired
268		infections. Data gathered by the Robert Koch Institute together with Charité Berlin.
269	•	Madagascar – Foundation Merieux: data collected from inpatients with positive culture admitted in
270		three hospital sites in Madagascar, funded by Foundation Merieux.
271	•	AMASS: data collected in an automated tool by Oxford Tropical Network Research Units.
272	•	The European Surveillance System (TESSy): managed by the European Centre for Disease
273		Prevention and Control (ECDC), provided data from the following surveillance systems:
274		• European Antimicrobial Resistance Surveillance Network (EARS-Net).
275		• Food- and Waterborne Diseases and Zoonoses Surveillance Network.
276		• Invasive Pneumococcal Disease Surveillance Network, including discharge disposition.
273 277		Gonococcal Antimicrobial Surveillance Programme
277		 Healthcare Associated Infections Surveillance Network (ICU protocol), including discharge
270		disposition
21)		European Tuberculosis Surveillance Network
200		 European Futureillance of Antimicrobial Consumption Naturely
201		• European Survemance of Antimicrobian Consumption Network.
202		For the European Union/European Economic Area (EU/EEA), data were obtained from the European Sustained TESSE) as provided by Austria Palaium Creatia Currus Creatia Danmark
205		Estoria Einland Eranca Cormany Gracca Hungary Icaland Iraland Italy Latvia Luxambourg
204		And the Notherlands, Norway, Poland, Portugal Pomania, Slovakia, Slovania, Spoin, Swadan, and the
285 286		UK, and released by the European Centre for Disease Prevention and Control (ECDC).
287	•	Pfizer ATLAS Programme: the Antimicrobial Testing Leadership and Surveillance (ATLAS)
288		database includes the Tigecycline Evaluation Surveillance Trial (TEST), the Assessing Worldwide
289		Antimicrobial Resistance Evaluation (AWARE) and the International Network for Optimal Resistance
290		Monitoring (INFORM) programmes. The study spans in coverage across more than 70 countries
291		between 2004 and 2017.
292	•	Malawi Queen Elizabeth Hospital microbiology tests of blood specimens: microbiology tests of
293		blood specimens from inpatients at the Queen Elizabeth Hospital in Malawi from 1998 to 2016, part of
294		the Institute of Infection and Global Health, University of Liverpool, in collaboration with the Malawi-
295		Liverpool-Wellcome Trust and the Wellcome Trust Sanger Institute.
296	•	Central African Republic National Laboratory of Clinical Biology and Public Health: data
297		collected by the Laboratoire National de Biologie Clinique et de Santé Publique in Central African
298		Republic between 2017 and 2020.
299	•	The Ethiopian AMR surveillance: conducted from July 2018 to July 2020 across sentinel
300		surveillance sites and the National AMR Surveillance Coordinating Centre for the Ethiopian Public
301		Health Institute.
302	•	Japan Nosocomial Infections Surveillance (JANIS): a national surveillance programme designed to
303		provide basic information on the incidence and prevalence of nosocomial infections and antimicrobial-
304		resistant bacteria in Japanese medical settings. Data available from 2013.
305	•	Lancet Labs: data obtained from Lancet Laboratories. a network of private laboratories across
306		different sites in Africa.
307	•	The Typhoid Fever Surveillance in Africa Program (TSAP): established by the International
308		Vaccine Institute to obtain comparable incidence data on typhoid fever and invasive non-typhoidal

300		Salmonalla disease in Chana Burkina Easo, Ethionia, Guinea Bissau, Kanya, Madagassar, Sanagal
310		South Africa, Sudan, and Tanzania
211		South Africa, Sudah, and Tanzama.
212	•	Invasive Salmoneua Infections at multiple surveniance sites in the Democratic Republic of the
512 212		Congo study: data published as part of the study on invasive <i>satimonetia</i> infections at multiple
313		surveinance sites in the Democratic Republic of the Congo between 2011 and 2014.
314	•	Suva, Fiji, Colonial War Memorial Hospital: Information on sequential S. aureus and
315		Enterobacterial bloodstream infections at the Colonial War Memorial Hospital (analysis by Monash
316		University) in Suva, Fiji, between 21 July 2020 and 29 October 2020.
317	•	World Health Organization (WHO) Global Tuberculosis Programme.
318	•	Germany EARS-Net surveillance data 2017–2018: data gathered by the Robert Koch Institute
319		together with Charité Berlin.
320	٠	WHO Meningitis surveillance: sentinel hospital surveillance of suspected meningitis cases among
321		children under 5 years old and positive cultures, provided by the World Health Organization (WHO)
322		Global Rotavirus, Invasive Bacterial Vaccine Preventable Diseases Surveillance Network
323		Collaboration from 2008 to 2020.
324	•	United States Active Bacterial Core Surveillance (ABCs) Reports: case reports on health-care-
325		associated infections and community interface infections from the Emerging Infections Program
326		Network coordinated by the Centers for Disease Control and Prevention (CDC).
327	•	Greece National Reference Centre for Salmonella and Shigella: Shigella data
328	•	Oxford University Clinical Research Unit Hanoi Vietnam: Shigella data from Bhutan Cambodia
320	•	Theiland and Vietnam
32)	•	National Ministry of Health of New Zealand, linked notional registry and microhial data
221	•	Austria National Deference Centre for Shizelle (ACES), Shizelle data
331	•	Austria National Reference Centre for Snigella (AGES): Snigella data.
332	•	Netherlands National Institute for Public Health and the Environment (RIVM): Shigella data.
333	•	Cyprus National Reference Laboratory for Salmonella & Shigella: Shigella data.
334	٠	Bulgaria National Center of Infectious and Parasitic Diseases: Shigella data.
335	٠	Glaxo Smith Kline (GSK) Survey on Antibiotic Resistance (SOAR) data from nine European
336		countries: Ukraine, Russia, Slovakia, Bulgaria, Croatia, Romania, Czech Republic, Greece, Serbia.
337	٠	Instituto Nacional de Salud de Colombia and Colombian Ministry of Health data reported to
338		SIREVA and WHONET surveillance networks.
339	•	SMART: Study for Monitoring Antimicrobial Resistance Trends, which monitors complicated intra-
340		abdominal infections (cIAIs), complicated urinary tract infections (cUTIs), and respiratory infections
341		worldwide, funded by Merck & Co.
342	•	Venatorx (Global Surveillance): 50 countries (majority Americas and Europe): Argentina, Australia,
343		Brazil, Canada, Chile, Colombia, Costa Rica, Croatia, Czech Republic, Denmark, Dominican
344		Republic, Ecuador, Finland, France, Germany, Greece, Guatemala, Hong Kong, Hungary, India.
345		Ireland, Israel, Italy, Japan, Kuwait, Latvia, Lithuania, Malaysia, Mexico, Morocco, Netherlands, New
346		Zealand, Nigeria, Panama, Philippines, Poland, Portugal, Puerto Rico, Romania, Russia, Saudi Arabia,
347		Singapore, South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Turkey,
348		Ukraine, UK. USA. Venezuela, Vietnam.
349	•	Infectious Diseases Research Collaboration (IDRC). Data from Tororo Uganda
250	•	Koustone Discusses Rescaren Conasoration (IDRC). Data nom rototo, Oganda.
330 251	•	Reystone Frogram with survemance data from 27 countries. Austria, Belarus, Belgium, Czech
252		Norway Doland Dortugal Romania Pussia Slovania Spain Swadan Switzerland Turkey UK
332 252		Inorway, Foranu, Fortugar, Komama, Kussia, Siovenna, Spann, Sweden, Switzerianu, Turkey, UK,
353		UNFIDE VIEW IN A CONTRACT OF A CONTRACT. CON
<i>3</i> 54	•	SIDERO-WT Programme with surveillance data from 13 countries: Canada, Czech Republic, France,
355		Germany, Greece, Hungary, Italy, Russia, Spain, Sweden, Turkey, UK, and USA.
356	•	The United States National Respiratory and Enteric Virus Surveillance System by the Centers
357		for Disease Control and Prevention (CDC): Data from approximately 600 public health and clinical
358		laboratories located throughout the country to monitor temporal and geographical circulation patterns
359		of viral infections.

360	The World Health Organization (WHO) Global Influenza Surveillance and Response System
361	(GISRS): Data providing epidemiological and virological evidence that informs the introduction of
362	vaccines and monoclonal antibodies from 25 countries across all six WHO regions.
363	• The Influenza Hospitalization Surveillance Network (FluSurv-NET): part of the Respiratory Virus
364	Hospitalization Surveillance Network (RESP-NET) of population-based surveillance for laboratory-
365	confirmed influenza, COVID-19, and respiratory syncytial virus (RSV)-associated hospitalisations
366	through a network of acute care hospitals in 14 states in the USA, convened by the CDC.
367	• The World Health Organization (WHO) FluNet: a global web-based tool that provides weekly
368	number of viruses and subtypes detected across countries in the six WHO regions and allows for
369	tracking the movement of viruses globally.
370	• ECDC Flu and RSV surveillance: the ECDC collects weekly epidemiological and virological data
371	from the EU/EEA Member States. Data are reported by sentinel influenza surveillance systems
372	countries conduct on either universal or a subset of the population in each country. Several countries
373	also conduct surveillance of hospitalised cases. A sample of cases is also tested to determine virus
374	characteristics.
375	Argentina RSV surveillance.
376	India RSV surveillance.
377	
378	Section 2.5: Literature studies
379	We conducted literature searches to obtain input data for the following components in the analysis: maternal
380	and neonatal sepsis aetiology, lower respiratory infections (LRIs) aetiology, urinary tract infections (UTIs)
381	aetiology, skin infections aetiology, meningitis aetiology and case fatality, intra-abdominal infection aetiology,
382	bone and joint infections aetiology, prevalence of resistance, relative risk, and length of stay. Literature searches
383	were performed on PubMed using the below search strings, and extracted studies covered the time range 1980-
384	2020. Literature was used in the case fatality ratio, pathogen distribution, prevalence of resistance, and relative
385	risk component models and data processing; modelling methods can be found in sections 5–8. Literature studies
386	were also used as input into the modelling of the antibiotic usage covariate. ⁴
387	Section 2.5.1: Maternal sepsis, neonatal sepsis, and LRI aetiology
388	Actiology terms, combined with OR:
389	• Infection (Infect*)
390	Microbiology (Microbiolog*)
391	• Aetiology (Aetiolog*)
392	• Etiology (Etiolog*)
393	Virology (Virolog*)
394 205	• Bacteriology (Bacteriolog*)
395 206	• Fungus (fung*)
390 307	AND
398	AND
399	Syndrome terms, combined with OR:
400	Maternal sepsis
401	• puerperal sepsis (puerper* sepsis)
402	• maternal sepsis (matern* sepsis)
403	• puerperal septicaemia (puerper* septicaemia, American spelling too - septicemia)
404	• maternal septicaemia (matern* septicaemia, American spelling too - septicemia)
405	• puerperal infection (puerper* infection)
406	• maternal infection (matern* infection)
407	• puerperal bacteraemia (puerper* bacteraemia, American spelling too - bacteremia)
408	• maternal bacteraemia (matern* bacteraemia, American spelling too - bacteremia)
409	Neonatal sepsis
410	• Neonatal sepsis (Neonat* sepsis within 3 or 5 words of each other)

- Neonatal septicaemia (Neonat* septicaemia within 3 or 5 words of each other, American spelling too -411 ٠ 412 septicemia) 413 Infant sepsis (Infant* sepsis) • Infant septicaemia (Infant* septicaemia, American spelling too - septicemia) 414 • 415 • Neonatal bacteraemia (Neonat* bacteraemia, American spelling too - bacteremia) 416 Infant bacteraemia (Infant* bacteraemia, American spelling too - bacteremia) • 417 Lower respiratory infections 418 • LRI 419 Lower respiratory infection • 420 • LRTI 421 Lower respiratory tract infection • 422 • Pneumonia 423 424 Section 2.5.2: Urinary tract infections aetiology
- 425 ("complicated"[Title/Abstract] OR "uncomplicated"[Title/Abstract]) AND (("Cystitis/etiology"[majr:noexp] OR
- 426 "Cystitis/microbiology"[majr:noexp]) OR ("Pyelonephritis/etiology"[marj:noexp] OR
- 427 "Pyelonephritis/microbiology"[majr:noexp]) OR ("Urinary Tract Infections/etiology"[majr:noexp] OR "Urinary
- Tract Infections/microbiology"[majr:noexp])) OR ("Urinary tract infections"[tiab] AND ("etiology"[tiab] OR
- 429 "microbiology"[tiab]))
- 430 Section 2.5.3: Skin infections aetiology
- 431 (("Cellulitis/epidemiology"[majr:noexp] OR "Cellulitis/etiology"[majr:noexp] OR
- 432 "Cellulitis/microbiology"[majr:noexp]) OR ("Pyoderma/epidemiology"[majr:noexp] OR
- 433 "Pyoderma/etiology"[marj:noexp] OR "Pyoderma/microbiology"[majr:noexp]) OR
- 434 "Pressure Ulcer/microbiology"[majr:noexp])
- 435 Section 2.5.4: Intra-abdominal infection aetiology
- 436 (("Peritonitis/epidemiology"[majr:noexp] OR "Peritonitis /etiology"[majr:noexp] OR "Peritonitis
- 437 /microbiology"[majr:noexp]) OR ("Intraabdominal infections/epidemiology"[majr:noexp] OR "Intraabdominal
- 438 infections /etiology"[marj:noexp] OR "Intraabdominal infections /microbiology"[majr:noexp]) OR ("abdominal
- 439 abscess/epidemiology"[majr:noexp] OR " abdominal abscess /etiology"[majr:noexp] OR "abdominal
- 440 abscess/microbiology"[majr:noexp]))
- 441 Section 2.5.5: Bone and joint infections aetiology
- 442 ("Osteomyelitis/etiology"[majr:noexp] OR "Osteomyelitis/microbiology"[majr:noexp] NOT 'chronic') OR
- 443 ("Arthritis, infectious/etiology"[marj:noexp] OR "Arthritis, infectious/microbiology"[majr:noexp] NOT 'lyme')
- 444 Section 2.5.6: Meningitis infection aetiology
- 445 ((meningitis[title]) AND (1990/05/01[PDat]: 2018/12/31[PDat]) AND ((etiolog*[title/abstract]) AND
- 446 Humans[MeSH Terms])
- 447 Section 2.5.7: Relative risk studies for specific drug-bug combinations
- 448 ("Acinetobacter baumannii"[MeSH Terms] AND "carbapenem resistance"[All Fields]) OR ("Acinetobacter
- 449 baumannii" [MeSH Terms] AND "carbapenem resistant" [All Fields])
- 450 ('Escherichia coli'[MeSH Terms] AND 'carbapenem resistance'[All Fields]) OR ('Escherichia coli'[MeSH Terms]
 451 AND 'carbapenem resistant'[All Fields])
- 452 ('Escherichia coli'[MeSH Terms] AND 'fluoroquinolone resistance'[All Fields]) OR ('Escherichia coli'[MeSH
- 453 Terms] AND 'fluoroquinolone resistant'[All Fields])
- 454 ('Escherichia coli'[MeSH Terms] AND 'third generation cephalosporin'[All Fields]) OR ('Escherichia coli'[MeSH
- 455 Terms] AND ESBL OR extended-spectrum beta lactamase'[All Fields])

- 456 ('Klebsiella pneumoniae'[MeSH Terms] AND 'third generation cephalosporin'[All Fields]) OR ('Klebsiella
- 457 pneumoniae'[MeSH Terms] AND 'ESBL OR extended-spectrum beta lactamase'[All Fields])
- 458 ('Klebsiella pneumoniae'[MeSH Terms] AND 'carbapenem resistance'[All Fields]) OR ('Klebsiella
- 459 pneumoniae'[MeSH Terms] AND 'carbapenem resistant'[All Fields])
- 460 ('Streptococcus pneumoniae'[MeSH Terms] AND 'penicillin resistance'[All Fields]) OR ('Streptococcus
- 461 pneumoniae'[MeSH Terms] AND 'penicillin resistant'[All Fields])
- 462 ('Pseudomonas aeruginosa'[MeSH Terms] AND 'carbapenem resistant'[All Fields] AND 'mortality' [MeSH Terms])
- 463 OR ('Pseudomonas aeruginosa'[MeSH Terms] AND 'carbapenem resistant' AND 'mortality' [All Fields])
- 464 ('Enterococcus faec*'[MeSH Terms] AND 'vancomycin-resistant'[All Fields])
- 465 ("haemophilus influenzae"[MeSH Terms] AND ("penicillin resistance"[MeSH Terms] OR ("penicillin"[All Fields]
- AND "resistance"[All Fields]) OR "penicillin resistance"[All Fields])) AND ("mortality"[Subheading] OR
- 467 "mortality"[All Fields] OR "mortality"[MeSH Terms])
- 468 ("streptococcus agalactiae"[MeSH Terms] AND ("azithromycin resistance"[MeSH Terms] OR ("azithromycin "[All
- 469 Fields] AND "resistance" [All Fields]) OR " azithromycin resistance" [All Fields] OR "penicillin resistance" [MeSH
- 470 Terms] OR ("penicillin"[All Fields] AND "resistance"[All Fields]) OR "penicillin resistance"[All Fields] OR
- 471 "clindamycin resistance"[MeSH Terms] OR ("clindamycin"[All Fields] AND "resistance"[All Fields]) OR
- 472 "erythromycin resistance" [All Fields] OR "erythromycin resistance" [MeSH Terms] OR ("erythromycin" [All Fields]
- AND "resistance"[All Fields]) OR "clindamycin resistance"[All Fields]) AND ("mortality"[Subheading] OR
- 474 "mortality"[All Fields] OR "mortality"[MeSH Terms])
- 475 Section 2.5.8: Prevalence of resistance for specific organisms
- 476 Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for *Escherichia coli*,
- 477 Klebsiella pneumoniae, Streptococcus pneumoniae, and Staphylococcus aureus with the terms for antimicrobial
- drug resistance (resistan*, suscept*, surveil*, etc), limited from 1990 up to 2018. The search was undertaken on
- 479 MEDLINE, Ovid Embase, Global Health, Cochrane Library.
- 480 For the 2021 GBD AMR update, two reviews that were modelled on the search terms above were undertaken:
- 481 The first rapid review ("AMR5-8 Pathogens") used Medical Subject Heading (MeSH) terms with free text terms in
- 482 the title and abstract fields for Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species and
- 483 Enterococcus species with the terms for antimicrobial drug resistance (resistan*, suscept*, surveil*, etc) and clinical
- 484 syndromes (urinary tract infection, UTI, bacteremi*, bacteraemi*, blood stream infection* etc), limited from 1990 to
- 485 2018. The search was undertaken on MEDLINE and the Cochrane Database of Systematic Reviews.
- The second rapid review ("AMR 11 Pathogens") used Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for *Escherichia coli*, *Klebsiella pneumoniae*, *Streptococcus pneumoniae*, *Staphylococcus aureus*, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, *Enterobacter* species, *Enterococcus* species, *Morganella*
- 488 *aureus*, Acinetobacter baumannit, Pseudomonas deruginosa, Enterobacter species, Enterobacter species, Enterobacter species, Morganetia 489 species, Serratia species, Proteus species with the terms for antimicrobial drug resistance (resistan*, suscept*,
- species, *servata* species, *troteus* species with the terms for antimicrobial drug resistance (resistance (resist
- 490 surveir', etc) and chinical syndromes (unnary fract infection, 011, bactereini⁴, bactereini⁴, blood stream infection⁴ 491 etc), limited from 2018 to 2023. The search was undertaken on MEDLINE and the Cochrane Database of Systematic
- 492 Reviews.
- 493 Medical Subject Headings (MeSH) and free text terms for the pathogens of interest (eg, *S* Typhi, *S* Paratyphi A,
- 494 enteric fever) with terms for antimicrobial resistance (eg, resistan*, suscept*, surveil*). The search was undertaken
- 495 on MEDLINE, Ovid Embase, Global Health, Cochrane Library, Scopus, Web of Science-Core Collection and
- 496 LILACS regional WHO database.
- 497 Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for non-typhoidal
- 498 Salmonella or salmonellosis (non-typh or non-typh Salmonel...) with the terms for antimicrobial drug
- resistance (resistan*, suscept*, surveil*, etc) and invasive (bloodstream infection, septicaemia, etc.), limited from

- 500 1990 up to the search date. The search was undertaken on MEDLINE, Ovid Embase, Global Health, Cochrane
- 501 Library, Scopus, Web of Science-Core Collection and LILACS regional WHO.
- 502 Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for *Shigella* or shigellosis
- with the terms for antimicrobial drug resistance (resistan*, suscept*, surveil*, etc), limited from 1990 up to the
- search date. The search was undertaken on MEDLINE, Ovid Embase, Global Health, Cochrane Library, Scopus,
- 505 Web of Science-Core Collection and LILACS regional WHO database.
- 506 Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for *Neisseria*
- 507 gonorrhoeae, with the terms for antimicrobial drug resistance (resistan*, suscept*, surveil*, etc), MDR, XDR,
- 508 limited from 1990 up to the search date. The search was undertaken on MEDLINE, Ovid Embase, Global Health,
- 509 Cochrane Library, Scopus, Web of Science-Core Collection and LILACS regional WHO database.

510 Section 2.6: Single drug-resistance profiles

- 511 Data sources used to inform single drug-resistance profiles were obtained from surveillance networks and
- aggregated reports where the full antibiogram of a pathogen for all drugs tested is not reported. Data from these
- sources generally do not include any individual records linked to a patient outcome. They are used to inform current
- and past resistance trends for specific pathogen–drug combinations. Single drug-resistance data were used in the
- prevalence of resistance component model and data processing, and modelling methods can be found in section 7.
- 516 The data sources for single drug-resistance profiles were obtained from the sources below.

517	GLASS: Global Antimicrobial Resistance Surveillance System by WHO.
518	• CAESAR: Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR) is a
519	network of national AMR surveillance systems and includes 19 countries in the WHO European
520	Region that are not part of EARS-Net.
521	• NARMS: The National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS)
522	is a collaboration of agencies within the US Department of Health and Human Services (HHS) (FDA
523	and CDC) and the US Department of Agriculture (USDA). It tracks enteric bacteria and selected
524	animal pathogens and their resistance to antimicrobials, and data are available from 1997 onward.
525	• SOAR: Survey on Antibiotic Resistance (SOAR) sponsored by GSK.
526	• ReLAVRA and SIREVA: The Latin American Network for Antimicrobial Resistance Surveillance
527	(ReLAVRA by its Spanish acronym) and the Serotype and Antimicrobial Resistance Surveillance
528	Program (SIREVA by its English acronym), which are coordinated by the Pan-American Health
529	Organization (WHO/PAHO).
530	• South Africa National Institute for Communicable Diseases (NICD): Aggregated data from South
531	Africa's AMR surveillance in public health care centres which are submitted to GLASS.
532	Surveillance on Invasive Pulmonary Disease by the New Zealand Public Health Action.
533	Surveillance of Antimicrobial Resistance in Hospital Acquired Infection by Kendokteran
534	Laboratorium, Indonesia.
535	Alliance for the Prudent Use of Antibiotics (APUA), Nepal.
536	Hospital Civil de Guadalajara Fray Antonio Alcalde, Mexico.
537	Australian Group on Antimicrobial Resistance (AGAR).
538	Antimicrobial Resistance Surveillance Program (ARSP).
539	Antimicrobial Use and Resistance in Australia (AURA).
540	Australian Government Department of Health.
541	Canadian Antimicrobial Resistance Surveillance System.
542	The China Antimicrobial Surveillance Network.
543	National Surveillance of Antimicrobial Resistance, Malaysia.
544	Pakistan Antimicrobial Resistant Network.
545	

546 Section 2.7: Pharmaceutical sales and antibiotic use

These data were used to model the antibiotic consumption covariate, which was used as an input in the prevalence of resistance models; full details on this model can be found in section 7. Pharmaceutical sales and antibiotic use data were obtained from the following sources for the years 2000 to 2018 (unless stated otherwise).

- 550 IMS Health and Quintiles (IQVIA): antibiotic sales data for 77 countries. • Demographic and Health Surveys (DHS): households health surveys carried out across more than 90 551 countries; they include questions on antibiotic usage among those who had cough in a period of two 552 553 weeks before the survey. Multiple Indicators Cluster Surveys (MICS): households health surveys carried out across more 554 • than 90 countries; they include questions on antibiotic usage among those who had cough in a period 555 556 of two weeks before the survey. 557 European Surveillance of Antimicrobial Consumption Network (ESAC-NET): antibiotic • 558 consumption data for five countries over 101 country-years. WHO report on surveillance of antibiotic consumption: 2016–2018 early implementation: report 559 • on antibiotic consumption for 21 countries over 21 country-years. 560 561 562 Section 2.8: Mortality surveillance 563 Mortality surveillance data were used in the sepsis, syndrome, and pathogen distribution models; full details on these models can be found in sections 4 and 6. Mortality surveillance data came from the source listed below. 564 565 Child Health and Mortality Prevention Surveillance (CHAMPS): Under-5 mortality surveillance sites in South Africa, Mali, Bangladesh, Kenya, Ethiopia, and Mozambique. Researchers use minimally invasive 566 tissue sampling (MITS) to gather information about pathogens involved and are able to discern a more 567 568 accurate cause of death. 569 570 Section 2.9: Linkage (mortality only) 571 Hospital-linked cause of death records (linkage) data were used in sepsis and infectious syndrome models; full details on these models can be found in section 4. Mortality-only linkage data include: 572 573 • Italy Friuli-Venezia Giulia MCoD data. 574 • New Zealand linked national minimum dataset to mortality collection data. 575 576 Section 2.10 Insurance claims data 577 Insurance claims data were used in pathogen distribution models, and AMR incidence estimation; full details on these models can be found in section 4, 6 and 9. Insurance claims data include: 578 579 Poland National Health Fund: National insurance claims records from 2015 to 2021. • Section 3: Summary of GBD 2021 estimation process¹ 580
- A comprehensive description of data sources, data quality, statistical modelling, and analyses for GBD 2021 have
 been reported elsewhere.² To download the data used in these analyses, please visit the Global health Data Exchange
 GBD 2021 website (<u>https://ghdx.healthdata.org/gbd-2021/sources</u>). A brief summary of the fatal and non-fatal
- 584 estimation processes is given below.
- 585 Section 3.1: GBD 2021 cause of death estimation process
- 586 The overarching steps for the fatal estimation process for each age, sex, location, and year are to first estimate all-
- 587 cause mortality rates, then calculate cause-specific mortality rates, and finally scale the cause-specific mortality rates
- to the all-cause mortality rates for internal consistency. First, all-cause mortality is estimated using 22 223 sources as
- data inputs for under-5 mortality estimation and adult mortality estimation. ST-GPR was used to produce estimates
- 590 of HIV-free mortality rate for every location-year after adjusting for completeness and other known biases in the 591 input data. Added to this HIV-free mortality rate are the HIV-specific mortality rate and deaths from fatal
- input data. Added to this HIV-free mortality rate are the HIV-specific mortality rate and deaths from fatal
 discontinuities, or shocks, which are events that are stochastic in nature and cannot be modelled using standard GBD
- modeling tools, such as natural disasters and conflicts. GBD then estimated the cause-specific mortality rates of 288

- diseases and injuries using the cause of death ensemble model (CODEm). This cause of death analysis used 56 604
- sources in the cause of death (CoD) database. There are eight types of data sources in the CoD database: vital
- registration, verbal autopsy,⁵ cancer registry, police records, sibling history, surveillance, survey/census, and
- 597 minimally invasive tissue sampling (MITS) diagnoses. VR is considered the most comprehensive source of cause of 598 death data, but less than half the world's population has deaths captured in a VR system (appendix figure S6), so
- causes of death statistics are supplemented with other data types. These various data sources are largely ICD-coded
- 600 causes of death and use heterogenous ICD versions so are standardised to GBD causes of death. Once standardised
- and adjusted for known biases due to ICD classification changes,⁶ garbage coding,⁶⁻⁸ HIV correction,⁹ stochastic
- noise,² and completeness,¹⁰ causes of death are modelled using CODEm¹¹ to determine the cause fraction for each
- underlying cause of death by age, sex, year, and location. CODEm provides an ensemble prediction based on a
- 604 combination of candidate models that vary across outcome and covariate combinations chosen for out-of-sample
- 605 predictive performance. Because each cause is modelled independently, it is possible the sum of these models will
- not equal the all-cause mortality estimates, so cause-specific results are run through the CoDCorrect process to make cause-specific and all-cause mortality estimates internally consistent. This process rescales cause-specific estimates
- 608 to the all-cause mortality envelope.

609 Section 3.2: GBD 2021 non-fatal estimation process

- 610 Non-fatal health outcomes are estimated using DisMod-MR 2.1, a Bayesian-regression analytical tool that
- 611 synthesises various data inputs to produce estimates of disease incidence and prevalence. The data used for this
- analysis include systematic reviews done at the Institute for Health Metrics and Evaluation (IHME), data from
- household surveys including the demographic and health surveys, multiple indicator cluster surveys, living standards
- 614 measurement surveys, reproductive health surveys, administrative claims data, inpatient hospital discharge records,
- outpatient hospital data, disease registries, programme-level data on disease burden from government agencies,
- 616 surveillance system data on disease burden, and sources suggested to us by in-country collaborators and surveys
- 617 identified in major multinational survey data catalogs such as the WHO Central Data Catalog. 75 213 sources were 618 used for this analysis, 37 006 reporting incidence and 22 076 reporting prevalence. Data from these sources are
- 618 used for this analysis, 37 006 reporting incidence and 22 076 reporting prevalence. Data from these sources are 619 extracted. Pre-modelling bias adjustments are made using crosswalking to account for various sources of bias, such
- 620 as heterogeneous case definitions and methods of measurement. The pre-modelling bias adjustments are made using
- 621 the MR-BRT environment, a meta-regression tool that allows for Bayesian priors, regularisation, and trimming and
- has been described in greater detail previously.¹² Using these bias-adjusted data, an estimate of prevalence and
- 623 incidence for each cause is produced using the DisMod-MR 2.1 modelling framework. DisMod-MR 2.1 accepts all
- 624 available data on mortality, incidence, prevalence, and remission and uses a compartmental model to enforce
- 625 consistency between all quantities.

626 Section 4: Sepsis and infectious syndrome estimation¹

627 Section 4.1: Input data

- 628 Section 4.1.1: Multiple causes of death
- 629 MCoD data are individual-based records that provide underlying causes of death and one or more intermediate
- 630 causes in the chain of death. Additionally, each record includes age, sex, residence, and the date of death.
- 631 Section 4.1.2: Hospital record with multiple diagnoses and discharge status of death
- 632 This type of data is an individual-based hospital record of a patient that provides the main diagnosis and one or more
- additional diagnoses. Additionally, each record includes age, sex, residence, date of admission, date of discharge,
- and outcome (dead or alive). Only hospital discharges with discharge status of death were used in this component

model, since we aimed to estimate the fraction of deaths that involve infection and the infectious syndrome

- 636 distribution of those deaths.
- 637 Section 4.1.3: Linkage data
- Linkage data are generated using probabilistic methods in a defined population that link individual-based hospital
- data to individual-based MCoD data. Linkage data offer a wider dataset that includes main diagnosis, other
- 640 diagnoses, underlying cause of death, and intermediate causes of death in the chain.
- 641 Section 4.1.4: Mortality surveillance (Child Health and Mortality Prevention Surveillance [CHAMPS])
- 642 The CHAMPS network tracks the causes of under-5 mortality and stillbirths at sites in sub-Saharan Africa and south
- Asia through epidemiological surveillance of under-5 deaths and stillbirths utilising minimally invasive tissue
- sampling (MITS), laboratory diagnostics including conventional and advanced histopathology and molecular
- screening of various pathogens, verbal autopsy, and available clinical and demographic data.

646 Section 4.1.5: Claims data with multiple diagnoses and fatal outcome

Insurance claims data are individual-based records that provide multiple ICD codes related to the recorded health
 insurance claim. Each record includes age, sex, residence, date of claim, and outcome (dead or alive). Only claims

records with outcome status of death were used in this component model.

650

Location	Data type	Years	Year range	Death Records
	MCoD	43	1980– 2022	81,390,689
USA	Hospital data with fatal outcome	31	1980– 2010	3,292,373
-	Linkage data			
	MCoD	24	1999– 2022	26,689,660
Brazil	Hospital data with fatal outcome	6	2015– 2020	1,052,826
-	Linkage data			
	MCoD	18	2003– 2020	10,051,490
Italy	Hospital data with fatal outcome	17	2005– 2021	4,124,658
	Linkage data	16	2003– 2018	123,050
	MCoD	20	1997– 2016	5,136,003
South Africa	Hospital data with fatal outcome			
-	Linkage data			
	MCoD	13	2009– 2022	8,635,151
Mexico	Hospital data with fatal outcome	20	2000– 2020	892,512
-	Linkage data			
	MCoD	25	1998– 2022	5,246,587
Colombia	Hospital data with fatal outcome			
	Linkage data			
Taiwan (province of	MCoD	10	2008– 2017	1,329,259
China)	Hospital data with fatal outcome			

Table 4.1.5: Input data for calculation of fraction of death by sepsis in different underlying causes

	Linkage data			
	MCoD			
Austria	Hospital data with fatal outcome	18	2001– 2018	477,545
	Linkage data			
	MCoD			
New Zealand	Hospital data with fatal outcome	10	2011– 2020	152,272
	Linkage data	11	2000– 2010	165,265
	MCoD	5	2014– 2018	61975
United Arab Emirates	Hospital data with fatal outcome			
	Linkage data			
	MCoD			
Georgia	Hospital data with fatal outcome	7	2014– 2020	36,084
	Linkage data			
Mongolia	MCoD	5	2018– 2022	30,676
	Hospital data with fatal outcome	2	2019– 2020	2
	Linkage data			
	MCoD			
India	Hospital data with fatal outcome	4	2014– 2017	14,337
	Linkage data			
	MCoD			
Pakistan	Hospital data with fatal outcome	3	2017– 2019	8,433
	Linkage data			
	MCoD			
Libya	Hospital data with fatal outcome	2	2019– 2020	426
	Linkage data			
	MCoD			
Kyrgyzstan	Hospital data with fatal outcome	1	2012	9
	Linkage data			

Philippines	Claims data with fatal outcome	1	2016	89,276
CHAMPS Surveillance Sites: Kenya, Ethiopia, Mozambique, Mali, Bangladesh, Sierra Leone, and South Africa	MITS	6	2017– 2022	1,805
Total	MCoD	163	1980– 2022	138,571,490
	Hospital data with fatal outcome	121	1980– 2022	10,051,477
	Linkage data	27	2000– 2018	288,315
	Claims data with fatal outcome	1	2016	89,276
	MITS	6	2017– 2022	1,805

653 Section 4.2: Data processing

Data for the USA, Brazil, Italy, South Africa, and Mexico were extracted at the subnational level by GBD 2021 age

655 groups, sex, year, and causes of death and/or diagnoses, while data for the remaining countries and territories were 656 analysed at the national level. This allowed us to expand the location-years of data that we had for each Socio-

656 analysed at the national level. This allowed us to expand the location-years of data that we had for each Soc 657 demographic Index (SDI)¹³ value.

658 Section 4.3: Mapping the data

659 Prepared data were mapped to GBD causes. The GBD cause list is a mutually exclusive and collectively exhaustive

660 list of diseases and injuries. The GBD cause list is organised hierarchically to accommodate different purposes and

needs of various users. The first two levels aggregate causes into general groupings. At Level 1, there are three cause

662 groups: communicable, maternal, neonatal, and nutritional diseases (Group 1 diseases); non-communicable diseases

(Group 2); and injuries (Group 3). These Level 1 aggregates are subdivided at Level 2 of the hierarchy into 22 cause

664 groupings (eg, neonatal disorders, neurological disorders, and transport injuries). The disaggregation into Levels 3 665 and 4 contains the finest level of detail for causes captured in GBD 2021. See appendix 2, table S1 for the full GBD

666 cause hierarchy by level.

The underlying cause of death or main diagnosis for each record in the data was mapped to a GBD cause. After the

mapping of underlying cause, we used the GBD 2021 garbage code redistribution algorithm (see appendix 1, section

3.7 in Naghavi et al.²) to ensure that all deaths had a plausible and specific underlying cause of death. The

redistribution of garbage codes for underlying causes of death followed the same age and sex restrictions as GBD

671 2021. We did not redistribute garbage codes in the chain causes because the concept of a garbage code applies only

to plausible underlying cause of death (see Rudd et al.¹⁴ and appendix 1, section 3.7 in Naghavi et al.²).

673 Section 4.4: Intermediate cause and infectious syndrome mapping hierarchy

674 Section 4.4.1: Intermediate cause mapping

Within our modelling framework, we first classified whether each death record included sepsis. Deaths were classified as:

677 Explicit sepsis (A40, R65.2 in ICD-10 and 039 in ICD-9): Any death which had a specific ICD code for sepsis in the

678 MCoD chain or hospital diagnoses was considered explicit sepsis.¹⁴

Implicit sepsis: Any death that had an infectious disease code in the underlying cause or cause chain that was notexplicitly sepsis was considered implicit sepsis.

681 Non-sepsis: Any death that did not meet either of the two above criteria (appendix 2, tables S2, S3).

- Then, we limited our analysis to only explicit and implicit sepsis deaths, which we classified into infectious
- 683 syndromes. An infectious syndrome is the infection directly responsible for sepsis and serves as the bridge between 684 the underlying cause of death and sepsis. Infectious syndromes can be both underlying causes of death and
- 685 intermediate causes of death.
- Based on the ICD-coded diagnoses in the multiple cause of death records, we then assigned the deaths to all 22
- 687 infectious syndromes and 26 infectious diseases (HIV, malaria, tetanus, neglected tropical diseases estimated by the
- 688 GBD [Ebola, Zika virus, dengue fever, African trypanosomiasis, leishmaniasis, chagas disease, rabies, yellow fever,
- 689 cysticercosis, dracunculiasis, echinococcosis, schistosomiasis, trachoma, other neglected tropical diseases], COVID-
- 19, measles, whooping cough, diphtheria, rheumatic heart disease, chlamydia, gonorrhoea, syphilis, and other
- 691 sexually transmitted infections) that applied. Of the 22 infectious syndromes (table 4.4.2.1), only 11 contributed to
- AMR burden (table 4.4.1.1). Assignment of deaths to other infectious syndromes and diseases was important to
- 693 ensure a comprehensive and mutually exclusive assignment of sepsis mortality.
- Table 4.4.1.1: Infectious syndromes contributing to AMR

	Infectious syndrome
1	Bloodstream infections
2	Meningitis
3	Lower respiratory infections
4	Endocarditis
5	Peritoneal and intra-abdominal infections
6	Diarrhoea
7	Urinary tract infections and pyelonephritis
8	Infections of bones, joints, and related organs
9	Infections of the skin and subcutaneous systems
10	Tuberculosis
11	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella

696 Section 4.4.2: Informative ranking

Due to our data often having multiple diagnoses associated with each record, a single case of sepsis could potentially 697 698 map to multiple candidate infectious syndromes. Because multiple infectious syndrome assignments pose a risk of 699 double counting, we employed an informative ranking hierarchy. The informative ranking allowed us to determine 700 the infectious syndrome that provided the most information on the culprit pathogen. The goal of this hierarchy was 701 to produce the most accurate pathogen burden estimate such that when there were multiple infectious syndromes, we 702 prioritised the syndrome with the most distinctive distribution. For example, bloodstream infections (BSIs) are 703 common infections in sepsis but there is often an earlier source of the infection, such as a urinary tract infection 704 (UTI), cellulitis (skin infection), or lower respiratory infection (LRI), and each has a unique pathogen distribution 705 that provides more information than the distribution of BSI. In the event that a patient record reflected both BSI and 706 LRI, we would assign the infectious syndrome based on which ranked as most informative with respect to the 707 underlying pathogen, in this case LRI (table 4.4.2.1).

Table 4.4.2.1. Level 1 infectious syndrome informative ranking hierarchy. Organised from most informative (top) to least (bottom).

Rank	Infectious syndrome model informative ranking hierarchy
1	Meningitis
2	Myelitis, meningoencephalitis, and other central nervous system infections*

3	Encephalitis*
4	Endocarditis
5	Carditis, myocarditis, and pericarditis*
6	Peritoneal and intra-abdominal infections
7	Lower respiratory infections
8	Other unspecified respiratory site infections**
9	Upper respiratory infections*
10	Infections of bones, joints, and related organs
11	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella
12	Diarrhoea
13	Hepatitis*
14	Urinary tract infections and pyelonephritis
15	Genital infections*
16	Infections of the skin and subcutaneous systems
17	Oral infections*
18	Eye infections*
19	Tuberculosis
20	Bloodstream infections
21	Other unspecified site infections*
22	Other parasitic infections*

* Infectious syndrome models marked with a '*' do not contribute to the estimate of AMR burden

** "Other unspecified respiratory site infections", marked with '**', was not considered an infectious syndrome but was included as an additional model that was aggregated into lower respiratory infections.

713 Section 4.4.3: Two modelling pathways

After mapping the underlying and chain causes of death, our database went through two separate modelling

pathways. The first model estimated the fraction of deaths that are sepsis-related in each GBD cause; these sepsis-

- related deaths for non-infectious GBD causes were combined with GBD deaths for infectious causes to create the
- total envelope of all deaths where infection plays a role. The second pathway estimated each infectious syndrome as
- 718 a fraction of sepsis-related mortality in each GBD cause. In the last step of infectious syndrome estimation, the 719 fractions of sepsis by modelled infectious syndromes normalised to one so as not to exceed the sepsis mortality
- ractions of sepsis by modeled infectious syndromes normalised to one so as not to exceed the sepsis mortality envelope and were multiplied by the sepsis estimate in each GBD cause by country and territory, age, sex, and year
- 720 envelope 721 in 2021.
- For the aforementioned 26 infectious diseases (eg, HIV, malaria, tetanus) we used estimates from GBD 2021. For
- the 22 infectious syndromes, we ran models for all infectious syndromes except tuberculosis and typhoid,
- paratyphoid, and invasive non-typhoidal Salmonella as detailed in section 4.6.
- 725 Section 4.5: First pathway: Estimating the envelope of sepsis

726 Section 4.5.1: Sepsis model

- 727 We used a mixed-effects binomial logistic regression to model the logit of the fraction of sepsis-related deaths by
- GBD cause-age-sex-location, consistent with the modelling approach used by Rudd et al.¹⁴ Sex and Healthcare
- Access and Quality Index (HAQ Index)¹⁵ were included as covariates, and a nested random effect on underlying

cause of death was included. A separate model was run for each GBD 2021 age group (0–6, 7–27, 1-5 months, 6-11

- 731 months, 12-23 months, 2-4 years, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59,
- 732 60–64, 65–69, 70–74, 75–79, 80–84, 85–89, 90–94, 95+ years):

733 sepsis related deaths ~ B(total deaths, sepsis fraction) (4.5.1.1)

734

$logit(sepsis fraction) = \beta_0 + \beta_1 * HAQ Index + \beta_2 * sex + \pi_{level 1, level 2}$

735 Where $\pi_{level \ 1, level \ 2}$ is a nested random effect on underlying cause of death and *B* represents the binomial

distribution. The nested random-effect's structure in the model on underlying cause of death allowed the prediction of sepsis fractions where data were limited by borrowing information from diseases within the same group.

There were 22 groups of underlying causes of death, each categorised by physiological relatedness. We produced

our predictions by calculating a point estimate from the model for each GBD location, age group, sex, cause, and

year. We calculated uncertainty intervals (UIs) as 1.96 standard deviations above and below the mean (point

- estimate). Uncertainty is attributable to sample size variability between data sources, data availability, and modelspecifications.
- For all underlying causes of death that are infectious diseases, we used the GBD death estimates as the number of
- sepsis deaths rather than the modelled sepsis estimate, since infection inherently plays a role in these deaths even if
- the pathway did not explicitly include sepsis. The causes that impacted AMR burden and their associated infectious
- syndromes are listed in table 4.5.1.1.
- Table 4.5.1.1. Underlying causes that are infectious diseases and their corresponding reported infectious syndromes

GBD cause name	Reported infectious syndrome
Appendicitis	Peritoneal and intra-abdominal infections
Skin diseases	Infections of the skin and subcutaneous systems
Diarrhoeal diseases	Diarrhoea
Endocarditis	Endocarditis
Invasive non-typhoidal Salmonella	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella
Lower respiratory infections	Lower respiratory infections
Maternal sepsis and other maternal infections	Bloodstream infections
Meningitis	Meningitis
Neonatal sepsis and other neonatal infections	Bloodstream infections
Paratyphoid fever	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella
Tuberculosis	Tuberculosis
Typhoid fever	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella
Urinary tract infections and interstitial nephritis	Urinary tract infections and pyelonephritis

For all other causes, we calculated the number of sepsis-related deaths in each year by multiplying our predictions of

cause-, age group-, sex-, year-, and location-specific sepsis fractions by GBD 2021 death estimates for 1990–2021.

Finally, we aggregated our results to arrive at regional and global sepsis-related mortality in non-infectious

underlying causes of death, which we combined with the GBD infectious disease deaths estimates to create the

mortality envelope of all deaths related to infection.

753 Histograms of the available input data by Healthcare, Access, and Quality (HAQ) Index are shown below. MCoD

754 input data are used to estimate the proportion of GBD cause-specific deaths that involve sepsis.

Figure 4.5.1.1. All MCoD input data by HAQ Index

Figure 4.5.1.2. Sepsis-related MCoD input data by HAQ Index

759 Section 4.6: Second pathway: Apportioning sepsis to specific infectious syndromes

760 We used a mixed-effects binomial logistic regression to model the logit of the infectious syndrome fraction of

761 sepsis-related mortality by GBD cause. The model covariates varied by infectious syndrome (table 4.6.1): covariates

762 were selected by disease experts based off strong theoretical relationships to the specific infectious syndrome.

763 Where syndromes overlapped with GBD causes, we incorporated covariates selected in the GBD for fatal modelling

by CODEm.¹¹ All models included HAQ Index as a covariate. Future improvements to infectious syndrome models

765 may include incorporating a bespoke covariate selection tool or strategy.

The pathogen distribution for hospital-acquired infections (HAIs) and community-acquired infections (CAIs) differs 766 markedly for some infectious syndromes.^{16–20} To more accurately estimate the burden of pathogens responsible for 767 infection, we separated infectious syndromes into hospital-acquired and community-acquired for LRI and UTI. For 768 all ICD-coded administrative datasets (hospital discharge, MCoD, and linkage), we assumed that an infection was 769 770 community-acquired if it was the primary diagnosis or underlying cause of death. By contrast, an infection was considered hospital-acquired if it was not the primary diagnosis or underlying cause of death. We recognise that this 771 is a strong assumption that will not always be correct; however, there is no established method for determining HAI 772 versus CAI in administrative data.^{21,22} Hospital-acquired lower respiratory and urinary tract infections are estimated 773

independently for this study, while GBD estimates are used for community-acquired lower respiratory and urinary

775 tract infections.

We modelled 22 infectious syndromes. Each infectious syndrome model specified a list of GBD causes of death for

which the model produced estimates. The ICD codes that make up the GBD causes of death can be found inappendix 2 table S2.

779

780 Table 4.6.1: Infectious syndrome model covariates and age groups

Model name	Covariates	Age groups
Sepsis	HAQ Index; ¹⁵	GBD 2021 age groups
	sex	
Meningitis	HAQ Index; ¹⁵ sex; PCV3 ²³ (pneuomococcal conjugate vaccine 3) lagged five-year coverage, COVID-free (proportion); Hib3 ²³ (Haemophilus influenzae type B vaccine) transformed: population- level coverage, including indirect effects (proportion)	0-59, 60-79, 80+
Encephalitis	HAQ Index; ¹⁵ sex	0-14, 15-44, 45-64, 65-69, 70+
Myelitis, meningoencephalitis, and other central nervous system infections	HAQ Index; ¹⁵ sex; PCV3 lagged five-year coverage, COVID-free (proportion)	<1 year, 12-23 months, 2-4, 5-9, 10- 14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84,85-89,90- 94, 95+
Peritoneal and intra-abdominal infections	HAQ Index; ¹⁵ sex	GBD 2021 age groups
Infections of the skin and subcutaneous systems	HAQ Index; ¹⁵ sex; sanitation ²⁴ (proportion with access); improved water source ²⁴ (proportion with access); diabetes fasting plasma glucose (mmol/L), by age	<1 year, 1-4, 5-14, 15-24, 25-34, 35- 44, 45-54, 55-64, 65+
Oral infections	HAQ Index; ¹⁵ sex; dentists ²⁵ per capita	0-14, 15-59, 60-79, 80+
Eye infections	HAQ Index; ¹⁵ sex; sanitation (proportion with access); improved water source (proportion with access)	All Ages
Diarrhoea	HAQ Index; ¹⁵ sex; sanitation (proportion with access); improved water source (proportion with access); rotavirus coverage, ²⁶ COVID- inclusive (proportion)	Under 5, 5-19, 20-24, 25-29, 30-44, 45-79, 80+
Hepatitis	HAQ Index; ¹⁵ sex;	0-39, 40+

	vaccine-adjusted HbSAg (hepatitis B surface antigen) serporevalence age- standardised, ²⁷ hepatitis C seroprevalence ²⁶ (anti- HCV) age-standardised, intravenous drug use ²⁴ (proportion by age)	
Genital infections	HAQ Index; ¹⁵ sex; total fertility rate ¹³	10-24, 25-34, 35-39, 40-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85-89, 90-94, 95+
Bloodstream infections	HAQ Index; ¹⁵ sex	GBD 2021 age groups
Endocarditis	HAQ Index; ¹⁵ sex; sanitation (proportion with access); improved water source (proportion with access); intravenous drug use (proportion by age)	0-9, 10-39, 40-44, 45-49, 50+
Other parasitic infections	HAQ Index; ¹⁵ sex; sanitation (proportion with access); improved water source (proportion with access)	All Ages
Other unspecified site infections	HAQ Index; ¹⁵ sex	Early Neonatal, Late Neonatal, Post Neonatal, 1 year +
Infections of bones, joints, and related organs	HAQ Index; ¹⁵ sex	0-9, 10-44, 45-49, 50-54, 55-59, 60-64. 65-69, 70-74, 75-79, 80-84, 85-89, 90-94, 95+
Carditis, myocarditis, and pericarditis	HAQ Index; ¹⁵ sex	0-14, 15-24, 25-44, 45-49, 50-54, 55- 59, 60-64, 65-69, 70-74, 75-79, 80+
Lower respiratory infections	HAQ Index; ¹⁵ sex; ²⁷ inpatient utilisation envelope	GBD 2021 age groups
Upper respiratory infections	HAQ Index; ¹⁵ sex; PCV3 lagged five-year coverage, COVID-free (proportion); population density (over 1000 ppl/sqkm, proportion)	0-39, 40-64, 65+
Other unspecified respiratory site infections	HAQ Index; ¹⁵ sex; PCV3 lagged five-year coverage, COVID-free (proportion); population density (over 1000 ppl/sqkm, proportion)	0-14, 15-54, 55-64, 65-74, 75-84, 85+

95+

CAI=community-acquired infection. HAI=hospital-acquired infection. HAQ Index=Healthcare Access and Quality Index. GBD 2021 age groups
 include early neonatal, late neonatal, 1–5 months, 6–11 months, 12–23 months, 2–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–
 49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79, 80–84, 85–89, 90–94, 95+.

The infectious syndrome models were specified as mixed-effects binomial logistic regressions, one for each infectious syndrome and age group:

786syndrome related deaths ~ B(total deaths, syndrome fraction)(4.6.2.1)787 $logit(\text{syndrome fraction}) = \beta_0 + \beta_1 * X + \pi_{level 1.level 2}$

788 where β and X are vectors of length n + 1 for n covariates and $\pi_{level 1, level 2}$ is a nested random effect on underlying

cause of death. The granularity of the age groups estimated for each infectious syndrome was chosen based on the

age pattern of the infectious syndrome and limitations related to data sparsity.

- As in the first pathway, we derived our predictions from modelled point estimates and UIs as 1.96 standard
- deviations above and below the point estimate for each GBD location, age group, sex, and cause in each year.

793 Section 4.6.1: Aggregation to the sepsis mortality envelope

- We calculated the number of deaths attributable to each infectious syndrome in 2021 by multiplying our predictions
- of cause-, age group-, sex-, year-, and location-specific infectious syndrome fractions by our sepsis-mortality
- envelope estimates from the first pathway. All infectious syndrome fractions normalised to one prior to
- multiplication to ensure that we did not exceed the sepsis mortality envelope.
- Finally, we aggregated our results to calculate regional and global sepsis-related mortality by infectious syndrome.
- 799 Section 4.6.2: Infectious syndromes using GBD 2021 results
- 800 Out of the 22 infectious syndromes included in our hierarchy, we did not model tuberculosis (TB) and typhoid,
- paratyphoid, and invasive non-typhoidal Salmonella. Instead, we used the published results from GBD 2021² for
- these causes of death, as we believe the GBD 2021 estimates fully represent these infectious syndromes because
- they are usually not intermediate causes of death.

804 Section 4.7: Model validation

- 805 Infectious syndrome modelling aims to predict which cases of infection belong to a specific infectious syndrome,
- 806 which is a multi-class classification problem. We therefore use the Area Under the Receiver Operating
- 807 Characteristics (ROC) Curve (AUC) to evaluate model performance. The ROC Curve plots the sensitivity (or true
- positive rate) against one minus the specificity (or false positive rate) for a given model, and a higher AUC score
- 809 indicates a better-performing classification model. Accuracy is a related measure which considers the proportion of
- true positives and true negatives predicted by the model with respect to the total number of predictions.
- 811 For out-of-sample validation, we used a 5-fold cross-validation strategy that excluded 20% of the input data
- described in table 4.1.5 on each iteration. Table 4.7.1 reports the Accuracy and AUC score for each of the age groups
- 813 within the infectious syndrome models, and table 4.7.2 reports the same metrics for the sepsis models.
- Table 4.7.1: Accuracy and AUC score for out-of-sample validation of 11 infectious syndromes models contributing
 to AMR burden

Model	Age group name	Accuracy	AUC score
Bloodstream infections	Early Neonatal	0.88	0.95

Bloodstream infections	Late Neonatal	0.91	0.98
Bloodstream infections	1-5 months	0.94	0.96
Bloodstream infections	6-11 months	0.94	0.96
Bloodstream infections	12 to 23 months	0.94	0.96
Bloodstream infections	2 to 4	0.93	0.95
Bloodstream infections	5 to 9	0.91	0.95
Bloodstream infections	10 to 14	0.88	0.94
Bloodstream infections	15 to 19	0.87	0.92
Bloodstream infections	20 to 24	0.91	0.94
Bloodstream infections	25 to 29	0.94	0.96
Bloodstream infections	30 to 34	0.94	0.96
Bloodstream infections	35 to 39	0.94	0.95
Bloodstream infections	40 to 44	0.93	0.94
Bloodstream infections	45 to 49	0.92	0.92
Bloodstream infections	50 to 54	0.91	0.90
Bloodstream infections	55 to 59	0.90	0.88
Bloodstream infections	60 to 64	0.90	0.88
Bloodstream infections	65 to 69	0.90	0.87
Bloodstream infections	70 to 74	0.90	0.87
Bloodstream infections	75 to 79	0.91	0.87
Bloodstream infections	80 to 84	0.91	0.87
Bloodstream infections	85 to 89	0.92	0.88
Bloodstream infections	90 to 94	0.92	0.90
Bloodstream infections	95 plus	0.92	0.91
Diarrhoea	Under 5	1.00	0.81
Diarrhoea	5 to 19	0.99	0.71
Diarrhoea	20 to 24	1.00	0.66
Diarrhoea	25 to 29	1.00	0.52
Diarrhoea	30 to 44	1.00	0.50
Diarrhoea	45 to 79	1.00	0.50
Diarrhoea	80 plus	1.00	0.50
Endocarditis	0 to 9	1.00	0.62
Endocarditis	10 to 39	0.99	0.89
Endocarditis	40 to 44	0.99	0.87
Endocarditis	45 to 49	0.99	0.84
Endocarditis	50 plus	0.99	0.83
Infections of bones, joints, and related organs	0 to 9	1.00	0.56
Infections of bones, joints, and related organs	10 to 44	1.00	0.70
Infections of bones, joints, and related organs	45 to 49	1.00	0.77
Infections of bones, joints, and related organs	50 to 54	1.00	0.80
Infections of bones, joints, and related organs	55 to 59	1.00	0.80
Infections of bones, joints, and related organs	60 to 64	1.00	0.83

Infections of bones, joints, and related organs	65 to 69	1.00	0.83
Infections of bones, joints, and related organs	70 to 74	1.00	0.84
Infections of bones, joints, and related organs	75 to 79	1.00	0.85
Infections of bones, joints, and related organs	80 to 84	1.00	0.85
Infections of bones, joints, and related organs	85 to 89	1.00	0.86
Infections of bones, joints, and related organs	90 to 94	1.00	0.87
Infections of bones, joints, and related organs	95 plus	1.00	0.89
Infections of the skin and subcutaneous systems	<1 year	1.00	0.71
Infections of the skin and subcutaneous systems	1 to 4	0.99	0.75
Infections of the skin and subcutaneous systems	5-14 years	0.99	0.62
Infections of the skin and subcutaneous systems	15 to 24	0.99	0.79
Infections of the skin and subcutaneous systems	25 to 34	0.99	0.85
Infections of the skin and subcutaneous systems	35 to 54	0.99	0.86
Infections of the skin and subcutaneous systems	55 to 64	0.98	0.85
Infections of the skin and subcutaneous systems	65 plus	0.98	0.87
Lower respiratory infections	Early Neonatal	0.99	0.79
Lower respiratory infections	Late Neonatal	0.99	0.73
Lower respiratory infections	1-5 months	0.97	0.91
Lower respiratory infections	6-11 months	0.96	0.94
Lower respiratory infections	12 to 23 months	0.96	0.94
Lower respiratory infections	2 to 4	0.95	0.93
Lower respiratory infections	5 to 9	0.93	0.92
Lower respiratory infections	10 to 14	0.92	0.89
Lower respiratory infections	15 to 19	0.91	0.88
Lower respiratory infections	20 to 24	0.94	0.91
Lower respiratory infections	25 to 29	0.96	0.94
Lower respiratory infections	30 to 34	0.96	0.94
Lower respiratory infections	35 to 39	0.96	0.93
Lower respiratory infections	40 to 44	0.95	0.92
Lower respiratory infections	45 to 49	0.94	0.90
Lower respiratory infections	50 to 54	0.94	0.88
Lower respiratory infections	55 to 59	0.94	0.87
Lower respiratory infections	60 to 64	0.93	0.87
Lower respiratory infections	65 to 69	0.93	0.86
Lower respiratory infections	70 to 74	0.93	0.86
Lower respiratory infections	75 to 79	0.94	0.86
Lower respiratory infections	80 to 84	0.94	0.87
Lower respiratory infections	85 to 89	0.95	0.88
Lower respiratory infections	90 to 94	0.95	0.89
Lower respiratory infections	95 plus	0.95	0.90
Meningitis	0 to 59	1.00	0.68
Meningitis	60 to 79	1.00	0.62

Meningitis	80 plus	1.00	0.57
Other unspecified respiratory site infections	0 to 14	1.00	0.85
Other unspecified respiratory site infections	15 to 54	1.00	0.50
Other unspecified respiratory site infections	55 to 64	1.00	0.50
Other unspecified respiratory site infections	65 to 74	1.00	0.50
Other unspecified respiratory site infections	75 to 84	1.00	0.50
Other unspecified respiratory site infections	85 plus	1.00	0.51
Peritoneal and intra-abdominal infections	Early Neonatal	0.99	0.74
Peritoneal and intra-abdominal infections	Late Neonatal	0.99	0.81
Peritoneal and intra-abdominal infections	1-5 months	0.98	0.87
Peritoneal and intra-abdominal infections	6-11 months	0.99	0.85
Peritoneal and intra-abdominal infections	12 to 23 months	0.98	0.83
Peritoneal and intra-abdominal infections	2 to 4	0.99	0.82
Peritoneal and intra-abdominal infections	5 to 9	0.98	0.82
Peritoneal and intra-abdominal infections	10 to 14	0.98	0.82
Peritoneal and intra-abdominal infections	15 to 19	0.97	0.87
Peritoneal and intra-abdominal infections	20 to 24	0.97	0.91
Peritoneal and intra-abdominal infections	25 to 29	0.98	0.93
Peritoneal and intra-abdominal infections	30 to 34	0.98	0.94
Peritoneal and intra-abdominal infections	35 to 39	0.98	0.93
Peritoneal and intra-abdominal infections	40 to 44	0.97	0.92
Peritoneal and intra-abdominal infections	45 to 49	0.97	0.90
Peritoneal and intra-abdominal infections	50 to 54	0.97	0.88
Peritoneal and intra-abdominal infections	55 to 59	0.96	0.87
Peritoneal and intra-abdominal infections	60 to 64	0.96	0.87
Peritoneal and intra-abdominal infections	65 to 69	0.96	0.86
Peritoneal and intra-abdominal infections	70 to 74	0.96	0.86
Peritoneal and intra-abdominal infections	75 to 79	0.97	0.87
Peritoneal and intra-abdominal infections	80 to 84	0.97	0.87
Peritoneal and intra-abdominal infections	85 to 89	0.97	0.87
Peritoneal and intra-abdominal infections	90 to 94	0.98	0.87
Peritoneal and intra-abdominal infections	95 plus	0.98	0.87
Tuberculosis	0 to 59	1.00	0.55
Tuberculosis	60 to 74	1.00	0.78
Tuberculosis	75 plus	1.00	0.81
Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	0 to 39	1.00	0.50
Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	40 to 54	1.00	0.50
Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	55 to 74	1.00	0.50
Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	75 to 84	1.00	0.50
Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	85 plus	1.00	0.50
Urinary tract infections and pyelonephritis	<1 year	1.00	0.66
Urinary tract infections and pyelonephritis	12 to 23 months	1.00	0.74

Urinary tract infections and pyelonephritis	2 to 4	0.99	0.78
Urinary tract infections and pyelonephritis	5 to 9	1.00	0.66
Urinary tract infections and pyelonephritis	10 to 14	0.99	0.62
Urinary tract infections and pyelonephritis	15 to 19	0.99	0.76
Urinary tract infections and pyelonephritis	20 to 24	0.99	0.78
Urinary tract infections and pyelonephritis	25 to 29	0.99	0.81
Urinary tract infections and pyelonephritis	30 to 39	0.99	0.81
Urinary tract infections and pyelonephritis	40 to 44	0.99	0.81
Urinary tract infections and pyelonephritis	45 to 49	0.99	0.82
Urinary tract infections and pyelonephritis	50 to 54	0.99	0.82
Urinary tract infections and pyelonephritis	55 to 59	0.99	0.83
Urinary tract infections and pyelonephritis	60 to 64	0.98	0.83
Urinary tract infections and pyelonephritis	65 to 69	0.98	0.84
Urinary tract infections and pyelonephritis	70 to 74	0.98	0.84
Urinary tract infections and pyelonephritis	75 to 79	0.98	0.85
Urinary tract infections and pyelonephritis	80 to 84	0.98	0.86
Urinary tract infections and pyelonephritis	85 to 89	0.98	0.87
Urinary tract infections and pyelonephritis	90 to 94	0.98	0.89
Urinary tract infections and pyelonephritis	95 plus	0.98	0.90

817 Table 4.7.2: Accuracy and AUC score for out-of-sample validation of sepsis models

Model	Age group name	Accuracy	AUC score	
Sepsis	Early Neonatal	0.92	0.74	
Sepsis	Late Neonatal	0.87	0.80	
Sepsis	1-5 months	0.89	0.90	
Sepsis	6-11 months	0.89	0.92	
Sepsis	12 to 23 months	0.90	0.93	
Sepsis	2 to 4	0.90	0.94	
Sepsis	5 to 9	0.90	0.93	
Sepsis	10 to 14	0.91	0.93	
Sepsis	15 to 19	0.96	0.95	
Sepsis	20 to 24	0.96	0.96	
Sepsis	25 to 29	0.95	0.96	
Sepsis	30 to 34	0.94	0.96	
Sepsis	35 to 39	0.93	0.95	
Sepsis	40 to 44	0.93	0.94	
Sepsis	45 to 49	0.94	0.92	
Sepsis	50 to 54	0.94	0.90	
Sepsis	55 to 59	0.94	0.89	
Sepsis	60 to 64	0.94	0.88	
Sepsis	65 to 69	0.94	0.88	
Sepsis	70 to 74	0.95	0.88	

Sepsis	75 to 79	0.95	0.88
Sepsis	80 to 84	0.95	0.89
Sepsis	85 to 89	0.95	0.90
Sepsis	90 to 94	0.95	0.92
Sepsis	95 plus	0.96	0.94

819 Section 4.7.1: Incidence of infectious syndromes disaggregated by age, sex, location, and year

We estimate incidence for the 11 infectious syndromes that contribute to AMR in this study. Incidence for 8 of these 11 infectious syndromes was estimated by dividing the syndrome deaths with syndrome specific case fatality ratios

822 (CFRs; estimation described in section 5, below) ("meningitis", "bloodstream infections", "lower respiratory

infections", "endocarditis", "peritoneal and intra-abdominal infections", "infections of bones, joints, and related
 organs", "infections of the skin and subcutaneous system", "urinary tract infections and pyelonephritis"). For

bloodstream infections, peritonitis, endocarditis, and meningitis, we used unadjusted inpatient-population-based

826 CFRs; the remaining CFR-calculated syndromes we adjusted using outpatient-population-based CFRs to estimate

827 incidence. Lastly, 3 syndromes among the 11 do not use CFRs ("diarrhoea"; "typhoid, paratyphoid, and invasive

828 non-typhoidal Salmonella"; "tuberculosis") but instead use incidence-mortality ratio estimates from the analogous

629 GBD underlying cause to scale these syndrome deaths to incidence; for details see section 9.1.

830 Section 5: Case fatality ratios¹

831 Section 5.1: Input data

832 Case fatality ratios (CFRs) were modelled for the pathogens and infectious syndromes of interest using all available

data detailing the organism responsible for infection, the infectious syndrome, and patient outcome. This included
 hospital and microbial data, totaling 20.0 million isolates and cases, as shown in table S10 (section 13). We

additionally included 52 907 cases from literature sources for meningitis, which had been previously extracted for a

836 systematic review in GBD.

837 Section 5.2: Data processing

All input data sources were processed as described in sections 6.2.1, 6.2.2, 6.2.4 and section 6.2.8, and pathogens of

interest were chosen as described in section 6.2.3. Input data for the CFR models were aggregated based on data

source, year, GBD location, and age group (as well as whether the infection was hospital- or community-acquired, in

841 the case of the lower respiratory and urinary tract infection models). We further incorporated a binary covariate 842 denoting whether the data source only included intensive care unit (ICU) patients, for which CFRs were expected to

be higher. For lower respiratory, meningitis, and bloodstream infections, for which CFRs could be different in

neonates, we modelled the following age groups: neonatal, post-neonatal–5 years, 5–50 years, 50–70 years, and 70

years and older. For all other infectious syndromes, we modelled the following age groups: neonatal–5 years, 5–50

years, 50–70 years, and 70 years and older. In the case of lower respiratory and urinary tract infections, we model

community-acquired and hospital-acquired infections separately, with unknown infection origin data being used in

both models. All infection records with multiple pathogens (ie "polymicrobial infections") were excluded from our case fatality estimation.

850 Section 5.3: Modelling overview

851 Pathogen-specific CFRs were modelled separately by infectious syndrome and were calculated as a function of

HAQ Index and age. We used the HAQ Index to extrapolate CFRs determined from the input data, which often had

a broad but not comprehensive temporal and geographical scope, to all 204 GBD countries and territories for the

854 years 1990-2021.

The pathogens of interest for each infectious syndrome were determined by prevalence in the data and expert

opinion to provide case fatality ratios for the pathogens modelled in our pathogen distribution models (see section

6.2.3). Because each data source generally reported only a subset of the evaluated pathogens, the input data for the

pathogens varied in geographical coverage; nearly all pathogens were well reported in high-income areas, but some

pathogens were not well represented in the smaller subset of data we collected from low- and middle-income

- 860 locations.
- 861 We modelled CFRs for all syndromes using four degrees of granularity to capture the most detail possible on a
- syndrome-pathogen-specific basis. Table 5.4.1 has a summary of all models run for CFRs. For all syndromes, we

- 863 first ran the least granular "all pathogen" model, in which we included all data, including unspecified pathogens.
- This model provides a baseline estimate of syndrome-level CFR as a function of age and HAQ Index. Our next level
- of modelling, referred to as the "family" models, included all datapoints broadly classified as belonging to the four pathogen taxonomical categories we characterized in our analysis: bacteria, virus, fungus, and parasite. The family
- 866 pathogen taxonomical categories we characterized in our analysis: bacteria, virus, fungus, and parasite. The fami 867 models estimated case fatality as a function of pathogen family in addition to age and HAO Index. Unspecified
- pathogens with a distinct family designation (eg, "Unspecified bacteria") were included in these models. Next,
- specified pathogens were modelled using an "intercept" model. In this process each specific pathogen received a
- 870 fixed effect coefficient, in addition to those of age and HAQ Index. Finally, for each pathogen that had data inclusive
- of all age groups for the given syndrome, we attempted to fit a unique, most granular model, referred to as our
- 872 "individual" models. Correspondingly, the case-fatalities for each pathogen modelled in the "individual" landscape
- has unique relationship with age and HAQ Index.
- 874 Thus, the four levels of models run for each infectious syndrome were (from most to least granular):
- Individual pathogen models including data for specific pathogens.
- An intercept model including all identified pathogens.
- A family model including all data aggregated to their respective taxonomical categories of bacteria, virus,
 parasite, or fungus.
- An "all pathogen" model that included data for all pathogens (predictions were generated by HAQ Index and age, without a pathogen-specific term).
- Table S2 (section 13) details which CFR model framework was used to assess the pathogens for each infectious syndrome. Whenever needed, the CFR for any bacterial pathogen "not explicitly modelled" was estimated using the "formily" model for subsequent store of our modelling processes
- 883 "family" model for subsequent steps of our modelling processes.
- For some infectious syndromes, the relative deadliness of a pathogen may be strongly determined by either the age of the patient or whether the infection was community- or hospital-acquired. For bloodstream infections, meningitis,
- and lower respiratory infections, we further separated the under 5 years of age category into neonates (0-27 days)
- and post neonate to 5 years. As is done for our other modelling processes, we also separate community-acquired and
- 888 hospital-acquired cases in our CFR models for lower respiratory and urinary tract infections. Because some data
- sources did not provide enough information to infer whether an infection was community- or hospital-acquired, but
- still included important information on the relative pathogenesis and the difference in CFRs across varying HAQ
- 891 indices, infections of unknown origin were included in both the community-acquired and hospital-acquired models 892 for these two syndromes.

893 Section 5.4: Modelling framework

896 897

The data were analysed using a splined binomial regression model structure. The main model can be specified as follows:

$$P(y|n,p) = {n \choose y} p^{y} (1-p)^{n-y} = {n \choose y} exp\left(y \log\left(\frac{p}{1-p}\right) + n \log(1-p)\right),$$
(5.4.1)
with parameterization $logit(p) = log\left(\frac{p}{1-p}\right) = \langle x, \beta \rangle.,$

Where logit is the link function, and $\langle x, \beta \rangle$ is the linear predictor, an example with: 898 899 v_i contains numbers of observed deaths source *i* The $\langle x, \beta \rangle$ covariates: 900 • 901 0 in all models: 902 HAO Index 903 dummy-coded indicator for age group 904 dummy-coded ICU indicator for data source (1 if data source only compiles information 905 on ICU patients, 0 if a mix between ICU/non-ICU patients) 906 in 'intercept' models only: 0 907 dummy-coded indicator for pathogen 908 in 'family' models only: 0 dummy-coded indicator for pathogen taxonomic category 909 in models evaluating community/hospital-acquired infection (LRI+, UTI): 910 0

- 911 dummy-coded variable indicating source of infection (1 if unknown source, 0 if 912 community- OR hospital-acquired, depending on whether the model is evaluating 913 community or hospital infections)
 - in models that included either Streptococcus pneumoniae and/or Haemophilus influenzae: 0

915

916

continuous variable(s) indicating the vaccine coverage for a given location-year, which is specific to the pathogen in question (PCV3 for S. pneumoniae or Hib3 for H. influenzae).

The underlying program used to fit the model (RegMod) is described elsewhere.²⁸ The program allows specification 917 918 of splines and/or priors on β .

919 Prior and spline on β for HAQ Index: There was a high degree of skewness in the distribution of HAQ Index values,

920 with available data belonging predominantly to countries and years with an HAQ Index over 0.7. Without

921 adjustment, initial model results indicated unrealistically high CFRs in low HAO Index countries relative to high

922 HAO Index countries in some cases. To attenuate the effect of HAO Index in these models we implemented a cubic

923 spline with Gaussian and uniform priors on the HAQ Index. The spline allows for control of this variable while 924 maintaining some degree of flexibility, with knots at the minimum and maximum HAO Index values, and for the

925 20th and 60th percentile. We used a Gaussian prior with mean 0 and standard diviation 0.1. For the individual models

926 the standard deviation of the prior was increased in a reverse relationship to the proportion of cases available to the

model in contrast to the total amount of cases available within the syndrome as, $\frac{w_{pathogen}}{w_{syndrome}}$, to prevent the prior from 927

overcoming the individual syndrome-pathogen HAQ Index effect. We used a uniform prior to constrain the slope of 928 929 the spline variable to be neutral or negative in relation to HAQ Index.

930 Prior on β for age groups: For age groups other than neonates, to constrain the value to be negative in relation to the reference age of over 70 a uniform prior was used. 931

932 Spline prior on β for vaccine effect where appropriate: For those models including either *Streptococcus pneumoniae* and/or Haemophilus influenzae we applied a cubic spline with knots at the minimum and maximum value of vaccine 933 934 coverage with a uniform prior was used to constrain the slope to be negative as vaccine coverage increases.

935 To attenuate the possible effects of our spline and prior conditions on HAQ Index, we implemented a scoring system

936 that would flag an individual model to be removed from the prediction sequence by comparing the relative R^2 metric

by aggregate age category with the subsequent R^2 metric from the intercept model for the same syndrome and 937

938 pathogen. In rare cases where the R^2 was found to be lower in the individual model than the intercept model, the 939 intercept model was used intead.

940 We produced an initial set of predictions which were vetted by infectious disease experts for unrealistic trends. To

941 the flagged combinations we applied an outlier process and generated a new set of models. To identify outliers, we

calculated a standardised weighed residual using, standardised residual_i = $\left(\frac{residual_i}{SD_{residuals}}\right)\sqrt{w_i}$. A maximum of 5% 942

of the data in each age-pathogen-syndrome would be removed in this process. 943

944 Table 5.4.1: Number of datapoints and parameters estimated in each case fatality ratio model

Infectious syndrome	Sub-model(s)	CFR model type	Datapoints (source-location-years)	Estimated parameters
Bone+	3 pathogens	Individual	*	5 to 6
Bone+	-	Intercept	7,841	12
Bone+	-	Family	14,907	6
Bone+	-	All pathogen	14,912	5
BSI	28 pathogens	Individual	*	6 to 8
BSI	-	Intercept	479,410	25
BSI	-	Family	579,325	9
BSI	-	All pathogen	602,559	6
Intra-abdominal	17 pathogens	Individual	*	5 to 6

Intra-abdominal	-	Intercept	21,566	25
Intra-abdominal	-	Family	25,814	8
Intra-abdominal	-	All pathogen	25,814	6
LRI	Community-acquired	Intercept	436,285	41
LRI	Community-acquired	Family	419,853	11
LRI	Community-acquired	All pathogen	467,596	8
LRI	26 pathogens; Community-acquired	Individual	*	6 to 9
LRI	Hospital-acquired	Intercept	450,776	40
LRI	Hospital-acquired	Family	456,207	11
LRI	Hospital-acquired	All pathogen	456,207	8
LRI	26 pathogens; Hospital-acquired	Individual	*	6 to 9
Skin	20 pathogens	Individual	*	5 to 6
Skin	-	Intercept	128,509	27
Skin	-	Family	129,471	7
Skin	-	All pathogen	129,471	6
UTI	15 pathogens; community-acquired	Individual	*	7
UTI	Community-acquired	Intercept	22,493	24
UTI	Community-acquired	Family	24,541	8
UTI	Community-acquired	All pathogen	24,541	7
UTI	12 pathogens; hospital-acquired	Individual	*	7
UTI	Hospital-acquired	Intercept	29,188	21
UTI	Hospital-acquired	Family	30,156	8
UTI	Hospital-acquired	All pathogen	30,156	7

Bone+=infections of bones, joints, and related organs. BSI=bloodstream infections. Intra-abdominal=peritoneal and intra-abdominal infections. 946 LRI=lower respiratory infections and all related infections in the thorax. Skin=infections of the skin and subcutaneous systems. UTI=urinary tract

947 infections and pyelonephritis.

948 *The number of datapoints for individual models vary substantially by pathogen and are subsets of the datapoints included in the intercept model.

949 Section 5.5: Predictions and uncertainty

950 Predictions for CFRs were generated for the years 1980–2021 for each AMR infectious syndrome by country, age

group, and pathogen as a function of each country's HAQ Index, vaccine coverage for S. pneumooniae and H. 951

952 influenzae (for those two pathogens), assuming mixed ICU/non-ICU patients and, in the case of models for UTI and

953 LRI+, that the infection was community- or hospital-acquired (in contrast to infections of unknown origin). For

954 pathogens with insufficient data to estimate a syndrome-specific CFR, predictions were generated using the "family"

955 CFR associated with the infectious syndrome with pathogens classified as either bacteria, viruses, fungi or parasites.

956 Importantly, all the infectious syndrome CFRs we estimate are independent of underlying cause.
957 Section 6: Pathogen distribution¹

958 Section 6.1: Input data

With this model, we aimed to estimate the distribution of pathogens causing each of our 11 major bacterial

infectious syndromes. To get input data for this model, we gathered all available data sources described in section 2
 that meet the following criteria:

- Sufficient diagnosis (for patient- or admission-level datasets) or sample specimen type (for isolate- or culture-level datasets) information for us to determine the infectious syndrome.
- Information on which pathogen(s) caused the infection or which pathogen(s) were detected in an infectious sample, as determined through culture or genomic-based methods.
- Did not have a strongly biased sampling framework across pathogens (for example, did not deliberately sample until 100 cases of every pathogen of interest had been obtained).
- 968 The input data source types that met these criteria were:
- Multiple causes of death data
- 970 Hospital discharge
- Linkage data
- Microbial data with and without outcome information
- Literature studies from the aetiology literature reviews
- Mortality surveillance (Child Health and Mortality Prevention Surveillance [CHAMPS])
- From these sources combined, there were a total of 20.5 million isolates and cases. Table S3 (section 13) provides a detailed breakdown of this total by pathogen and syndrome.

977 Section 6.2: Data processing

978 Section 6.2.1: Extraction and standardisation

979 We extracted and standardised the location, year, age, sex, diagnoses, specimen type, pathogens, and hospital- and 980 community-acquired (HAI and CAI) status of each record in every dataset. HAI or CAI status in microbial data was 981 determined as described in section 2.3, while in MCoD, hospital discharge, and linkage data, a record was 982 considered CAI if the infectious syndrome was the primary or underlying diagnosis and HAI otherwise, as described 983 in section 4. These datasets report a variety of metrics, including deaths, admissions, cases, cultures, and isolates. 984 While these metrics are not completely comparable (for example, a single patient may often have multiple cultures 985 taken during a single hospital admission), we chose to standardise them into two categories: "deaths," for any unit 986 associated with an outcome of death, and "cases," for any unit regardless of outcome. We assigned a unique 987 identifier, sample ID, to track each unique unit of analysis whenever a dataset included enough line-level data to make this possible. We did not track the relationship between sample ID and patient or admission, in many cases 988

- because this was not possible; an improvement to future analyses may be to track this information and account for multiple isolates or cultures from a single admission. The majority of the data informing culprit pathogen were from
- multiple isolates or cultures from a single admission. The majority of the data informing culprit pathogen were from microbiological analysis of various isolates, but we also considered antigen testing, such as the urinary
- microbiological analysis of various isolates, but we also considered antigen testing, such as the unitary
- pneumococcal antigen, and polymerase chain reaction (PCR)-based testing when assigning the pathogen responsiblefor infection.
- 994 Section 6.2.2: Assigning infectious syndrome
- 995 After standardising the data, we mapped every sample ID or tabulated figure in the data to infectious syndrome
- 996 based on its diagnoses and specimen type. Infectious syndrome was assigned first based on any diagnosis associated 997 with a given sample ID or tabulated figure. For sample IDs or tabulated figures with multiple diagnoses and/or an
- 997 with a given sample ID or tabulated figure. For sample IDs or tabulated figures with multiple diagnoses and/or an 998 underlying diagnosis, we followed the rules laid out in section 4 for assigning infectious syndrome based on
- multiple causes. If a dataset contained no diagnoses or the diagnoses provided no information on infectious
- syndrome, we assigned infectious syndrome based on specimen type (table 6.2.2.1). This is an imprecise method
- because a patient may have a sample taken from an organ system that is not the site of their primary infection (most
- 1002 commonly from the blood). Finally, if neither diagnosis nor specimen information provided information on
- 1003 infectious syndrome, we assigned infectious syndrome based on pathogen for a select number of pathogens (table
- 1004 6.2.2.2).

Standard specimen	Assigned to syndrome
Blood	Bloodstream infections
Bone & joint	Infections of bones, joints, and related organs
Cerebrospinal fluid	Meningitis
Endocardial	Endocarditis
Intra-abdominal	Peritoneal and intra-abdominal infections
Lower respiratory	Lower respiratory infections and all related infections in the thorax
Peritoneal	Peritoneal and intra-abdominal infections
Rectal/stool	Diarrhoea
Skin	Infections of the skin and subcutaneous systems
Urinary tract	Urinary tract infections and pyelonephritis
Catheter	Other unspecified site infections, not analysed*
Еуе	Eye infections, not analysed*
Genital	Genital infections, not analysed*
Oral	Oral infections, not analysed*
Pericardial	Carditis, myocarditis, and pericarditis, not analysed*
Upper respiratory	Upper respiratory infections, not analysed*
Other and unspecified specimens	Other unspecified site infections, not analysed*

1005 Table 6.2.2.1: Syndrome assignment based on standardised specimen types

*Please refer to Section 6.4.2 for detail on why certain syndromes were excluded from the analysis

1007

1008 Table 6.2.2.2: Syndrome assignment based on pathogen for entries lacking diagnostic and specimen information

Pathogen	Assigned to syndrome
Salmonella Typhi	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella
Salmonella Paratyphi	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella
Salmonella Typhi or Paratyphi	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella
Non-typhoidal Salmonella species	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella
Mycobacterium tuberculosis	Tuberculosis
Neisseria meningitidis	Meningitis

1009

- 1010 Section 6.2.3: Selecting pathogens for estimation
- 1011 For each infectious syndrome, we assessed either the 25 most prevalent pathogens by case count in our raw data, or
- all pathogens with 300 or more cases, whichever number was smaller. In addition to the *n* pathogens for a given
- 1013 syndrome that we estimate explicitly, we also included an "other specified pathogens" category for every infectious
- 1014 syndrome, to which we mapped all other aetiologies identified in the data. Thus, for a given infectious syndrome,
- 1015 the set of estimated pathogens is mutually exclusive and collectively exhaustive of all possible aetiologies.
- 1016 For a list of pathogens covered in each infectious syndrome model, please refer to table 6.3.1.2.
- 1017 Section 6.2.4: Pathogen redistribution and aggregate pathogen categories
- 1018 A substantial portion of our input data identified pathogens by their genus alone, without species-level identification.
- 1019 For example, ICD code J15.2 designates "Pneumonia due to *Staphylococcus*," without distinguishing whether the

- 1020 infection was due to Staphylococcus aureus, or another species within the genus. In total, there were more than
- 400 000 isolates in the input data that lacked species detail. To express these data with the species-level detail
- 1022 required for our analysis, we split these cases into target species and a residual "Genus others" category using a set
- of proportions generated from all of the available literature, surveillance, and microbial data reporting species detail.
 We stratified these proportions based on World Bank income level, aggregate age groups, year bins, and infectious
- syndrome. When there were insufficient input data to inform splitting proportions for a given level of detail, we
- 1026 collapsed (in order) income level, year bin, and then age group to apply a more crude proportion. We did not
- 1027 collapse down infectious syndrome, and if there remained no matching proportions for the row in question, we
- 1028 dropped this row from use in our models.
- 1029 Pathogen aggregates and distinct species were selected by clinical experts who identified both organisms of most
- 1030 AMR concern and those responsible for characteristic disease (eg, *Treponema pallidum*). The aggregate pathogen
- 1031 categories we used both to redistribute pathogens and for our modelling are reported in table 6.2.4.1.
- 1032

1033 Table 6.2.4.1: Aggregate pathogen categories for pathogen distribution and case fatality

Aggregate category	Classification	Examples	
<i>Acinetobacter</i> others	Non-baumannii Acinetobacter	Acinetobacter calcoaceticus, Acinetobacter haemolyticus, Acinetobacter lwoffii	
<i>Clostridium</i> others	Non-difficile/tetani Clostridium	Clostridium botulinum, Clostridium perfringens, Clostridium septicum	
<i>Enterococcus</i> others	Non-faecalis/faecium Enterococcus	Enterococcus casseliflavus, Enterococcus durans, Enterococcus gallinarum	
Fungi others	Fungal pathogens not otherwise represented in: Aspergillus spp., Candida spp., Cryptococcus spp., Dermatophytes, Histoplasma spp., or Pneumocystis spp.	Blastomyces spp., Coccidioides spp., Mucor spp., Paracoccidioides spp., Rhizomucor spp., Sporothrix spp.	
Gram-negative others	Gram-negative bacteria not otherwise represented in: Acinetobacter spp., Aeromonas spp., Bordetella pertussis, Burkholderia spp., Campylobacter spp., Chlamydia spp. Citrobacter spp., Enterobacter spp., Escherichia spp., Haemophilus spp., Klebsiella spp. Legionella spp., Leptospira spp., Morganella spp., Neisseria spp., Proteus spp., Pseudomonas spp., Salmonella spp., Serratia spp., Shigella spp., or Vibrio cholerae	Bacteroides spp., non-pertussis Bordetella spp., Brucella spp., Moraxella spp., Pasteurella spp., Prevotella spp., Providencia spp., Stenotrophomonas spp., non-cholerae Vibrio spp., Yersinia spp.	
Gram-positive others	Gram-positive bacteria not otherwise represented in: Actinomyces spp., Clostridium spp., Corynebacterium diphtheriae, Enterococcus spp., Helicobacter spp., Listeria spp., Mycobacterium spp., Staphylococcus spp., Streptococcus spp., Treponema pallidum	Bacillus spp., Lactobacillus spp., Micrococcus spp., Peptostreptococcus spp., Propionibacterium spp., Rothia spp.	
Klebsiella others	Non-pneumoniae Klebsiella	Klebsiella aerogenes, Klebsiella granulomatis, Klebsiella oxytoca	
<i>Mycobacterium</i> others	Non-tuberculosis/leprae Mycobacterium	Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium fortuitum	
Pseudomonas others	Non-aeruginosa Pseudomonas	Pseudomonas fluorescens, Pseudomonas luteola, Pseudomonas putida	
<i>Streptococcus</i> others	Non-Group A/Group B/pneumoniae Streptococcus	Streptococcus anginosus, Streptococcus bovis, Streptococcus mitis, Streptococcus mutans, Streptococcus salivarius	
Virus others	Viral pathogens not otherwise represented in: adenovirus, astrovirus, Chikungunya virus, coronavirus, cytomegalovirus, dengue, Ebola, enterovirus, Epstein Barr virus, hepatitis, herpes virus, HIV, HPV, influenza, measles, molluscum contagiosum virus, mumps, norovirus, rabies,	Human metapneumovirus, orthopoxvirus, parapoxvirus, picornaviruses, poliovirus, retrovirus, rubella	

	respiratory syncytial virus, rotavirus, varicella zoster virus, West Nile virus, yellow fever, Zika virus	
--	---	--

1035 Section 6.2.5: Contaminants, opportunistic pathogens, and no aetiology detected

1036 Some pathogens, such as coagulase-negative *Staphylococci* or miscellaneous gram-positive species in urinary tract

- 1037 infections, cause disease so rarely or are so commonly contaminants that we considered them to be contaminants,
- 1038 unlikely to be the true cause of disease. Other pathogens—such as *Cryptococcus*, *Pneumocystis*, and *Toxoplasma* 1039 are opportunistic and are commonly found in immunocompromised patients. In some of such cases, HIV is
- 1039 are opportunistic and are commonly found in immunocompromised patients. In some of such cases, HIV is 1040 responsible for the underlying infection and should be the attributable pathogen. More broadly, opportunistic
- pathogens are prone to oversampling among young and middle-aged adults with immunocompromising conditions
- as these infections occur in a patient population that is typically more frequently monitored and integrated with local
- health care systems. Correspondingly, we dropped all contaminants and opportunistic pathogens as reported in table
- 1044 6.2.5.1 from the analysis, as well as any record listed by treating clinicians in the data as a contaminant.
- 1045 Table 6.2.5.1: Contaminants and opportunistic pathogens not assessed in pathogen distribution models

Contaminant/opportunistic pathogen	Excluded syndromes
Adenovirus	Lower respiratory infections
Candida spp.	Lower respiratory infections
Cryptococcus spp.	Meningitis
Gram-positive others	Urinary tract infections and pyelonephritis
Pneumocystis spp.	Bloodstream infections, infections of bones, joints, and related organs
Staphylococcus saprophyticus	All syndromes except for meningitis, urinary tract infections and pyelonephritis
All other coagulase-negative <i>Staphylococci</i>	All syndromes except for meningitis
Toxoplasma spp.	Meningitis

- 1046 We also dropped from the analysis all records where no pathogen was detected, or the patient diagnosis indicated an 1047 unspecified bacterium, virus, fungus, or parasite. This assumes that the distribution of pathogens among cases with
- 1047 unspecified bacterium, virus, fungus, or parasite. This assumes that the distribution of pathogens among cases with 1048 known aetiology are the same as those with unknown aetiology; in other words, that the probability of detection is
- the same for every pathogen. This assumption may break down if certain pathogens are more difficult to detect than
- 1050 others, or in cases where a pathogen is irregularly tested for within a laboratory.

1051 Section 6.2.6: Polymicrobial infections

- 1052 In our previous analysis for 2019, we attributed more than 5% of the sepsis deaths to "polymicrobial infections,"
- 1053 which were generally defined as infections involving two or more bacteria, two or more viruses, or two or more
- 1054 fungi. Classifying polymicrobial infections as such was useful for two main reasons: 1) it allowed us to apply case
- 1055 fatality ratios more accurately for these infections, which were typically more severe, and 2) it provided a sense of
- 1056 how prevalent these infections were for a given infectious syndrome. Due to the aggregated nature of this
- 1057 polymicrobial category, however, we were unable to assess the extent to which AMR might have been involved in
- 1058 these infections, leaving polybacterial disease involving important AMR species (eg, *K. pneumoniae* and *E. coli* co-1059 infection) unaccounted for.
- 1060 To better represent the burden of AMR in this analysis, we retained all pathogens associated with polymicrobial
- 1061 infections in our input data pipeline as discrete entities. Death and case counts related to polymicrobial infections are 1062 now evenly allocated to all constituent pathogens involved in that polymicrobial record. For example, if we had
- how eventy anocated to an constituent pathogens involved in that polymicrobial record. For example, if we had hospital data indicating one person died of pneumonia stemming from an influenza and *S. pneumoniae* co-infection,
- this record would be expressed as two rows with half a death each, one in which the pathogen was influenza, and the
- 1065 other in which the pathogen was *S. pneumoniae*. As such, the *S. pneumoniae* burden related to this infection is
- 1066 passed down to subsequent models where the involvement of AMR can be determined.

- 1067 Our new approach has a key limitation. After splitting these infections into their constituent pathogens, they are then
- 1068 pooled with mono-pathogen data from the same demographic strata, and we lose information about which of our
- 1069 records were initially polymicrobial. For sources that provide information on deaths, pooled data including these
- 1070 fractional splits will then be scaled using the mono-pathogen specific case fatality ratio (we exclude all
- 1071 polymicrobial infection records from our case fatality estimation). As polymicrobial infections often represent more
- 1072 severe disease in compromised hosts, the use of the mono-pathogen case fatality is almost certainly an
- 1073 underestimate, and an underestimate of CFR will in turn yield an overestimate of implied incidence. However,
- 1074 because the proportion of data that originated as a polymicrobial record is low for any given pathogen, we anticipate 1075 the effect of this overestimation is small. Moreover, our decision to attribute a fractional split rather than the entirety
- 1075 the effect of this overestimation is small. Moreover, our decision to attribute a fractional split rather than the entirety 1076 of polymicrobial disease to each underlying pathogen further minimises the contribution of polymicrobial records to
- 1077 our input data for specific pathogens.
- 1078 As a consequence of this methodological change, we no longer estimate the proportion of infectious disease that is
- 1079 polymicrobial. However, the intended purpose of our work has been to quantify AMR burden, and our new method
- 1080 more effectively captures specific pathogens (be they resistant or not) from polymicrobial disease. Future work will
- 1081 attempt to more appropriately quantify the case fatality ratios of these infections to minimise the degree to which the
- 1082 incidence of their constituent pathogens is overestimated.
- 1083 Section 6.2.7: Estimating unbiased other categories
- 1084 One of the central challenges of estimating pathogen distributions was that not every data source tested for or
- 1085 reported every possible aetiology of a given infectious syndrome. For example, many literature studies on the
- 1086 aetiologies of meningitis only report on bacterial aetiologies. Some surveillance systems, like the US Centers for
- 1087 Disease Control and Prevention (CDC) Active Bacterial Core surveillance (ABCs), only collect data on certain
- 1088 pathogens of interest. Only certain pathogens are referenced explicitly in the International Classification of Diseases
- 1089 (ICD), limiting which pathogens can be identified from ICD-based data types like MCoD and hospital discharge.
- 1090 Finally, some datasets reported only a subset of the pathogens that we are interested in for a given infectious
- 1091 syndrome, reporting the remaining aetiologies in an aggregate "other" category. These practices have led to 1092 inconsistencies in the "other" categories across data sources leading to datasets either over or under-reporting
- 1092 "inconsist 1093 "other."
- 1094 To address this problem, we maintained a list of data sources that we believe have sufficient testing and reporting to
- 1095 give unbiased estimates of "other" for all syndromes. We dropped any data on "other" that did not come from these 1096 data sources. These data sources all had a complete sampling framework (eg, they do not limit the scope of
- aetologies that they test for) and reported their results without any deliberate aggregation. While we believe this list
- 1098 provided an accurate starting place for the estimation of "other", future work to improve this method would involve
- a more detailed analysis of sampling framework and reporting categories in each dataset, specific to each infectious
- 1100 syndrome.
- 1101 There were three major exceptions to this method for handling "other specified pathogens." First, determining the
- pathogenic aetiology of LRI with microbiology represents challenges that have been well described previously.^{29,30} In order to account for this limitation, we utilised a vaccine probe design to inform the *Streptococcus pneumoniae*
- 1104 cause fraction of LRI, consistent with the approach used in the GBD aetiology estimation process.^{31,32} In brief, we
- extracted the vaccine efficacy of the pneumococcal vaccine against all pneumonia from 18 vaccine probe studies
- 1106 with randomised-control trial, before-after, and cohort designs among children and adults. We then calculated the
- 1107 PAF of pneumonia due to S. pneumoniae in each study (Strep Base PAF) based on these vaccine efficacies
- 1108 $(VE_{all pnuemonia})$, the vaccine efficacy of pneumococcal vaccine against vaccine-type pneumococcal pneumonia as
- pooled from three studies (two in children and one in adults) (VE_{vtvv}), the percentage of the population covered by
- 1110 the pneumococcal vaccine as modelled in GBD (100% for RCTs) (Cov_{PCV3}),³² and the percent of serotypes covered
- 1111 by the vaccine³³ ($Cov_{serotype}$) (equation 6.2.6.1). We modelled a global age-specific PAF for S. pneumoniae based
- 1112 on these data in the MR-BRT environment and finally adjusted this PAF based on the vaccine coverage in children
- in every GBD location in 2019 and optimal vaccine efficacy in children (*Strep Final PAF*) (equation 6.2.7.2). In
- adults (age 5+), we assumed the effects of vaccination on adults would be primarily indirect from vaccination in
- 1115 children, and included an adjustment factor on the vaccine efficacy to account for this, derived from Grijalva et al.³⁴

1116
$$Strep Base PAF = \frac{VE_{all pneumonia}}{VE_{vtpp}Cov_{PCV3}Cov_{serotype}}$$
(6.2.7.1)

$$Strep \ Final \ PAF = \frac{Strep \ Base \ PAF(1 - Cov_{PCV3}Cov_{serotype}VE_{PCV3 \ Optimal})}{1 - (Strep \ Base \ PAF)Cov_{PCV3}Cov_{serotype}VE_{PCV3 \ Optimal}}$$
(6.2.7.2)

1118

1119 In this vaccine probe analysis, (1 - Strep Final PAF) is not consistent with the "other" category in our model,

since it includes all non-S. pneumoniae aetiologies. We retained all of the data from the vaccine probe analysis as 1120 1121 two categories, S. pneumoniae and "not S. pneumoniae" and addressed the inconsistencies between them and our 1122 other data using our modelling framework.

1123 The second major exception involves several literature studies on the proportion of neonatal bacterial meningitis

1124 caused by Streptococcus agalactiae (Group B Streptococcus; GBS). We found that these literature studies were

1125 important to our estimation of the pathogen distribution of neonatal meningitis, which is distinct from other age

1126 groups because of its high proportion of GBS. However, these studies either only reported or were only extracted

- 1127 with two categories, GBS and "other bacterial, not GBS." We retained both these categories and addressed the 1128 inconsistencies between them and our other data by encoding "other bacterial, not GBS" as a composite observation
- 1129 in our modelling framework, as described in section 6.3.1.

1130 The final exception was made for non-specific aggregate designations found in our ICD-coded data. For instance,

1131 ICD code A41.5 identifies "Sepsis due to other Gram-negative organisms," with "other" in this case, representing all

1132 Gram-negative organisms not elsewhere described by a candidate ICD code. In the context of our analysis, this

1133 category could have represented Acinetobacter baumannii, Acinetobacter others, Citrobacter spp., Klebsiella

1134 pneumoniae, Klebsiella others, Morganella spp., or Proteus spp., none of which have an ICD10 code for BSI, or our

1135 "Gram-negative others" category. Correspondingly, ICD code A41.5 was encoded in our work as an amalgam of all

1136 the above pathogens/pathogen categories, and we addressed the inconsistencies between this group and our other

1137 data using our modelling framework. Similar adjustments were made for ICD code J15.6 "Pneumonia due to other

1138 aerobic Gram-negative bacteria," though with a different set of aggregate pathogens as the candidate list for Gram-

1139 negative species is slightly different for LRI and BSI in ICD.

1140 Section 6.2.8: Age-sex splitting

1141 We standardised age and sex across all datasets to the following most-detailed groups using the GBD causes of death

age-sex splitting algorithm for age:² 0–6, 7–27, 1-5 months, 6-11 months, 12-23 months, 2-4 years, 5–9, 10–14, 15– 1142

1143 19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85-89, 90-94,

1144 95+ years; and sex: male and female. This algorithm is based on the assumption that age-sex pattern of the death or

1145 case rate for a given infectious syndrome or pathogen is inherent to the pathology of the disease and is therefore constant across location and year.

1146

1147 To apply the algorithm, we first calculated distinct age-sex weights for every infectious syndrome and pathogen,

1148 separately for deaths and cases. These weights are the aggregate death and case rates across all datasets that report 1149 every detailed age-sex group. If we were to use a dataset that only reported some of the detailed age-sex groups,

- 1150 then the unreported age-sex groups would be biased downwards in the weight distribution. Calculating rates based
- on raw data counts could lead to extremely low rates, since we are typically comparing the entire population of a 1151
- 1152 given location-year to deaths or cases captured within a single study, hospital, or surveillance system. Since the age-
- 1153 sex splitting algorithm only relies on the relative distribution of the weights, however, rather than their absolute
- 1154 level, this bias ultimately had no effect. For any infectious syndrome or pathogen combination for which we did not

1155 have enough data to create plausible age-sex weights, we used a set of all-pathogen weights for that infectious

syndrome instead. 1156

1157 Since we split cases and deaths independently, it is possible for a detailed age-sex group produced by the splitting

1158 algorithm to contain fewer cases than deaths. When this occurred, we capped the deaths to match the cases. For

1159 future improvement, a possible solution to this problem may be to split deaths, survivors, and cases without

- 1160 indication of outcome separately.
- 1161 Section 6.2.9: Standardising measures
- 1162 The input data sources reported a variety of combinations of measures, including some that reported deaths only,
- 1163 some that reported cases only, and some that reported both cases and deaths. In order to standardise these measures
- 1164 to cases, we estimated infectious syndrome- and pathogen-specific CFRs (see section 5) and used these CFRs to
- 1165 convert all deaths-only datasets to cases. All modelling was done in case space.

1166 Several of our microbial databases came exclusively from ICUs and were therefore heavily biased towards severe

1167 illness. In order to mitigate this bias, we dropped all information on cases in ICU-only datasets and recalculated 1168 implied cases based on reported deaths and our CFRs. No similar adjustment was made to attempt to account for

biases between hospitalised and un-hospitalised populations, although we did account for HAI versus CAI for two

1170 infectious syndromes—LRI and UTI—within our modelling framework.

1171 Section 6.3: Modelling framework

1172 Section 6.3.1: Overview

1173 To model the distribution of pathogens for each infectious syndrome, we developed a method for the multinomial

estimation of partial and compositional observations (MEPCO). We assumed that the aetiologies of a given

1175 infectious syndrome followed a multinomial distribution. Due to inconsistencies in which pathogens are tested for

1176 and reported by different data sources, each data source contained partial observations of the possible outcomes of

1177 the underlying multinomial distribution. Certain data sources like the vaccine probe estimates and the GBS neonatal 1178 meningitis studies represent compositional observations, where pathogens like "not *S. pneumoniae*" and "other

- 1179 bacterial, not GBS" represent aggregates of more detailed pathogens.
- 1180 In order to use both partial and compositional data, we constructed a network model with the dependent variable as

1181 the log ratio of cases between different pathogens and estimated over a flexible parameterisation of multinomial

- 1182 parameters using a maximum likelihood approach. Consider a given infectious syndrome with a multinomial
- 1183 distribution of *n* mutually exclusive, collectively exhaustive aetiologies with probabilities $p = (p_1, ..., p_n)$, so that

each $p_j \in (0,1)$ and $\sum_j p_j = 1$. The likelihood of an observation of $c = (c_1, ..., c_n)$, where $c_j =$ number of cases of pathogen *j* in a total sample of *N* infections ($\sum_j c_j = N$), is:

1186
$$P(c|p) = N! \prod_{j=1}^{n} \frac{p_j^{c_j}}{c_j!}$$
(6.3.1.1)

1187 We modelled the probabilities using a composition of a link function with a linear predictor:

1188
$$p_{i,j} = exp(x_{i,j}^T \beta_j)$$
(6.3.1.2)

1189 for observations *i*, a vector of covariates $x_{i,j}$, and a vector of coefficients β_j for each pathogen *j*. However, we did

1190 not observe these probabilities directly. Rather, we observed ratios between sums of these probabilities, which

1191 reduce to ratios between sums of cases within each study. These observations therefore take the form:

1192
$$y_i = \frac{cases \ of \ pathogen \ A}{cases \ of \ pathogen \ B} = \frac{\sum_{j=1}^n w_{i,j}^a \ exp(x_{i,j}^T \beta_j)}{\sum_{j=1}^n w_{i,j}^b \ exp(x_{i,j}^T \beta_j)}$$
(6.3.1.3)

where $w_{i,j}^a$ is a weight of 0 or 1 that selects the mutually exclusive, collectively exhaustive most-detailed pathogens that make up observed pathogen A, which may be a composite observation. For example, for the "other bacterial, non-GBS" pathogen, $w_{i,j}$ would be 1 for *S. aureus*, *S. pneumoniae*, *H. influenzae*, *N. meningitidis*, *Listeria monocytogenes*, *K. pneumoniae*, *E. coli*, and other pathogens and 0 for GBS and virus. We dropped all observations where either the numerator or denominator had 0 observed eases in order to make this calculation and a fortheomina

1197 where either the numerator or denominator had 0 observed cases in order to make this calculation and a forthcoming 1198 log transform possible. This may bias the model towards overestimating less common pathogens.

1199 Table 6.3.1.1 shows the covariates used for each infectious syndrome model; a typical specification included an

1200 intercept term, HAQ Index, a categorical age group dummy for large age bins, and any relevant vaccine coverage

1201 proportions by country. It is not possible to infer all coefficients β_j from the observations since they are all relative.

- 1202 However, if we fix all of the coefficients for one pathogen to 0 as a reference group, then we obtain a well-posed
- 1203 inverse problem, as long as there is enough data to estimate the remaining coefficients. Without loss of generality,
- 1204 we assumed $\beta_1 = 0$ for all elements and obtain estimates of the remaining $\beta_2, ..., \beta_n$ by minimising the sum of the
- residuals between log-transformed observations *y* and corresponding log-transformed predictions from equation6.3.1.3:

1207
$$\min_{\beta_{2},\dots,\beta_{n}} f(\beta) \coloneqq \sum_{i} \frac{1}{\sigma_{i}^{2}} \left[ln(y_{i}) - ln\left(\sum_{j=1}^{n} w_{i,j}^{a} \exp(x_{i,j}^{T}\beta_{j})\right) + ln\left(\sum_{j=1}^{n} w_{i,j}^{b} \exp(x_{i,j}^{T}\beta_{j})\right) \right]^{2}$$
(6.3.1.4)

1208 where σ_i^2 are variances corresponding to the data points. Equation 6.3.4 is a nonlinear likelihood minimisation

1209 problem that that we optimised using a standard implementation of the Gauss-Newton method.³⁵ We then re-

1210 normalised the optimal coefficients to obtain final predictions of the probabilities of each pathogen:

1211
$$p_{i,j} = \frac{exp(x_{i,j}^T \beta_j)}{\sum_j exp(x_{i,j}^T \beta_j)}$$
(6.3.1.5)

1212 To quantify the uncertainty of this estimate, we used asymptotic statistics to obtain the posterior distribution of 1213 $(\beta_2, ..., \beta_n)$. Specifically, using the Gauss-Newton Hessian approximation gave us the asymptotic information matrix 1214 for all β_j except for the reference pathogen, allowing us to sample draws of $\beta = (\beta_1 = 0, \beta_2, ..., \beta_n)$. For each β 1215 draw and given feature *x*, we obtained a corresponding draw of *p* using equation 6.3.1.5.

1216 Finally, to convert $p_{i,j}$ for a given demographic group *i* from case space to deaths space, we transformed using our

1217 CFR estimate for demographic *i*:

$$p_{i,j}^{\text{deaths}} = \frac{p_{i,j} \times \text{CFR}_i}{\sum_j p_{i,j} \times \text{CFR}_i}$$
(6.3.1.6)

1219

1218

Table 6.3.1.1: Pathogens assessed, pathogen distribution model covariates, and age groups for each infectioussyndrome

Infectious syndrome	Pathogens assessed	Model covariates	Age groups
Bloodstream infections	Acinetobacter baumannii, Acinetobacter others, Burkholderia spp., Candida spp., Citrobacter spp., Enterobacter spp., Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Gram- negative others, Haemophilus influenzae, Klebsiella others, Klebsiella pneumoniae, Morganella spp., Mycobacterium others, Neisseria meningitidis, Proteus spp., Pseudomonas aeruginosa, Serratia spp. Staphylococcus aureus, Group A Streptococcus, Group B Streptococcus, Streptococcus others, Streptococcus pneumoniae, Virus others	HAQ Index, ¹⁵ age group, age-standardised proportion of intravenous drug use, ²⁴ Proportion of people who as infants were vaccinated with PCV, ²⁶ Proportion of population age 15 or younger who received PCV vaccine, mean temperature, inpatient utilization envelope	Neonatal, Post-neonatal–5, 5–50, 50–70, 70+
Infections of bones, joints, and related organs	Acinetobacter baumannii, Enterobacter spp. Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Gram-negative others, Gram-positive others, Klebsiella others, Klebsiella pneumoniae, Morganella spp., Proteus spp., Pseudomonas aeruginosa, Serratia spp., Staphylococcus aureus, Group A Streptococcus, Group B Streptococcus, Streptococcus others, Streptococcus pneumoniae	HAQ Index, age group, Proportion of population age 15 or younger who received PCV vaccine	Under 5, 5–50, 50–70, 70+
Endocarditis	Candida spp., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Group A Streptococcus	HAQ Index, age group	Neonatal, Post-neonatal–5, 5–50, 50–70, 70+

Diarrhoea	Adenovirus, Aeromonas spp., Amebiasis, Campylobacter spp, Clostridium difficile, cryptosporidium, enteropathogenic Escherichia coli, enterotoxigenic Escherichia coli, non- typhoidal Salmonella, norovirus, rotavirus, Shigella spp, Vibrio cholerae	Not modelled here. GBD diarrhoea aetiology estimates are used.	GBD most detailed age groups
Lower respiratory infections	Acinetobacter baumannii, Acinetobacter others, Aspergillus spp., Chlamydia spp., Citrobacter spp., Enterobacter spp., Escherichia coli, Fungi others, Gram- negative others, Haemophilus influenzae, Influenza virus, Klebsiella others, Klebsiella pneumoniae, Legionella spp., Morganella spp., Mycobacterium others, Mycoplasma spp., Proteus spp., Pseudomonas aeruginosa, Respiratory syncytial virus, Serratia spp., Staphylococcus aureus, Group A Streptococcus, Group B Streptococcus, Streptococcus pneumoniae	HAQ Index, Proportion of people who as infants were vaccinated with PCV, ²⁶ Proportion of population age 15 or younger who received PCV vaccine, Proportion of people who as infants were vaccinated with Hib3 vaccine, ²⁶ Proportion of population age 15 or younger who received Hib3 vaccine, age group, HAI/CAI	Neonatal, Post-neonatal–5, 5–50, 50–70, 70+
Meningitis	Acinetobacter baumannii, Candida spp., Escherichia coli, Fungi others, Haemophilus influenzae, Klebsiella pneumoniae, Listeria spp., Neisseria meningitidis, non-polio enteroviruses, Pseudomonas aeruginosa, coagulase- negative Staphylococcus, Staphylococcus aureus, Group B Streptococcus pneumoniae, Virus others, Streptococcus pneumoniae, Virus others	HAQ Index, Proportion of people who as infants were vaccinated with PCV, ²⁶ Proportion of population age 15 or younger who received PCV vaccine, Proportion of people who as infants were vaccinated with Hib3 vaccine, ²⁶ Proportion of population age 15 or younger who received Hib3 vaccine, age group, proportion of population covered by '10- '15 MenAfriVac rollout ³⁶	Neonatal, Post-neonatal–5, 5-50, 50-70, 70+
Peritoneal and intra-abdominal infections	Acinetobacter baumannii, Acinetobacter others, Actinomyces spp., Aeromonas spp., Burkholderia spp., Candida spp., Chlamydia spp., Citrobacter spp., Entamoeba histolytica, Enterobacter spp., Enterococcus faecalis, Enterococcus faecium, Enterococcus others, Escherichia coli, Gram-negative others, Klebsiella others, Klebsiella pneumoniae, Morganella spp. Proteus spp., Pseudomonas aeruginosa, Pseudomonas others, Serratia spp., Staphylococcus aureus, Streptococcus others, Streptococcus pneumoniae	HAQ Index, age group	Under 5, 5–50, 50–70, 70+
Infections of the skin and	Acinetobacter baumannii, Actinomyces spp., Aeromonas spp., Citrobacter spp., Clostridium others, Enterobacter spp., Enterococcus faecalis, Enterococcus	HAQ Index, age group	Under 5, 5–50, 50–70, 70+

subcutaneous	faecium, Escherichia coli, Gram-		
systems	negative others, Gram-positive others,		
2	Klebsiella others, Klebsiella		
	pneumoniae, Morganella spp.,		
	Mycobacterium others, non-polio		
	enteroviruses, Proteus spp.,		
	Pseudomonas aeruginosa, Serratia spp.,		
	Staphylococcus aureus Group A		
	Streptococcus, Group B Streptococcus,		
	Streptococcus others, Streptococcus		
	pneumoniae, Virus others		
	Acinetobacter baumannii, Acinetobacter		
	others, Aeromonas spp., Burkholderia		
	spp., Candida spp., Citrobacter spp.,		
	Enterobacter spp., Enterococcus		
	faecalis, Enterococcus faecium,		
	Enterococcus others, Escherichia coli,	HAO Index, age group, sex.	Under 5
Urinary tract	Fungi others, Gram-negative others,	Proportion of population age	5 50
infections and	Klebsiella others, Klebsiella	15 or vounger who received	5-50,
pyelonephritis	pneumoniae, Morganella spp., Proteus	PCV vaccine. ²⁶ HAI/CAI	30=70, 70+
	spp., Pseudomonas aeruginosa,	,	701
	Pseudomonas others, Serratia spp.,		
	coagulase-negative Staphylococcus,		
	Staphylococcus aureus, Group B		
	Streptococcus, Streptococcus others,		
	streptococcus pneumoniae		

Group A Streptococcus = Streptococcus pyogenes. Group B Streptococcus = Streptococcus agalactiae. HAQ Index = Healthcare Access and Quality Index. HAI/CAI = hospital-acquired infection/community-acquired infection.

1224

1225 Table 6.3.1.3: Number of data points and parameters in each pathogen distribution model

Infectious syndrome	Number of data points	Number of parameters
Bloodstream infections	147,310	286
Infections of bones, joints, and related organs	5,657	114
Endocarditis	3,187	35
Lower respiratory infections	197,345	286
Meningitis	38,205	187
Peritoneal and intra-abdominal infections	34,812	130
Infections of the skin and subcutaneous systems	32,674	130
Urinary tract infections and pyelonephritis	63,651	208

1226

1227 Section 6.3.2: Model priors

1228 The network regression with covariates framework allowed us to use partial and composite data that reported on one

1229 or only a few pathogens, or that reported multiple pathogens aggregated together. Networks, however, can be

1230 unstable with sparse data and stable estimates have in some cases required the use of non-diffuse Bayesian priors in

1231 these models. In particular, we imposed Gaussian priors with mean 0 and non-zero variance on all coefficients

1232 except intercepts, to bias the model away from spurious effects driven by data sparsity. These priors were based on

expert opinion and designed with the guiding philosophy that they should minimally alter model results and serve to inhibit overfitting. Given that the various models differed tremendously with respect to their quantity of input data,

1234 Infinite overfitting. Given that the various models differed tremendously with respect to their quantity of input data, 1235 the prior standard deviation needed to achieve this effect was lower for some infectious syndromes than others. Even 1236 after applying these adjustments, a small set of coefficients still had an outsized and clinically implausible effect on

1237 the result; for instance, a pathogen representing 10% of the syndrome distribution in a low healthcare access setting 1238 and 65% of the distribution is a high healthcare access setting. In such cases, the standard deviation for the Gaussian

1239 prior for that coefficient was lowered in accordance with expert review to achieve a more reasonable fit. Table

1240 6.3.2.1 provides a list of these priors, which could be improved with further empirical validation in the future.

1241 Table 6.3.2.1: Gaussian prior standard deviations for non-intercept coefficients for each pathogen distribution model

Infectious syndrome	Gaussian prior standard deviation	Exceptions
BSI	0.1	0.02 for A. baumannii/HAQ Index coefficient
Bone+	0.4	0.15 for all pathogens/HAQ Index coefficient
Endocarditis	0.5	
Meningitis	0.2	0.02 for Group B Streptococcus/HAQ Index coefficient
		0.02 for Non-polio enteroviruses/HAQ Index coefficient
LRI+	0.1	0.02 for Mycobacterium others/HAQ Index coefficient
Peritonitis+	0.3	
Skin	0.5	
UTI	0.2	0.27 for all pathogens/sex coefficient

1242

BSI = Bloodstream infections. Bone+ = Infections of bones, joints, and related organs. LRI = Lower respiratory infections. Peritonitis+ = 1243 Peritoneal and intra-abdominal infections. Skin = Infections of the skin and subcutaneous systems. UTI = Urinary tract infections and 1244 pyelonephritis.

1245 Additionally, there were certain covariates that we assumed would have a monotonic relationship with the

1246 proportion of a syndrome attributable to a given pathogen. For example, the proportion of people who as infants

1247 were vaccinated with the pneumococcal conjugate vaccine (PCV) was anticipated to be negatively associated with

1248 the proportion of LRI that was caused by Streptococcus pneumoniae. Such monotonic relationships were enforced

1249 by design using uniform priors as outlined in Table 6.3.2.2. Because the network model estimates a coefficient for

every combination of covariate and pathogen, covariate estimates for the effect of PCV vaccination on the 1250

proportion of disease due to non-pneumococcal pathogens is also quantified. To ensure that these pathogens were 1251

not shaped by some unmeasured variable that trended with PCV vaccination, we employed a more restrictive 1252 Gaussian prior on these less-directly related pathogens ("less-directly related" because, if the proportion of 1253

pneumococcus is to decrease, other pathogens must correspondingly increase in relative space). 1254

1255 Table 6.3.2.2: Pathogen distribution model covariates with uniform priors

Covariate	Pathogen	Uniform Prior (Association)	Gaussian prior standard deviation for other pathogens	Syndromes
Proportion of people who as infants were vaccinated with PCV	S. pneumoniae	(-inf, 0] (Negative)	0.01	BSI, LRI, Meningitis
Proportion of population age 15 or younger who received PCV vaccine	S. pneumoniae	(-inf, 0] (Negative)	0.01	BSI, Bone+, LRI, Meningitis, UTI
Proportion of people who as infants were vaccinated with Hib3 vaccine	H. influenzae	(-inf, 0] (Negative)	0.01	LRI, Meningitis

Proportion of population age 15 or younger who received Hib3 vaccine	H. influenzae	(-inf, 0] (Negative)	0.01	LRI, Meningitis
Proportion of population covered by '10-'15 MenAfriVac rollout	N. meningitidis	(-inf, 0] (Negative)	0.02	Meningitis
Mean temperature	A. baumannii	[0, inf) (Positive)	0.0001	BSI

BSI = Bloodstream infections. Bone+ = Infections of bones, joints, and related organs. LRI = Lower respiratory infections. UTI = Urinary tract
 infections and pyelonephritis.

1258 The role of mean temperature in the estimation of proportion of bloodstream infections caused by *Acinetobacter*

baumannii deserves special mention. Assessments of *A. baumannii* epidemiology have outlined that the pathogen

has strong seasonal variability,³⁷ is found most in tropical and temperature climates, and that across geographies, the only climatic variable with a consistent association with the pathogen is temperature.³⁸ Of note is temperature's

negative correlation with healthcare access and quality (in aggregate, warmer climates tend to be some of the most

1263 resource poor), one of the primary covariates we use to extrapolate our pathogen distributions across time. This

1264 negative correlation, in addition to the fact that the data we have for *A. baumannii* is more geographically rather than

1265 temporally disperse, determined a highly negative relationship between *A. baumannii* and healthcare access and

1266 quality in preliminary models that omitted temperature; in such models, the global death rate of BSI attributable to

1267 *A. baumannii* decreased by more than 50% between 1990 and 2021, far more than any other pathogen. After we

1268 included temperature as a covariate, the relationship between *A. baumannii* and healthcare access and quality

1269 stabilised, and trends in *A. baumannii* were much more consistent with similar Gram-negative pathogens. To 1270 mitigate the effect of temperature on other pathogens, we applied an exceptionally strong Gaussian prior as

1270 initigate the effect of temperatu 1271 documented in table 6.3.2.1.

1272 Section 6.3.3: Outliering

1273 Pathogen distributions by age, syndrome, and year were reviewed by an expert committee of infectious disease

1274 specialists. Input data for pathogens found to make up an unreasonably low or high proportion of the syndrome

1275 distribution were reviewed using a varied set of visualizations and metrics (including in and out-of-sample residual

estimates). Following this assessment, a select group of data (amounting to no more than 0.05% of the overall input data for any given syndrome) was omitted as outliers.

1278 Section 6.3.4: Redistribution of "other pathogens"

1279 Given computational and statistical limitations of assessing every possible pathogen in every syndrome model, our

- 1280 framework assessed the 25 most prevalent pathogens in the raw data (or all pathogens with over 300 records, if that
- number was smaller). The remaining pathogens were lumped into a residual "other pathogens" category. To better represent the pathogens encompassed in this "other" category in our results, we proportionally redistributed the
- 1283 "other pathogens" burden to the pathogens from our input data that weren't explicitly estimated (based on the
- number of cases observed in the data). For example, for bloodstream infections, our data included 12 pathogens in
- addition to the 25 we explicitly estimated: Actinomyces spp., Aeromonas spp., Aspergillus spp., Cryptococcus spp.,
- 1286 Other enterococci, Other fungi, Other Gram-positives, Histoplasma spp., Leptospira spp., Listeria spp., non-polio
- 1287 enteroviruses, and Other *pseudomonas* species. Thus, the 3.1% of bloodstream infection cases attributed to "other
- 1288 pathogens" in neonates in Sub-Saharan Africa was redistributed to these 12 pathogens in accordance with their
- 1289 prevalence in the input data, with the proportion of burden attributed ranging from 1.2% for Other *enterococci* to
- 1290 21.7% for Other fungi. The redistribution proportions varied by syndrome but were constant across age, location,
- 1291 and outcome (they were the same for both deaths and cases); future work will attempt to improve this estimation.
- 1292 The proportion of any given syndrome attributable to "other pathogens" was generally under 5%, with the leading 1293 non-estimated pathogen generally receiving around 20% of that burden—in other words, the amount of burden
- 1295 non-estimated pathogen generally receiving around 20% of that burden—in other words 1294 ascribed to any specific pathogen via this method was typically very small.
- 1294 ascribed to any specific pathogen via this method was typicany

1295 Section 6.4: Exceptions and special handling

- 1296 There were some notable exceptions and special handling decisions made for individual pathogen distribution
- 1297 models. We hope to address many of these exceptions with more sustainable methods in our future work.

1298 Section 6.4.1: Diarrhoea

- 1299 In diarrhoea patients, cultures of specimens taken from the gastrointestinal tract, bowels, rectum, or stool are almost
- 1300 always affected by contaminants or pathogens that are not the cause of diarrhoea. For this reason, we believe that
- 1301 our input data and modelling framework are not able to accurately capture the aetiologies of diarrhoea. We chose to
- 1302 use GBD estimates of the aetiologies of diarrhoea in deaths instead of running our own model.³⁹ These estimates are
- 1303 based on the odds ratio of having diarrhoea given the detection of a pathogen, obtained from the Global Enteric
- 1304 Multicenter Study, therefore removing the influence of any pathogen that does not increase the risk of diarrhea.
- 1305 A major limitation of using this study is that the GBD diarrhoea aetiology estimates are population attributable
- 1306 fractions (PAFs) for each pathogen. These PAFs may add to greater than 1 and the authors made no attempt to
- 1307 quantify the extent of co-occurrence of pathogens. This is inconsistent with the pathogen distribution estimation
- 1308 method used in our study, which estimates all pathogens as mono-infections. In order to avoid duplication of cases 1309 in our framework, we had to make some assumptions about the co-occurrence of pathogens in diarrhoea. We chose
- to normalise the PAFs to 1 for any demographic where the sum of GBD diarrhoea aetiology PAFs was greater than
- 1311 1. This assumed that co-occurrence of pathogens was random and that the "other" pathogens category was negligible
- 1312 in these demographics. We made no adjustment to demographics where the PAFs added to less than 1. To convert
- 1313 the fatal PAFs to a distribution of aetiologies in incidence, we rescaled the distribution according to our estimates of
- 1314 the pathogen-specific case fatality ratios of diarrhea, calculated as described in section 5.
- 1315 Section 6.4.2: Lower Respiratory Infections
- 1316 GBD 2021 estimated the disease burden of the COVID-19 pandemic as an entity distinct from that of lower
- 1317 respiratory infection, and in the years 2020 and 2021, the envelope of non-COVID LRI deaths decreased
- substantially (from 2.55M deaths in 2019 to 2.28M in 2020 and 2.18M in 2021). For our analysis we did not assume
- that the reduction of death in non-COVID LRI differentially affected any particular pathogen; in other words,
- 1320 COVID-19 was not modelled as a shock in our pathogen distributions and the proportion of LRI attributable to each
- pathogen follows smooth trends from 2019-2021. Nonetheless, it is a possibility that the various interventions
- 1322 observed during the COVID-19 pandemic such as social distancing and mask use affected some pathogens more
- 1323 than others (such as pathogens that are similarly transmitted via droplets/aerosols). While our current methods do
- 1324 not account for this, we will seek to understand this pattern more clearly as better information about the state of non-
- 1325 COVID infectious disease during the pandemic is published and shared.
- 1326 Section 6.4.3: Infectious syndromes not modelled
- 1327 For three infectious syndromes that are caused by distinct pathogens whose individual burdens are already estimated
- in GBD as separate causes of death, we did not run a pathogen distribution model and instead simply used GBD
- 1329 estimates (table 6.4.3.1)
- 1330 Table 6.4.3.1: Infectious syndromes for which we used GBD estimates to obtain the pathogen distribution

Infectious syndrome	Pathogens	GBD causes
Typhoid, paratyphoid, and invasive	Salmonella Typhi	Typhoid fever
non-typnoidal Salmonella	Salmonella Paratyphi	Paratyphoid fever
	Non-typhoidal Salmonella	Invasive non-typhoidal Salmonella
Tuberculosis	Mycobacterium tuberculosis	Tuberculosismongol
Gonorrhoea and chlamydia	Neisseria gonorrhoeae	Gonococcal infection
	Chlamydia trachomatis	Chlamydial infection

1331

- 1332 Additionally, we did not estimate pathogen distributions for the following 8 infectious syndromes that
- 1333 overwhelmingly involve viral and other non-bacterial pathogens: Carditis, myocarditis and pericarditis; Encephalitis,
- 1334 myelitis, meningoencephalitis, and other central nervous system infections; Eye infections; Genital infections; Oral
- 1335 infections; Other parasitic infections; Upper respiratory infections; and Unspecified site infections. As the focus of
- 1336 our current work was to estimate the burden of bacterial antimicrobial resistance, these syndromes had limited
- 1337 relevance to the current endeavor. Moreover, unbiased estimation of pathogen distributions for these syndromes was
- 1338 complicated by the fact that many represent mild disease (such as upper respiratory, oral, and eye infections) that is
- treated based on the presenting symptoms, and the causative pathogen is rarely identified. Correspondingly, those

- 1340 records that do record the pathogen often represent a biased subsample of our data either involving more
- 1341 immunocompromised patients or more severe disease. Nevertheless, future work will seek to properly identify the
- 1342 pathogens responsible for these infections so that their burden can be appropriately quantified.

1343 Section 6.5: Model validation

- 1344 To assess model validity, we calculated the root mean square error (RMSE) and coefficient of determination (R^2) for
- 1345 each pathogen distribution model in proportion space for both in-sample and out-of-sample predictions (table 6.5.1).
- Proportions were predicted for each observation using the specific denominator observed from that study. For 1346
- 1347 example, if a given study reported on only E. coli and S. pneumoniae, the predictions for model validation for this study were calculated as proportions of the total for E. coli and S. pneumoniae. In order to calculate out-of-sample 1348
- 1349 fit, we perform non-exhaustive cross-validation, with each round of the validation holding out 1 country of data at a
- 1350 time. This leave-one-country-out approach simulates the prediction task of estimating the pathogen distribution of a
- 1351 country for which we have no data.
- 1352 R² ranges from 0.743 to 0.927 in-sample and from 0.666 to 0.914 out of sample, indicating good model fit with only
- modest losses when data are moved out of sample. RMSE ranges from 0.078 to 0.148 in-sample and from 0.091 to 1353
- 0.178 out of sample. Given that the data are expected to vary from the model predictions according to the 1354
- 1355 observation-level variance, and the fact that the RMSEs are relatively consistent between in-sample and out-of-
- sample, these RMSEs are reasonable. Overall, these metrics show that these models have good fit and good out-of-1356 1357 sample predictive ability.

1358	Table 6.5.1: In-sample and	lout-of-sample validation	metrics for pathogen	distribution models
------	----------------------------	---------------------------	----------------------	---------------------

	\mathbb{R}^2		RMSE	
Infectious syndrome	In sample	Out of sample	In sample	Out of sample
Infections of the skin and subcutaneous systems	0.880	0.828	0.139	0.167
Bloodstream infections	0.743	0.723	0.115	0.119
Infections of bones, joints, and related organs	0.919	0.914	0.117	0.121
Endocarditis	0.927	0.870	0.078	0.104
Lower respiratory infections	0.754	0.666	0.130	0.152
Meningitis	0.815	0.733	0.148	0.178
Peritoneal and intra-abdominal infections	0.906	0.899	0.088	0.091
Urinary tract infections and pyelonephritis	0.800	0.794	0.115	0.117

1359 Out of sample metrics calculated using leave-one-country-out cross validation

Section 7: Prevalence of resistance¹ 1360

1361 Section 7.1: Input data

- We identified line level and aggregate data on the prevalence of resistance in bacterial pathogens, which were linked 1362
- to the country and year in which the infection occurred, from datasets obtained from pharmaceutical companies, 1363
- surveillance networks, academic institutions, and individual hospitals (see section 2). In total, we gathered over 210 1364
- million cases for the 84 pathogen-drug combinations we assessed. Table S11 provides a detailed breakdown of this 1365
- 1366 total by pathogen-drug combination.
- 1367 We supplemented microbiological data with systematic reviews following the Preferred Reporting Items for
- Systematic Reviews and Meta-Analyses (PRISMA) guidelines,⁴⁰ to collect resistance data published from countries 1368
- and territories where surveillance systems do not routinely collect data to ensure extensive coverage of the 1369
- pathogen-drug combinations thought to contribute the greatest burden of drug resistant infections, which we termed 1370
- 1371 core pathogen-drug combinations (table 7.2.1). Data on the prevalence of AMR in these pathogen-drug

- 1372 combinations were extracted from published literature and compiled into comprehensive datasets. The systematic
- 1373 reviews followed similar methodologies; a detailed description can be found either in published literature (S. Typhi
- and S. Paratyphi⁴¹) or in the corresponding PROSPERO records (E. coli, K. pneumoniae, S. aureus and S. 1374
- 1375 pneumoniae PROSPERO registration CRD42019145148; Shigella species PROSPERO registration
- CRD42019127603; iNTS PROSPERO registration CRD42020189935; N. gonorrhoeae SPF unique identifier 1376
- 1377 osf.io/4vy5n). The S. Typhi and S. Paratyphi A systematic review was expanded to include non-blood culture isolates
- for the current analysis. Literature reviews to supplement these data are described in section 2.5. 1378
- 1379 Forms were created, and screening and data extraction were completed using web-based systematic review software
- 1380 (DistillerSR, Evidence Partners, Ottawa, Canada) for all pathogens except Salmonella, for which a smaller number 1381
- of manuscripts were identified.
- 1382 To more comprehensively account for the burden of AMR in bacteria, we also estimated the prevalence of resistance
- 1383 for 8 supplementary pathogen-drug combinations for which we did not conduct a systematic literature review. Data
- 1384 for these supplementary combinations were extracted from the datasets obtained from pharmaceutical companies, 1385 academic institutes, and individual hospitals using the same processing procedure as was used for the core
- 1386 pathogen-drug combinations. The list of supplementary combinations is presented in table 7.2.2.

1387 Section 7.1.1: Prevalence of Resistance in Mycobacterium tuberculosis

- 1388 For the prevalence of drug resistance in Mycobacterium tuberculosis for multi-drug resistance (MDR, characterised
- 1389 by isoniazid and rifampicin co-resistance) excluding extensive drug resistance (XDR, characterised by resistance to
- 1390 isoniazid, rifampicin, and fluoroquinolone, as well as either aminoglycosides or capreomycin) and XDR, we used
- 1391 previously published GBD results.² Notably, GBD MDR excluding XDR TB estimates and the MDR/rifampin
- 1392 mono-resistant TB estimates from WHO differ, primarily because HIV/TB cases are included as part of WHO TB 1393
- estimates. GBD adjusts the miscoding of deaths cause by HIV and TB in locations with high prevalence of both diseases, such as South Africa, assigning more deaths to HIV/TB (which are attributed to HIV), and these 1394
- 1395 methodological differences lead to lower MDR TB mortality in the GBD burden estimates. An additional difference
- 1396 in estimates for MDR is that WHO includes rifampicin mono-resistance as part of their MDR TB figures.

1397 Section 7.2: Data processing

- 1398 The prevalence of resistance for each pathogen-drug combination was calculated for each data source, by country
- 1399 and year. All isolates determined to have intermediate resistance were classified as resistant. To determine the
- 1400 prevalence of resistance to a class of antibiotics (eg, fluoroquinolones), resistance, intermediate resistance or dose-
- 1401 dependent-susceptibility to any one of the antibiotics in the class was sufficient to classify an isolate as resistant for
- 1402 line level data (ie, susceptibility data for individual isolates). For aggregate data (ie, the proportion of isolates resistant to various antibiotics), the highest prevalence of resistance to any antibiotic in the class was selected. 1403
- 1404 Multidrug resistance in Salmonella species was defined as concurrent resistance to ampicillin/amoxicillin,
- 1405 chloramphenicol, and trimethoprim-sulfamethoxazole; and fluoroquinolone resistance was defined as ciprofloxacin
- 1406 minimum inhibitory concentration of 0.125µg/ml or higher, or nalidixic acid resistance (CLSI breakpoint for
- 1407 Salmonella spp. were updated in 2012 to include 0.125 µg/ml as isolates with 'decreased ciprofloxacin
- 1408 susceptibility', and we have considered these as resistant). Nalidixic acid resistance was also used as a proxy for
- fluoroquinolone non-susceptibility for Shigella species. 1409
- 1410
- 1411 Table 7.2.1: Core pathogen-drug combinations

Pathogen	Antimicrobial
Acinetobacter baumannii	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Beta- lactam/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fourth- generation cephalosporins, Fluoroquinolones
Citrobacter species	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones
Enterobacter species	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Carbapenems, Fourth-generation cephalosporins, Fluoroquinolones, Trimethoprim-Sulfamethoxazole
Enterococcus faecalis	Fluoroquinolones, Vancomycin

Enterococcus faecium	Fluoroquinolones, Vancomycin
Escherichia coli	Aminoglycosides, Aminopenicillin, Beta-lactam/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fluoroquinolones, Trimethoprim-Sulfamethoxazole
Klebsiella pneumoniae	Aminoglycosides, Beta-lactam/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fluoroquinolones, Trimethoprim-Sulfamethoxazole
Morganella species	Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones
Proteus species	Aminoglycosides, Aminopenicillins, Third-generation cephalosporins, Fluoroquinolones, Trimethoprim-Sulfamethoxazole
Serratia species	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones
Pseudomonas aeruginosa	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones
Staphylococcus aureus	Fluoroquinolones, Macrolide, Methicillin, Trimethoprim-Sulfamethoxazole, Vancomycin
Streptococcus pneumoniae	Beta-lactam/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fluoroquinolones, Macrolide, Penicillin, Trimethoprim-Sulfamethoxazole
Salmonella Typhi	Fluoroquinolones, Multidrug resistance
Salmonella Paratyphi A	Fluoroquinolones, Multidrug resistance
Invasive non-typhoidal Salmonella	Fluoroquinolones
Shigella species	Fluoroquinolones
Neisseria gonorrhoeae	Third-generation cephalosporins

1413 Table 7.2.2: Supplementary pathogen–drug combinations

Pathogen	Antimicrobial
Group A Streptococcus	Macrolide
Group B Streptococcus	Fluoroquinolones, Macrolide, Penicillin
Haemophilus influenzae	Aminopenicillin, Third-generation cephalosporins
Neisseria gonorrhoeae	Fluoroquinolones

1414 Group A Streptococcus = Streptococcus pyogenes. Group B Streptococcus = Streptococcus agalactiae.

1415 *Mycobacterium tuberculosis* MDR and XDR follow previously published GBD results² instead of the processing

1416 steps considered in this section 7.2

1417 Section 7.2.1: Resistance Breakpoint Processing

The prevalence of resistance for each pathogen-drug combination was calculated for each data source, by country and year. Whenever possible, we classified resistance using the most recent CLSI guidelines based on quantitative antimicrobial susceptibility testing (AST) data (MICs and disk zone diameters) provided in the data. When MICs were unavailable, we deferred to lab interpretation provided in the dataset to classify the isolates. All isolates

1422 determined to have intermediate or susceptible-dose-dependent resistance were classified as resistant. For the

1423 majority of data, only categorical AST results were available, and the guidelines used for the interpretation varied

1424 between organizations and years. AST interpretations from different standard organizations were harmonised and

adjusted to levels corresponding to CLSI 2023. For this purpose, we calculated adjustment factors for years and

1426 guideline organizations (EUCAST and CLSI):

- We used extracted AST values from all available datasets to calculate fraction of resistance for all the pathogens and antibiotic drug combinations, for each guideline, over multiple years, based on the appropriate breakpoints. For years before 2011 we used the 2011 breakpoints.
- 1430
 1431
 2. Using CLSI 2023 as our gold standard, we calculated an adjustment factor for each of the other guidelines based on the following equation:

$$adj = \frac{r_{clsi23}}{r_x}$$

1432 where r = resistance fraction, and x = guideline being adjusted

- 1433 To apply the adjustment factors, we multiplied the number of resistant cases for a specific
- 1434 source/year/location/pathogen/antibiotic combination with the appropriate adjustment factor. When data sources 1435 only reported laboratory interpretations, we assumed they used CLSI guidelines corresponding to the year of sample
- 1436 collection.
- 1437 Breakpoints for both EUCAST and CLSI guidelines were based on guidelines manuals as recorded in the AMR R
- 1438 package by M. Berends.⁴² We were unable to locate any breakpoints prior to the year 2011. Correspondingly, all
- 1439 data with laboratory interpretation from years prior to 2011 were assumed to use the breakpoints from 2011.
- 1440 Section 7.2.2: Intrinsic Resistance Processing
- 1441 Pathogen and antimicrobial drug combinations that are considered intrinsically resistant were also removed from the
- 1442 prevalence of resistance modelling. The list of the intrinsically resistant drug-bug combinations was compiled based
- 1443 on two sources: the CLSI guidelines⁴³ and the EUCAST⁴⁴ guidelines from 2020. A list of combinations excluded in
- 1444 this manner is provided in Table 7.2.2.1
- 1445 Table 7.2.2.1 list of Intrinsic resistance combinations

Pathogen	Antimicrobial	Antibiotic class
Proteus spp.	Ampicillin	Aminopenicillin
Proteus spp.	Amoxicillin	Aminopenicillin
Pseudomonas aeruginosa	Ertapenem	Carbapenems
Pseudomonas aeruginosa	Ceftriaxone	Third-generation cephalosporins
Pseudomonas aeruginosa	Cefotaxime	Third-generation cephalosporins
Pseudomonas aeruginosa	Kanamycin	Aminoglycosides

1446

1447 Section 7.2.3: Tertiary Care Facility Adjustments

1448 To account for the elevated levels of resistance found in tertiary care settings, we reviewed all input data used for the 1449 prevalence of resistance estimation and classified each data source as either tertiary, non-tertiary, or unknown/mixed 1450 designation, which was a commonly used classification for large resistance surveillance networks which don't report on the hospitals they collect data from. We located datasets that either provided facility information at the line-level 1451 or reported samples from exclusively tertiary or non-tertiary facilities. Where possible, we used tertiary/non-tertiary 1452 assignments from the data providers. When no assignments were available, we classified sites as tertiary, primary, 1453 and secondary by following the definitions provided by Jamison et al.⁴⁵ in table 7.2.3.1. We first considered hospital 1454 name when classifying. If the name did not include any of the terms listed in table 7.2.3.1, we searched the facility 1455 website for self-designations of tertiary/non-tertiary (most preferred), number of specialties, and bed-size. We 1456 classified facilities with vague names and with no websites or websites with insufficient information as 1457

1458 "mixed/unknown"; data from these facilities could contain both tertiary and non-tertiary samples. Finally, we

1459 grouped primary and secondary facilities together in the non-tertiary category.

1460 Table 7.2.3.1: Definitions and terms for different levels of hospital

Disease Control Priorities Project: terminology and definitions	Alternative terms commonly found in the literature
Primary-level hospital: few specialties—mainly internal medicine, obstetrics and gynecology, pediatrics, and general surgery, or just general practice; limited laboratory services available for general but not specialised pathological analysis	District hospital Rural hospital Community hospital General hospital
Secondary-level hospital: highly differentiated by function with 5 to 10 clinical specialties; size ranges from 200 to 800 beds; often referred to as a provincial hospital	Regional hospital Provincial hospital (or equivalent administrative area such as county) General hospital
Tertiary-level hospital: highly specialised staff and technical equipment— for example, cardiology, intensive care unit, and specialised imaging units; clinical services highly differentiated by function; could have teaching activities; size ranges from 300 to 1,500 beds	National hospital Central hospital Academic or teaching or university hospital

1462 For systematic review data collected from sub-Saharan Africa, we referred to Maina et al.⁴⁶ who identified and

defined health facilities at each service delivery level (primary to tertiary) in sub-Saharan Africa using both
 information from health sector policies and strategic plans for each country in the region. They also undertook

further comparative/validation analyses to cross reference the completeness/robustness of their classifications

against the corresponding number of facilities reported at each level in the most current country-level health sector

strategic plans and other health sector reports. Using this hierarchy by country (please see online table 2 in Maina et

al.) we classified facilities in sub-Saharan Africa from the systematic review data as tertiary versus non-tertiary.

The proportion of data classified as originating from a tertiary facility differed substantially by super region, ranging from 0.003% of cases in the high-income super-region to 22.9% of cases in sub-Saharan Africa; this stark difference reaffirmed the importance of adjusting the data. To create robust inputs, data were aggregated by source, year, tertiary/non-tertiary status, and super-region. Because there was no reliable way to determine the mix of hospital

1473 types in mixed/unknown data, this data was grouped with non-tertiary. We chose to cluster this data with non-tertiary

rather than omit it, as, for some super-regions, the proportion of definitively non-tertiary data was very low (eg, 2%

1475 for high-income). After aggregating the data in this way, we created a set of matched pairs, matching every tertiary

1476 data point to non-tertiary data for the same pathogen–drug combination from the same super-region collected within

1477 5 years from one another.

1478 Because the variation in resistance between tertiary and non-tertiary data could vary across different parts of the

- 1479 world, we ran a separate crosswalk for each super region and pathogen–drug *super group* combination. Crosswalks
- 1480 are a modeling method commonly used on the GBD to correct data with known biases (eg, alternative case 1481 definitions or measurement methods) using adjustments with correction factors estimated by network meta-
- regressions such as MR-BRT (meta-regression—Bayesian, regularised, and trimmed). MR-BRT allows for the

implementation of a varied set of statistical models—linear and non-linear mixed effects models—and fitting

- 1485 implementation of a varied set of statistical models—inear and non-linear mixed effects models—and fitting 1484 procedures.²⁷ Certain bacteria and antimicrobials were clustered into super groups to provide the models with more
- robust input data, though, crucially, while a given model would contain several pathogen-drug combinations in its
- 1486 inputs, every matched pair was made comparing tertiary and non-tertiary values for the same combination. Bacteria
- 1487 were classified as follows:
- 1488 Table 7.2.3.2: Pathogens in each pathogen super group

Pathogen super group	Incorporated pathogens
Gram-positives	Enterococcus faecalis, Enterococcus faecium, Enterococcus spp., Group A Streptococcus, Group B Streptococcus, Staphylococcus aureus, Streptococcus pneumoniae

Enteric bacterial pathogens	Escherichia coli, non-typhoidal Salmonella, Salmonella Paratyphi, Salmonella Typhi, and Shigella spp.
Other Enterobacterales and Pasteurellaceae	Citrobacter spp., Enterobacter spp., Haemophilus influenzae, Klebsiella pneumoniae, Proteus spp., Serratia spp.
Pseudomonadales	Acinetobacter baumannii, Pseudomonas aeruginosa

1489 Notably, some pathogens were excluded from the tertiary crosswalk procedure because it was believed that

1490 infections with such pathogens would be robust to tertiary care bias. These pathogens were: *Mycobacterium*

- 1491 tuberculosis and Neisseria gonorrhoeae. Only one group of antimicrobials was clustered to create an antimicrobial
- super group, the β -lactam group, which was comprised of: aminopenicillin, anti-pseudomonal penicillin, β -
- 1493 lactamase inhibitors, carbapenems, third and fourth generation cephalosporins, methicillin, and penicillin. All other
- 1494 antibiotic classes (aminoglycosides, fluoroquinolones, macrolides, sulfonamides, and vancomycin) each individually
- 1495 comprised their own antimicrobial super group.
- 1496 To allow us to implement linear models, resistance values were logit-transformed. We used the delta method to
- 1497 compute the standard error of the prevalence of resistance in logit space. To incorporate data with zero resistance, or
- 1498 with total resistance, we applied a 0.1% offset, such that the prevalence of resistance for data with zero resistance
- 1499 was represented as 0.1% and the prevalence of resistance for data with total resistance was represented as 99.9%. We
- 1500 then used the MR-BRT modelling framework to estimate the logit difference of tertiary and non-tertiary data for
- 1501 each super region-pathogen/antimicrobial 'super combination,' including a random effect for each pathogen-drug
- 1502 combination within the super combination and employing a positivity prior to enforce the constraint that the tertiary
- 1503 data exceed or be equal to the non-tertiary data. For the super region-pathogen/antimicrobial super combinations
- 1504 with sparse input data (fewer than 250 matched pairs) we instead used global estimated logit differences between 1505 tertiary and non-tertiary data for that pathogen/antimicrobial super combination, employing the same positivity prior.
- 1505 tertiary and non-tertiary data for that pathogen/antimerobiar super combination, employing the same positivity p
- 1506 After modelling the difference between tertiary and non-tertiary data, we implemented the models to adjust all the 1507 country-level tertiary input data that was indicated as biased. We then used the adjusted prevalence of resistance
- estimates from tertiary mput data that was indicated as blased, we then used the adjusted prevalence of resistance stimates from tertiary/mixed care facilities and unadjusted prevalence of resistance from non-tertiary/mixed care facilities
- as data inputs for the prevalence of resistance models. As was done before, resistance values were offset prior to
- 1510 logit-transformation to allow the use of linear models; data with zero resistance or complete resistance was offset by
- 1511 2%. Exceptions to this offset were made for two combinations. *Staphylococcus aureus*/vancomycin and Group B
- 1512 *Streptococcus*/penicillin, which were anticipated to often have values beneath 2% resistance. For these
- 1513 combinations, we applied a 0.5% offset instead.

1514 Section 7.3: Modelling framework

- 1515 The prevalence of AMR in each pathogen-drug combination was modelled separately. We selected a range of
- spatially- and temporally-explicit health and socio-demographic-related covariates with biologically plausible
- 1517 associations to the prevalence of AMR in each pathogen from the Global Health Data Exchange
- 1518 (<u>http://ghdx.healthdata.org</u>/), and from published literature.⁴ This list was narrowed down by fitting a lasso penalised
- regression model between the data and the covariates for each dataset (using the 'glmnet' package version 3.0.2 in R
- version 3.6.1) and selecting the most influential covariates in each of the pathogen–drug models to be taken forward.
- 1521 The list of covariates included for each pathogen–drug combination is given in table S4.
- 1522 Due to the high heterogeneity of the input datasets, we outliered data points found to have the most extreme values
- 1523 for the prevalence of resistance. On a first stage, proportions above 99% and below 0.05% of resistant isolates were
- deemed implausible and excluded from the initial data across the following combinations: Acinetobacter baumannii
- 1525 resistant to carbapenems, anti-pseudomonal penicillin, fluoroquinolones; *Staphylococcus aureus* resistant to
- 1526 fluoroquinolones, methicillin, sulfa and vancomycin; *Citrobacter* spp. resistant aminoglycosides, third and fourth
- 1527 generation cephalosporins; *Streptococcus pneumoniae* resistant to beta-lactams, beta-lactams with beta-lactamase
- inhibitors, and carbapenems; *Escherichia coli* resistant to carbapenem and fluoroquinolones; *Klebsiella pneumoniae* resistant to fluoroquinolones; and *Pseudomonas aeruginosa* resistant to aminoglycosides and third generation
- 1530 cephalosporins. An initial generalised linear model (GLM) with country-fixed effects was fit to the data and
- 1531 covariates and input data points that lay outside of two times the median absolute deviation from the modelled
- estimate for each location were determined to be outliers and removed. The GLM was fit with nested random effects
- based on the GBD super-region, region, and country or territory to capture spatial effects, and was fit using the
- 1534 'lme4' package version 1.1-21 in R version 3.6.1.

- 1535 After the removal of extreme values, the datasets were used to fit spatiotemporal statistical models of the prevalence
- 1536 of AMR. Firstly, we used a stacked ensemble model to fit the associations between selected covariates and data. For
- 1537 each of the pathogen-drug combinations, we considered the following child models with country-fixed effects for
- 1538 inclusion: generalised additive models (GAM), penalised regression models (elastic-net, ridge, lasso), random forest, 1539 cubist, and neural-networks. Models were fit in R version 3.6.1, using the packages 'CARET' version 6.085, 'mgcv'
- 1540 version 1.8.31, and 'glmnet' version 3.0.2. We fit the child models using five-fold cross validation for each
- 1541 combination and selected the best performing, non-correlated child models based on the out-of-sample predictive
- 1542 performance. We then calculated the R²-weighted mean of the estimates of the child models, constraining the
- 1543 coefficients to sum to one, and used these ensemble estimates to fit a spatiotemporal Gaussian process regression
- 1544 (ST-GPR) model for each pathogen-drug combination.
- ST-GPR is described in detail elsewhere.²⁷ In brief, spatial and temporal weights were applied to the residuals of the 1545
- 1546 stacked ensemble model; these were then added to the modelled estimates to smooth them in time and space. A
- 1547 Gaussian process regression (GPR) was then fit, and the mean prevalence of AMR was calculated from 100 draws of
- 1548 the GPR for each location and year. The 100 draws of the model were taken through to the next stage of calculations
- 1549 to propagate uncertainty throughout.

1550 **Section 7.4: Covariates**

- 1551 Supplementary table S4 (section 13) shows all of the covariates used to model the core pathogen-drug combinations
- 1552 and provides citations detailing the methods used to estimate these covariates. Covariates were available in GBD or
- 1553 adapted to be used in this estimation. Antibiotic consumption was considered as a covariate and took as basis
- 1554 estimates between 1990 and 2018. A multiple imputation method was employed (using the 'mice' package version
- 1555 3.16.0 in R version 3.6.1) to project estimates between 2019 and 2021, with the initial set of covariates including the
- 1556 proportion of children with LRI using antibiotics model,⁴ antenatal care coverage with at least 4 visits, hospital beds per 1000, latitude, mean temperature, outdoor air pollution, proportion with improved sanitation, total fertility rate,
- 1557 pharmacists per capita, and diabetes prevalence. For the multiple imputation between 2019 and 2021 we also 1558
- 1559 considered the Worldwide Governance Indicators (www.govindicators.org) from The World Bank. The full list of
- 1560 covariates for each pathogen-drug combination was selected following a Least Absolute Shrinkage and Selection
- 1561 Operator penalised regression approach (using the 'glmnet' package version 3.0.2 in R version 3.6.1) as explained in
- 1562 section 7.3 above.

1563 Section 7.5: Resistance profiles

- To accurately assess the burden associated with resistance to each antibiotic, we needed to first understand the 1564
- 1565 landscape of multidrug-resistant bacteria, for which the burden would be shared across several antibiotics. We
- 1566 therefore estimated, for each bacteria studied, a set of 'resistance profiles' characterised as the probabilities for each
- 1567 possible combination of resistance/susceptibility for all of the antibiotics analysed. For example, for a bacterium for
- 1568 which we assessed three antibiotics, we would estimate eight probabilities: SSS, SSR, SRS, RSS, SRR, RSR, RRS,
- 1569 and RRR (S – susceptible, R – resistant). These probabilities encompass the entire set of possibilities of resistance
- 1570 for the bacterium and sum to 1.
- 1571 For a pathogen for which we assessed n antibiotics, resistance profiles were estimated by optimising over a $2^n - 1$ -
- dimensional probability simplex with $\frac{n(n+1)}{2}$ linear constraints. Every such set of resistance profiles corresponds to a full specification of a multinomial distribution. The target set of constraints were as follows: 1572
- 1573
- 1574 The inferred marginal probability of resistance for each antibiotic (the prevalence of resistance to an 1575 antibiotic irrespective of all others analysed) exactly matches the estimates from our prevalence of 1576 resistance models. Since there are *n* antibiotics, this set comprises *n* constraints.
- 1577 The inferred pairwise likelihood of co-resistance for each pair of antibiotics exactly matches the likelihood • 1578 inferred from the marginal probability of each antibiotic in the pair, and the Pearson correlation of resistance between the two antibiotics observed across all of the laboratory data we compiled. These 1579 represent $\frac{n^2 - n}{2}$ additional constraints. 1580
- 1581 The input format for these constraints for an example case with n = 3 is shown in figure 7.5.1.

1582 Figure 7.5.1: Example input matrix for calculating resistance profiles for a pathogen with 3 antibiotic classes

1583 (A,B,C)

Prev(A)	Prev(A&B)	Prev(A&C)	1584 1585 1586	Prev(X): prevalence of resistance of antibiotic X from ST-GPR model, by location and draw
-	Prev(B)	Prev(B&C)	1587 1588 1589	Prev(X&Y): prevalence of resistance in both X and Y, back calculated from Prev(X), Prev(Y) and the Pearson correlation of X&Y in the lab data with multiple resistance screens.
-	-	Prev(C)		

In the n = 2 case, the number of constraints in our framework (3) is equal to the number of unknowns in the probability simplex $(2^n - 1 = 3)$, and therefore at most one set of resistance profiles is possible. For all larger values of n, however, the number of unknowns exceeds the number of constraints, and there are infinite potential resistance profiles. Thus, our resistance profiles are generated by solving for a single sample from the probability simplex formed under the established constraints of marginal resistance and co-resistance.

1599There is no a priori guarantee that the observables generate a feasible solution. To prevent the constraints from1600delineating an infeasible probability simplex (for example, an input suggesting the individual resistances to1601antibiotics A and B are both above 90% but the probability of co-resistance to A and B is below 10%), we solved an

optimisation problem that identified, for each input matrix, the closest feasible set of input constraints and a
 corresponding set of resistance profiles that fits these constraints. The 1-simplex in any dimension is specified by

1604

1605

$$\Delta := \{ p: \quad 0 \le p_i \le 1, \ \Sigma p_i = 1 \}$$
(7.5.1.1)

1606 Each marginal observation and each pairwise co-resistance corresponds to a linear constraint, where a sum over a 1607 subset of the p in the simplex should be a given value v_i :

1608
$$m_i^T p = v_i$$
 (7.5.1.2)

1609 where m_i is a 'mask vector' of zeros and ones, used to pick out the appropriate summands. Overall, there are $\frac{n(n+1)}{2}$ 1610 such affine constraints. The optimisation problem we solve is to find the nearest feasible simplex given these

1611 constraints:

1612
$$\min_{p \in \Delta} f(p) \coloneqq \sum_{i=1}^{n(n+1)/2} \frac{1}{\sigma_i^2} (m_i^T p - v_i)^2$$
(7.5.1.3)

1613 Where $\frac{1}{\sigma_i^2}$ can be used to provide importance weights for the data. This is a least squares problem with linear equality 1614 and inequality constraints (corresponding to the simplex) and can be solved very efficiently even for relatively large 1615 n (such as 10 co-occurring antibiotic classes). The result is guaranteed to return the probability simplex closest to the 1616 specified constraint, even if the original set of constraints is infeasible, and corresponding set of resistance profiles 1617 that fits this nearest simplex.

1618 To propagate uncertainty, we repeat this procedure for each of the 100 draws we estimate for prevalence of antibiotic 1619 resistance. To generate the *i*-th draw of our resistance profiles, we input the *i*-th draw of the marginal probability of 1620 resistance for each antibiotic analysed for a given pathogen into the probability simplex optimisation algorithm. 1621 Updating the marginal probabilities of resistance in turn influences the probabilities of co-resistance, and each

element of the input we feed the algorithm is unique to the *i*-th draw. The optimisation is also initialised randomly
for every draw. This process is implemented for each GBD country, resulting in 100 resistance profiles for each
country for each pathogen in our analysis.

- 1625 It is important to note that while we produce resistance profiles unique to each country, the Pearson correlations of 1626 co-resistance that we derive from the input data are assumed to be constant across location, year, sex, and infectious
- 1627 syndrome. Due to data sparsity, we cannot currently identify co-resistance patterns in several locations (particularly
- 1628 LMICs) with insufficient or non-existent line-level data; indeed, the data sources providing multiple resistance tests
- 1629 for a single isolate are among the most detailed of those we collected for this research and require exceptional data
- 1630 quality standards that are not easily achieved throughout the world. Identifying differences in patterns of co-
- 1631 resistance by location, year, or infectious syndrome is of considerable interest in the future.

1632 Section 7.6: Model validation

1633 Validation of prevalence of resistance modelling occurs in two instances. For the ensemble estimates, machine-

1634 learning candidate models are validated using five random holdout sets, and we select all models correlated below a

1635 Pearson correlation coefficient threshold of 0.8 and weight the ensemble based on the R^2 predictive validity for the

1636 out-of-sample predictions. These intermediary results are not reported in this paper because they do not pertain to

1637 the final prevalence of resistance estimate.

1638 We then validate the entire ensemble ST-GPR process by calculating in-sample and out-of-sample accuracy metrics.

1639 Accuracy is measured as the proportion of correctly classified resistant/susceptible isolates based on the modelled

estimate and the raw data's prevalence of resistance. As a worked example, if there were 10 isolates with 50%

resistance in the raw data and the model predicted 60% resistance for that location, we would have 5 correctly classified resistant samples (true positives), 1 incorrectly classified resistant sample (false positive), and 4 correctly

1643 classified susceptible samples (true negatives), for 90% accuracy. For out-of-sample cross-validation, we withheld,

at the outset of the ensemble modelling process, a set of 20% of countries with data as a holdout group at each

- 1645 iteration, for 5 total holdout sets. Table 7.6.1 reports the accuracy metric for each pathogen–drug combination. Our
- 1646 in-sample accuracy values range from 87% to 99.5%, while our out-of-sample accuracy values range from 82.7% to
- 1647 97.9%.

Pathogen	Antibiotic class	In-sample accuracy	Out-of-sample accuracy
Acinetobacter baumannii	3GC	0.940	0.889
Acinetobacter baumannii	4GC	0.929	0.922
Acinetobacter baumannii	AG	0.937	0.886
Acinetobacter baumannii	Anti-pseudomonal	0.938	0.932
Acinetobacter baumannii	BL-BLI	0.915	0.890
Acinetobacter baumannii	СР	0.913	0.888
Acinetobacter baumannii	FQ	0.919	0.885
Citrobacter spp.	3GC	0.981	0.966
Citrobacter spp.	4GC	0.991	0.988
Citrobacter spp.	AG	0.981	0.974
Citrobacter spp.	Anti-pseudomonal	0.978	0.915
Citrobacter spp.	СР	0.984	0.947
Citrobacter spp.	FQ	0.984	0.959
Escherichia coli	3GC	0.970	0.964
Escherichia coli	AG	0.974	0.956
Escherichia coli	Aminopenicillin	0.974	0.917
Escherichia coli	BL-BLI	0.921	0.906
Escherichia coli	СР	0.985	0.981
Escherichia coli	FQ	0.952	0.912
Escherichia coli	TMP-SMX	0.950	0.955
Enterococcus faecalis	FQ	0.989	0.956
Enterococcus faecalis	Vancomycin	0.992	0.986
Enterococcus faecium	FQ	0.987	0.980

1648 Table 7.6.1: In-sample and out-of-sample accuracy estimates for prevalence of resistance models

Enterococcus faecium	Vancomycin	0.975	0.966
Enterobacter spp.	4GC	0.970	0.925
Enterobacter spp.	AG	0.973	0.975
Enterobacter spp.	Anti-pseudomonal	0.976	0.970
Enterobacter spp.	СР	0.961	0.975
Enterobacter spp.	FQ	0.968	0.912
Enterobacter spp.	TMP-SMX	0.971	0.974
Group A Streptococcus	Macrolide	0.958	0.963
Group B Streptococcus	FQ	0.965	0.950
Group B Streptococcus	Macrolide	0.934	0.915
Group B Streptococcus	Penicillin	0.986	0.961
Haemophilus influenzae	3GC	0.995	0.961
Haemophilus influenzae	Aminopenicillin	0.987	0.982
Klebsiella pneumoniae	3GC	0.966	0.957
Klebsiella pneumoniae	AG	0.965	0.949
Klebsiella pneumoniae	BL-BLI	0.950	0.935
Klebsiella pneumoniae	СР	0.976	0.977
Klebsiella pneumoniae	FQ	0.931	0.927
Klebsiella pneumoniae	TMP-SMX	0.947	0.945
Morganella spp.	3GC	0.954	0.930
Morganella spp.	4GC	0.990	0.988
Morganella spp.	FQ	0.960	0.967
Neisseria gonorrhoeae	3GC	0.960	0.968
Neisseria gonorrhoeae	FQ	0.957	0.947
non-typhoidal Salmonella	FQ	0.961	0.951
Pseudomonas aeruginosa	3GC	0.978	0.976
Pseudomonas aeruginosa	4GC	0.977	0.974
Pseudomonas aeruginosa	AG	0.982	0.952
Pseudomonas aeruginosa	Anti-pseudomonal	0.967	0.928
Pseudomonas aeruginosa	СР	0.955	0.956
Pseudomonas aeruginosa	FQ	0.967	0.924
Proteus spp.	3GC	0.966	0.955
Proteus spp.	AG	0.983	0.937
Proteus spp.	Aminopenicillin	0.993	0.976
Proteus spp.	FQ	0.976	0.891
Proteus spp.	TMP-SMX	0.992	0.911

Staphylococcus aureus	FQ	0.927	0.951
Staphylococcus aureus	Macrolide	0.945	0.940
Staphylococcus aureus	Methicillin	0.949	0.906
Staphylococcus aureus	TMP-SMX	0.989	0.985
Staphylococcus aureus	Vancomycin	0.986	0.982
Salmonella Paratyphi	FQ	0.901	0.891
Salmonella Paratyphi	MDR	0.933	0.824
Salmonella Typhi	FQ	0.913	0.945
Salmonella Typhi	MDR	0.870	0.827
Streptococcus pneumoniae	3GC	0.987	0.983
Streptococcus pneumoniae	BL-BLI	0.974	0.972
Streptococcus pneumoniae	СР	0.978	0.967
Streptococcus pneumoniae	FQ	0.982	0.986
Streptococcus pneumoniae	Macrolide	0.963	0.938
Streptococcus pneumoniae	Penicillin	0.937	0.932
Streptococcus pneumoniae	TMP-SMX	0.962	0.931
Serratia spp.	3GC	0.954	0.883
Serratia spp.	4GC	0.985	0.957
Serratia spp.	AG	0.966	0.979
Serratia spp.	Anti-pseudomonal	0.976	0.885
Serratia spp.	СР	0.976	0.944
Serratia spp.	FQ	0.961	0.903
<i>Shigella</i> spp.	FQ	0.914	0.896

1649 3GC = Third-generation cephalosporins. 4GC = Fourth-generation cephalosporins. AG = Aminoglycosides. Anti-pseudomonal = Anti-

1650 pseudomonal penicillin/Beta-Lactamase inhibitors. BL-BLI = Beta Lactam/Beta-lactamase inhibitors. CP = Carbapenems. FQ =

1651Fluoroquinolones. MDR in S. Typhi and Paratyphi = Multi-drug resistance in Salmonella Typhi and Paratyphi. TMP-SMX = Trimethoprim-1652Sulfamethoxazole.

1653 Section 8: Relative risk¹

1654 Section 8.1: Input data

1655 The input data for the relative risk estimation step included literature data that provided relative risk of death for

resistant and susceptible organisms and hospital-based microbiology surveillance data linked to outcomes, as well as
 other clinical parameters (eg, demographics, diagnoses). Published studies were identified from a recent meta analysis performed by Cassini and colleagues.⁵⁰

1659The data inputs for the excess duration estimates were literature data that reported on length of stay for resistant and
susceptible organisms and hospital-based microbiology surveillance data that were linked to outcomes as well as

1661 various other clinical parameters (eg, demographics, diagnoses). The number of days between a positive specimen

1662 date and discharge date was used to obtain the mean duration of infection. We considered days elapsed between

admission and discharge as mean duration of stay if this was the only piece of information provided in the study. We

1664 also considered median duration of infection or median duration of stay if the study only provided this piece of 1665 information.

1666 Section 8.2: Data processing

- 1667 There were 355 million samples derived from 694 000 deaths, 23 million cases, and 260 million recorded hospital
- 1668 days with infection across 73 countries to inform our relative risk of death estimates. Of the 355 million potential
- samples, duplicates were dropped as part of the modelling process (modelling details in 7.3). A detailed breakdown
- 1670 of the cases, deaths, and hospital days with infection by pathogen–drug is in table S5 (section 13). Relative risk
- 1671 estimates were extracted from primary literature as were study characteristics that described the adjustments made
- by the study. For sources with line-level data, we calculated crude relative risks. For literature sources that reported summary metrics such as the mean, median, and interquartile range of length of stay, we used the values as reported.
- 1674 Outliers were assessed via visual inspection of the results and expert opinion, and generally included values with
- 1675 unbelievably low (<0.7) or unbelievably high (>2) relative risks that we attribute to various bias covariates we were
- 1676 unable to control for due to data sparsity.

1677 Section 8.3: Modelling overview

- 1678 We estimated both fatal and nonfatal relative risks. The purpose of these models was to measure the excess risk of 1679 death or increased length of stay in a hospital from an infection with an antibiotic-resistant pathogen compared to a
- 1679 death or increased length of stay in a hospital from an infection with an antibiotic-resistant pathogen compared to a 1680 susceptible pathogen. In updating our modelling framework, the greatest challenge was data sparsity. Relative risk is
- 1681 the most data sparse estimation step because of its extensive data inclusion requirements. Input data must have
- patient outcomes linked to microbiological tests indicating the pathogen(s) isolated from their infection(s) and the
- 1683 results of antibiotic resistance testing. Furthermore, for each pathogen-drug combination, the data must include both
- 1684 cases and/or deaths for susceptible and resistant isolates. Correspondingly, accounting for all the various
- 1685 characteristics that modify relative risk of death and length of stay was out of scope due to the lack of available
- 1686 information across all sources. For example, not all sources reported patient underlying causes of death and/or days
- 1687 spent in the hospital prior to infection. We instead used a two-stage process to generate a sound baseline estimate for 1688 relative risk related to a given antibiotic class prior to modeling specific bug-drug combinations in a second series of
- 1689 models.

1690 Section 8.3.1: Fatal modelling

1691 In this two-stage modelling process, we first generated a baseline estimate of relative risk by antibiotic class that 1692 accounted for variation by underlying source. Then, in the second stage, we generated estimates of relative risk by 1693 unique pathogen–drug–infectious syndrome combinations. Similar to Cassini and colleagues,⁴⁹ we assumed that the

1694 relative risk of death was non-varying with respect to age, sex, and location.

1695 The stage one models were a series of 13 mixed effect binomial logistic regressions—one for each antibiotic class—

- 1696 with a fixed effect on resistance (susceptible or resistant) and a random effect on source (equation 8.3.1.1). The
- 1697 inclusion of the random effect on source was motivated by substantial heterogeneity between sources. The input data
- 1698 to this stage was crude relative risks by antibiotic class and source calculated as the ratio of the case fatality ratios

1699 (CFRs) of resistant infections over susceptible infections. From the stage one models we calculated odds ratios

which we converted into relative risks through Zhang and Yu's⁵¹ conversion method. In this way we estimated a

- baseline relative risk of death by antibiotic class which we then used as the prior on the intercept of the stage two model.
- 1703

$$logit(death_d) = \beta_0 + \beta_1 \cdot x + u_{j,d}$$
(8.3.1.1)

1704 Where x is a binary covariate on the presence of resistance and u is the random effect on source j for antibiotic class 1705 d.

1706 The second stage models were a series of MR-BRT meta regressions for each antibiotic class with a fixed effect on 1707 infectious syndrome and a random effect on pathogen (Equation 8.3.1.2). The data was too sparse to run a unique 1708 model by each pathogen-drug combination of interest and so each model included all data related to a given 1709 antibiotic class based on the assumption that pathogens with resistance to a given antibiotic class would have a 1710 similar baseline increased risk of death (or intercept in terms of the model). The input data to this stage was crude 1711 relative risks by antibiotic class, pathogen, and infectious syndrome, calculated the same as for the stage one models. 1712 Assignment of infectious syndrome was categorised into one of four categories: bloodstream infections, lower 1713 respiratory infections, urinary tract infections, and all other syndromes. Data with an unspecified infectious 1714 syndrome informed the stage one model, which was unique by antibiotic class, but not the stage two model. Additionally, we imposed Gaussian priors with mean 0 and non-zero variance on the coefficient of the infectious 1715 syndrome covariate, to bias the model away from spurious effects driven by data sparsity. The Gaussian priors were 1716 1717 based on expert opinion and can be improved with further empirical validation and sensitivity analyses in the future.

- 1718 Furthermore, due to the heterogeneity of the input data, which was impacted by small numbers yielding a wide
- 1719 range of relative risks that could indicate that resistance was highly protective (>30% reduction in risk) or
- associated with a high increase in risk (>100% increase in risk), we employed four types of stage two models: (i)
- 1721 aggregated across infectious syndrome with weak priors, (ii) aggregated across infectious syndrome with strong 1722 priors, (iii) stratified by infectious syndrome with weak priors, and (iv) stratified by infectious syndrome with strong
- 1722 priors, (iii) statilied by infectious syndrome with weak priors, and (iv) statilied by infectious syndrome with strom priors. We prioritised models with weak priors (standard deviations > 0.01) and only when the estimate of risk was
- protective did we use estimates from models with strong priors (standard deviations ≤ 0.00001). Additionally, we
- 1725 used models with infectious syndrome detail in all cases except for select pathogen-drug combinations identified
- 1726 through expert opinion as having too much variability in the final estimates. For these select pathogen-drug
- 1727 combinations, the MR-BRT model was specified the same as in Equation 8.3.1.2 but without the fixed effect on
- 1728 infectious syndrome.
- 1729

$$Relative Risk_{pathogen_ndrug_d} = \beta_0 + \beta_1 \cdot x_1 + \dots + \beta_n \cdot x_n + u_{pathogen_n} + \epsilon$$
(8.3.1.2)

1730 Where x is a categorical fixed effect on infectious syndrome, u is a random effect on pathogen n within an antibiotic 1731 class, ϵ is the measurement error, and d is antibiotic class. From this stage two model, we produced a point estimate 1732 and 100 draws to incorporate uncertainty from this estimation step into the final result. We calculated the uncertainty 1733 interval as 1.96 standard deviations above and below the mean.

- 1734 Section 8.3.2: Nonfatal Modelling
- 1735 For non-fatal estimation, we estimated the excess duration attributable to resistance—comparing the length of
- 1736 hospital stay for an infection with a pathogen resistant to the antibiotic of interest to an infection of the same site
- 1737 with the same organism that was susceptible. For community-acquired infections the entire duration of length of stay
- 1738 was attributed to the infection, for hospital-acquired infections we used the time from first positive culture to time of
- discharge to estimate length of stay. It is important to note that the afforementioned challenges posed by data
- 1740 sparsity increased significantly in this step as availability of culture dates and discharge dates was limited within our
- data. To estimate the relative risk of increased length of stay, we used a modelling framework similar to that from
- 1742 the fatal estimation but slightly modified.
- 1743 Because days of hospital stay is greater than the number of cases, we could not calculate a crude relative risk of
- 1744 length of stay manually. To generate initial estimates of relative risk of increased length of stay after the onset of 1745 infection, we used a Poisson regression with a fixed effect on the type of infection (resistant or susceptible)
- 1746 (equation 8.3.2.1).
- 1747

$$log(\lambda_i) = \beta_0 + \beta_1 \cdot x_i \tag{8.3.2.1}$$

1748 Where λ_i is the expected count of deaths of infection for observation *i* and *x* is the binary coefficient associated with 1749 presence of resistance. The coefficient β_1 was extracted as the initial estimate of relative risk of increased length of 1750 stay.

- 1751 Similar to the fatal estimation, we used a two-stage process wherein the stage one models produced a stable baseline
- 1752 of relative risk of increased length of stay by antibiotic class. A binomial logistic regression was not appropriate in
- this case because the ratio of hospital length of stay and cases is not bounded by 0 and 1. Therefore, we used a MR-
- BRT regression for the antibiotic class-specific stage one models (equation 8.3.2.2). As before, the results from the
- 1755 stage one models were used as priors on the intercepts of the stage two models.
- 1756 $Relative Risk_d = \beta_0 + u_i + \epsilon$
- 1757 Where d is the antibiotic class, u_i as a random effect on data source, and ϵ is the measurement error.
- 1758 The stage two models were the same as the stage two models in the fatal modelling framework but without any 1759 inclusion of the effect of infectious syndrome due to data sparsity.
- 1760 The analysis of relative risk followed the definitions of the prevalence of resistance step (section 7) as closely as
- 1761 possible. Both analyses identified resistance to a given antibiotics class if the isolate had an intermediate or resistant
- interpretation to any one of the antibiotics in that given class. But the analysis of relative risk diverged from the
- analysis of prevalence of resistance in the following circumstances. First, the relative risk step included molecular
- 1764 resistance testing if this was the only data provided by a study, eg, β -lactamase or mecA positive pathogens; this
- could potentially misclassify some resistant organisms as sensitive (or vice versa) if they had an alternate
- 1766 mechanism for resistance, such as a porin alteration leading to carbapenem resistance or a non-expressed resistance

(8.3.2.2)

- 1767 mechanism. Second, the relative risk estimate produced was for sterile sites of infection, as there was limited data
- 1768 from non-sterile sites. Third, it was not possible to assess relative risk of multidrug-resistant pathogens because of
- 1769 limited data availability and because it did not fit in the modelling strategy at the antibiotic class level. Instead, the
- relative risk of each of the components of multidrug-resistant pathogens was calculated and the antibiotic class with the highest relative risk was used; for *Salmonella* Typhi this was relative risk to fluoroquinolones. Fourth, we had
- 1771 limited availability of data on fatalities attributable to *Salmonella* Paratyphi and invasive non-Typhoidal *Salmonella*
- species; as a result, we used fatal relative risk estimates from *Salmonella* Typhi as a proxy. Fifth, there were limited
- data on fatalities attributable to resistant *N. gonorrhoeae*, so we excluded the fatal estimate for this pathogen.
- Finally, the relative risk of *Mycobacterium tuberculosis* was assessed for multidrug and extensively drug-resistant
- infections as reported at the global level in GBD. We took the ratios of the GBD mortality and incidence ratio of
- drug-susceptible TB and drug-resistant TB (separately for both MDR and XDR) as a proxy for fatal relative risk.
- 1778 Nonfatal relative risk estimates were taken by year whereas fatal estimates were taken as a single all year aggregate
- 1779 from 1990 to 2021.

1780 Section 8.4: Model validation

1781 We report three summary metrics to evaluate the relative risk of death models: the root-mean squared error (RMSE),

1782 the Mean Average Error (MAE) and the percent coverage of observed data within the full variance of the model.

- 1783 These three metrics were calculated using the real relative risk ratio in the whole sample of data and also by holding
- 1784 out 25% of the sample within antibiotic class in 4 iterations. Table 8.4.1 provides details for each of the antibiotic
- 1785 class models evaluated. Large MAE and RMSE values indicate that observed data deviates from the mean model
- estimate. We also see a large proportion of the data (76% and more) falls within the total variance of each model
- estimate. This indicates that large deviations from the mean estimate coincide with large variances of the data
- 1788 observed.

Antibiotic class	Model	Pathogans	In Sam	ple		Out of S	Sample	
Antibiotic class	type	1 athogens	RMSE	MAE	coverage	RMSE	MAE	coverage
Aminoglycosides	no syndrome detail	Acinetobacter baumannii, Citrobacter spp., Enterobacter spp., Escherichia coli, Klebsiella pneumoniae, Proteus spp., Pseudomonas aeruginosa, Serratia spp.	0.55	0.4	82%	1.13	0.4	82%
Aminopenicillin	with syndrome detail	Escherichia coli, Haemophilus influenzae, Proteus spp.	0.86	0.56	88%	1.48	0.57	90%
Anti-pseudomonal penicillin/Beta- Lactamase inhibitors	no syndrome detail	Acinetobacter baumannii, Citrobacter spp., Enterobacter spp., Pseudomonas aeruginosa, Serratia spp.	0.97	0.61	94%	1.63	0.61	94%
Beta Lactam/Beta- lactamase inhibitors	no syndrome detail	Acinetobacter baumannii, Enterobacter spp., Escherichia coli, Klebsiella pneumoniae, Serratia spp., Streptococcus pneumoniae	1.02	0.49	97%	1.59	0.49	97%
Carbapenems	no syndrome detail	Acinetobacter baumannii, Citrobacter spp., Enterobacter spp., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa,	0.99	0.62	80%	1.66	0.62	80%

1789 Table 8.4.1: In-sample and out-of-sample performance metrics for relative risk of death models

		Serratia spp., Streptococcus pneumoniae						
Fluoroquinolones	no syndrome detail	Acinetobacter baumannii, Citrobacter spp., Enterobacter spp., Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Group B Streptococcus, Klebsiella pneumoniae, Morganella spp., Non-typhoidal Salmonella, Proteus spp., Pseudomonas aeruginosa, Salmonella Paratyphi, Salmonella Typhi, Serratia spp., Shigella spp., Staphylococcus aureus, Streptococcus pneumoniae	5.99	1.18	80%	6.2	1.18	80%
Fourth-generation cephalosporins	no syndrome detail	Acinetobacter baumannii, Citrobacter spp., Enterobacter spp., Morganella spp., Pseudomonas aeruginosa, Serratia spp.	0.45	0.36	92%	1.06	0.36	92%
Penicillin	no syndrome detail	Group B Streptococcus, Streptococcus pneumoniae	0.54	0.45	100%	1.28	0.45	100%
Trimethoprim- Sulfamethoxazole	no syndrome detail	Enterobacter spp., Escherichia coli, Klebsiella pneumoniae, Proteus spp., Staphylococcus aureus, Streptococcus pneumoniae	0.74	0.41	83%	1.31	0.41	83%
Third-generation cephalosporins	no syndrome detail	Acinetobacter baumannii, Citrobacter spp., Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Morganella spp., Proteus spp., Pseudomonas aeruginosa, Serratia spp., Streptococcus pneumoniae	1.72	0.73	82%	2.22	0.73	82%
Macrolide	no syndrome detail	Group A Streptococcus, Group B Streptococcus, Staphylococcus aureus, Streptococcus pneumoniae	0.78	0.48	86%	1.35	0.48	86%
Methicillin	no syndrome detail	Staphylococcus aureus	0.78	0.5	76%	1.44	0.5	76%
Vancomycin	no syndrome detail	Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus	2	0.81	86%	2.5	0.81	86%

1791 This approach for relative risk estimation has a number of limitations, many of which are attributable to data

sparsity. First, it is likely that the impact of resistance on mortality is different across locations and ages. In locations

1793 where overall health-care access and quality are very poor, the impact of resistance may be smaller because the

- 1794 management of susceptible infections is sub-optimal. On the other hand, in locations where broad, second- and
- 1795 third-line antimicrobials are not available, one would expect the impact of resistance to be greater. Second, it is
- 1796 possible that the relative risk of death attributable to resistance is different across anatomical sites of infection
- 1797 because of variable penetrance of antibiotics to different anatomical locations. With regard to age, those that are 1798 older may have more comorbidities that affect their immune systems and increase the risk of adverse complications
- from resistant infections. As we continue efforts to expand data collection and reporting, we hope to be able to 1799
- 1800 address these limitations in future iterations.

Section 9: Counterfactuals and AMR estimation¹ 1801

1802 Section 9.1: Estimating associated AMR burden with counterfactual of no infection

- 1803 We computed two counterfactuals to estimate the drug-resistant burden. First, we estimated the burden of AMR
- 1804 using the counterfactual of no infection. We estimated the fatal burden of individual pathogen-drug combinations by
- 1805 taking the product of the deaths for each underlying cause, fraction of deaths related to infection, infectious
- syndrome fraction, fatal pathogen fraction, and fatal prevalence of resistance and then summed across all infectious 1806 1807 syndromes and underlying causes:
- 1808

1815

1819

Deaths with Resistance_{Kd} =
$$\sum_{J} \sum_{L} D_J \times S_J \times M_{LJ} \times P_{LK} \times R_{Kd}$$
 (9.1.1)

1809 where D = deaths, S = fraction related to infection, M = infectious syndrome fraction, P = fatal pathogen fraction, R =1810 = fatal prevalence of resistance, J = cause, L = syndrome, K = pathogen, d = drug. To produce an estimate of deaths 1811 with resistance to any antibiotic estimated, we employed the same formula but used the fatal prevalence of

1812 resistance to any antibiotic using the resistance profiles, described previously in Section 7.5. We calculated the fatal

- 1813 prevalence of resistance R for a given drug d based on the non-fatal prevalence of resistance R' and relative risk of
- 1814 death *RR* for this drug:

$$R_{Kd} = \frac{R'_{Kd} R R_{Kd}}{(1 - R'_{kd}) + R'_{Kd} R R_{Kd}}$$
(9.1.2)

1816 We calculated the fatal prevalence of resistance to any antibiotic estimated based on the non-fatal prevalences of

1817 each resistance profile, incorporating all resistance profiles δ that are resistant to at least 1 drug with corresponding relative risks RR_{Kd^*} , determined by the method described below (section 9.2): 1818

- - $R_{K,all\ drugs} = \frac{\sum_{\delta} R'_{K\delta} R R_{Kd^*}}{\left(1 \sum_{\delta} R'_{K\delta}\right) + \sum_{\delta} R'_{K\delta} R R_{Kd^*}}$ (9.1.3)
- 1820 We then estimated YLLs using standard GBD methods to convert age-sex specific deaths into YLLs.²
- For the non-fatal estimate, we first estimated the incidence of each infectious syndrome in each underlying cause. 1821
- For these select infectious syndromes, we simply used the corresponding proxy cause incidence estimated in GBD 1822
- (table 9.1.1). 1823
- 1824 Table 9.1.1: Infectious syndromes where we used GBD proxy causes for MI ratio

Infectious syndrome	Proxy cause
Diarrhoea	Diarrhoea
Endocarditis	Endocarditis
Carditis, myocarditis, and pericarditis	Myocarditis
Upper respiratory infections	Upper respiratory infections
Tuberculosis	Tuberculosis
	Sexually transmitted infections excluding HIV
	Chlamydia
Sexually transmitted infections	Gonococcal infection Syphilis

Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	Typhoid fever Paratyphoid fever Invasive non-typhoidal Salmonella
Other parasitic infections	Other neglected tropical diseases
Hepatitis	Acute hepatitis Acute hepatitis A Acute hepatitis B Acute hepatitis C
Other unspecified site infections	Other unspecified infectious diseases

1826 For infectious syndromes that do not utilize GBD incidence (table 9.1.2), we divided the infectious syndrome deaths $(D_i \times S_I \times M_{LI})$ by the syndrome-and pathogen-specific CFRs calculated in section 5 adjusted with a syndrome-1827 1828 specific adjustment factor to account for the bias of our CFR data to reflect inpatient disease. We then aggregated across pathogen using the nonfatal pathogen distribution P' calculated in Section 6. The adjustment factor CR_L , is 1829 based on the Poland Healthcare claims database, where we converted claims records into inpatient and outpatient 1830 1831 infectious events according to the ICD-10 code, facility designation, and a cause duration as assigned by area experts. We linked all records from 2015 to 2021 by patient to process all infectious events for individuals in the 1832 records. Events consisted of unique patients and either one or multiple claims records dependent on the duration 1833 period of a given cause. For example, in a chronic cause any patient could only have one event for that given cause 1834 in their lifetime. After establishing these events, two ratios were generated. The first ratio, referred to as the 1835 "inpatient ratio" was inclusive of all inpatient events (ie those that included at least one inpatient record) and the 1836 total number of events, taking the form 1837

1838 inpatient
$$CR_L = \frac{\sum_J Any \text{ event with inpatient record}_J}{\sum_J All \text{ Events}_J}$$

1839 The second ratio, referred to as the "outpatient to inpatient" ratio, consisted of events that had an outpatient to 1840 inpatient transition, and the total number of outpatient events with form

1841 outpatient to inpatient
$$CR_L = \frac{\sum_J Any \text{ event with outpatient to inpatient instance}_J}{\sum_J Any \text{ event with an outpatient record}_J}$$

1842 The "inpatient ratio" was used to adjust our CFR models for community acquired infections for lower respiratory 1843 and urinary tract infections. Blood stream infections, meningitis, peritoneal and intra-abdominal infections and the 1844 hospital-acquired infection models for lower respiratory and urinary tract infections did not have a ratio and utilized 1845 unadjusted CFRs. The "outpatient to inpatient ratio" was used in all other syndromes. All adjusted or unadjusted 1846 CFRs were vetted for compatibility with published GBD results for consistency.

To to a serie vote for compationity with provisited ODD results for consistency.

1847
$$Incidence_{JL} = \frac{D_J S_J M_{LJ}}{\sum_{K} CF R_{LK} CR_L P'_{LK}}$$
(9.1.4)

1848

1849 Table 9.1.2: Incidence estimates as derived from CFRs and healthcare claims adj	ustments
--	----------

Infectious syndrome	Adjustment factor used on CFRs
Meningitis and other bacterial central nervous system infections	None
Lower respiratory infections and other related infections in the thorax – community acquired	Inpatient ratio
Lower respiratory infections and other related infections in the thorax – hospital acquired	None
Sexually transmitted infections	Outpatient to inpatient ratio

Urinary tract infections and pyelonephritis – community acquired	Inpatient Ratio
Urinary tract infections and pyelonephritis – hospital acquired	None
Bloodstream infections	None
Infections of the skin and subcutaneous systems	Outpatient to inpatient ratio
Oral infections	Outpatient to inpatient ratio
Eye infections	Outpatient to inpatient ratio
Infections of bones, joints, and related organs	Outpatient to inpatient ratio
Peritoneal and intra-abdominal infections	None

We then took the product of the infectious syndrome incidence, the non-fatal pathogen fraction, and the non-fatal prevalence of resistance and summed across all infectious syndromes and underlying causes to get incidence with resistance for every pathogen and drug. As with the fatal estimate, to produce an estimate of incident infections with resistance to any antibiotic, we used the same formula and used the non-fatal prevalence of resistance to any

1854 antibiotic estimated from the resistance profiles.

1855 We then calculated YLDs for each pathogen. For some GBD causes, we simply used the GBD YLD estimates and multiplied them by the corresponding nonfatal pathogen distribution (table 9.1.3). For all other causes, we multiplied 1856 together the infectious syndrome incidence, the non-fatal pathogen fraction, and a syndrome-specific YLDs per 1857 incident case rate, calculated using a proxy cause from GBD.²⁷ To estimate the YLDs per incident case rate, we 1858 1859 extracted GBD incidence and YLD estimates for the proxy causes and divided the YLDs by the incidence for each 1860 age, sex, and location. Three infectious syndromes are not estimated in the GBD, and therefore have no standard 1861 sequelae or disability weights: bloodstream infections, intra-abdominal infections, and bone and joint infections. For the proxy causes for these three syndromes, we used the closest approximate disease as determined by a group of 1862 experts in infectious diseases and epidemiology (table 9.1.3). This approach is a significant limitation of the study 1863 1864 and should be improved in future work.

1865 Table 9.1.3: Proxy causes used to calculate YLDs per incidence case rate for each infectious syndrome

Infectious syndrome	Proxy cause
Meningitis and other bacterial central nervous system infections	Meningitis
Lower respiratory infections and other related infections in the thorax	Lower respiratory infections
Urinary tract infections and pyelonephritis	Urinary tract infections and interstitial nephritis
Bloodstream infections	Maternal sepsis and other maternal infections – (<i>Extrapolated to Males</i>) Neonatal sepsis and other neonatal infections
Infections of the skin and subcutaneous systems	Bacterial skin diseases Cellulitis Pyoderma Decubitus ulcer
Eye infections	Otitis media
Oral infections	Otitis media
Infections of bones, joints, and related organs	Bacterial skin diseases Musculoskeletal disorders

Peritoneal and intra-abdominal infections	Paralytic ileus and intestinal obstruction
Diarrhoea	Diarrhoea
Endocarditis	Endocarditis
Carditis, myocarditis, and pericarditis	Myocarditis
Upper respiratory infections	Upper respiratory infections
Tuberculosis	Tuberculosis
Genital Infections	Urinary tract infections and interstitial nephritis
Sexually transmitted infections	Sexually transmitted infections excluding HIV Chlamydia Gonococcal infection Syphilis
Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	Typhoid fever Paratyphoid fever Invasive non-typhoidal Salmonella
Other parasitic infections	Other neglected tropical diseases
Hepatitis	Acute hepatitis Acute hepatitis A Acute hepatitis B Acute hepatitis C Acute hepatitis E
Other unspecified site infections	Other unspecified infectious diseases

1866To get the YLDs associated with resistance for each pathogen, we used the non-fatal prevalences of resistance for1867each drug and resistance profile and relative length of stay (LOS) for each pathogen–drug combination to calculate1868the fraction of YLDs associated with resistance for each pathogen, using equations analogous to equations 9.1.2 and

1869 9.1.3. We multiplied this fraction by the YLDs for each pathogen to get YLDs associated with resistance to each

1870 pathogen-drug combination and YLDs associated with resistance any antibiotics estimated. We then added YLLs 1871 and YLDs to produce the DALY estimate for burden associated with resistance.

1872 Section 9.2: Estimating attributable AMR burden with counterfactual of infection with susceptible organism

1873 For the second counterfactual—comparing resistant to susceptible infections—we calculated mutually exclusive 1874 pathogen–drug estimates. To do this, we first estimated the population attributable fraction of deaths

1874 painogen-ung estimates. To do this, we first estimated the population attributable fraction of deaths 1875 (*Mortality PAF*) for each resistance profile with resistance to at least 1 drug, δ . The inputs for the PAF were the

non-fatal prevalence of the given resistance profile, $R'_{K\delta}$, and the relative risk of death for resistant infection

1877 compared to susceptible infection for each drug, R_{kd} . Because of data sparsity, we were unable to calculate the

relative risk for every possible resistance profile, and so instead used the highest relative risk of all of the drugs in

the resistance profile. For example, for a resistance profile characterized by resistance to penicillin and

1880 fluoroquinolones where the relative risk was 1.1 for penicillin and 1.4 for fluoroquinolones, we would use a relative 1881 risk of 1.4 for this profile. The mortality PAF is calculated as a multi-category exposure:

1882
$$Mortality PAF_{K\delta} = \frac{R'_{K\delta}(RR_{Kd^*} - 1)}{1 + \sum_{\delta} R'_{K\delta}(RR_{Kd^*} - 1)}$$
(9.2.1)

1883 where d^* is the drug in the resistance profile δ with the highest relative risk.

1884 We then took the product of the deaths for each underlying cause, fraction of deaths related to infection, infectious

1885 syndrome fraction, fatal pathogen fraction, and the mortality PAF for each resistance profile to get the deaths

1886 attributable to resistance for every resistance profile:

1887 Deaths due to Resistance_{K\delta} =
$$\sum_{J} \sum_{L} D_{J} \times S_{J} \times M_{LJ} \times P_{LK} \times Mortality PAF_{K\delta}$$
 (9.2.2)

1888 When the resistance profile described resistance to more than one antibiotic, the deaths were then distributed to the 1889 component pathogen–drug combinations based on the excess risk of the pathogen–drug combination divided by the 1890 sum of the excess risk of all pathogen–drug combinations in the resistance profile. For a resistance profile δ with 1891 resistance to drugs i = 1, ..., n:

1892
$$Redistribution Weight_{Kd_i} = \frac{RR_{Kd_i} - 1}{\sum_i (RR_{Kd_i} - 1)}$$
(9.2.3)

1893 For co-resistance amongst beta-lactam antibiotics (i.e. carbapenems, 4GC, 3GC, antipseudomonal, BL/BLI,

aminopenicillins, and penicillin), we used a different approach to redistributing burden. Similar to Cassini et al., we applied a hierarchy such that the burden was categorically attributed to the broadest beta-lactam antibiotic, rather

1896 than split the burden between multiple beta-lactam antibiotics.⁵⁰ We used the hierarchy in table 9.2.1 to assign

1897 burden in the presence of co-occurring beta-lactam resistance. When a pathogen was resistant to multiple beta-

1898 lactams and a non-beta-lactam antibiotic, we first applied the hierarchy to determine the 'highest' beta-lactam 1899 resistance and then generated redistribution weights using only the 'highest' beta-lactam and the non-beta-lactams.

1900 We then used these attributable death estimates to estimate YLLs using standard GBD methods to convert age-sex

1901 specific deaths to YLLs.

A similar approach was taken to estimate non-fatal burden for the counterfactual of antibiotic-susceptible infection.
 We first assumed that antibiotic resistance has no effect on the attack rate of pathogens; therefore, there are 0

1903 we first assumed that antibiotic resistance has no crecet on the attack rate of pathogens, therefore, there are of 1904 incident cases attributable to resistance and all non-fatal burden comes from increased length of illness. To quantify 1905 the extent of this increased length of illness, we first produced a length of stay (LOS) PAF for each resistance profile 1906 using the non-fatal prevalence of resistance and relative LOS for resistant infections as compared to susceptible

1907 infections in a method analogous to equation 9.2.1. Because of data sparsity, we were unable to calculate the relative 1908 LOS for every resistance profile, and so instead used the relative LOS for the drug with the highest relative LOS in

the profile. We then took the product of the YLDs for each infectious syndrome, the non-fatal pathogen distribution,

and the LOS PAF to produce attributable YLD estimates. This assumes that the attributable LOS PAF is equally

1911 applicable to all sequelae, which is an assumption made because of a lack of data on the impact of resistance on the

1912 likelihood of different sequelae and the duration of specific sequelae. We then added YLLs and YLDs to produce an

1913 estimate of DALYs attributable to resistance.

Rank	Antibiotic class
1	Carbapenem
2	Antipseudomonal Penicillin/Beta-lactamase Inhibitor
3	Fourth Generation Cephalosporin
4	Third Generation Cephalosporin
5	Beta-lactam/Beta-lactamase Inhibitor
6	Aminopenicillin
7	Penicillin

1914 Table 9.2.1: Beta-lactam hierarchy

1915 Because of the optimisation approach used to derive each resistance profile, the prevalence of resistance for a given

1916 pathogen-drug as modelled using ensemble ST-GPR (section 7.3), R'_{Kd} , will not necessarily be exactly equal to the

1917 sum of all resistance profiles $R'_{K\delta}$ that include resistance to drug *d*. Due to this inconsistency, in extremely rare

1918 cases, an estimate of AMR burden in the susceptible counterfactual may slightly exceed the corresponding estimate

1919 of AMR burden in the no infection counterfactual for a specific pathogen-drug. We consider the ensemble ST-GPR

1920 estimate to be more accurate than the resistance profiles, since the latter are based on Pearson correlations of

1921 multidrug resistance that are calculated from limited microdata and generalised to all locations. For this reason, we

1922 cap all individual pathogen-drug estimates of burden for the susceptible counterfactual, which are based on the

- 1923 resistance profiles, to the burden for the no infection counterfactual, which are based on the ensemble ST-GPR
- 1924 estimates.

1925 Section 9.3: Excluded combinations

1926 Although our approach attempted to be exhaustive and include all clinically-relevant pathogen-drug combinations, 1927 there are several combinations we do not produce estimates for. Examples of combinations that have been 1928 previously emphasised in the discourse but are not studied here include clarithromycin resistance in Helicobacter 1929 pylori and fluoroquinolone resistance in Campylobacter species. These were excluded due to limited data 1930 availability as highlighted by a recent study in the European Union that found that, as of 2019, no member countries 1931 had implemented publicly accessible, mandatory reporting surveillance programmes for these two pathogen-drug 1932 combinations.⁵² H. pylori and Campylobacter spp are commonly diagnosed without culture so resistance profiles are 1933 uncommon in passive surveillance systems. The burden of H. pylori is not currently estimated in GBD, though some 1934 of the consequent diseases are, like peptic ulcer disease and gastric cancer. Producing a burden estimate of H. pylori 1935 was outside the scope of this work, and without a pathogen burden estimate, we could not produce an estimate of the burden attributable to clarithromycin-resistant H. pylori. In contrast, GBD does produce an estimate on the burden of 1936 Campylobacter spp. There were, however, too few data to produce an estimate on the excess risk of death or 1937 1938 duration associated with fluoroquinolone resistance and limited data to inform a global prevalence of resistance 1939 estimate. Given these limitations, we did not produce burden estimates for clarithromycin-resistant H. pylori or 1940 fluoroquinolone-resistant Campylobacter spp.

- 1941 Because of the lack of data on risk of death associated with drug-resistant Neisseria gonorrhoeae, we were unable to
- 1942 produce an estimate of the fatal burden of resistance so produce only a non-fatal estimate. Many potential pathogen-
- 1943 drug combinations were excluded due to the spectrum of antimicrobial activity (ie, Vancomycin and E. coli), 1944 intrinsic resistance (eg, BL/BLI resistance in Pseudomonas aeruginosa) or resistance that is exceedingly common
- 1945 (eg, penicillin resistance in S. aureus); these combinations were decided by a group of experts in infectious diseases, 1946 microbiology, epidemiology, and population health. There were insufficient data to produce a global estimate for
- 1947 many pathogen-drug combinations of interest, such as aminopenicillin resistance in Enterococcus spp.,
- 1948 fluoroquinolone resistance in Acinetobacter baumannii, or colistin resistance in any pathogen estimated. This is
- 1949 largely due to either a lack of regional data to inform the prevalence of resistance component or a lack of microbial
- 1950 data linked to outcomes to inform the measure of excess risk component. A final constraint was the computational
- 1951 burden of estimating more than seven antibiotic classes for a single pathogen. Because of the approach to co-
- 1952 resistance described in section 7.4, each antibiotic class added led to an exponential increase in the computation
- 1953 needs and anything above seven antibiotic classes was not tenable. As additional data are made available, we plan to 1954 add clinically relevant combinations and iterate on the computational approach so that we can describe the burden of
- 1955 bacterial AMR more comprehensively.
- 1956 Lastly, in this iteration of our study, we did not quantify M. tuberculosis with mono-resistance to either rifampicin or
- 1957 isoniazid. These combinations were included in previous iterations of our research, however the estimation of a
- 1958 time-series for each of these two combinations proved challenging. Rifampicin and isoniazid mono-resistant TB are
- 1959 the only pathogen-drug combinations that consider the landscape of resistance to other drugs---"mono-resistance"
- 1960 necessitates that the pathogen is resistant to no other antibiotics—and correspondingly we could not include several
- 1961 data sources which did not provide the complete antibiogram (like single drug resistance profiles or literature data).
- 1962 Given the scarcity of data, we were unable to estimate a time series for these combinations at this time. We include
- 1963 resistance burden estimates for multidrug resistant tuberculosis and extensively drug resistant tuberculosis, both of
- 1964 which are characterized by co-occurring isoniazid and rifampicin resistance, for consistency and comparability with
- 1965 the previously published GBD estimates.

1966 Section 9.4: Decomposition of factors contributing to change in AMR associated deaths

- 1967 To better understand the relative contributions of factors driving the change in AMR associated deaths, we prepared a six-factor decomposition using methods developed by Das Gupta and described in prior studies.^{24,53–55} The aim of
- 1968 1969 this decomposition was to isolate the effect of each factor on the change in the number of AMR associated deaths
- 1970 between 1990 and 2019 (the latter year chosen because it excludes the shock effects of the COVID-19 pandemic). 1971 The results of the decomposition show the contribution that factor would have made to the change in the number of
- 1972 deaths had all other factors been held constant between two time points. These factors' effects are represented as a
- 1973 positive or negative contribution in death counts. The sum of each factor's effects is equal to the net change between
- 1974 1990 and 2019.

1975 Section 9.4.1: Decomposition Methods Overview

- 1976 We prepared a decomposition comparing the change in AMR associated deaths between 1990 and 2019, both
- 1977 globally (Main Text table 4) and by GBD super-region (table 9.4.1). The decomposition was first prepared by all
- 1978 sex, detailed age groups for each factor, which was then summed into an all-age aggregate. For the purposes of this
- analysis, we identified six factors for the decomposition: (1) population growth, (2) the population age structure, (3)
- 1980 the sepsis mortality rate, (4) the proportion of sepsis deaths associated with the 11 AMR syndromes (table 4.4.1.1),
- 1981 (5) the proportion of AMR syndrome deaths associated with AMR bacteria (table 7.2.1 and 7.2.2), and (6) the
- 1982 proportion of AMR bacteria deaths associated with resistance.
- 1983 To calculate the effects of population growth and population age structure, we first prepared a five-factor
- 1984 decomposition²⁴ using the change in age-specific population as one of five factors (along with the four previously
- 1985 stated factors). The change due to the age-specific population was then further decomposed into i) the change due to
- 1986 population growth, which was estimated assuming equal percent population change in all age groups between 1990
- 1987 to 2019 and ii) change due to population age structure, which was set equal to the residual between the population
- 1988 growth estimate from i) and the estimate of change due to age-specific population from the five-factor analysis.
- 1989 The other factors represent proportions produced by the component models that contribute to the AMR associated
- burden estimate (see Methods). The sepsis mortality rate is counts of deaths associated with sepsis divided by
- 1991 population. The proportion of sepsis deaths associated with AMR syndromes is the count of sepsis deaths associated
- 1992 with infectious syndromes contributing to AMR (see table 4.4.1.1), divided by the number of deaths associated with
- 1993 sepsis. The proportion of AMR syndrome deaths associated with AMR bacteria was calculated by dividing bacterial
- deaths related to the 21 pathogens we estimate AMR burden for by sepsis deaths associated with the 11
- aforementioned infectious syndromes. The proportion of AMR bacteria deaths associated with resistance is
- estimated using deaths where the infection was caused by an AMR bacteria that had resistance divided by deathsassociated with the 11 infectious syndromes and 21 bacteria. Because relative risk remains static over time, we did
- 1998 not include this as a factor in our decomposition.
- AMR associated deaths can therefore be determined as a product of six factors and decomposed using Das Gupta's
 decomposition methods:⁵⁵
- 2001

AMR associated deaths = $\alpha * \beta * \gamma * \delta * \varepsilon * \zeta$

2002 where α = Population growth, β = Population age structure, γ = Sepsis mortality rate, δ = Proportion of sepsis 2003 deaths associated with AMR syndromes, ε = Proportion of AMR syndrome deaths associated with AMR bacteria, 2004 and ζ = Proportion of AMR bacteria deaths associated with resistance

2005 Section 9.4.2: Decomposition results

2006 Table 9.4.1 presents the results of the decomposition analysis that quantifies the impact of different aggregate 2007 factors on the number of AMR-associated deaths between 1990 and 2019, presented at an aggregated all age level, 2008 for both sexes, by GBD super-regions. Each row represents a distinct factor, showing how changes in that factor 2009 alone would have influenced the AMR-associated deaths, assuming all the other factors remained constant. As an 2010 example, in the super region, "Southeast Asia, East Asia, and Oceania", row one shows that if AMR-associated 2011 deaths were impacted solely by population growth, with no changes to age structure of the population, the 2012 proportion of sepsis deaths associated with AMR, or any other measured factors, AMR-associated deaths would 2013 increase by 231,000 deaths—from 1,110,000 in 2019 to 1,340,000 in 2021. All of the factors simultaneously 2014 influenced AMR-associated deaths over time, suggesting that while globally population growth, changes in age 2015 structure, and an increased proportion of AMR syndrome deaths due to AMR bacteria and resistance contributed to 2016 a rise in deaths, this was counterbalanced by a reduction in deaths from decreasing sepsis death rates (Main text 2017 table 4).
Table 9.4.1: Decomposition of factors driving change in AMR associated deaths from 1990 to 2019, all ages, all sexes, by GBD superregion

	Southeast Asia, East Asia, and Oceania	Central Europe, Eastern Europe, and Central Asia	High-income	Latin America and Caribbean	North Africa and Middle East	South Asia	Sub-Saharan Africa
AMR-associated deaths, 1990	1,110,000	285,000	477,000	247,000	264,000	1,400,000	990,000
Between 1990 and 2019, observed the fo	llowing changes in asso	ciated deaths due to	changes in	•	1	1	•
Population growth	+231,000	-1,370	+74,500	+97,900	+152,000	+741,000	+909,000
Age structure	+607,000	+79,600	+289,000	+124,000	+6,130	-15,000	-213,000
Sepsis death rate	-1,050,000	-68,000	-202,030	-150,000	-208,000	-1,400,000	-768,000
Proportion of sepsis deaths associated with AMR syndromes	-25,200	-8,210	+6,310	-301	+6,390	+35,500	-50,900
Proportion of AMR syndrome deaths associated with AMR bacteria	+59,500	-1,920	-33,800	+4,080	-552	+220,000	+27,300
Proportion of AMR bacteria deaths associated with resistance	+209,000	-4,530	-32,500	+15,700	+21,600	+372,000	+111,000
Net change	+28,900	-4,460	+102,000	+91,900	-21,900	-49,500	+16,000
AMR-associated deaths, 2019	1,140,000	281,000	579,000	339,000	264,000	1,350,000	1,010,000

2020

2022 Section 10: Forecasting AMR

The Institute for Health Metrics and Evaluation (IHME) future health scenarios framework uses estimates of disease burden, drivers of disease burden (such as risk exposure), and demographic indicators from the GBD.

2025 Section 10.1: Future health scenarios platform overview

- 2026 IHME's Future Health Scenarios Team produces forecasted estimates based on past GBD data for 359 causes across
- 2027 21 regions, seven super-regions, and at the global level, for five-year age groups and sex.^{56–58} A detailed description
- 2028 of the GBD framework and retrospective AMR estimates is available in the main text of this paper, the GBD 2021
- 2029 Lancet series, and multiple AMR-specific publications.^{1,2,13,24,27,59–61} Figure S3 provides an overview of the multi-
- 2030 staged forecasting modelling process. Our previous publications on forecasting thoroughly explain the methods used
- to forecast the independent drivers, risk factors, mortality, demography indicators, and DALYs.^{56–58,62} We use the
- reference forecasts, which is a probabilistic forecast of the most likely future of cause-specific disease burden to estimate both deaths and DALYs associated with AMR (number of deaths and DALYs among people who have a
- resistant infection) and mortality and DALYs attributable to AMR (number of deaths and DALYs due to AMR).
- Additionally, we developed two policy-based scenarios of averted mortality burden (number of deaths and DALYs)
- 2036 that can be potentially avoided if a particular policy is implemented.

2037 Section 10.2: Forecasting AMR population attributable fractions

- 2038 To integrate AMR into the forecasting framework, we utilised historical estimates of deaths due to AMR
- 2039 (attributable deaths) by GBD cause and calculated 19 population attributable fractions (PAFs) for GBD Level 2
- 2040 causes with AMR attributable death counts.
- 2041 We forecasted the fraction of cause-specific deaths due to AMR using a Generalized Ensemble Model (GenEM).
- 2042 This model employed 12 different sub-models (or child models), utilizing two main modeling approaches: the
- weighted annualized rate of change (ARC) and a two-stage spline model based on the meta-regression—Bayesian,
 regularized, trimmed tool (MR-BRT).¹² Each model had six different recency-weighting parameters ranging from 0
 to 2.5.
- For the ARC child models, we calculated the age-standardized, sex-specific, and location-specific annual change of the logit-transformed AMR PAF values. To account for the effect of noisy data, we replaced annual changes outside the 2.5th and 97.5th percentiles with those corresponding percentile values. The two-stage MR-BRT child models
- 2049 employed the first stage to fit age-standardized, sex-specific logit of the AMR PAF on SDI:
- 2050

$$logit(AMR PAF_{c,s,t}) = \beta_0 + \beta_1 spline(SDI_{c,t}) + \varepsilon_{c,s,t}, \qquad (1)$$

where $logit(AMR PAF_{c,s,t})$ is the logit of the age-standardized AMR PAF in country c, sex s, and year t, β_0 is an intercept, β_1 is a coefficient matrix, spline is the spline with five knots placed evenly across the distribution of SDI data and assumes both right and left linear tails, and $\varepsilon_{c,s,t}$ is the residual. This was then followed by the second stage, where the logit of the residuals from the first stage was linearly modeled on time (year):

- 2055 $logit(\varepsilon_{c.s.t}) = year_t + \lambda + \Psi_{c.s.t}, \qquad (2)$
- 2056 where λ is a fixed intercept value and $\psi_{c,s,t}$ is an error term.

2057 The weight of each sub-model was determined by out-of-sample predictive validity experiments. We trained each

- sub-model using data from 1990–2011 and validated them based on data from 2012–2021. The performance of each child model was measured using root mean square error (RMSE), which was then used to assign sampling weights to each child model.
- 2061 We generated sub-model forecasts using the 1990–2021 training dataset. For each ARC child model, we used the 2062 calculated annual change with the corresponding recency-weighting parameter to produce 2022–2050 AMR PAF
- calculated annual change with the corresponding recency-weighting parameter to produce 2022–2050 AMR PAF
 forecasts. For the MR-BRT child models, we used forecast SDI values in addition to the recency weights to obtain
 forecasting values of AMR PAFs based on the model fit.
- 2065 We then obtained the final AMR PAFs ensemble forecasts by averaging the predictions of the child models using the 2066 sampling weights obtained from the out-of-sample experiments.

2067 Section 10.3: Computing future attributable and associated AMR burden

2068 We calculated the following three scenarios of AMR burden shown in table 11.3.1.

- To compute the attributable AMR burden, we began by multiplying our reference mortality and YLL forecasts for 19 2069
- 2070 cause groups at the age-sex-location level by the forecasted AMR PAFs (described in the above section). Next, we
- applied a scalar to the attributable YLLs using the global ratio of YLL:YLD AMR deaths in 2021 to calculate AMR-2071 attributable YLDs. Finally, we summed AMR-attributable YLL and YLD results to determine AMR-attributable 2072
- 2073 DALYs.
- 2074 To compute associated AMR burden, we first calculated the ratio of AMR-associated deaths to AMR-attributable
- 2075 deaths for 19 cause groups by age-sex-location in the year 2021. We then used this ratio to multiply our AMR PAFs
- 2076 and calculate associated burden forecasts for each measure in the same manner as we computed attributable burden.
- 2077 Section 10.4: Developing AMR alternative scenarios
- 2078 Besides generating a reference forecast, our framework allows us to produce alternative scenarios of disease burden 2079 by associating assumed changes in PAFs and CFRs with different scenarios. These scenarios were applied to all
- 2080 locations. If the reference forecast for a particular location was more optimistic than the defined alternative scenario, 2081 the reference forecast was used.
- 2082 Section 10.4.1: Gram-Negative Drug scenario
- 2083 Gram-Negative Drug scenario is defined as a regular release of new drugs targeting Gram-negative bacteria. For this
- scenario, we first calculated the fraction of AMR-attributable deaths due to Gram-negative infections in the year 2084
- 2021 (fraction_{AMR_deaths}). We then multiplied the future reference scenario AMR PAFs by fraction_{AMR deaths} 2085
- and $(1 fraction_{AMR \ deaths})$ to obtain future Gram-negative PAFs and future non Gram-negative PAFs, 2086
- 2087 respectively.

2099

- 2088 Afterwards, for the future Gram-negative PAFs, we linearly decreased the gram-negative PAFs using 2021 as a
- 2089 starting point until PAFs value in 2036 is 50% of the PAFs value in 2021, and then hold them constant from 2037 to
- 2090 2050. Then, we added the non-gram-negative PAFs to scenario gram-negative PAFs to determine the total PAFs
- 2091 based on the Gram-Negative Drug scenario. Finally, we calculated the fraction of this resulted total PAFs
- (fraction_{AMR PAFs}) and then multiplied this fraction by the mortality to obtain the number of deaths attributable to 2092
- 2093 AMR for the Gram-Negative Drug scenario.
- 2094 Section 10.4.2: Better Care scenario
- The Better Care scenario is associated with improved case fatality ratios, leveraging retrospective estimates 2095
- reflective of varying health system strength. To calculate the death rates for this scenario $(m_{c_scenario,t})$ for a cause c 2096 2097 at time t, we used case fatality ratios (CFRs) that varied by age, location, and infectious syndrome, fraction of cause
- 2098 due to infectious syndrome:

$$m_{c_scenario,t} = m_{c,t} \left(1 - \sum_{i=1}^{n_s} F_{cs}(1 - CFR_ratio_s) \right)_t$$

- 2100 where $m_{c,t}$ is the total death rate for a cause c at time t, n_s is the number of infectious syndromes, and CFR_ratio_s
- 2101 is a required relative reduction in CFR for an infectious syndrome, F_{cs} is the fraction of a cause due to an infectious
- 2102 syndrome. The fraction of a cause due to sepsis is accounted for in F_{cs} .
- CFR_ratio_s for infectious syndrome was calculated as $CFR_{s,HAQ=84.16}/CFR_{ls,2021}$ where $CFR_{s,HAQ=84.16}$ is CFR value for an infectious syndrome that corresponds to the 85th percentile of Healthcare Access and Quality (HAQ) 2103
- 2104
- Index¹⁵ in 2021 (HAQ Index = 84.16) by location and age group; $CFR_{ls,2021}$ is the CFR value in 2021 by location 2105
- 2106 and age group. We chose the 85th percentile of HAQ Index to capture the progress required by 2030 in a country
- where access to and quality of health care needs improvement (HAQ Index in the majority of high-income countries 2107
- is already above 84.16 in 2021). For obtaining the value of $CFR_{s,HAO=84.16}$, we used the age-specific relationship of 2108
- 2109 HAQ Index and CFR across 204 countries for 11 major infectious syndromes.

Section 11: GATHER compliance 2110

- 2111 This study complies with GATHER recommendations.⁶⁴ We have documented the steps in our analytical procedures
- 2112 and detailed the data sources used. See section 13 table S6 for the GATHER checklist. The GATHER
- 2113 recommendations can be found on the GATHER website.

2114 Section 12: References

- 1 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic
 analysis. *Lancet* 2022; **399**: 629–55.
- 2117 2 GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy
- decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for
 the Global Burden of Disease Study 2021. *Lancet* 2024; **403**: 2100–32.
- 2120 3 CDC. National Healthcare Safety Network (NHSN) patient safety component manual. CDC, 2021
- 2121 https://www.cdc.gov/nhsn/pdfs/validation/2021/pcsmanual_2021-508.pdf (accessed Aug 16, 2024).
- 4 Browne A, Chipeta M, Haines-Woodhouse G, et al. Global antibiotic consumption in humans, 2000 to 2018: a
 spatial modelling study. *Lancet Planet Health* 2021.
- 5 Lozano R, Lopez AD, Atkinson C, Naghavi M, Flaxman AD, Murray CJ. Performance of physician-certified
 verbal autopsies: multisite validation study using clinical diagnostic gold standards. *Popul Health Metr* 2011; 9:
 32.
- 6 Naghavi M, Makela S, Foreman K, O'Brien J, Pourmalek F, Lozano R. Algorithms for enhancing public health
 utility of national causes-of-death data. *Popul Health Metr* 2010; 8: 9.
- 7 Johnson SC, Cunningham M, Dippenaar IN, et al. Public health utility of cause of death data: applying empirical
 algorithms to improve data quality. *BMC Med Inf Decis Mak* 2021; 21: 175.
- 8 Iburg KM, Mikkelsen L, Adair T, Lopez AD. Are cause of death data fit for purpose? Evidence from 20 countries
 at different levels of socio-economic development. *PLOS ONE* 2020; 15: e0237539.
- 9 Birnbaum JK, Murray CJL, Lozano R. Exposing misclassified HIV/AIDS deaths in South Africa. *Bull World Health Organ* 2011; **89**: 278–85.
- Murray CJL, Rajaratnam JL, Marcus J, Laakso T, Lopez AD. What can we conclude from death
 registration? Improved methods for evaluating completeness. *PLOS Med* 2010; 7: e1000262.
- Foreman KJ, Lozano R, Lopez AD, Murray CJL. Modeling causes of death: an integrated approach using
 CODEm. *Popul Health Metr* 2012; 10: 1.
- 2139 12 Zheng P, Barber R, Sorensen RJD, Murray CJL, Aravkin AY. Trimmed constrained mixed effects models:
 2140 formulations and algorithms. *J Comput Graph Stat* 2021; **30**: 544–56.
- GBD 2021 Demographics Collaborators. Global age-sex-specific mortality, life expectancy, and population
 estimates in 204 countries and territories and 811 subnational locations, 1950-2021, and the impact of the COVIDpandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021. *Lancet* 2024;
 403: 1989–2056.
- Rudd KE, Johnson SC, Agesa KM, *et al.* Global, regional, and national sepsis incidence and mortality,
 1990–2017: analysis for the Global Burden of Disease Study. *Lancet* 2020; **395**: 200–11.
- GBD 2019 Healthcare Access and Quality Collaborators. Assessing performance of the Healthcare Access
 and Quality Index, overall and by select age groups, for 204 countries and territories, 1990-2019: a systematic
 analysis from the Global Burden of Disease Study 2019. *Lancet Glob Health* 2022; 10: e1715–43.
- 2150 16 Weiner LM, Webb AK, Limbago B, *et al.* Antimicrobial-resistant pathogens associated with healthcare2151 associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for
 2152 Disease Control and Prevention, 2011-2014. *Infect Control Hosp Epidemiol* 2016; **37**: 1288–301.

- In Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial
 Dis Off Publ Infect Dis Soc Am 2010; 51 Suppl 1: S81-87.
- I8 Johansson N, Kalin M, Tiveljung-Lindell A, Giske CG, Hedlund J. Etiology of community-acquired
 pneumonia: increased microbiological yield with new diagnostic methods. *Clin Infect Dis Off Publ Infect Dis Soc* Am 2010; **50**: 202–9.
- 2158 19 Czaja CA, Scholes D, Hooton TM, Stamm WE. Population-based epidemiologic analysis of acute
 2159 pyelonephritis. *Clin Infect Dis Off Publ Infect Dis Soc Am* 2007; 45: 273–80.
- 2160 20 Nicolle LE. A practical guide to antimicrobial management of complicated urinary tract infection. *Drugs* 2161 Aging 2001; 18: 243–54.
- 2162 21 Goto M, Ohl ME, Schweizer ML, Perencevich EN. Accuracy of administrative code data for the
 2163 surveillance of healthcare-associated infections: a systematic review and meta-analysis. *Clin Infect Dis Off Publ*2164 *Infect Dis Soc Am* 2014; **58**: 688–96.
- 2165 22 Wright SB, Huskins WC, Dokholyan RS, Goldmann DA, Platt R. Administrative databases provide
 2166 inaccurate data for surveillance of long-term central venous catheter-associated infections. *Infect Control Hosp* 2167 *Epidemiol* 2003; 24: 946–9.
- 2168 23 GBD 2020, Release 1, Vaccine Coverage Collaborators. Measuring routine childhood vaccination coverage
 2169 in 204 countries and territories, 1980-2019: a systematic analysis for the Global Burden of Disease Study 2020,
 2170 Release 1. *Lancet* 2021; **398**: 503–21.
- 2171 24 GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204
 2172 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study
 2021. Lancet 2024; 403: 2162–203.
- 2174 25 GBD 2019 Human Resources for Health Collaborators. Measuring the availability of human resources for
 2175 health and its relationship to universal health coverage: estimates for 204 countries and territories from 1990 to
 2019. Lancet 2022; 399: 2129–54.
- 2177 26 Galles NC, Liu PY, Updike RL, *et al.* Measuring routine childhood vaccination coverage in 204 countries
 2178 and territories, 1980–2019: a systematic analysis for the Global Burden of Disease Study 2020, Release 1. *Lancet*2179 2021; **398**: 503–21.
- 2180 27 GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability
 2181 (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries
 2182 in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global
 2183 Burden of Disease Study 2021. *Lancet* 2024; 403: 2133–61.
- 2184 28 IHME Math Sciences. RegMod v0.2.0. 2023 https://github.com/ihmeuw-msca/regmod/tree/v0.2.0.
 2185 (accessed June 7, 2024).
- 2186 29 Ewig S, Schlochtermeier M, Göke N, Niederman MS. Applying sputum as a diagnostic tool in pneumonia:
 2187 limited yield, minimal impact on treatment decisions. *Chest* 2002; **121**: 1486–92.
- 2188 30 Ogawa H, Kitsios GD, Iwata M, Terasawa T. Sputum gram stain for bacterial pathogen diagnosis in
 2189 community-acquired pneumonia: a systematic review and Bayesian meta-analysis of diagnostic accuracy and
 2190 yield. *Clin Infect Dis* 2020; **71**: 499–513.
- 2191 31 Feikin DR, Scott JAG, Gessner BD. Use of vaccines as probes to define disease burden. *Lancet* 2014; 383:
 2192 1762–70.

- Troeger C, Blacker B, Khalil IA, *et al.* Estimates of the global, regional, and national morbidity, mortality,
 and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global
 Burden of Disease Study 2016. *Lancet Infect Dis* 2018; **18**: 1191–210.
- 33 Johnson HL, Deloria-Knoll M, Levine OS, *et al.* Systematic evaluation of serotypes causing invasive
 pneumococcal disease among children under five: The Pneumococcal Global Serotype Project. *PLOS Med* 2010;
 7: e1000348.
- 34 Grijalva CG, Nuorti JP, Arbogast PG, Martin SW, Edwards KM, Griffin MR. Decline in pneumonia
 admissions after routine childhood immunisation with pneumococcal conjugate vaccine in the USA: a time-series
 analysis. *Lancet* 2007; 369: 1179–86.
- 35 Nocedal J, Wright S. Numerical optimization, 2nd edn. New York: Springer-Verlag, 2006
 DOI:10.1007/978-0-387-40065-5.
- 2204 36 Preziosi M, Department of Immunization, Vaccines, and Biologicals (World Health Organization). Update
 2205 on meningococcal A vaccine development and introduction. Presented at: WHO Product Development for
 2206 Vaccines Advisory Committee Meeting (PD-VAC). Geneva, Switzerland: WHO, 2015.
- 37 Kim YA, Kim JJ, Won DJ, Lee K. Seasonal and temperature-associated increase in community-onset
 Acinetobacter baumannii complex colonization or infection. *Ann Lab Med* 2018; **38**: 266–70.
- 38 Kritsotakis EI, Groves-Kozhageldiyeva A. A systematic review of the global seasonality of infections
 caused by *Acinetobacter* species in hospitalized patients. *Clin Microbiol Infect* 2020; 26: 553–62.
- 39 GBD Diarrhoeal Diseases Collaborators. Estimates of global, regional, and national morbidity, mortality,
 and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. *Lancet Infect Dis* 2017; **17**: 909–48.
- 40 Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred Reporting Items for
 Systematic Reviews and Meta-Analyses: the PRISMA statement. *PLoS Med* 2009; 6: e1000097.
- Browne AJ, Kashef Hamadani BH, Kumaran EAP, *et al.* Drug-resistant enteric fever worldwide, 1990 to
 2018: a systematic review and meta-analysis. *BMC Med* 2020; **18**: 1.
- 2218 42 Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing,
 2219 34th ed. Clinical and Laboratory Standards Institute, Wayne, PA
- 2220 https://clsi.org/standards/products/microbiology/documents/m100/ (accessed Aug 29, 2024).
- 43 Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing.
 Clinical and Laboratory Standards Institute, Wayne, PA, 2020 https://www.nih.org.pk/wp content/uploads/2021/02/CLSI-2020.pdf (accessed Aug 27, 2024).
- 44 The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of
 MICs and zone diameters, version 10.0, 2020. https://www.eucast.org/clinical_breakpoints (accessed Aug 27,
 2024).
- 46 Maina J, Ouma PO, Macharia PM, *et al.* A spatial database of health facilities managed by the public health
 sector in sub Saharan Africa. *Sci Data* 2019; 6: 134.
- 2232 47 Gilbert M, Nicolas G, Cinardi G, *et al.* Global pigs distribution in 2010. 2018. DOI:10.7910/DVN/33N0JG.

- Gilbert M, Nicolas G, Cinardi G, *et al.* Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. *Sci Data* 2018; **5**: 180227.
- 49 Climatic Research Unit, University of East Anglia. CRU TS v. 3.23. Clim. Res. Unit. 2015; published
 2236 online Sept. https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/ (accessed Sept 27, 2021).
- Cassini A, Högberg LD, Plachouras D, *et al.* Attributable deaths and disability-adjusted life-years caused
 by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population level modelling analysis. *Lancet Infect Dis* 2019; **19**: 56–66.
- 2240 51 Zhang J, Yu KF. What's the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. *JAMA* 1998; **280**: 1690–1.
- Rajendran NB, Mutters NT, Marasca G, *et al.* Mandatory surveillance and outbreaks reporting of the WHO
 priority pathogens for research & discovery of new antibiotics in European countries. *Clin Microbiol Infect* 2020;
 943.e1-943.e6.
- Lastuka A, Breshock MR, McHugh TA, Sogge WT, Swart V, Dieleman JL. U.S. dementia care spending
 by state: 2010–2019. *Alzheimers Dement* 2024; 20: 2742–51.
- 54 Das Gupta P. Standardization and decomposition of rates: a user's manual. U.S. Government Printing
 Office, Washington, DC: U.S. Bureau of the Census, Current Population Reports, 1993
 https://www2.census.gov/library/publications/1993/demographics/p23-186.pdf (accessed Aug 29, 2024).
- 2250 55 Das Gupta P. Decomposition of the difference between two rates and its consistency when more than two 2251 populations are involved. *Math Popul Stud* 2009; **3**: 105–25.
- Foreman KJ, Marquez N, Dolgert A, *et al.* Forecasting life expectancy, years of life lost, and all-cause and
 cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries
 and territories. *Lancet* 2018; **392**: 2052–90.
- Vollset SE, Goren E, Yuan C-W, *et al.* Fertility, mortality, migration, and population scenarios for 195
 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. *Lancet* 2020; **396**: 1285–306.
- GBD 2021 Forecasting Collaborators. Burden of disease scenarios for 204 countries and territories, 2022–
 a forecasting analysis for the Global Burden of Disease Study 2021. *Lancet* 2024; 403: 2204–56.
- 2260 59 Antimicrobial Resistance Collaborators. The burden of antimicrobial resistance in the Americas in 2019: a 2261 cross-country systematic analysis. *Lancet Reg Health Am* 2023; **25**: 100561.
- Antimicrobial Resistance Collaborators. The burden of bacterial antimicrobial resistance in the WHO
 African region in 2019: a cross-country systematic analysis. *Lancet Glob Health* 2024; 12: e201–16.
- European Antimicrobial Resistance Collaborators. The burden of bacterial antimicrobial resistance in the
 WHO European region in 2019: a cross-country systematic analysis. *Lancet Public Health* 2022; 7: e897–913.
- GBD 2021 Fertility and Forecasting Collaborators. Global fertility in 204 countries and territories, 1950 with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study
 Lancet 2024; 403: 2057–99.
- Vollset SE, Ababneh HS, Abate YH, *et al.* Burden of disease scenarios for 204 countries and territories,
 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021. *The Lancet* 2024; **403**: 2204–56.

- 2272 Stevens GA, Alkema L, Black RE, *et al.* Guidelines for Accurate and Transparent Health Estimates Reporting: the GATHER statement. *The Lancet* 2016; **388**: e19–23.

2274 Section 13: Appendix tables and figures

2275 Figure S1: AMR estimation flowchart

2277 Figure S2: Schematic representation of antimicrobial resistance (AMR) forecasting modelling framework.

2278 AMR = antimicrobial resistance; ART = antiretroviral therapy; YLLs = years of life lost; YLDs = years lived with

2279 disability; DALYs = disability-adjusted life years. Blue shading indicates drivers of health burden, green indicates

2280 measures of fatal disease burden and demography, purple indicates non-fatal disease burden, and red indicates the

total disease burden.

2284 Figure S3: Attributable and associated AMR burden in the reference scenario by GBD super-region, 2022–2050

2285 Shading represents the 95% uncertainty interval. The vertical line is placed at the year 2021 to distinguish estimates from forecasts.

2286

Figure S4: Cumulative deaths averted (in millions) in the (A) Better Care and (B) Gram-Negative Drug scenario compared to reference by location,
 2025–2050

Gram Negative Global Averted Deaths: 11.08 Million

2299 Table S1: Reported infectious syndromes, contributing infectious syndrome models, and causes of death in modelled syndromes

Reported Infectious Syndromes	Infectious Syndrome Models	Causes in Modelled Syndromes
Bloodstream infections	Bloodstream infections	Cirrhosis and other chronic liver diseases, Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to obter and unspecified causes, Other chromosomal abnormalities, Orofacial clefts, Digestive congenital annalies, Dorogenital neurosules, Doroma chromosomal abnormalities, Orofacial clefts, Digestive congenital annalies, Deurs parlore, Acrose and Circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Other cardiovascular and circulatory diseases. Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Non-rheumatic valvular heart disease, Diabetes mellitus type 1, Gallbladder and biliary diseases, Gastritis and duodenitis, Inguinal, femoral, and abdominal hernia, Ulcerative colitis, Crohn's disease, Parlytic ileus and intestinal obstruction, Other digestive diseases, Acute glomerulonephritis, Endometriosis, Uterine fibroids, Other gynecological diseases, Genital prolapse, GGPD deficiency, Other hemoglobinopathies and hemolytic anemisa, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Exposure to forces of nature, Drowning, Electrocution, Falls, Fire, heat, and hot substances, Pulmorary aspiration and foreign body in anirway, Foreign body in other body part, Physical violence by sharp object, Physical violence by other means, Unithetional fireram injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional fireram by erabon monoxide, Poisoning by other masens, Self-harm by firearm, Self-harm by other specified means, Road injuries, Poie conflict and executions, Conflict and terrorism, Other insettinal disorders, Amphetamine use disorders, Aneptamal infectious, Alcohol use disorders, Amphetamine use disorders, Cocaine use disor
Meningitis	Meningitis	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Diabetes mellitus type 1, Diabetes mellitus type 2, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Falls, Fire, heat, and hot substances, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Other intestinal infectious diseases, Late maternal deaths,

	Meningitis, Alcohol use disorders, Amphetamine use disorders, Cocaine use disorders, Opioid use disorders, Other drug use disorders, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Other malignant neoplasms, Other pharynx cancer, Ovarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Thyroid cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Neonatal encephalopathy due to birth asphyxia and trauma, Hemolytic disease and other neonatal jaundice, Other neonatal disorders, Neonatal preterm birth, Idiopathic epilepsy, Multiple sclerosis, Other neurological disorders, Parkinson's disease, Protein-energy malnutrition, Otitis media
Encephalitis	Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Encephalitis, Other unspecified infectious diseases, Late maternal deaths, Alcohol use disorders, Anorexia nervosa, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Ovarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Thyroid cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Neonatal encephalopathy due to birth asphyxia and trauma, Other neonatal disorders, Neonatal preterm birth, Idiopathic epilepsy, Multiple sclerosis, Motor neuron disease, Other neurological disorders, Parkinson's disease, Protein-energy malnutrition, Otitis media
Myelitis, meningoencephalitis, and other central nervous system infections	Neural tube defects, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway, Foreign body in other body part, Physical violence by firearm, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Late maternal deaths, Alcohol use disorders, Amphetamine use disorders, Cocaine use disorders, Other drug use disorders, Anorexia nervosa, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Ovarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Thyroid cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Neonatal encephalopathy due to birth asphyxia and trauma, Hemolytic disease and other neonatal jaundice, Other neonatal disorders, Neonatal preterm birth, Idiopathic epilepsy, Multiple sclerosis, Motor neuron disease, Other neurological disorders, Parkinson's disease, Other nutritional deficiencies, Protein-energy malnutrition, Otitis media
Eye infections	Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Diabetes mellitus type 1, Diabetes mellitus type 2, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Falls, Fire, heat, and hot substances, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Late maternal deaths, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer,

	Multiple myeloma, Nasopharynx cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Other malignant neoplasms, Other pharynx cancer, Ovarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Thyroid cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Neonatal encephalopathy due to birth asphyxia and trauma, Hemolytic disease and other neonatal jaundice, Other neonatal disorders, Neonatal preterm birth, Other nutritional deficiencies, Protein-energy malnutrition, Other skin and subcutaneous diseases
Oral infections	Orofacial clefts, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Diabetes mellitus type 1, Diabetes mellitus type 2, Gastritis and duodenitis, Peptic ulcer disease, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Electrocution, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway, Foreign body in other body part, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Late maternal deaths, Anorexia nervosa, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Cuter malignant neoplasms, Other pharynx cancer, Ovarian cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Thyroid cancer, Soft issue and other extraosseous sarcomas, Uterine cancer, Neonatal encephalopathy due to birth asphyxia and trauma, Hemolytic disease and other neonatal jaundice, Other neonatal disorders, Neonatal preterm bi
Upper respiratory infections	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Other chromosomal abnormalities, Orofacial clefts, Digestive congenital anomalies, Down syndrome, Congenital neart anomalies, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Diabetes mellitus type 1, Diabetes mellitus type 2, Gallbladder and biliary diseases, Gastritis and duodenitis, Inguinal, femoral, and abdominal hernia, Other digestive diseases, Acute glomerulonephritis, Other gynecological diseases, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Drowning, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway, Foreign body in other body part, Physical violence by firearm, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other drug use disorders, Anoexia nervosa, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Prostate cancer, Stomach cancer, Testicular cancer, Multiple myeloma, Nasopharynx cancer, Nou-Hodgkin

		cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Neonatal encephalopathy due to birth asphyxia and trauma, Hemolytic disease and other neonatal jaundice, Other neonatal disorders, Neonatal preterm birth, Idiopathic epilepsy, Multiple sclerosis, Motor neuron disease, Other neurological disorders, Parkinson's disease, Other nutritional deficiencies, Protein-energy malnutrition, Otitis media, Asthma, Chronic obstructive pulmonary disease, Interstitial lung disease and pulmonary sarcoidosis, Other chronic respiratory diseases, Pneumoconiosis, Upper respiratory infections
Lower respiratory infections	Lower respiratory infections	Cirrhosis and other chronic liver diseases, Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to other and unspecified causes, Other chromosomal abnormalities, Orofacial clefts, Digestive congenital anomalies, Down syndrome, Congenital narmalies, Congenital musculoskeletal and limb anomalies, Neural tube defects, Other congenital birth defects, Urogenital congenital anomalies, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Non-rheumatic valvular heart disease, Diabetes mellitus type 1, Gallbladder and biliary diseases, Gastritis and duodenitis, Inguinal, femoral, and abdominal hernia, Ulcerative colitis, Crohn's diseases, Parlycic ileus and intestinal obstruction, Other digestive diseases, Parcreatitis, Peptic ulcer disease, Vascular intestinal disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Drowning, Electrocution, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway, Foreign body in other body part, Physical violence by starm object, Physical violence by other means, Self-harm by forearm, Self-harm by other sposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unitnetional injuries, Outer disorders, Alcohol use disorders, Amphetamine use disorders, Cocaine use disorders, Opioid use disorders, Other drug use disorders, Alcohol use disorders, Amphetamine use disorders, Cocaine use disorders, Opioid use disorders, Other drug use disorders, Alcohol use disorders, Amphetamine use disorders, Cocaine use disorders, Opioid use disorders, Other digesti
	Other unspecified respiratory site infections	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Other chromosomal abnormalities, Orofacial clefts, Digestive congenital anomalies, Down syndrome, Congenital heart anomalies, Congenital musculoskeletal and limb anomalies, Neural tube defects, Other congenital birth defects, Urogenital congenital anomalies, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Non-rheumatic valvular heart disease, Diabetes mellitus type 1, Diabetes mellitus type 2, Gallbladder and biliary diseases, Gastritis and duodenitis, Inguinal, femoral, and abdominal hernia, Ulcerative colitis, Crohn's disease, Paralytic ileus and intestinal obstruction, Other digestive diseases, Pancreatitis, Peptic ulcer disease, Vascular intestinal disorders, Other endocrine, metabolic, blood, and immune disorders, Thyroid diseases, Acute glomerulonephritis, Endometriosis, Uterine fibroids, Other

		gynecological diseases, Genital prolapse, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Drowning, Electrocution, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway, Foreign body in other body part, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Poisoning by carbon monoxide, Poisoning by other means, Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Other intestinal infectious diseases, Ectopic pregnancy, Maternal abortion and miscarriage, Maternal hypertensive disorders, Late maternal deaths, Maternal obstructed labor and uterine rupture, Other drug use disorders, Anorexia nervosa, Other musculoskeletal disorders, Rheumatoid arthritis, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Solt bronchus, and lung cancer, Non- Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Other malignant neoplasms, Other pharynx cancer, Novarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Soft issue and other extraosseous sarcomas, Uterine c
Endocarditis	Endocarditis	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Down syndrome, Congenital heart anomalies, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Endocarditis, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Non-rheumatic valvular heart disease, Diabetes mellitus type 1, Diabetes mellitus type 2, Acute glomerulonephritis, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Falls, Fire, heat, and hot substances, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Late maternal deaths, Alcohol use disorders, Amphetamine use disorders, Cocaine use disorders, Opioid use disorders, Other dug use disorders, Other musculoskeltal disorder, Cervical cancer, Celon and rectum cancer, Esophageal cancer, Other ey cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Ueukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Nour-Hodgkin lymphoma, Malignant skin melano
	Carditis, myocarditis,	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Congenital heart anomalies, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Myocarditis, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral

	and pericarditis	arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Non-rheumatic valvular heart disease, Diabetes mellitus type 1, Diabetes mellitus type 2, Acute glomerulonephritis, Other unspecified infectious diseases, Fire, heat, and hot substances, Foreign body in other body part, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Late maternal deaths, Alcohol use disorders, Amphetamine use disorders, Cocaine use disorders, Opioid use disorders, Other drug use disorders, Other musculoskeletal disorders, Rheumatoid arthritis, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Ovarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Thyroid cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Neonatal encephalopathy due to birth asphyxia and trauma, Hemolytic disease and other neonatal jaundice, Other neonatal disorders, Neonatal preterm birth, Other nutritional deficiencies, Protein-energy malnutrition
Peritoneal and intra-abdominal infections	Peritoneal and intra- abdominal infections	Cirrhosis and other chronic liver diseases, Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Digestive congenital anomalies, Other congenital birth defects, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Endocarditis, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Non-rheumatic valvular heart disease, Diabetes mellitus type 1, Diabetes mellitus type 2, Appendicitis, Gallbladder and biliary diseases, Gastritis and duodenitis, Inguinal, femoral, and abdominal hernia, Ulcerative colitis, Crohn's disease, Paralytic ileus and intestinal obstruction, Other digestive diseases, Pancreatitis, Peptic ulcer disease, Vascular intestinal disorders, Acute glomerulonephritis, Endometriosis, Uterine fibroids, Other gneecological diseases, Genital prolapse, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalasemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Suposure to forces of nature, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway. Foreign body in other body part, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, (Internal), Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Other intestinal infectious diseases, Deprint ergenacy, Maternal abortion and miscarriage, Maternal hemorrhage, Maternal hypertensive disorders, Acohol use disorders, Ataethane dostructed labor and uterine rupture, Other direct maternal disorders, Alcohol use disorders, Amphetamine use dis
	Hepatitis	Cirrhosis and other chronic liver diseases, Digestive congenital anomalies, Gallbladder and biliary diseases, Gastritis and duodenitis, Ulcerative colitis, Crohn's disease, Paralytic ileus and intestinal obstruction, Other digestive diseases, Pancreatitis, Peptic ulcer disease, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Acute hepatitis A, Acute hepatitis B, Acute hepatitis C, Acute hepatitis E, Other unspecified infectious diseases, Foreign body in other body part, Adverse effects of medical treatment,

		Other intestinal infectious diseases, Ectopic pregnancy, Maternal abortion and miscarriage, Maternal hypertensive disorders, Late maternal deaths, Other direct maternal disorders, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Thyroid cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Other neonatal disorders, Other nutritional deficiencies, Protein-energy malnutrition
Diarrhoea	Diarrhoea	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Digestive congenital anomalies, Diabetes mellitus type 1, Diabetes mellitus type 2, Diarrheal diseases, Gastritis and duodenitis, Ulcerative colitis, Crohn's disease, Other digestive diseases, Peptic ulcer disease, Acute glomerulonephritis, Endometriosis, Uterine fibroids, Other gynecological diseases, Genital prolapse, Other unspecified infectious diseases, Exposure to forces of nature, Adverse effects of medical treatment, Other intestinal infectious diseases, Ectopic pregnancy, Maternal abortion and miscarriage, Late maternal deaths, Alcohol use disorders, Amphetamine use disorders, Cocaine use disorders, Opioid use disorders, Other drug use disorders, Anorexia nervosa, Other musculoskeletal disorders, Rheumatoid arthritis, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Ovarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Thyroid cancer, Soft tissue and other neonatal jaundice, Other neonatal disorders, Neonatal encephalopathy due to birth asphyxia and trauma, Hemolytic disease and other neonatal jaundice, Other neonatal disorders, Neonatal preterm birth, Idiopathic epilepsy, Multiple sclerosis, Motor neuron disease, Other neurological disorders, Parkinson's disease, Other nutritional deficiencies, Protein-energy malnutrition, Other urinary diseases, Other neurological disorders, Parkinson's disease, Other nutrition
Urinary tract infections and pyelonephritis	Urinary tract infections and pyelonephritis	Cirrhosis and other chronic liver diseases, Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Other chromosomal abnormalities, Orofacial clefts, Digestive congenital anomalies, Down syndrome, Congenital heart anomalies, Congenital musculoskeletal and limb anomalies, Neural tube defects, Other congenital birth defects, Urogenital congenital anomalies, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Non-rheumatic valvular heart disease, Diabetes mellitus type 2, Gallbladder and biliary diseases, Gastritis and duodenitis, Inguinal, femoral, and abdominal hernia, Ulcerative colitis, Crohn's disease, Paralytic ileus and intestinal obstruction, Other digestive diseases, Pancreatitis, Peptic ulcer disease, Vascular intestinal disorders, Other endocrine, metabolic, blood, and immune disorders, Thyroid diseases, Acute glomerulonephritis, Endometriosis, Uterine fibroids, Other gynecological diseases, Genital prolapse, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Drowning, Electrocution, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway, Foreign body in other body part, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional firearm by other specified means,

		other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Other malignant neoplasms, Other pharynx cancer, Ovarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Thyroid cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Neonatal encephalopathy due to birth asphyxia and trauma, Hemolytic disease and other neonatal jaundice, Other neonatal disorders, Neonatal preterm birth, Idiopathic epilepsy, Multiple sclerosis, Motor neuron disease, Other neurological disorders, Parkinson's disease, Other nutritional deficiencies, Protein-energy malnutrition, Otitis media, Asthma, Chronic obstructive pulmonary disease, Interstitial lung disease and pulmonary sarcoidosis, Other chronic respiratory diseases, Pneumoconiosis, Decubitus ulcer, Other skin and subcutaneous diseases, Upper respiratory infections, Other urinary diseases, Urolithiasis
	Genital infections	Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Other chromosomal abnormalities, Other congenital birth defects, Urogenital congenital anomalies, Endometriosis, Uterine fibroids, Other gynecological diseases, Genital prolapse, Other unspecified infectious diseases, Electrocution, Foreign body in other body part, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Ectopic pregnancy, Maternal abortion and miscarriage, Maternal hemorrhage, Maternal hypertensive disorders, Late maternal deaths, Other direct maternal disorders, Cervical cancer, Ovarian cancer, Prostate cancer, Testicular cancer, Uterine cancer, Other nutritional deficiencies, Other urinary diseases, Urolithiasis
Infections of bones, joints, and related organs	Infections of bones, joints, and related organs	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Other chromosomal abnormalities, Orofacial clefts, Congenital musculoskeletal and limb anomalies, Neural tube defects, Other congenital birth defects, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Diabetes mellitus type 1, Diabetes mellitus type 2, Acute glomerulonephritis, GGPD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Electrocution, Falls, Fire, heat, and hot substances, Foreign body in other body part, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Neglawetamine use disorders, Cocaine use disorders, Other dus diseases, Icate maternal deaths, Alcohol use disorders, Rheumatoid arthritis, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasm, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other weleoma, Nasopharynx cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and or
Infections of the skin and	Infections of the skin and	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Orofacial clefts, Neural tube defects, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart

subcutaneous systems	subcutaneous systems	disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Diabetes mellitus type 1, Diabetes mellitus type 2, Gastritis and duodenitis, Peptic ulcer disease, Acute glomerulonephritis, Endometriosis, Uterine fibroids, Other gynecological diseases, Genital prolapse, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Electrocution, Falls, Fire, heat, and hot substances, Foreign body in other body part, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Ectopic pregnancy, Maternal abortion and miscarriage, Late maternal deaths, Alcohol use disorders, Amphetamine use disorders, Rocaine use disorders, Opioid use disorders, Other drug use disorders, Anorexia nervosa, Other musculoskeletal disorders, Rheumatoid arthritis, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other equeerina, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Other malignant neoplasms, Other nenonatal disorders, Pancreatic cancer
Tuberculosis	Tuberculosis	Other unspecified infectious diseases, Other intestinal infectious diseases, Late maternal deaths, Anorexia nervosa, Myelodysplastic, myeloproliferative, and other hematopoietic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Esophageal cancer, Other eye cancers, Retinoblastoma, Gallbladder and biliary tract cancer, Hodgkin lymphoma, Kidney cancer, Larynx cancer, Leukemia, Liver cancer, Tracheal, bronchus, and lung cancer, Non-Hodgkin lymphoma, Malignant skin melanoma, Mesothelioma, Lip and oral cavity cancer, Multiple myeloma, Nasopharynx cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Other malignant neoplasms, Other pharynx cancer, Ovarian cancer, Pancreatic cancer, Prostate cancer, Stomach cancer, Testicular cancer, Thyroid cancer, Soft tissue and other extraosseous sarcomas, Uterine cancer, Other neonatal disorders, Idiopathic epilepsy, Multiple sclerosis, Motor neuron disease, Other neurological disorders, Parkinson's disease, Other nutritional deficiencies, Protein-energy malnutrition, Tuberculosis
Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	Typhoid, paratyphoid, and invasive non-typhoidal Salmonella	Other unspecified infectious diseases, Invasive Non-typhoidal Salmonella (iNTS), Paratyphoid fever, Typhoid fever
	Other parasitic infections	Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Diabetes mellitus type 1, Diabetes mellitus type 2, Gallbladder and biliary diseases, Gastritis and duodenitis, Inguinal, femoral, and abdominal hernia, Ulcerative colitis, Crohn's disease, Paralytic ileus and intestinal obstruction, Other digestive diseases, Pancreatitis, Peptic ulcer disease, Vascular intestinal disorders, Acute glomerulonephritis, Endometriosis, Uterine

	fibroids, Other gynecological diseases, Genital prolapse, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Drowning, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway, Foreign body in other body part, Physical violence by firearm, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries (internal), Self-harm by firearm, Self-harm by other specified means, Road injuries, Police conflict and executions, Conflict and terrorism, Other intestinal infectious diseases, Ectopic pregnancy, Maternal abortion and miscarriage, Maternal hemorrhage, Maternal hypertensive disorders, Late maternal deaths, Maternal obstructed labor and uterine rupture, Other direct maternal disorders, Alcohol use disorders, Rheumatoid arthritis, Myelodysplastic, myeloproliferative, and other hematopoletic neoplasms, Other benign and in situ neoplasms, Bladder cancer, Malignant neoplasm of bone and articular cartilage, Brain and central nervous system cancer, Breast cancer, Cervical cancer, Colon and rectum cancer, Leukemia, Live cancer, Tracheal, bronchus, and lung cancer, Neuroblastoma and other peripheral nervous cell tumors, Non-melanoma skin cancer, Other malignant neoplasms, Other pharynx cancer, Neuroblastoma and other peripheral necey and other hemotopication concert, Renoratic cancer, Prostate cancer, Stomach cancer, Neonatal necephalopathy due to birth asphyxia and trauma, Hemolytic disease an
Other unspecified site infections	Cirrhosis and other chronic liver diseases, Chronic kidney disease due to diabetes mellitus type 1, Chronic kidney disease due to diabetes mellitus type 2, Chronic kidney disease due to glomerulonephritis, Chronic kidney disease due to hypertension, Chronic kidney disease due to other and unspecified causes, Other chromosomal abnormalities, Orofacial clefts, Digestive congenital anomalies, Suena cluster, Under Congenital anomalies, Neural abited tedects, Other congenital birth defects, Urogenital congenital anomalies, Atrial fibrillation and flutter, Aortic aneurysm, Alcoholic cardiomyopathy, Other cardiomyopathy, Hypertensive heart disease, Ischemic heart disease, Other cardiovascular and circulatory diseases, Pulmonary Arterial Hypertension, Lower extremity peripheral arterial disease, Intracerebral hemorrhage, Ischemic stroke, Subarachnoid hemorrhage, Non-rheumatic valvular heart disease, Diabetes mellitus type 2, Gallbladder and biliary diseases, Gastritis and duodenitis, Inguinal, femoral, and abdominal hernia, Ulcerative colitis, Crohn's disease, Paralytic ileus and intestinal obstruction, Other digestive diseases, Pancreatitis, Peptic ulcer disease, Vascular intestinal disorders, Other gynecological diseases, Genital prolapse, G6PD deficiency, Other hemoglobinopathies and hemolytic anemias, Sickle cell disorders, Thalassemias, Other unspecified infectious diseases, Non-venomous animal contact, Venomous animal contact, Exposure to forces of nature, Drowning, Electrocution, Falls, Fire, heat, and hot substances, Pulmonary aspiration and foreign body in airway, Foreign body in other body part, Physical violence by sharp object, Physical violence by other means, Unintentional firearm injuries, Other exposure to mechanical forces, Adverse effects of medical treatment, Environmental heat and cold exposure, Other unintentional injuries, Police conflict and executions, Conflict and terrorism, Other intestinal deaths, Maternal obstructed labor and uterine ruputre, Other direct maternal disorders, Alevsee effects

	jaundice, Other neonatal disorders, Neonatal preterm birth, Idiopathic epilepsy, Multiple sclerosis, Motor neuron disease, Other neurological
	disorders, Parkinson's disease, Other nutritional deficiencies, Protein-energy malnutrition, Otitis media, Asthma, Chronic obstructive
	pulmonary disease, Interstitial lung disease and pulmonary sarcoidosis, Other chronic respiratory diseases, Pneumoconiosis, Decubitus ulcer,
	Other skin and subcutaneous diseases, Upper respiratory infections, Other urinary diseases, Urolithiasis

Pathogen	Bone +	BSI	Endocarditis	Intra- abdominal	LRI community- acquired	LRI hospital- acquired	Meningitis	Skin	UTI community- acquired	UTI hospital- acquired
Acinetobacter baumannii	Family	Individual		Individual	Intercept	Intercept	Family	Intercept	Intercept	Intercept
Acinetobacter others		Family		Family	Family	Family			Family	Family
Actinomyces spp.				Individual	Individual	Individual		Individual		
Adenovirus					Individual	Individual				
Aeromonas spp.				Family				Family	Family	Family
Aspergillus spp.					Intercept	Intercept				
Burkholderia spp.		Intercept		Family	Family	Family			Family	Family
Candida spp.		Individual	Family	Individual			Family		Intercept	Intercept
Chlamydia spp.				Intercept	Intercept	Intercept				
Citrobacter spp.		Individual		Intercept	Individual	Intercept		Individual	Intercept	Intercept
Clostridium others								Intercept		
coagulase negative Staphylococcus							Family		Family	Family
Cytomegalovirus					Individual	Individual				
Entamoeba histolytica				Individual			Family			
Enterobacter spp.	Intercept	Intercept		Individual	Intercept	Intercept		Intercept	Intercept	Intercept
Enterococcus faecalis	Family	Individual		Intercept		Individual		Family	Intercept	Intercept
Enterococcus faecium	Family	Intercept		Individual	Individual	Individual		Individual	Intercept	Intercept
Enterococcus others				Family					Family	Family
Epstein barr virus										
Escherichia coli	Intercept	Individual	Intercept	Individual	Individual	Individual	Individual	Intercept	Intercept	Intercept
Fungi others		Individual			Intercept	Individual	Individual		All pathogen	All pathogen
Gram negative others	Family	Intercept		Intercept	Individual	Individual		Intercept	Intercept	Individual
Gram negative unspecified		Intercept			Individual	Individual				

Table S2: Case fatality ratio modelling framework by pathogen and syndrome

Gram positive others	Family	Individual						Intercept		
Haemophilus influenzae		Individual			Intercept	Individual	Intercept			
Histoplasma spp.		Individual			Individual	Individual				
Influenza virus					Intercept	Intercept				
Klebsiella others	Family	Intercept		Intercept	Individual	Individual		Intercept	Intercept	Intercept
Klebsiella pneumoniae	Intercept	Intercept	Family	Individual	Individual	Individual	Intercept	Intercept	Intercept	Intercept
Legionella spp.					Individual	Individual				
Leptospira spp.		Individual								
Listeria spp.		Individual					Individual			
Morganella spp.	Family	Intercept		Intercept	Individual	Individual		Intercept	Intercept	Intercept
Mumps										
Mycobacterium others		Individual			Intercept	Intercept		Individual		
Mycoplasma spp.					Intercept	Intercept				
Neisseria meningitidis		Individual					Intercept			
Non polio enteroviruses							Intercept	Intercept		
Proteus spp.	Intercept	Intercept		Individual	Individual	Intercept		Intercept	Intercept	Intercept
Pseudomonas	Intercent	Individual	Intercent	Individual	Individual	Individual	Intercent	Intercent	Intercent	Intercent
Pseudomonas others				Family					Family	Family
Paspiratory syncytial				1 uning					Tunny	1 uning
virus					Intercept	Intercept				
Serratia spp.	Family	Individual		Intercept	Intercept	Intercept		Intercept	Intercept	Intercept
Staphylococcus aureus	Intercept	Individual	Intercept	Intercept	Individual	Individual	Individual	Intercept	Intercept	Intercept
Streptococcus group a	Family	Family	Intercept		Family	Family		Individual		
Streptococcus group b	Family	Family					Intercept	Family	Intercept	Family
Streptococcus others	Family	Family		Intercept			Family	Family	Family	Family
Streptococcus pneumoniae	Intercept	Individual		Intercept	Individual	Individual	Individual	Intercept	Intercept	Family
toxoplasma spp.										

Virus others		Individual				Individual	Intercept	Intercept		
Syndrome wide	All pathogen									

Bone+ = Infections of bones, joints, and related organs. BSI = Bloodstream infections. Endocarditis = Endocarditis, myocarditis, and other infections. Intra-abdominal = Peritoneal and intraabdominal infections. LRI = Lower respiratory infections and all related infections in the thorax. Meningitis = Meningitis and other bacterial central nervous system infections. Skin = Infections of the skin and subcutaneous systems. UTI = Urinary tract infections and pyelonephritis.

2301

2303 Table S3: Summary of pathogen distribution data

Pathogen	BSI	Bone+	Endocarditis	LRI	Meningitis	Peritonitis+	Skin	UTI	Pathogen Total
Acinetobacter baumannii	75,347	371		211,970	1,872	58,846	8,855	47,252	404,513
Acinetobacter others	11,646			35,138		7,343		7,352	61,480
Actinomyces spp.						995	2,046		3,041
Aeromonas spp.						7,301	1,017	737	9,055
Aspergillus spp.				48,237					48,237
Burkholderia spp.	7,484					1,797		2,101	11,381
Candida spp.	99,383		5,272		608	424		7,057	112,744
Chlamydia spp.				19,715		2,937			22,652
Citrobacter spp.	12,722			46,248		62,855	5,707	87,929	215,461
Clostridium others							28,281		28,281
Coagulase-negative Staphylococcus					1,328			9,000	10,328
Entamoeba histolytica						5,976			5,976
Enterobacter spp.	47,063	1,431		150,867		123,460	22,857	118,430	464,108
Enterococcus faecalis	267,398	926				1,674	5,665	47,548	323,212
Enterococcus faecium	170,838	594				4,926	12,454	40,272	229,083
Enterococcus others								658	658
Escherichia coli	2,956,318	3,717	718	315,484	4,455	657,782	85,413	2,041,580	6,065,466
Fungi others				22,214	612			413	23,239
Gram-negative others	82,030	1,276		170,442		39,663	5,751	39,269	338,431

Gram-negatives (ICD)*	521,217			96,100					617,318
Gram-positive others		724					4,829		5,553
Group A Streptococcus	21,098	2,566	1,177	14,881			545,617		585,339
Group B Streptococcus	14,541	2,237		3,867	5,813		3,606	33,598	63,662
Haemophilus influenzae	11,998			79,464	10,314				101,777
Influenza				159,677					159,677
Klebsiella others	32,576	362		147,724		89,518	5,813	111,165	387,158
Klebsiella pneumoniae	576,807	1,718	467	539,842	2,890	270,742	34,740	605,573	2,032,780
Listeria spp.					1,778				1,778
Legionella spp.				37,318					37,318
Morganella spp.	7,731	624		18,616		38,867	9,447	57,248	132,534
Mycobacterium others	21,826			35,419			2,047		59,292
Mycoplasma spp.				135,093					135,093
Neisseria meningitidis	18,292				25,989				44,281
non-polio Enteroviruses					12,373		62,244		74,617
Other pathogens	30,396	1,061	1,350	88,084	1,991	648	2,688	1,358	127,576
Proteus spp.	35,696	2,080		71,113		90,172	38,067	284,740	521,869
Pseudomonas aeruginosa	356,769	3,263	645	665,153	2,883	196,847	74,552	295,268	1,595,381
Pseudomonas others						5,154		4,411	9,566
Respiratory syncytial virus				170,803					170,803
Serratia spp.	40,305	677		125,867		35,848	11,103	39,500	253,300

Staphylococcus aureus	1,933,908	56,780	9,952	564,593	6,630	11,565	448,750	62,094	3,094,273
Streptococcus others	24,479	2,289			1,815	2,048	5,204	1,857	37,692
Streptococcus pneumoniae	578,534	1,215		559,413	60,843	1,737	1,964	1,743	1,205,449
Virus others	57,009				2,810		674,487		734,306
Syndrome Total	8,013,411	83,910	19,582	4,533,344	145,004	1,719,125	2,103,202	3,948,156	20,566,071

2304 2305 2306 2307 2308 2309 Table excludes modelled estimates used as input data (most notably fractions of Streptococcus pneumoniae in LRI estimated from vaccine efficacy studies). Coagulase-negative staphylococcus represents Staphylococcus saprophyticus in UTI and all coagulase-negative species in Meningitis. Gram-negatives encompassed in ICD BSI are: Acinetobacter baumannii, Acinetobacter others, Citrobacter spp., Klebsiella pneumoniae, Klebsiella others, Morganella spp., Proteus spp., or our "Gram-negative others" category. Gram-negatives encompassed in ICD LRI are: Acinetobacter baumannii, Acinetobacter others, Citrobacter spp., Enterobacter spp., Klebsiella others, Morganella spp., Proteus spp., Serratia spp. or our "Gram-negative others" category. BSI = Bloodstream infections. Bone+ = Infections of bones, joints, and related organs. LRI = Lower respiratory infections. Peritonitis+ = Peritoneal and intra-abdominal infections. Skin = Infections of the skin and subcutaneous systems. UTI = Urinary tract infections and pyelonephritis.

2310

2311

2312

2314 Table S4: Covariates used in the first stage of modelling of proportion of resistance for each pathogen-drug combination

Pathogen	Antibiotic class	Covariates
Acinetobacter baumannii	Aminoglycosides	Fraction of OOP Health Expenditure, Pigs (per capita), Skilled Birth Attendance (proportion), Total Fertility Rate, Intravenous drug use (proportion by age), Dentists per capita, PCV3 lagged five year coverage, COVID-free (proportion), Vaccine adjusted HbSAg serporevalence age standardized, Estimated rate of J01G aminoglycosides consumption in defined daily doses (DDDs) per 1000 population
Acinetobacter baumannii	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Physicians per capita, Pigs (per capita), Healthcare access and quality index, HIV age-standardized Prevalence, ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Skilled Birth Attendance (proportion)
Acinetobacter baumannii	Beta Lactam/Beta-lactamase inhibitors	Physicians per capita, Proportion of population involved in agricultural activities, ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Population-weighted mean temperature, Age- standardized SEV for Unsafe sanitation, Rotavirus coverage, COVID-free (proportion), Intravenous drug use (proportion by age)
Acinetobacter baumannii	Carbapenems	Diabetes Age-Standardized Prevalence (proportion), Physicians per capita, Pigs (per capita), Proportion of population involved in agricultural activities, Hospital Beds (per 1000), HIV age-standardized Prevalence, ORS (oral rehydration), Pharmacists per capita, Population-weighted mean temperature
Acinetobacter baumannii	Fluoroquinolones	Diabetes Age-Standardized Prevalence (proportion), Pigs (per capita), Hospital Beds (per 1000), ORS (oral rehydration), Skilled Birth Attendance (proportion), Population-weighted mean temperature, Population Density (over 1000 ppl/sqkm, proportion), Smoking Prevalence, Intravenous drug use (proportion by age)
Acinetobacter baumannii	Fourth-generation cephalosporins	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Pigs (per capita), Hospital Beds (per 1000), ORS (oral rehydration), Skilled Birth Attendance (proportion), Population-weighted mean temperature, Total Fertility Rate, Age-standardized SEV for Unsafe sanitation
Acinetobacter baumannii	Third-generation cephalosporins	Fraction of OOP Health Expenditure, Pigs (per capita), Hospital Beds (per 1000), ORS (oral rehydration), Skilled Birth Attendance (proportion), Population-weighted mean temperature, Total Fertility Rate, Age- standardized SEV for Unsafe sanitation, Dentists per capita
Citrobacter spp.	Aminoglycosides	Fraction of OOP Health Expenditure, Healthcare access and quality index, Hospital Beds (per 1000), Total Fertility Rate, Antenatal Care (4 visits) Coverage (proportion), Population Density (over 1000 ppl/sqkm, proportion), Diabetes Fasting Plasma Glucose (mmol/L), by age, Hepatitis C Seroprevalence (anti-HCV) age standardized, Hib3 Vaccine Coverage, COVID-free (proportion)
Citrobacter spp.	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Physicians per capita, Hospital Beds (per 1000), ORS (oral rehydration), Antenatal Care (4 visits) Coverage (proportion), Population Density (over 1000 ppl/sqkm, proportion), Diabetes Fasting Plasma Glucose (mmol/L), by age, Vaccine adjusted HbSAg serporevalence age standardized, Hib3 Vaccine Coverage, COVID-free (proportion), Hib3 lagged five year coverage, COVID-free (proportion)
Citrobacter spp.	Carbapenems	Fraction of OOP Health Expenditure, Proportion of population involved in agricultural activities, Healthcare access and quality index, Hospital Beds (per 1000), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Skilled Birth Attendance (proportion), Antenatal Care (4 visits) Coverage (proportion), Rotavirus coverage, COVID-free (proportion)
Citrobacter spp.	Fluoroquinolones	Fraction of OOP Health Expenditure, Physicians per capita, Proportion of population involved in agricultural activities, Healthcare access and quality index, Outdoor Air Pollution (PM2.5), Pharmacists per capita, Age-standardized SEV for Unsafe sanitation, Maternal Education (years per capita), Tuberculosis prevalence (age-standardized)
Citrobacter spp.	Fourth-generation cephalosporins	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Proportion of population involved in agricultural activities, Average latitude, Outdoor Air Pollution (PM2.5), Smoking Prevalence, Rotavirus coverage, COVID-free (proportion), Intravenous drug use (proportion by age), Hepatitis C Seroprevalence (anti-HCV) age standardized, PCV3 lagged five year coverage, COVID-free (proportion)

Citrobacter spp.	Third-generation cephalosporins	Physicians per capita, Average latitude, Pharmacists per capita, Skilled Birth Attendance (proportion), Total Fertility Rate, Intravenous drug use (proportion by age), Diabetes Fasting Plasma Glucose (mmol/L), by age, Hib3 lagged five year coverage, COVID-free (proportion), Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population
Enterobacter spp.	Aminoglycosides	Fraction of OOP Health Expenditure, Pigs (per capita), Average latitude, Healthcare access and quality index, Hospital Beds (per 1000), HIV age-standardized Prevalence, Pharmacists per capita, PCV3 lagged five year coverage, COVID-free (proportion), Hib3 Vaccine Coverage, COVID-free (proportion)
Enterobacter spp.	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Outdoor Air Pollution (PM2.5), Pharmacists per capita, Dentists per capita, PCV3 lagged five year coverage, COVID- free (proportion), Hib3 Vaccine Coverage, COVID-free (proportion), Estimated rate of J01C penicillins consumption in defined daily doses (DDDs) per 1000 population
Enterobacter spp.	Carbapenems	Physicians per capita, Proportion of population involved in agricultural activities, Hospital Beds (per 1000), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Population-weighted mean temperature, Total Fertility Rate, Rotavirus coverage, COVID-free (proportion)
Enterobacter spp.	Fluoroquinolones	Physicians per capita, Proportion of population involved in agricultural activities, Average latitude, Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Diabetes Fasting Plasma Glucose (mmol/L), by age
Enterobacter spp.	Fourth-generation cephalosporins	Fraction of OOP Health Expenditure, Proportion of population involved in agricultural activities, Outdoor Air Pollution (PM2.5), Pharmacists per capita, Smoking Prevalence, Tuberculosis prevalence (age-standardized), Dentists per capita, Diabetes Fasting Plasma Glucose (mmol/L), by age, Hib3 Vaccine Coverage, COVID-free (proportion)
Enterobacter spp.	Trimethoprim-Sulfamethoxazole	Fraction of OOP Health Expenditure, Healthcare access and quality index, Outdoor Air Pollution (PM2.5), Age-standardized SEV for Unsafe sanitation, Dentists per capita, Diabetes Fasting Plasma Glucose (mmol/L), by age, PCV3 lagged five year coverage, COVID-free (proportion), Hib3 Vaccine Coverage, COVID-free (proportion), Estimated rate of J01E sulfonamides and trimethoprim consumption in defined daily doses (DDDs) per 1000 population
Enterococcus faecalis	Fluoroquinolones	Hospital Beds (per 1000), Pharmacists per capita, Smoking Prevalence, Tuberculosis prevalence (age- standardized), Intravenous drug use (proportion by age), Dentists per capita, PCV3 lagged five year coverage, COVID-free (proportion)
Enterococcus faecalis	Vancomycin	Fraction of OOP Health Expenditure, Age-standardized SEV for Handwashing, Physicians per capita, Average latitude, Hospital Beds (per 1000), Pharmacists per capita, Smoking Prevalence, Intravenous drug use (proportion by age), Dentists per capita
Enterococcus faecium	Fluoroquinolones	Age-standardized SEV for Handwashing, Average latitude, HIV Prevalence Unadjusted (proportion), Pharmacists per capita, Population-weighted mean temperature, Maternal Education (years per capita), Tuberculosis prevalence (age-standardized), Intravenous drug use (proportion by age), Diabetes Fasting Plasma Glucose (mmol/L), by age, Hib3 lagged five year coverage, COVID-free (proportion)
Enterococcus faecium	Vancomycin	Diabetes Age-Standardized Prevalence (proportion), Age-standardized SEV for Handwashing, Physicians per capita, Healthcare access and quality index, Hospital Beds (per 1000), Rotavirus coverage, COVID-free (proportion), Intravenous drug use (proportion by age), Diabetes Fasting Plasma Glucose (mmol/L), by age, Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population
Escherichia coli	Aminoglycosides	Diabetes Age-Standardized Prevalence (proportion), Healthcare access and quality index, Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Age-standardized SEV for Unsafe sanitation, Maternal Education (years per capita), Smoking Prevalence, Rotavirus coverage, COVID-free (proportion), Hib3 Vaccine Coverage, COVID-free (proportion)
Escherichia coli	Aminopenicillin	Healthcare access and quality index, Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), Tuberculosis prevalence (age-standardized)
Escherichia coli	Beta Lactam/Beta-lactamase inhibitors	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Average latitude, ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Age-standardized SEV for Unsafe

		sanitation, Smoking Prevalence, Dentists per capita, Vaccine adjusted HbSAg serporevalence age standardized
Escherichia coli	Carbapenems	Proportion of population involved in agricultural activities, Healthcare access and quality index, Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Skilled Birth Attendance (proportion), Population-weighted mean temperature
Escherichia coli	Fluoroquinolones	Diabetes Age-Standardized Prevalence (proportion), Physicians per capita, Proportion of population involved in agricultural activities, Estimated rate of J01M quinolones consumption in defined daily doses (DDDs) per 1000 population
Escherichia coli	Trimethoprim-Sulfamethoxazole	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Healthcare access and quality index, Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Total Fertility Rate, Age-standardized SEV for Unsafe sanitation, Dentists per capita
Escherichia coli	Third-generation cephalosporins	Proportion of population involved in agricultural activities, Pigs (per capita), Physicians per capita, Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Age- standardized SEV for Handwashing, Estimated rate of J01D other beta-lactams consumption in defined daily doses (DDDs) per 1000 population
Group A Streptococcus	Macrolide	Proportion of population involved in agricultural activities, Average latitude, ORS (oral rehydration), Age-standardized SEV for Unsafe sanitation, Population Density (over 1000 ppl/sqkm, proportion), Diabetes Fasting Plasma Glucose (mmol/L), by age, Vaccine adjusted HbSAg serporevalence age standardized, Hib3 lagged five year coverage, COVID-free (proportion)
Group B Streptococcus	Fluoroquinolones	Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), Intravenous drug use (proportion by age), Diabetes Fasting Plasma Glucose (mmol/L), by age, PCV3 lagged five year coverage, COVID-free (proportion), Vaccine adjusted HbSAg serporevalence age standardized, Hib3 Vaccine Coverage, COVID-free (proportion)
Group B Streptococcus	Macrolide	Diabetes Age-Standardized Prevalence (proportion), Physicians per capita, Pigs (per capita), Hospital Beds (per 1000), ORS (oral rehydration), Skilled Birth Attendance (proportion), Population Density (over 1000 ppl/sqkm, proportion), Rotavirus coverage, COVID-free (proportion), Vaccine adjusted HbSAg serporevalence age standardized
Group B Streptococcus	Penicillin	Pigs (per capita), Hospital Beds (per 1000), Dentists per capita, Vaccine adjusted HbSAg serporevalence age standardized
Haemophilus influenzae	Aminopenicillin	Hospital Beds (per 1000), ORS (oral rehydration), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), PCV3 lagged five year coverage, COVID-free (proportion), Estimated rate of J01C penicillins consumption in defined daily doses (DDDs) per 1000 population
Haemophilus influenzae	Third-generation cephalosporins	Proportion of population involved in agricultural activities, HIV Prevalence Unadjusted (proportion), Pharmacists per capita, Skilled Birth Attendance (proportion), Population-weighted mean temperature, Smoking Prevalence, Rotavirus coverage, COVID-free (proportion), Tuberculosis prevalence (age- standardized), Dentists per capita
Klebsiella pneumoniae	Aminoglycosides	Fraction of OOP Health Expenditure, Physicians per capita, Healthcare access and quality index, Hospital Beds (per 1000), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), Smoking Prevalence
Klebsiella pneumoniae	Beta Lactam/Beta-lactamase inhibitors	Fraction of OOP Health Expenditure, Age-standardized SEV for Handwashing, Physicians per capita, Average latitude, ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Age-standardized SEV for Unsafe sanitation, Population Density (over 1000 ppl/sqkm, proportion), Smoking Prevalence
Klebsiella pneumoniae	Carbapenems	Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population, Healthcare access and quality index, Hospital Beds (per 1000), Estimated rate of J01D other beta-lactams consumption in defined daily doses (DDDs) per 1000 population, Average latitude
Klebsiella pneumoniae	Fluoroquinolones	Physicians per capita, Healthcare access and quality index, Hospital Beds (per 1000), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Total Fertility Rate, Population Density (over 1000 ppl/sqkm, proportion), Smoking Prevalence
Klebsiella pneumoniae	Trimethoprim-Sulfamethoxazole	Age-standardized SEV for Handwashing, Healthcare access and quality index, Hospital Beds (per 1000), HIV Prevalence Unadjusted (proportion), HIV age-standardized Prevalence, ORS (oral rehydration),

		Outdoor Air Pollution (PM2.5), Dentists per capita, Diabetes Fasting Plasma Glucose (mmol/L), by age, Hib3 Vaccine Coverage, COVID-free (proportion)
Klebsiella pneumoniae	Third-generation cephalosporins	Physicians per capita, Estimated rate of J01D other beta-lactams consumption in defined daily doses (DDDs) per 1000 population, Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population, HIV Prevalence Unadjusted (proportion), Estimated rate of J01C penicillins consumption in defined daily doses (DDDs) per 1000 population
Morganella spp.	Fluoroquinolones	Physicians per capita, Hospital Beds (per 1000), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), Diabetes Fasting Plasma Glucose (mmol/L), by age, PCV3 lagged five year coverage, COVID-free (proportion), Hib3 Vaccine Coverage, COVID-free (proportion)
Morganella spp.	Fourth-generation cephalosporins	Pigs (per capita), Proportion of population involved in agricultural activities, Healthcare access and quality index, Hospital Beds (per 1000), HIV Prevalence Unadjusted (proportion), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Total Fertility Rate, Age-standardized SEV for Unsafe sanitation, Antenatal Care (4 visits) Coverage (proportion)
Morganella spp.	Third-generation cephalosporins	Physicians per capita, Pigs (per capita), Average latitude, Hospital Beds (per 1000), HIV age-standardized Prevalence, Skilled Birth Attendance (proportion), Antenatal Care (4 visits) Coverage (proportion), Diabetes Fasting Plasma Glucose (mmol/L), by age, PCV3 lagged five year coverage, COVID-free (proportion), Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population
Neisseria gonorrhoeae	Fluoroquinolones	Fraction of OOP Health Expenditure, Physicians per capita, Hospital Beds (per 1000), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Population Density (over 1000 ppl/sqkm, proportion), Rotavirus coverage, COVID-free (proportion), Intravenous drug use (proportion by age), PCV3 lagged five year coverage, COVID-free (proportion), Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population
Neisseria gonorrhoeae	Third-generation cephalosporins	Average latitude, Hospital Beds (per 1000), HIV Prevalence Unadjusted (proportion), Population- weighted mean temperature, Age-standardized SEV for Unsafe sanitation, Rotavirus coverage, COVID- free (proportion), PCV3 lagged five year coverage, COVID-free (proportion), Vaccine adjusted HbSAg serporevalence age standardized, Estimated rate of J01C penicillins consumption in defined daily doses (DDDs) per 1000 population, Estimated rate of J01D other beta-lactams consumption in defined daily doses (DDDs) per 1000 population
Non-typhoidal salmonella	Fluoroquinolones	Physicians per capita, Hospital Beds (per 1000), HIV Prevalence Unadjusted (proportion), HIV age- standardized Prevalence, Population-weighted mean temperature, Total Fertility Rate, Rotavirus coverage, COVID-free (proportion), Intravenous drug use (proportion by age), Dentists per capita, Hib3 Vaccine Coverage, COVID-free (proportion)
Proteus spp.	Aminoglycosides	Physicians per capita, Average latitude, Healthcare access and quality index, Hospital Beds (per 1000), ORS (oral rehydration), Total Fertility Rate, Population Density (over 1000 ppl/sqkm, proportion), Dentists per capita, Vaccine adjusted HbSAg serporevalence age standardized
Proteus spp.	Aminopenicillin	Physicians per capita, HIV age-standardized Prevalence, Outdoor Air Pollution (PM2.5), Population- weighted mean temperature, Total Fertility Rate, Intravenous drug use (proportion by age), Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population
Proteus spp.	Fluoroquinolones	Hospital Beds (per 1000), Total Fertility Rate, Population Density (over 1000 ppl/sqkm, proportion), Intravenous drug use (proportion by age), Diabetes Fasting Plasma Glucose (mmol/L), by age, Vaccine adjusted HbSAg serporevalence age standardized, Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population
Proteus spp.	Trimethoprim-Sulfamethoxazole	Fraction of OOP Health Expenditure, Pigs (per capita), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Total Fertility Rate, Smoking Prevalence, Rotavirus coverage, COVID-free (proportion), Dentists per capita, Vaccine adjusted HbSAg serporevalence age standardized
Proteus spp.	Third-generation cephalosporins	Pigs (per capita), Average latitude, HIV Prevalence Unadjusted (proportion), Outdoor Air Pollution (PM2.5), Skilled Birth Attendance (proportion), Population-weighted mean temperature, Maternal Education (years per capita), Hib3 lagged five year coverage, COVID-free (proportion)

Pseudomonas aeruginosa	Aminoglycosides	Fraction of OOP Health Expenditure, Healthcare access and quality index, ORS (oral rehydration), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), PCV3 lagged five year coverage, COVID-free (proportion)
Pseudomonas aeruginosa	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Fraction of OOP Health Expenditure, Average latitude, Healthcare access and quality index, Hospital Beds (per 1000), ORS (oral rehydration), Pharmacists per capita, Population-weighted mean temperature, Population Density (over 1000 ppl/sqkm, proportion), Hib3 Vaccine Coverage, COVID-free (proportion)
Pseudomonas aeruginosa	Carbapenems	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Physicians per capita, Hospital Beds (per 1000), ORS (oral rehydration), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), Smoking Prevalence, Dentists per capita
Pseudomonas aeruginosa	Fluoroquinolones	Healthcare access and quality index, Hospital Beds (per 1000), ORS (oral rehydration), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), Intravenous drug use (proportion by age), PCV3 lagged five year coverage, COVID-free (proportion), Vaccine adjusted HbSAg serporevalence age standardized
Pseudomonas aeruginosa	Fourth-generation cephalosporins	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Healthcare access and quality index, Hospital Beds (per 1000), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), Dentists per capita, PCV3 lagged five year coverage, COVID-free (proportion)
Pseudomonas aeruginosa	Third-generation cephalosporins	Fraction of OOP Health Expenditure, Proportion of population involved in agricultural activities, Healthcare access and quality index, Hospital Beds (per 1000), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Population Density (over 1000 ppl/sqkm, proportion), PCV3 lagged five year coverage, COVID-free (proportion)
Salmonella Paratyphi	Fluoroquinolones	Diabetes Age-Standardized Prevalence (proportion), Estimated rate of J01M quinolones consumption in defined daily doses (DDDs) per 1000 population
<i>Salmonella</i> Paratyphi	Multi-drug resistance	Age-standardized SEV for Unsafe sanitation, Population-weighted mean temperature, Outdoor Air Pollution (PM2.5), Physicians per capita, Total Fertility Rate
<i>Salmonella</i> Typhi	Fluoroquinolones	Estimated rate of J01M quinolones consumption in defined daily doses (DDDs) per 1000 population, Outdoor Air Pollution (PM2.5), Total Fertility Rate, Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population
<i>Salmonella</i> Typhi	Multi-drug resistance	Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population, Population- weighted mean temperature, Antenatal Care (4 visits) Coverage (proportion), Hospital Beds (per 1000), Age-standardized SEV for Unsafe sanitation, Estimated rate of J01C penicillins consumption in defined daily doses (DDDs) per 1000 population, Total Fertility Rate
Serratia spp.	Aminoglycosides	Fraction of OOP Health Expenditure, Average latitude, Healthcare access and quality index, Hospital Beds (per 1000), HIV age-standardized Prevalence, PCV3 lagged five year coverage, COVID-free (proportion), Hib3 Vaccine Coverage, COVID-free (proportion)
Serratia spp.	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Physicians per capita, Pigs (per capita), Proportion of population involved in agricultural activities, Healthcare access and quality index, HIV age-standardized Prevalence, Outdoor Air Pollution (PM2.5), Maternal Education (years per capita), Intravenous drug use (proportion by age), Dentists per capita
Serratia spp.	Carbapenems	Proportion of population involved in agricultural activities, Average latitude, ORS (oral rehydration), Maternal Education (years per capita), Smoking Prevalence, Rotavirus coverage, COVID-free (proportion), Hepatitis C Seroprevalence (anti-HCV) age standardized, PCV3 lagged five year coverage, COVID-free (proportion), Hib3 lagged five year coverage, COVID-free (proportion)
Serratia spp.	Fluoroquinolones	Fraction of OOP Health Expenditure, Proportion of population involved in agricultural activities, Average latitude, Healthcare access and quality index, Outdoor Air Pollution (PM2.5), Pharmacists per capita, Maternal Education (years per capita), Diabetes Fasting Plasma Glucose (mmol/L), by age, Hepatitis C Seroprevalence (anti-HCV) age standardized
Serratia spp.	Fourth-generation cephalosporins	Physicians per capita, Proportion of population involved in agricultural activities, Average latitude, Healthcare access and quality index, HIV Prevalence Unadjusted (proportion), ORS (oral rehydration),

		Pharmacists per capita, Maternal Education (years per capita), Diabetes Fasting Plasma Glucose (mmol/L), by age
Serratia spp.	Third-generation cephalosporins	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Physicians per capita, Pigs (per capita), Healthcare access and quality index, HIV Prevalence Unadjusted (proportion), Outdoor Air Pollution (PM2.5), Skilled Birth Attendance (proportion), Dentists per capita
Shigella spp.	Fluoroquinolones	Age-standardized SEV for Handwashing, ORS (oral rehydration), Pharmacists per capita, Average latitude, Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population, Estimated rate of J01M quinolones consumption in defined daily doses (DDDs) per 1000 population
Staphylococcus aureus	Fluoroquinolones	Diabetes Age-Standardized Prevalence (proportion), Average latitude, HIV Prevalence Unadjusted (proportion), ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Age-standardized SEV for Unsafe sanitation, Rotavirus coverage, COVID-free (proportion), Intravenous drug use (proportion by age), Diabetes Fasting Plasma Glucose (mmol/L), by age
Staphylococcus aureus	Macrolide	Diabetes Age-Standardized Prevalence (proportion), Pigs (per capita), Average latitude, ORS (oral rehydration), Population Density (over 1000 ppl/sqkm, proportion), Intravenous drug use (proportion by age), Vaccine adjusted HbSAg serporevalence age standardized
Staphylococcus aureus	Methicillin	Diabetes Age-Standardized Prevalence (proportion), Estimated rate of J01C penicillins consumption in defined daily doses (DDDs) per 1000 population, Estimated rate of J01M quinolones consumption in defined daily doses (DDDs) per 1000 population
Staphylococcus aureus	Trimethoprim-Sulfamethoxazole	Fraction of OOP Health Expenditure, Healthcare access and quality index, Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Age-standardized SEV for Unsafe sanitation, Maternal Education (years per capita), Tuberculosis prevalence (age-standardized), Dentists per capita, Hepatitis C Seroprevalence (anti-HCV) age standardized
Staphylococcus aureus	Vancomycin	Fraction of OOP Health Expenditure, Physicians per capita, Proportion of population involved in agricultural activities, Hospital Beds (per 1000), HIV age-standardized Prevalence, ORS (oral rehydration), Outdoor Air Pollution (PM2.5), Skilled Birth Attendance (proportion), Antenatal Care (4 visits) Coverage (proportion)
Streptococcus pneumoniae	Beta Lactam/Beta-lactamase inhibitors	Diabetes Age-Standardized Prevalence (proportion), Fraction of OOP Health Expenditure, Physicians per capita, Average latitude, Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Pharmacists per capita, Skilled Birth Attendance (proportion), Age-standardized SEV for Unsafe sanitation, Population Density (over 1000 ppl/sqkm, proportion)
Streptococcus pneumoniae	Carbapenems	Diabetes Age-Standardized Prevalence (proportion), Physicians per capita, Outdoor Air Pollution (PM2.5), Skilled Birth Attendance (proportion), Population-weighted mean temperature, Population Density (over 1000 ppl/sqkm, proportion), Rotavirus coverage, COVID-free (proportion), Diabetes Fasting Plasma Glucose (mmol/L), by age, Hepatitis C Seroprevalence (anti-HCV) age standardized
Streptococcus pneumoniae	Fluoroquinolones	Diabetes Age-Standardized Prevalence (proportion), Age-standardized SEV for Handwashing, Physicians per capita, Outdoor Air Pollution (PM2.5), Skilled Birth Attendance (proportion), Age-standardized SEV for Unsafe sanitation, Population Density (over 1000 ppl/sqkm, proportion), Smoking Prevalence, Rotavirus coverage, COVID-free (proportion)
Streptococcus pneumoniae	Macrolide	Diabetes Age-Standardized Prevalence (proportion), Physicians per capita, Hospital Beds (per 1000), Outdoor Air Pollution (PM2.5), Population-weighted mean temperature, Diabetes Fasting Plasma Glucose (mmol/L), by age, Vaccine adjusted HbSAg serporevalence age standardize, Estimated rate of J01F macrolides, lincosamides and streptogramins consumption in defined daily doses (DDDs) per 1000 population
Streptococcus pneumoniae	Penicillin	Fraction of OOP Health Expenditure, Hospital Beds (per 1000), Estimated rate of J01C penicillins consumption in defined daily doses (DDDs) per 1000 population, Maternal Education (years per capita), Pharmacists per capita, Estimated rate of antibiotic consumption in defined daily doses (DDDs) per 1000 population
Streptococcus pneumoniae	Trimethoprim-Sulfamethoxazole	Physicians per capita, Pigs (per capita), Proportion of population involved in agricultural activities, Average latitude, Outdoor Air Pollution (PM2.5), Age-standardized SEV for Unsafe sanitation, Maternal Education (years per capita), Diabetes Fasting Plasma Glucose (mmol/L), by age, PCV3 lagged five year coverage, COVID-free (proportion)
-----------------------------	---------------------------------	--
Streptococcus pneumoniae	Third-generation cephalosporins	Diabetes Age-Standardized Prevalence (proportion), Age-standardized SEV for Handwashing, Physicians per capita, Pigs (per capita), Proportion of population involved in agricultural activities, Average latitude, Healthcare access and quality index, HIV age-standardized Prevalence, ORS (oral rehydration), Outdoor Air Pollution (PM2.5)

2315			
2316			
2317			
2318			
2319			
2320			
2321			
2322			
2323			
2324			
2325			
2326			
2327			
2328			
2329			
2330			
2331			
2332			
2333			
2334			

2335 Table S5: Summary of relative risk data

Antibiotic class	Pathogen		Literature			Microbiology		
		Cases	Deaths	Days of Infection	Cases	Deaths	Days of Infection	
Aminoglycosides	Acinetobacter baumannii	-	-	-	58,717	5,821	1,350,226	
Aminoglycosides	Citrobacter spp.	-	-	-	66,515	1,675	795,364	
Aminoglycosides	Enterobacter spp.	-	-	-	191,998	4,985	3,112,166	
Aminoglycosides	Escherichia coli	-	-	-	2,188,899	43,629	19,101,791	
Aminoglycosides	Klebsiella pneumoniae	-	-	-	711,728	22,201	9,059,998	
Aminoglycosides	Proteus spp.	-	-	-	383,719	7,458	4,358,494	
Aminoglycosides	Pseudomonas aeruginosa	-	-	-	746,320	23,497	14,479,385	
Aminoglycosides	Serratia spp.	-	-	-	92,519	2,757	1,803,213	
Aminopenicillin	Escherichia coli	-	-	-	1,014,811	21,282	8,745,596	
Aminopenicillin	Haemophilus influenzae	1,403	107	-	6,210	396	43,483	
Aminopenicillin	Proteus spp.	-	-	-	170,905	3,413	1,934,044	
Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Acinetobacter baumannii	-	-	-	18,204	2,454	374,988	
Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Citrobacter spp.	-	-	-	25,561	756	307,904	
Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Enterobacter spp.	-	-	-	81,729	2,835	1,304,804	
Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Pseudomonas aeruginosa	-	-	-	318,376	14,430	6,006,891	
Anti-pseudomonal penicillin/Beta-Lactamase inhibitors	Serratia spp.	-	-	-	29,701	1,214	624,717	
Beta Lactam/Beta-lactamase inhibitors	Acinetobacter baumannii	-	-	-	22,291	1,602	515,184	
Beta Lactam/Beta-lactamase inhibitors	Escherichia coli	-	-	-	1,178,102	26,078	9,985,178	
Beta Lactam/Beta-lactamase inhibitors	Klebsiella pneumoniae	-	-	-	392,472	12,853	4,737,893	
Beta Lactam/Beta-lactamase inhibitors	Streptococcus pneumoniae	-	-	-	6,400	256	50,191	
Carbapenems	Acinetobacter baumannii	2,603	939	-	51,149	10,157	821,619	
Carbapenems	Citrobacter spp.	-	-	-	44,096	1,712	518,670	
Carbapenems	Enterobacter spp.	985	318	-	129,218	5,720	2,025,267	
Carbapenems	Escherichia coli	220	51	-	1,384,533	36,620	12,287,750	
Carbapenems	Klebsiella pneumoniae	5,019	1,180	-	463,800	21,608	5,874,759	
Carbapenems	Pseudomonas aeruginosa	6,141	1,234	-	377,712	20,544	7,359,610	

	1	1	1	1	1		
Carbapenems	Serratia spp.	-	-	-	60,069	2,799	1,172,118
Carbapenems	Streptococcus pneumoniae	-	-	-	11,976	433	101,018
Fluoroquinolones	Acinetobacter baumannii	-	-	-	44,514	5,040	920,862
Fluoroquinolones	Citrobacter spp.	-	-	-	51,125	1,581	572,926
Fluoroquinolones	Enterobacter spp.	-	-	-	142,227	4,404	2,157,754
Fluoroquinolones	Enterococcus faecalis	-	-	-	13,482	1,456	148,347
Fluoroquinolones	Enterococcus faecium	-	-	-	52,718	2,923	800,011
Fluoroquinolones	Escherichia coli	5,734	600	-	1,660,159	36,469	14,065,116
Fluoroquinolones	Group B Streptococcus	-	-	-	1,973	140	18,042
Fluoroquinolones	Klebsiella pneumoniae	-	-	-	533,219	18,867	6,418,092
Fluoroquinolones	Morganella spp.	-	-	-	50,872	1,174	575,814
Fluoroquinolones	Neisseria gonorrhoeae	-	-	-	179	0	123
Fluoroquinolones	Non-typhoidal Salmonella	-	-	-	7,489	67	36,416
Fluoroquinolones	Other enterococci	-	-	-	72	14	15,396
Fluoroquinolones	Proteus spp.	-	-	-	284,542	6,154	3,196,494
Fluoroquinolones	Pseudomonas aeruginosa	-	-	-	474,356	20,427	8,453,680
Fluoroquinolones	Salmonella Paratyphi	-	-	-	1,586	1	12,639
Fluoroquinolones	Salmonella Typhi	-	-	-	12,065	16	22,713
Fluoroquinolones	Serratia spp.	-	-	-	69,775	2,536	1,280,786
Fluoroquinolones	Shigella spp.	-	-	-	2,367	6	7,971
Fluoroquinolones	Staphylococcus aureus	-	-	-	780,617	18,092	8,498,172
Fluoroquinolones	Streptococcus pneumoniae	233	31	-	43,060	1,575	385,880
Fourth-generation cephalosporins	Acinetobacter baumannii	-	-	-	29,311	4,759	482,186
Fourth-generation cephalosporins	Citrobacter spp.	-	-	-	23,273	656	280,528
Fourth-generation cephalosporins	Enterobacter spp.	-	-	-	72,621	2,422	1,177,713
Fourth-generation cephalosporins	Morganella spp.	-	-	-	23947	495	295266
Fourth-generation cephalosporins	Pseudomonas aeruginosa	-	-	-	284,345	10,529	5,428,710
Fourth-generation cephalosporins	Serratia spp.	-	-	-	35,865	1,238	693,294
Macrolide	Group A Streptococcus	-	-	-	2,565	438	34,491

Macrolide	Group B Streptococcus	432	48	-	2,739	213	30,417
Macrolide	Staphylococcus aureus	-	-	-	670,956	15,624	7,915,114
Macrolide	Streptococcus pneumoniae	871	123	-	41,700	1,882	375,517
Methicillin	Staphylococcus aureus	24,236	4,520	-	960,853	27,728	11,263,054
Penicillin	Group B Streptococcus	-	-	-	3,180	250	31,891
Penicillin	Streptococcus pneumoniae	9,071	1,539	-	131,214	5,063	476,341
Third-generation cephalosporins	Acinetobacter baumannii	-	-	-	54,559	8,485	907,736
Third-generation cephalosporins	Citrobacter spp.	-	-	-	55,751	1,910	639,522
Third-generation cephalosporins	Escherichia coli	15,170	2,052	-	1,553,658	39,801	13,481,857
Third-generation cephalosporins	Haemophilus influenzae	-	-	-	2,532	251	16,050
Third-generation cephalosporins	Klebsiella pneumoniae	1,552	417	-	519,223	23,371	6,442,738
Third-generation cephalosporins	<i>Morganella</i> spp.	-	-	-	54,598	1,395	624,869
Third-generation cephalosporins	Neisseria gonorrhoeae	-	-	-	188	2	177
Third-generation cephalosporins	Proteus spp.	-	-	-	260,333	6,352	2,986,334
Third-generation cephalosporins	Pseudomonas aeruginosa	1,975	762	-	291,397	14,800	5,293,386
Third-generation cephalosporins	Serratia spp.	-	-	-	78,264	3,456	1,451,520
Third-generation cephalosporins	Streptococcus pneumoniae	5,201	703	-	154,698	5,199	686,272
Trimethoprim-Sulfamethoxazole	Enterobacter spp.	-	-	-	85,985	2,255	1,367,747
Trimethoprim-Sulfamethoxazole	Escherichia coli	-	-	-	1,046,932	21,657	8,972,560
Trimethoprim-Sulfamethoxazole	Klebsiella pneumoniae	-	-	-	331,976	9,731	4,142,308
Trimethoprim-Sulfamethoxazole	Proteus spp.	-	-	-	175,778	3,547	1,975,356
Trimethoprim-Sulfamethoxazole	Staphylococcus aureus	-	-	-	724,647	16,338	8,583,645
Trimethoprim-Sulfamethoxazole	Streptococcus pneumoniae	-	-	-	28,919	1,066	256,030
Vancomycin	Enterococcus faecalis	5,366	1,702	-	12,095	1,915	129,245
Vancomycin	Enterococcus faecium	2,516	792	-	90,846	5,519	1,725,901
Vancomycin	Other enterococci	1	-	-	83	13	15,914
Vancomycin	Staphylococcus aureus	-	-	-	719,473	18,681	8,661,298
Total		88,729	17,117	-	22,978,627	677,168	263,284.542

This table highlights the line level data that we received. Literature sources that provided information on the relative risk of increased length of stay (LOS) provided mean LOS between resistant and

37 susceptible infections or the interquartile range (IQR) which we incorporated as well.

2338 Table S6: GATHER checklist

Item #	Checklist item	Reporting location		
Objectiv	ves and funding			
1	Define the indicator(s), populations (including age, sex, and geographic entities), and time period(s) for which estimates were made.	Main text summary (methods)		
2	List the funding sources for the work.	Main text summary (funding)		
Data Inj	puts			
For al	l data inputs from multiple sources that are synthesized as part of t	the study:		
3	Describe how the data were identified and how the data were accessed.	Main text methods section + supplementary appendix (sections 2, 4.1, 5.1, 6.1, 7.1, 8.1)		
4	Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions.	Supplementary appendix (section 2)		
5	Provide information on all included data sources and their main characteristics. For each data source used, report reference information or contact name/institution, population represented, data collection method, year(s) of data collection, sex and age range, diagnostic criteria or measurement method, and sample size, as relevant.	Supplementary appendix (section 2). The main characteristics of data, metadata, and/or NIDs available at https://ghdx.healthdata.org/gbd-2021/sources		
6	Identify and describe any categories of input data that have potentially important biases (e.g., based on characteristics listed in item 5).	Main text (limitations) + supplementary appendix (biases for input data in each modelling step identified in each section)		
For da	ata inputs that contribute to the analysis but were not synthesized a	is part of the study:		
7	Describe and give sources for any other data inputs.	GBD 2021 estimates (http://ghdx.healthdata.org/gbd-results-tool)		
For al	l data inputs:			
8	Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a spreadsheet rather than a PDF), including all relevant meta-data listed in item 5. For any data inputs that cannot be shared because of ethical or legal reasons, such as third-party ownership, provide a contact name or the name of the institution that retains the right to the data.	Data inputs and/or contact information available at https://ghdx.healthdata.org/gbd-2021/sources		
Data an	alysis			
9	Provide a conceptual overview of the data analysis method. A diagram may be helpful.	Main text methods section + supplementary figure S1 (flowchart of methods)		
10	Provide a detailed description of all steps of the analysis, including mathematical formulae. This description should cover, as relevant, data cleaning, data pre-processing, data adjustments and weighting of data sources, and mathematical or statistical model(s).	Supplementary appendix (sections 4- 11)		

11	Describe how candidate models were evaluated and how the final model(s) were selected.	Supplementary appendix (sections 4- 11)
12	Provide the results of an evaluation of model performance, if done, as well as the results of any relevant sensitivity analysis.	Supplementary appendix (sections 4.7, 6.5, 7.6, 8.4)
13	Describe methods for calculating uncertainty of the estimates. State which sources of uncertainty were, and were not, accounted for in the uncertainty analysis.	Main text methods section (uncertainty analysis) + limitations section + supplementary appendix (sections 4-8).
14	State how analytic or statistical source code used to generate estimates can be accessed.	Link to GitHub code found in main text methods section
Results	and Discussion	
15	Provide published estimates in a file format from which data can be efficiently extracted.	Published estimates are available in the main text results section and in the supplementary appendix. CSV files are available upon request to the corresponding author
16	Report a quantitative measure of the uncertainty of the estimates (e.g. uncertainty intervals).	Uncertainty intervals are provided for all estimates throughout the main text.
17	Interpret results in light of existing evidence. If updating a	Main text research in context,
	previous set of estimates, describe the reasons for changes in estimates.	introduction, and discussion sections

Table S7: Cumulative AMR associated and attributable death and DALY counts in millions, globally and by super-region in the reference scenario, 2025–2050.

Estimates are listed as means with 95% uncertainty intervals in parentheses. Highlighted rows indicate super region results from the GBD location hierarchy. Note that both North Africa and Middle East as well as South Asia are both GBD super regions and regions.

	Deaths DALYs			
	Associated	Attributable	Associated	Attributable
Global	169.15 (144.89, 195.64)	39.11 (32.97, 46.04)	4,951.13 (4,152.46, 5,900.32)	1,136.87 (940.22, 1,384.85)
Central Europe, Eastern Europe, and Central Asia	8.4 (7.08, 9.75)	1.94 (1.62, 2.27)	191.69 (161.04, 221.65)	44.85 (37.33, 53.39)
Central Asia	1.4 (1.11, 1.74)	0.32 (0.25, 0.42)	46.8 (35.74, 59.8)	10.93 (7.94, 14.65)
Central Europe	2.35 (2.02, 2.68)	0.52 (0.45, 0.6)	43.53 (38.12, 49.47)	9.78 (8.55, 11.35)
Eastern Europe	4.65 (3.79, 5.49)	1.09 (0.87, 1.32)	101.35 (83.97, 120.1)	24.14 (19.28, 29.13)
High income	19.82 (15.55, 22.82)	4.29 (3.36, 4.96)	312.22 (263.33, 347.84)	68.32 (57.28, 76.58)
Australasia	0.4 (0.31, 0.47)	0.08 (0.06, 0.1)	6.08 (5.03, 7.02)	1.26 (1.01, 1.52)
High-income Asia Pacific	3.68 (2.68, 4.6)	0.79 (0.57, 0.98)	48.88 (38.58, 58.43)	10.55 (8.32, 12.72)
High-income North America	6.64 (5.29, 7.76)	1.47 (1.15, 1.72)	118.44 (99.85, 134.65)	26.41 (21.85, 30.29)
Southern Latin America	1.79 (1.49, 2.11)	0.42 (0.35, 0.5)	31.97 (27.03, 37.09)	31.97 (27.03, 37.09)
Western Europe	7.32 (5.77, 8.42)	1.53 (1.19, 1.76)	106.86 (89.54, 119.64)	22.43 (18.64, 25.42)
Latin America and	13.12 (10.9,	3.01 (2.45,	298.29 (249.19,	69.02 (57.04,
Caribbean	15.58)	0.22 (0.25	22.28 (25.22	82.23)
Andean Latin America	1.42 (1.1, 1.81)	0.32 (0.23, 0.41)	32.28 (23.32, 41.77)	7.24 (5.69, 9.38)
Caribbean	1.15 (0.94, 1.43)	0.26 (0.2, 0.34)	31.91 (24.76, 40.9)	7.18 (5.34, 9.53)
Central Latin America	4.89 (4.12, 5.69)	1.14 (0.95, 1.35)	118.44 (98.44, 140.78)	27.7 (22.8, 33.51)
Tropical Latin America	5.66 (4.42, 7.25)	1.3 (0.99, 1.65)	115.66 (93.83, 145.5)	26.89 (21.23, 33.89)
North Africa and Middle East	9.68 (8.1, 11.48)	2.45 (2.01, 2.97)	287.12 (232.13, 352.55)	73.14 (57.9, 91.36)
South Asia	47.2 (38.5, 56.92)	11.83 (9.43, 14.36)	1,420.4 (1,131.88, 1,721.52)	349.38 (272.91, 432.67)
Southeast Asia, East Asia,	40.58 (33.64,	8.96 (7.45,	864.63 (742.25,	192.6 (165.82,
and Oceania	47.69)	10.44)	1,026.8)	226.97)
Fost Asia	24.18 (19.23,	5.12 (4.03,	444.6 (352.56,	94.68 (74.76,
Oceania	0.37 (0.26, 0.49)	0.08 (0.06, 0.11)	18.71 (12.79, 26.48)	4.15 (2.69, 5.92)
	16 04 (13 84	3 76 (3 19	401 32 (340 55	93 77 (77 9
Southeast Asia	18.49)	4.38)	467.36)	110.73)
	30.35 (23.51,	6 63 (5 0 9 66)	1,576.78	339.57 (243.17,
Sub-Saharan Africa	38.55)	0.03 (3.0, 8.00)	(1,140.36, 2,142.2)	470.31)

Central sub-Saharan	3.46 (2.51, 4.67)	0.78 (0.53,	152.55 (102.12,	34.33 (22.65,
Africa		1.11)	218.64)	50.43)
Eastern sub-Saharan	10.36 (8.34,	2.29 (1.79,	496.85 (374.58,	108.75 (79.93,
Africa	13.02)	2.95)	671.91)	148.67)
Southern sub-Saharan	1.64 (1.36, 2.01)	0.37 (0.31,	58.68 (46.67,	13.22 (10.28,
Africa		0.46)	75.86)	17.12)
Western sub-Saharan	14.89 (10.8,	3.18 (2.28, 4.3)	868.7 (589.98,	183.27 (123.28,
Africa	19.9)		1,226.75)	261.99)

Table S8: Cumulative total deaths avoided/excess in millions, globally and by super-region and scenario, 2025–2050.

Estimates are listed as means with 95% uncertainty intervals in parentheses. Highlighted rows indicate super region results from the GBD location hierarchy. Note that both North Africa and Middle East as well as South Asia are both GBD super regions and regions.

	Gram-Negative Drug	Better Care
Global	11.08 (9.08, 13.17)	92.02 (82.81, 101.75)
Central Europe, Eastern Europe, and Central Asia	0.55 (0.46, 0.66)	2.42 (2.17, 2.72)
Central Asia	0.09 (0.07, 0.11)	0.69 (0.59, 0.84)
Central Europe	0.13 (0.11, 0.15)	0.51 (0.45, 0.58)
Eastern Europe	0.33 (0.26, 0.4)	1.22 (1.05, 1.39)
High income	0.86 (0.66, 1.01)	2.63 (1.66, 3.84)
Australasia	0.02 (0.01, 0.02)	0.01 (-0.02, 0.05)
High-income Asia Pacific	0.12 (0.08, 0.17)	0.17 (-0.11, 0.44)
High-income North America	0.27 (0.2, 0.34)	1.09 (0.27, 1.97)
Southern Latin America	0.1 (0.08, 0.14)	0.37 (0.3, 0.45)
Western Europe	0.24 (0.17, 0.28)	0.8 (0.68, 0.92)
Latin America and Caribbean	0.82 (0.65, 1.02)	7.26 (6.36, 8.23)
Andean Latin America	0.08 (0.06, 0.11)	0.74 (0.61, 0.87)
Caribbean	0.08 (0.06, 0.1)	0.58 (0.49, 0.69)
Central Latin America	0.31 (0.25, 0.37)	2.59 (2.14, 3.16)
Tropical Latin America	0.36 (0.26, 0.49)	3.36 (2.75, 4.06)
North Africa and Middle East	0.66 (0.53, 0.8)	4.12 (3.43, 4.96)
South Asia	3.97 (3.1, 4.88)	31.66 (26.77, 37.24)
Southeast Asia, East Asia, and Oceania	2.17 (1.78, 2.68)	18.74 (14.42, 22.84)
East Asia	0.98 (0.72, 1.42)	8.25 (3.55, 12.51)
Oceania	0.02 (0.02, 0.03)	0.26 (0.21, 0.33)
Southeast Asia	1.16 (0.97, 1.38)	10.23 (9.09, 11.51)

Sub-Saharan Africa	2.05 (1.53, 2.65)	25.17 (21.15, 29.79)
Central sub-Saharan Africa	0.22 (0.15, 0.31)	3.31 (2.47, 4.3)
Eastern sub-Saharan Africa	0.68 (0.53, 0.88)	9.23 (7.68, 11.01)
Southern sub-Saharan Africa	0.09 (0.07, 0.11)	1.82 (1.59, 2.07)
Western sub-Saharan Africa	1.06 (0.76, 1.45)	10.81 (8.73, 13.15)

Table S9: Sepsis deaths and percent attributable to and associated with AMR by age, global, both sexes, 1990, 2019, 2021, and 2021 without COVID-19

			Deaths Associated with		Percent Associated	Percent Attributable
Age	Year	Sepsis deaths	AMR	Deaths Attributable to AMR	with AMR	to AMR
All		16,500,000 (15,700,000-	4,780,000 (4,000,000-	1,060,000 (841,000-		
Ages	1990	17,300,000)	5,550,000)	1,270,000)	28.96 (25.54-32.04)	6.41 (5.37-7.36)
Under		7,690,000 (7,160,000-	2,290,000 (1,850,000-			
5	1990	8,220,000)	2,720,000)	488,000 (374,000-602,000)	29.76 (25.89-33.13)	6.34 (5.22-7.32)
		8,810,000 (8,300,000-	2,490,000 (2,100,000-			
5 plus	1990	9,320,000)	2,880,000)	570,000 (458,000-682,000)	28.25 (25.33-30.86)	6.47 (5.52-7.32)
All		14,100,000 (13,200,000-	4,940,000 (4,430,000-	1,200,000 (1,050,000-		
Ages	2019	15,100,000)	5,450,000)	1,350,000)	35.00 (33.67-36.16)	8.51 (8.00-8.95)
Under		3,140,000 (2,660,000-	1,020,000 (808,000-			
5	2019	3,620,000)	1,240,000)	235,000 (182,000-288,000)	32.55 (30.35-34.16)	7.49 (6.84-7.96)
		11,000,000 (10,200,000-	3,920,000 (3,540,000-			
5 plus	2019	11,700,000)	4,300,000)	966,000 (851,000-1,080,000)	35.70 (34.55-36.71)	8.80 (8.32-9.22)
All		21,400,000 (20,300,000-	4,710,000 (4,230,000-	1,140,000 (1,000,000-		
Ages	2021	22,400,000)	5,190,000)	1,280,000)	22.04 (20.85-23.12)	5.34 (4.95-5.70)
Under		2,680,000 (2,190,000-				
5	2021	3,180,000)	840,000 (640,000-1,040,000)	193,000 (144,000-242,000)	31.30 (29.23-32.72)	7.20 (6.59-7.62)
		18,700,000 (17,800,000-	3,870,000 (3,480,000-			
5 plus	2021	19,600,000)	4,260,000)	948,000 (837,000-1,060,000)	20.71 (19.57-21.75)	5.08 (4.71-5.41)
All	2021	13,500,000 (12,500,000-	4,710,000 (4,230,000-	1,140,000 (1,000,000-		
Ages	without COVID-19	14,500,000)	5,190,000)	1,280,000)	34.95 (33.93-35.83)	8.47 (8.05-8.84)
Under	2021	2,670,000 (2,180,000-				
5	without COVID-19	3,160,000)	840,000 (640,000-1,040,000)	193,000 (144,000-242,000)	31.49 (29.42-32.92)	7.25 (6.64-7.67)
	2021	10,800,000 (10,000,000-	3,870,000 (3,480,000-			
5 plus	without COVID-19	11,600,000)	4,260,000)	948,000 (837,000-1,060,000)	35.80 (34.79-36.68)	8.78 (8.37-9.13)

2363 Table S10: Summary of case fatality ratio data

Pathogen	Hospital	Microbiology	Total
Acinetobacter baumannii	0	53,896	53,896
Acinetobacter others	0	665	665
Actinomyces spp.	13,846	0	13,846
Adenovirus	43,888	0	43,888
Aeromonas spp.	0	768	768
Aspergillus spp.	80,029	43	80,072
Bacteria others	1,506,446	17,541	1,523,987
Burkholderia spp.	805	1,601	2,406
Candida spp.	724,485	8,281	732,766
Chlamydia spp.	49,837	52	49,889
Citrobacter spp.	0	23,190	23,190
Clostridium others	26,465	6	26,471
Cytomegalovirus	130,196	0	130,196
Entamoeba histolytica	27,757	0	27,757
Enterobacter spp.	0	76,882	76,882
Enterococcus faecalis	9,455	12,968	22,423
Enterococcus faecium	19,484	73,323	92,806
Enterococcus others	689	110	798
Epstein barr virus	126,647	0	126,647
Escherichia coli	2,080,661	967,300	3,047,961
Fungi others	64,063	33	64,096
Gram-negative others	172,418	23,345	195,763
Gram-negative unspecified	377,787	0	377,787
Gram-positive others	7,094	550	7,644
Haemophilus influenzae	89,708	7,784	97,492
Influenza virus	323,663	819	324,482
Klebsiella others	6,458	30,879	37,337
Klebsiella pneumoniae	102,169	293,904	396,073
Legionella spp.	30,784	160	30,944
Listeria spp.	3,859	127	3,986
Morganella spp.	0	17,758	17,758
Mumps	6,885	0	6,885
Mycobacterium others	72,538	3	72,541
Mycoplasma spp.	88,632	25	88,657
Neisseria meningitidis	12,608	645	13,253
Non-polio enteroviruses	150,729	0	150,729
Parasite others	99,762	0	99,762

Proteus spp.	240,216	121,898	362,114
Pseudomonas aeruginosa	698,362	268,879	967,241
Pseudomonas others	6,292	211	6,503
Respiratory syncytial virus	93,234	781	94,015
Serratia spp.	11,378	36,677	48,055
Staphylococcus aureus	2,246,504	733,059	2,979,562
Streptococcus group a	523,503	3,179	526,682
Streptococcus group b	1,412,071	3,400	1,415,471
Streptococcus others	67,710	1,597	69,307
Streptococcus pneumoniae	1,228,660	67,046	1,295,706
Toxoplasma spp.	34,487	0	34,487
Virus others	4,138,165	1	4,138,166
Total	17,150,428	2,849,385	19,999,813

Table S11: Number of isolates tested for antibiotic susceptibility considered as input data in the modelling of
prevalence of resistance, by pathogen–drug combination.

Pathogen	Antibiotic class	Literature studies	Single drug resistance profiles	Microbial data	Total
Acinetobacter					
baumannii	Aminoglycosides	72,505	33,073	162,998	268,576
Acinetobacter baumannii	Anti-pseudomonal penicillin/Beta- Lactamase inhibitors	40,251	16,433	66,835	123,519
Acinetobacter baumannii	Beta Lactam/Beta-lactamase inhibitors	44,970	31,210	150,098	226,278
Acinetobacter baumannii	Carbapenems	33,910	59,202	272,759	365,871
Acinetobacter baumannii	Fluoroquinolones	34,903	32,768	215,209	282,880
Acinetobacter baumannii Acinetobacter	Fourth-generation cephalosporins	9,007	17,116	80,872	106,995
baumannii	Third-generation cephalosporins	51,178	65,419	232,172	348,769
Citrobacter spp.	Aminoglycosides	1,151	154,746	140,498	296,395
Citrobacter spp.	Anti-pseudomonal penicillin/Beta- Lactamase inhibitors	48	219,495	56,550	276,093
Citrobacter spp.	Carbapenems	101	275,463	173,046	448,610
Citrobacter spp.	Fluoroquinolones	404	215,884	145,223	361,511
Citrobacter spp.	Fourth-generation cephalosporins	8	115,926	59,056	174,990
Citrobacter spp.	Third-generation cephalosporins	723	351,680	163,306	515,709
Enterobacter		22.2.62	566.000	076 510	076 101
spp.	Aminoglycosides	33,363	566,309	376,519	976,191
spp.	Lactamase inhibitors	15,857	457,284	165,010	638,151
spp.	Carbapenems	8,654	563,006	494,010	1,065,670
Enterobacter		11.026	107 710	11 6 700	
spp. Enterobacter	Fluoroquinolones	11,026	437,718	416,730	865,474
spp.	Fourth-generation cephalosporins	1,666	234,271	163,496	399,433
spp.	Trimethoprim-Sulfamethoxazole	11,740	211,884	163,552	387,176
Enterococcus faecalis	Fluoroquinolones	1,331	635,404	194,438	831,173
Enterococcus faecalis	Vancomycin	712	635,340	287,292	923,344
Enterococcus faecium	Fluoroquinolones	877	149,696	127,759	278,332
Enterococcus faecium	Vancomycin	873	153,229	236,685	390,787
Escherichia coli	Aminoglycosides	234,921	4,697,760	6,264,488	11,197,169

Escherichia coli	Aminopenicillin	131,064	7,350,908	2,974,348	10,456,320
~	Beta Lactam/Beta-lactamase	100.005			
Escherichia coli	inhibitors	122,325	2,498,300	2,785,833	5,406,458
Escherichia coli	Carbapenems	146,209	13,715,305	5,378,639	19,240,153
Fach wishin a di		104.001	10 417 102	E 14E 700	17 (9(07)
Escherichia coli	Fluoroquinoiones	124,081	12,417,185	5,145,708	17,080,972
Escherichia coli	Trimethoprim-Sulfamethoxazole	108,917	3,553,408	1,777,372	5,439,697
Escherichia coli	Third-generation cephalosporins	189,860	15,617,877	6,143,380	21,951,117
Group A					
Streptococcus	Macrolide	69	12,881	49,553	62,503
Group B					
Streptococcus	Fluoroquinolones	56	19,776	151,905	171,737
Group B					
Streptococcus	Macrolide	13	18,069	101,995	120,077
Group B		20	00 550	CO 17C	01.050
Streptococcus	Penicillin	29	20,553	60,476	81,058
Haemophilus	Aminononioillin	5 000	201 599	45 092	252 660
influenzae Haemonhilus	Aminopenicilin	5,990	301,388	45,082	352,000
influenzae	Third generation caphalosporing	1 207	182 605	140 139	624 041
Klahsialla	Third-generation cephalospornis	1,207	482,095	140,159	024,041
nneumoniae	Aminoglycosides	90 181	1 909 497	1 887 761	3 887 439
Klebsiella	Beta Lactam/Beta-lactamase	,101	1,505,157	1,007,701	5,007,155
pneumoniae	inhibitors	47,847	1.023.087	1.007.877	2.078.811
Klebsiella		,	_,,	_,	_,
pneumoniae	Carbapenems	49,903	3,743,034	1,911,570	5,704,507
Klebsiella	•				
pneumoniae	Fluoroquinolones	51,555	2,903,454	1,626,375	4,581,384
Klebsiella					
pneumoniae	Trimethoprim-Sulfamethoxazole	33,189	1,047,833	576,830	1,657,852
Klebsiella					
pneumoniae	Third-generation cephalosporins	69,850	4,429,962	1,895,657	6,395,469
Morganella spp.	Fluoroquinolones	73	12,558	102,636	115,267
Morganella spp	Fourth-generation cephalosporins	23	6 194	47 239	53 456
morganena spp.	rourui generation cophatosporms	25	0,171	17,239	55,150
Morganella spp.	Third-generation cephalosporins	100	25,132	116,282	141,514
Neisseria	Fluoroquinolonos	72	337 407	10.460	357 038
Neisseria	Photoquinoiones	12	557,497	19,409	557,058
gonorrhoeae	Third-generation cephalosporins	46	85,659	51,025	136,730
Proteus spp.	Aminoglycosides	8,190	214,294	575,025	797,509
Proteus spp.	Aminopenicillin	4,145	167,880	248,874	420,899
	•			,	
Proteus spp.	Fluoroquinolones	4,008	298,127	471,368	773,503
Proteus spp.	Trimethoprim-Sulfamethoxazole	4,097		251,404	255,501
Proteus spp.	Third-generation cephalosporins	4,918	477,727	492,298	974,943

Pseudomonas					
aeruginosa	Aminoglycosides	66,697	1,796,063	1,567,433	3,430,19
Pseudomonas	Anti-pseudomonal penicillin/Beta-				
aeruginosa	Lactamase inhibitors	17,470	1,586,814	736,357	2,340,64
Pseudomonas	~ .	• • • • •			
aeruginosa	Carbapenems	28,967	1,905,361	1,397,400	3,331,72
Pseudomonas		20 556	1 702 144	1 210 550	2 052 25
aeruginosa Daou domon ag	Fluoroquinolones	39,556	1,793,144	1,219,550	3,052,25
Pseudomonas	Fourth generation conhelespering	10 225	877 620	549 141	1 426 00
Psaudomonas	Fourth-generation cephalospornis	10,323	877,029	546,141	1,430,09
aeruoinosa	Third-generation cephalosporins	39 713	1 108 211	1 021 384	2 169 30
Non-typhoidal	Third generation cephalosporms	59,715	1,100,211	1,021,501	2,107,50
Salmonellae	Fluoroquinolones	67.948	38.584	21.416	127.94
Salmonella	- Inoroquinoroneo	07,210	00,001	21,110	
Paratyphi	Fluoroquinolones	11,123		5,548	16,67
Salmonella		,		,	,
Paratyphi	Multi-drug resistance	31,383	1,131	5,548	38,06
Salmonella					
Typhi	Fluoroquinolones	41,718	3,299	30,072	75,08
Salmonella					
Typhi	Multi-drug resistance	113,258	6,593	3,608	123,45
~ .					
Serratia spp.	Aminoglycosides	15,926	192,825	196,432	405,18
a .	Anti-pseudomonal penicillin/Beta-	0.074	206.002	60 000	265.00
Serratia spp.	Lactamase inhibitors	9,974	286,092	69,809	365,8
C	Carbonana	4.052	220 714	252 120	506 9
Serratia spp.	Carbapenems	4,952	338,/14	253,139	596,8
Serratia spp	Fluoroquinolones	5 201	276 210	212 108	103 6
serraita spp.	Tuoroquinoiones	5,291	270,210	212,190	495,02
Serratia spp	Fourth-generation cephalosporins	342	143 154	85 400	228.89
serrenter spp.		0.2	110,10	00,100	,
Serratia spp.	Third-generation cephalosporins	10,502	389,175	231,306	630,98
	8		,		
Shigella spp.	Fluoroquinolones	NA	26,170	10,166	36,33
Staphylococcus					
aureus	Fluoroquinolones	19,755	1,306,936	2,488,499	3,815,1
Staphylococcus					
aureus	Macrolide	7,342	1,200,571	1,404,602	2,612,5
Staphylococcus					
aureus	Methicillin	16,454	1,530,965	2,383,921	3,931,34
Staphylococcus					
aureus	Trimethoprim-Sulfamethoxazole	5,718	980,139	1,061,489	2,047,34
Staphylococcus	Verseensig	0 (72	15 702 595	1 246 052	17 0 0 0
aureus	Vancomycin Data Lastaw (Data lastawasa	9,673	45,703,585	1,346,952	47,060,2
Streptococcus	inhibitors	1.020	1.060	195 972	197.0
Streptococcus	minutors	1,029	1,000	163,625	187,9
neumoniae	Carbananana	7.004	286.086	204 658	588 7
Streptococcus		7,094	200,900	274,038	500,7.
nneumoniae	Fluoroquinolones	38 449	294 295	471 871	804.6
Streptococcus	Tuoroquinorones	50,779	277,275	+/1,0/1	007,0
pneumoniae	Macrolide	27 301	255 955	460 238	743 49
Streptococcus		27,501	200,700	100,250	, , - ,
pneumoniae	Penicillin	28.091	375.820	366.413	770.32
		- ,	,	,	

Streptococcus					
pneumoniae	Trimethoprim-Sulfamethoxazole	21,417	14,041	101,547	137,005
Streptococcus					
pneumoniae	Third-generation cephalosporins	28,950	571,347	554,388	1,154,685

2368 Table S12: Global burden of AMR estimation hierarchy for syndromes, pathogens, and antibiotics

	Syndrome Type	Infectious Syndrome	Pathogen	Modelled Antibiotic classes			
			Acinetobacter baumannü	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fourth-generation cephalosporins, Third-generation cephalosporins, Aminoglycosides, Fluoroquinolones			
			Citrobacter spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins			
			Enterobacter spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Trimethoprim-Sulfamethoxazole			
			Enterococcus faecalis	Fluoroquinolones, Vancomycin			
			Enterococcus faecium	Fluoroquinolones, Vancomycin			
			Escherichia coli	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins			
			Group A Streptococcus	Macrolide			
			Group B Streptococcus	Fluoroquinolones, Macrolide, Penicillin			
0	10		Haemophilus influenzae	Aminopenicillin, Third-generation cephalosporins			
'elope	logies		Klebsiella pneumoniae	Aminoglycosides, Beta Lactam/Beta-lactamase inhibitors, Fluoroquinolones, Trimethoprim- Sulfamethoxazole, Carbapenems, Third-generation cephalosporins			
L N	tio		Morganella spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins			
ality F	erial e	Infections of the skin and subcutaneous systems	Infections of the skin and subcutaneous systems	Proteus spp.	Aminoglycosides, Aminopenicillin, Fluoroquinolones, Trimethoprim-Sulfamethoxazole, Third- generation cephalosporins		
Mort	d bact			and subcutaneous systems	and subcutaneous systems	Pseudomonas aeruginosa	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
epsis	imate			Serratia spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins		
Ň	est		Staphylococcus aureus	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Methicillin, Vancomycin			
	Has		Streptococcus	Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fluoroquinolones, Macrolide, Trimethoprim-			
			Acromonae spp	No antibiotica modelled			
			Aeromonus spp.	No antibiotics modelled			
			Entamocha histolytica	No antibiotics modelled			
			Gram negative others	No antibiotics modelled			
			Gram positive others	No antibiotics modelled			
			Listaria spp	No antibiotics modelled			
			Non polio enteroviruses	No antibiotics modelled			
		Other Acinetobacter species	No antibiotics modelled				
			Other <i>Clostridiodes</i> species	No antibiotics modelled			
			Other enterococci	No antibiotics modelled			
			Other Klebsiella species	No antibiotics modelled			

		Other <i>Mycobacterium</i> species	No antibiotics modelled
		Other <i>Pseudomonas</i> species	No antibiotics modelled
		Other <i>Streptococcus</i> species	No antibiotics modelled
		Other viruses	No antibiotics modelled
		Actinomyces spp.	No antibiotics modelled
			Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Beta Lactam/Beta-lactamase inhibitors,
		Acinetobacter baumannii	Carbapenems, Fourth-generation cephalosporins, Third-generation cephalosporins, Aminoglycosides, Fluoroquinolones
			Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors. Carbapenems,
		Citrobacter spp. Enterobacter spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
			Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems.
			Fluoroquinolones, Fourth-generation cephalosporins, Trimethoprim-Sulfamethoxazole
		Enterococcus faecalis	Fluoroquinolones, Vancomycin
		Enterococcus faecium	Fluoroquinolones, Vancomycin
		Escherichia coli	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins
		Group A Streptococcus	Macrolide
		Group B Streptococcus	Fluoroquinolones, Macrolide, Penicillin
		Haemophilus influenzae	Aminopenicillin, Third-generation cephalosporins
		Klebsiella pneumoniae	Aminoglycosides, Beta Lactam/Beta-lactamase inhibitors, Fluoroquinolones, Trimethoprim-
		Bloodstream infections <i>Morganella</i> spp. <i>Proteus</i> spp.	Fluoroquinolones, Fourth-generation cenhalosportas, Third-generation cenhalosportas
	Bloodstream		Aminoglycosides, Aminopenicillin, Fluoroguinolones, Trimethoprim-Sulfamethoxazole, Third-
	infections		generation cephalosporins
	Infections		Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
		Pseudomonas deruginosa	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
		Serratia spp	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
		Serraita spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
		Staphylococcus aureus	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Methicillin, Vancomycin
		Streptococcus	Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fluoroquinolones, Macrolide, Trimethoprim-
		pneumoniae	Sulfamethoxazole, Third-generation cephalosporins, Penicillin
		Actinomyces spp.	No antibiotics modelled
		Aeromonas spp.	No antibiotics modelled
		Aspergillus spp.	No antibiotics modelled
		Burkholderia spp.	No antibiotics modelled
		<i>Candida</i> spp.	No antibiotics modelled
		<i>Cryptococcus</i> spp.	No antibiotics modelled
		Gram-negative others	No antibiotics modelled
		Gram-positive others	No antibiotics modelled
		Histoplasma spp.	No antibiotics modelled
		Leptospira spp.	No antibiotics modelled

		1	
		Listeria spp.	No antibiotics modelled
		Neisseria meningitidis	No antibiotics modelled
		Non-polio enteroviruses	No antibiotics modelled
		Other Acinetobacter species	No antibiotics modelled
		Other enterococci	No antibiotics modelled
		Other fungi	No antibiotics modelled
		Other Klebsiella species	No antibiotics modelled
		Other <i>Mycobacterium</i> species	No antibiotics modelled
		Other <i>Pseudomonas</i> species	No antibiotics modelled
		Other Streptococcus species	No antibiotics modelled
		Other viruses	No antibiotics modelled
		Enteropathogenic	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems,
		Escherichia coli	Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins
		Enterotoxigenic	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems,
		Escherichia coli	Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins
		Invasive non-typhoidal Salmonella	Fluoroquinolones
		Shigella spp.	Fluoroquinolones
		Adenovirus	_ No antibiotics modelled
	D' 1	Aeromonas spp.	_ No antibiotics modelled
	Diarrhoea	Campylobacter spp.	No antibiotics modelled
		Clostridioides difficile	No antibiotics modelled
		Cryptosporidium spp.	No antibiotics modelled
		Entamoeba histolytica	No antibiotics modelled
		Norovirus	No antibiotics modelled
		Other diarrhoeal pathogens	No antibiotics modelled
		Rotavirus	No antibiotics modelled
		Vibrio cholerae	No antibiotics modelled
		Acinetobacter baumannii	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fourth-generation cephalosporins, Third-generation cephalosporins, Aminoglycosides, Fluoroquinolones
		Citrobacter spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
	Endocarditis	Endocarditis	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
		Enterobacier spp.	Fluoroquinolones, Fourth-generation cephalosporins, Trimethoprim-Sulfamethoxazole
		Enterococcus faecalis	Fluoroquinolones, Vancomycin
		Enterococcus faecium	Fluoroquinolones, Vancomycin
		Escherichia coli	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins
		•	

		Group A Streptococcus	Macrolide
		Klobsiella proumoniae	Aminoglycosides, Beta Lactam/Beta-lactamase inhibitors, Fluoroquinolones, Trimethoprim-
		Kiebsiena pheumoniae	Sulfamethoxazole, Carbapenems, Third-generation cephalosporins
		Morganella spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
		Protous snn	Aminoglycosides, Aminopenicillin, Fluoroquinolones, Trimethoprim-Sulfamethoxazole, Third-
		Troteus spp.	generation cephalosporins
		Pseudomonas aeruginosa	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
		i seudomontas acrazinosa	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
		Serratia spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
		Schula Spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
		Staphylococcus aureus	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Methicillin, Vancomycin
		Streptococcus	Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fluoroquinolones, Macrolide, Trimethoprim-
		pneumoniae	Sulfamethoxazole, Third-generation cephalosporins, Penicillin
		<i>Candida</i> spp.	No antibiotics modelled
		Gram-negative others	No antibiotics modelled
		Neisseria meningitidis	No antibiotics modelled
		Other Klebsiella species	No antibiotics modelled
		Other <i>Streptococcus</i> species	No antibiotics modelled
		Toxoplasma spp.	No antibiotics modelled
		· · ·	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Beta Lactam/Beta-lactamase inhibitors,
		Acinetobacter baumannii Citrobacter spp.	Carbapenems, Fourth-generation cephalosporins, Third-generation cephalosporins, Aminoglycosides,
			Fluoroquinolones
			Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
			Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
		Enterobacter spn	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
		Enterobucier spp.	Fluoroquinolones, Fourth-generation cephalosporins, Trimethoprim-Sulfamethoxazole
		Enterococcus faecalis	Fluoroquinolones, Vancomycin
		Enterococcus faecium	Fluoroquinolones, Vancomycin
		Escherichia coli	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems,
	Infections of bones,		Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins
	joints, and related	Group A Streptococcus	
	organs	Group B Streptococcus	Fuoroquinoiones, Macronae, Pencinin
		Haemophilus injiuenzae	Aminopenerini, Inita-generation ceptialosporms
		Klebsiella pneumoniae	Sulfamethoxazole. Carbapenems. Third-generation cephalosporins
		<i>Morganella</i> spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
			Aminoglycosides, Aminopenicillin, Fluoroquinolones, Trimethoprim-Sulfamethoxazole, Third-
		Proteus spp.	generation cephalosporins
		Pseudomonas aeruginosa	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
			Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
		Sometia ann	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
		Serratia spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
		Staphylococcus aureus	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Methicillin, Vancomycin

	Streptococcus	Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fluoroquinolones, Macrolide, Trimethoprim-
	pneumoniae	Sulfamethoxazole, Third-generation cephalosporins, Penicillin
	Aeromonas spp.	No antibiotics modelled
	Burkholderia spp.	No antibiotics modelled
	Candida spp.	No antibiotics modelled
	Chlamydia spp.	No antibiotics modelled
	Gram-negative others	No antibiotics modelled
	Gram-positive others	No antibiotics modelled
	Neisseria meningitidis	No antibiotics modelled
	Other Acinetobacter species	No antibiotics modelled
	Other enterococci	No antibiotics modelled
	Other fungi	No antibiotics modelled
	Other Klebsiella species	No antibiotics modelled
	Other <i>Mycobacterium</i> species	No antibiotics modelled
	Other <i>Pseudomonas</i> species	No antibiotics modelled
	Other <i>Streptococcus</i> species	No antibiotics modelled
	Other viruses	No antibiotics modelled
	Acinetobacter baumannii	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fourth-generation cephalosporins, Third-generation cephalosporins, Aminoglycosides, Eluoroquinolones
	Citrobacter spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
	Enterobacter spn	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
		Fluoroquinolones, Fourth-generation cephalosporins, Trimethoprim-Sulfamethoxazole
	Enterococcus faecalis	Fluoroquinolones, Vancomycin
	Enterococcus faecium	Fluoroquinolones, Vancomycin
Lower respiratory	Escherichia coli	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins
infections	Group A Streptococcus	Macrolide
meetions	Group B Streptococcus	Fluoroquinolones, Macrolide, Penicillin
	Haemophilus influenzae	Aminopenicillin, Third-generation cephalosporins
	Klebsiella pneumoniae	Aminoglycosides, Beta Lactam/Beta-lactamase inhibitors, Fluoroquinolones, Trimethoprim- Sulfamethoxazole, Carbapenems, Third-generation cephalosporins
	Morganella spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
	Proteus spp.	Aminoglycosides, Aminopenicillin, Fluoroquinolones, Trimethoprim-Sulfamethoxazole, Third- generation cephalosporins
	Pseudomonas aeruginosa	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
	i seudomonus dei uginosu	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
	Serratia spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins

	Staphylococcus aureus	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Methicillin, Vancomycin
	Streptococcus	Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fluoroquinolones, Macrolide, Trimethoprim-
	pneumoniae	Sulfamethoxazole, Third-generation cephalosporins, Penicillin
	Actinomyces spp.	No antibiotics modelled
	Aeromonas spp.	No antibiotics modelled
	Aspergillus spp.	No antibiotics modelled
	Burkholderia spp.	No antibiotics modelled
	Chlamydia spp.	No antibiotics modelled
	Cryptococcus spp.	No antibiotics modelled
	Cytomegalovirus	No antibiotics modelled
	Gram-negative others	No antibiotics modelled
	Gram-positive others	No antibiotics modelled
	Histoplasma spp.	No antibiotics modelled
	Influenza virus	No antibiotics modelled
	Legionella spp.	No antibiotics modelled
	Mycoplasma spp.	No antibiotics modelled
	Non-polio enteroviruses	No antibiotics modelled
	Other Acinetobacter	
	species	No antibiotics modelled
	Other fungi	No antibiotics modelled
	Other Klebsiella species	No antibiotics modelled
	Other <i>Mycobacterium</i> species	No antibiotics modelled
	Other <i>Pseudomonas</i> species	No antibiotics modelled
	Other <i>Streptococcus</i> species	No antibiotics modelled
	Other viruses	No antibiotics modelled
	Respiratory syncytial virus	No antibiotics modelled
		Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Beta Lactam/Beta-lactamase inhibitors,
	Acinetobacter baumannii	Carbapenems, Fourth-generation cephalosporins, Third-generation cephalosporins, Aminoglycosides, Fluoroquinolones
	Citrobacter spp	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
	Curobacier spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
	Enterohacter spn	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
Meningitis	Enterobacter spp.	Fluoroquinolones, Fourth-generation cephalosporins, Trimethoprim-Sulfamethoxazole
meningitis	Enterococcus faecalis	Fluoroquinolones, Vancomycin
	Enterococcus faecium	Fluoroquinolones, Vancomycin
	Escherichia coli	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems,
		Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins
	Group A Streptococcus	
	Group B Streptococcus	Fluoroquinolones, Macrolide, Penicillin
	Haemophilus influenzae	Aminopenicillin, 1 nird-generation cephalosporins

	Klebsiella pneumoniae	Aminoglycosides, Beta Lactam/Beta-lactamase inhibitors, Fluoroquinolones, Trimethoprim-					
	Morganella spp	Fluoroquinolones Fourth-generation cephalosporins Third-generation cephalosporins					
	morganeita spp.	Aminoglycosides, Aminopenicillin, Eluoroquinolones, Trimetentrianon comatosportas					
	Proteus spp.	generation cephalosporins					
	D 7 1	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,					
	Pseudomonas aeruginosa	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins					
	Somatia ann	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,					
	Serralia spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins					
	Staphylococcus aureus	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Methicillin, Vancomycin					
	Streptococcus	Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fluoroquinolones, Macrolide, Trimethoprim-					
	pneumoniae	Sulfamethoxazole, Third-generation cephalosporins, Penicillin					
	Adenovirus	No antibiotics modelled					
	Burkholderia spp.	No antibiotics modelled					
	<i>Candida</i> spp.	No antibiotics modelled					
	Coagulase-negative	No opticitation and allo d					
	Staphylococcus	No antibiones modelled					
	Gram-negative others	No antibiotics modelled					
	Gram-positive others	No antibiotics modelled					
	Listeria spp.	No antibiotics modelled					
	Mumps	No antibiotics modelled					
	Neisseria meningitidis	No antibiotics modelled					
	Non-polio enteroviruses	No antibiotics modelled					
	Other Acinetobacter	No antibiotics modelled					
	species						
	Other fungi	No antibiotics modelled					
	Other Klebsiella species	No antibiotics modelled					
	Other Pseudomonas	No antibiotics modelled					
	species						
	Other Streptococcus	No antibiotics modelled					
	species						
	Other viruses	No antibiotics modelled					
		Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Beta Lactam/Beta-lactamase inhibitors,					
	Acinetobacter baumannu	Carbapenems, Fourth-generation cephalosporins, Third-generation cephalosporins, Aminoglycosides,					
		Fluoroquinolones					
	Citrobacter spp.	Aminoglycosides, Anti-pseudomonal peniciliin/Beta-Lactamase innibitors, Carbapenems,					
Denite and in diata		Futoroquinoiones, Fourth-generation ceptatosportns, 1 nird-generation ceptatosportns					
abdominal infections	Enterobacter spp.	Fluoroquinolones, Fourth-generation cephalosporins, Trimethoprim-Sulfamethoxazole					
uouommu micetions	Enterococcus faecalis	Fluoroquinolones, Vancomycin					
	Enterococcus faecium	Fluoroquinolones, Vancomycin					
		Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems,					
	Escherichia coli	Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins					
	Group A Streptococcus	Macrolide					

	Group B Streptococcus	Fluoroquinolones, Macrolide, Penicillin
	Klahsialla praumoniaa	Aminoglycosides, Beta Lactam/Beta-lactamase inhibitors, Fluoroquinolones, Trimethoprim-
	Kiebsiena pheumoniae	Sulfamethoxazole, Carbapenems, Third-generation cephalosporins
	Morganella spp.	Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
	Proteus spp.	Aminoglycosides, Aminopenicillin, Fluoroquinolones, Trimethoprim-Sulfamethoxazole, Third- generation cephalosporins
	Pseudomonas aeruginosa	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
	Serratia spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins
	Staphylococcus aureus	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Methicillin, Vancomycin
	Streptococcus	Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fluoroquinolones, Macrolide, Trimethoprim-
	pneumoniae	Sulfamethoxazole, Third-generation cephalosporins, Penicillin
	Actinomyces spp.	No antibiotics modelled
	Aeromonas spp.	No antibiotics modelled
	Burkholderia spp.	No antibiotics modelled
	Candida spp.	No antibiotics modelled
	Chlamydia spp.	No antibiotics modelled
	Entamoeba histolytica	No antibiotics modelled
	Gram-negative others	No antibiotics modelled
	Gram-positive others	No antibiotics modelled
	Other Acinetobacter species	No antibiotics modelled
	Other enterococci	No antibiotics modelled
	Other Klebsiella species	No antibiotics modelled
	Other <i>Pseudomonas</i> species	No antibiotics modelled
	Other Streptococcus species	No antibiotics modelled
Sexually transmitted	Neisseria gonorrhoeae	Third-generation cephalosporins, Fluoroquinolones
infections	Chlamydia spp.	No antibiotics modelled
meenons	Treponema pallidum	No antibiotics modelled
Tuberculosis	Mycobacterium tuberculosis	Multi-drug resistance, Extensive drug resistance
Typhoid, paratyphoid, and	Invasive non-typhoidal Salmonella	Fluoroquinolones
invasive non-	Salmonella Paratyphi	Fluoroquinolones, Multi-drug resistance
Typhoidal Salmonella	Salmonella Typhi	Fluoroquinolones, Multi-drug resistance
Urinary tract infections and	Acinetobacter baumannii	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Fourth-generation cephalosporins, Third-generation cephalosporins, Aminoglycosides, Fluoroquinolones
pyelonephritis	Citrobacter spp.	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems, Fluoroquinolones, Fourth-generation cephalosporins, Third-generation cephalosporins

			Enterobacter spp	Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors, Carbapenems,
			Emerobacier spp.	Fluoroquinolones, Fourth-generation cephalosporins, Trimethoprim-Sulfamethoxazole
			Enterococcus faecalis	Fluoroquinolones, Vancomycin
			Enterococcus faecium	Fluoroquinolones, Vancomycin
			Escherichia coli	Aminoglycosides, Aminopenicillin, Beta Lactam/Beta-lactamase inhibitors, Carbapenems, Trimethoprim-Sulfamethoxazole, Fluoroquinolones, Third-generation cephalosporins
			Group A Streptococcus	Macrolide
			Group B Streptococcus	Fluoroquinolones, Macrolide, Penicillin
			Haemophilus influenzae	Aminopenicillin, Third-generation cephalosporins
			Klebsiella pneumoniae	Aminoglycosides, Beta Lactam/Beta-lactamase inhibitors, Fluoroquinolones, Trimethoprim-
			Morganella spp	Fluoroquinolones Fourth-generation centration contraction central sports
			interganeena spp.	Aminopariorando, Aminopenicillin Eluoroguinolones Trimethoprimo-Sulfamethoyazole Third-
			Proteus spp.	generation cenholosnorins
				Aminorlycosides Anti-nseudomonal penicillin/Reta-I actamase inhibitors. Carbapenems
			Pseudomonas aeruginosa	Fluoroquinolones, Fourth-generation cephalosporins. Third-generation cephalosporins
				Aminoglycosides, Anti-pseudomonal penicillin/Beta-Lactamase inhibitors. Carbapenems
			Serratia spp.	Fluoroquinolones Fourth-generation cenhalosporins. Third-generation cenhalosporins
			Staphylococcus aureus	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Methicillin, Vancomycin
	Streptococcus		Streptococcus	Beta Lactam/Beta-lactamase inhibitors. Carbapenems, Fluoroquinolones, Macrolide, Trimethoprim-
		pneumoniae		Sulfamethoxazole, Third-generation cephalosporins, Penicillin
			Aeromonas spp.	No antibiotics modelled
			Aspergillus spp.	No antibiotics modelled
			Burkholderia spp.	No antibiotics modelled
			Candida spp.	No antibiotics modelled
			Coagulase-negative	
			Staphylococcus	No antibiotics modelled
			Gram-negative others	No antibiotics modelled
			Mycoplasma spp.	No antibiotics modelled
			Other Acinetobacter species	No antibiotics modelled
			Other enterococci	No antibiotics modelled
			Other fungi	No antibiotics modelled
			Other Klebsiella species	No antibiotics modelled
			Other <i>Pseudomonas</i> species	No antibiotics modelled
			Other <i>Streptococcus</i> species	No antibiotics modelled
	e	Encephalitis	Not modelled	No antibiotics modelled
	nav ed al es	Eye infections	Not modelled	No antibiotics modelled
	ot l naté erié ogie	Carditis,		
	s n stin act iold	myocarditis, and	Unspecified viruses	No antibiotics modelled
	b: b: eti	pericarditis		
	Ц	Genital infections	Not modelled	No antibiotics modelled

Hepatitis	Not modelled	No antibiotics modelled
Myelitis,		
meningoencephalitis,		
and other central	Not modelled	No antibiotics modelled
nervous system		
infections		
Oral infections	Not modelled	No antibiotics modelled
Other parasitic	Not modelled	No antibiotics modelled
infections	Not modelled	
Unspecified site	Not modelled	No antibiotics modelled
infections	Not modelled	
Upper respiratory	Not modelled	No ontihistics modelled
infections	Not modelled	No antibiotes moderied

2370	Table S13: 82 fatal	pathogen-drug	combination ranking b	burden attributable to AMR	in 1990, globally	and by super-region
					10	

Location	Year	Pathogen	Antibiotic Class	Rank	Attributable AMR Deaths
Global	1990	Streptococcus pneumoniae	Carbapenems	1	107,000 (61,800-151,000)
Global	1990	Staphylococcus aureus	Methicillin	2	57,200 (34,100-80,300)
Global	1990	Acinetobacter baumannii	Carbapenems	3	51,300 (34,100-68,600)
Global	1990	Streptococcus pneumoniae	Fluoroquinolones	4	45,300 (20,500-70,100)
Global	1990	Klebsiella pneumoniae	3GC	5	31,600 (20,000-43,200)
Global	1990	Acinetobacter baumannii	Fluoroquinolones	6	31,200 (25,300-37,200)
Global	1990	Pseudomonas aeruginosa	Carbapenems	7	30,200 (18,000-42,500)
Global	1990	Streptococcus pneumoniae	TMP-SMX	8	29,200 (0-62,300)
Global	1990	Klebsiella pneumoniae	Fluoroquinolones	9	29,200 (20,200-38,100)
Global	1990	Acinetobacter baumannii	Anti-pseudomonal	10	29,100 (23,600-34,600)
Global	1990	Escherichia coli	TMP-SMX	11	28,500 (19,300-37,700)
Global	1990	Klebsiella pneumoniae	Aminoglycosides	12	28,500 (20,400-36,600)
Global	1990	Streptococcus pneumoniae	Penicillin	13	25,900 (18,400-33,400)
Global	1990	Acinetobacter baumannii	Aminoglycosides	14	24,600 (18,300-31,000)
Global	1990	Pseudomonas aeruginosa	Fluoroquinolones	15	24,300 (17,200-31,500)
Global	1990	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib.	16	24,200 (4,690-43,600)
Global	1990	Streptococcus pneumoniae	3GC	17	23,900 (17,100-30,800)
Global	1990	Klebsiella pneumoniae	TMP-SMX	18	22,500 (11,500-33,500)
Global	1990	Escherichia coli	3GC	19	21,700 (8,580-34,900)
Global	1990	Pseudomonas aeruginosa	Anti-pseudomonal	20	21,000 (16,100-25,800)
Global	1990	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	21	19,700 (9,630-29,900)
Global	1990	Klebsiella pneumoniae	Carbapenems	22	18,100 (13,300-22,900)
Global	1990	Pseudomonas aeruginosa	Aminoglycosides	23	17,000 (10,800-23,200)
Global	1990	Escherichia coli	Aminoglycosides	24	16,100 (7,240-24,900)
Global	1990	Streptococcus pneumoniae	Macrolides	25	15,400 (8,940-21,800)
Global	1990	Staphylococcus aureus	Fluoroquinolones	26	15,100 (5,660-24,500)
Global	1990	Escherichia coli	Fluoroquinolones	27	14,100 (8,100-20,200)
Global	1990	Staphylococcus aureus	TMP-SMX	28	13,300 (8,010-18,500)
Global	1990	Escherichia coli	Carbapenems	29	11,900 (3,280-20,600)
Global	1990	Staphylococcus aureus	Macrolides	30	11,500 (7,510-15,500)
Global	1990	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	31	11,300 (6,950-15,600)
Global	1990	Escherichia coli	Aminopenicillin	32	10,400 (5,650-15,200)
Global	1990	Enterobacter spp.	Carbapenems	33	9,660 (7,290-12,000)
Global	1990	Salmonella Typhi	Fluoroquinolones	34	8,690 (1,220-16,200)
Global	1990	Acinetobacter baumannii	3GC	35	7,990 (6,660-9,320)
Global	1990	Enterobacter spp.	Anti-pseudomonal	36	7,900 (6,340-9,460)
Global	1990	Serratia spp.	Anti-pseudomonal	37	7,760 (6,000-9,530)
Global	1990	Haemophilus influenzae	3GC	38	7,470 (413-14,500)
Global	1990	Enterobacter faecalis	Fluoroquinolones	39	7,290 (4,810-9,760)
Global	1990	Shigella spp.	Fluoroquinolones	40	6,710 (1,190-12,200)
Global	1990	Serratia spp.	Aminoglycosides	41	6,660 (4,610-8,710)
Global	1990	Staphylococcus aureus	Vancomycin	42	6,250 (2,800-9,710)
Global	1990	Enterococcus faecium	Fluoroquinolones	43	6,250 (3,070-9,430)
Global	1990	Acinetobacter baumannii	4GC	44	6,130 (4,880-7,370)
Global	1990	Enterobacter spp.	Aminoglycosides	45	6,010 (4,110-7,920)
Global	1990	Haemophilus influenzae	Aminopenicillin	46	5,450 (4,410-6,500)
Global	1990	Mycobacterium tuberculosis	MDR excluding XDR	47	5,300 (0-16,100)
Global	1990	Pseudomonas aeruginosa	4GC	48	5,020 (3,070-6,970)
Global	1990	Salmonella Typhi	MDR	49	4,880 (648-9,120)
Global	1990	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	50	4,830 (2,870-6,780)
Global	1990	Serratia spp.	4GC	51	4,770 (4,040-5,500)
Giobal	1990	Enterobacter spp.	Fluoroquinolones	52	4,750 (2,730-6,770)
Global	1990	Enterobacter spp.	4GC	53	4,340 (3,620-5,060)

Global	1990	Serratia spp.	Fluoroquinolones	54	4,040 (1,720-6,370)
Global	1990	Enterococcus faecium	Vancomycin	55	4,020 (3,070-4,970)
Global	1990	Citrobacter spp.	Anti-pseudomonal	56	3,600 (2,900-4,310)
Global	1990	Group B Streptococcus	Fluoroquinolones	57	3,350 (1,660-5,040)
Global	1990	Proteus spp.	3GC	58	3.210 (1.850-4.580)
Global	1990	Serratia spp.	Carbapenems	59	3,190 (2,420-3,960)
Global	1990	Citrobacter spp.	Fluoroquinolones	60	3,000 (1,700-4,310)
Global	1990	Pseudomonas aeruginosa	3GC	61	2.650 (612-4.680)
Global	1990	Morganella spp.	Fluoroquinolones	62	2.600 (1.360-3.840)
Global	1990	Morganella spp.	4GC	63	2.580 (1.740-3.420)
Global	1990	Group B Streptococcus	Macrolides	64	2,510 (1,580-3,430)
Global	1990	Group B Streptococcus	Penicillin	65	2 430 (436-4 430)
Global	1990	Morganella spp	3GC	66	2 330 (1 680-2 980)
Global	1990	Enterobacter spp.	TMP-SMX	67	2 290 (363-4 210)
Global	1990	Non-typhoidal Salmonella	Fluoroquinolones	68	2,270 (0-5,020)
Clobal	1000	Citrohaatar ann	Carbananama	60	2,240 (1,000, 2,200)
Clobal	1990	Crown A Strantogoggur	Magralidas	70	2,240 (1,090-5,590)
Clobal	1000	Brotous ann	Aminoponicillin	70	2,220 (1,380-3,000)
Clobal	1990	Saluran alla Borotambi	MDP	71	2,210 (1,700-2,720)
Clobal	1990	Salmonella Paratypili	MDR	72	2,190 (139-4,230)
Global	1990	Enterobacter faecalis	A wine devesion	73	2,060 (0-4,730)
Global	1990	Proteus spp.	Aminogiycosides	74	1,810 (1,140-2,470)
Global	1990	Salmonella Paratyphi	Fluoroquinolones	/5	1,390 (0-2,770)
Global	1990	Citrobacter spp.	Aminoglycosides	76	1,350 (1,020-1,670)
Global	1990	Citrobacter spp.	3GC	77	1,260 (590-1,920)
Global	1990	Citrobacter spp.	4GC	78	1,040 (848-1,230)
Global	1990	Proteus spp.	Fluoroquinolones	79	782 (149-1,410)
Global	1990	Serratia spp.	3GC	80	761 (0-2,010)
Global	1990	Proteus spp.	TMP-SMX	81	494 (0-1,320)
Global	1990	Mycobacterium tuberculosis	XDR	82	0 (0-0)
Central Europe, Eastern Europe, and Central Asia	1990	Streptococcus pneumoniae	Carbapenems	1	5,380 (3,090-7,680)
Central Europe, Eastern Europe, and Central Asia	1990	Acinetobacter baumannii	Carbapenems	2	3,770 (2,690-4,850)
Central Europe, Eastern Europe, and Central Asia	1990	Staphylococcus aureus	Methicillin	3	3,640 (1,630-5,660)
Central Europe, Eastern Europe, and Central Asia	1990	Pseudomonas aeruginosa	Carbapenems	4	3,000 (1,860-4,130)
Central Europe, Eastern Europe, and Central Asia	1990	Pseudomonas aeruginosa	Fluoroquinolones	5	2,340 (1,660-3,020)
Central Europe, Eastern Europe, and Central Asia	1990	Klebsiella pneumoniae	Aminoglycosides	6	2,080 (1,560-2,610)
Central Europe, Eastern Europe, and Central Asia	1990	Acinetobacter baumannii	Fluoroquinolones	7	1,890 (1,540-2,240)
Central Europe, Eastern Europe, and Central Asia	1990	Escherichia coli	TMP-SMX	8	1,770 (1,020-2,530)
Central Europe, Eastern Europe, and Central Asia	1990	Klebsiella pneumoniae	Fluoroquinolones	9	1,750 (1,190-2,310)
Central Europe, Eastern Europe, and Central Asia	1990	Acinetobacter baumannii	Aminoglycosides	10	1,660 (1,310-2,000)
Central Europe, Eastern Europe, and Central Asia	1990	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib.	11	1,590 (405-2,780)
Central Europe, Eastern Europe, and Central Asia	1990	Staphylococcus aureus	Fluoroquinolones	12	1,540 (456-2,630)
Central Europe, Eastern Europe, and Central Asia	1990	Escherichia coli	3GC	13	1,470 (707-2,230)
Central Europe, Eastern Europe, and Central Asia	1990	Klebsiella pneumoniae	3GC	14	1,470 (878-2,050)
Central Europe, Eastern Europe, and Central Asia	1990	Staphylococcus aureus	Macrolides	15	1,420 (944-1,890)
Central Europe, Eastern Europe, and Central Asia	1990	Streptococcus pneumoniae	TMP-SMX	16	1,410 (0-3,060)
Central Europe, Eastern Europe, and Central Asia	1990	Klebsiella pneumoniae	TMP-SMX	17	1,390 (703-2,070)
Central Europe, Eastern Europe, and Central Asia	1990	Pseudomonas aeruginosa	Aminoglycosides	18	1,260 (761-1,750)
Central Europe, Eastern Europe, and Central Asia	1990	Pseudomonas aeruginosa	Anti-pseudomonal	19	1,190 (930-1,460)
Central Europe, Eastern Europe, and Central Asia	1990	Streptococcus pneumoniae	Penicillin	20	1,110 (831-1,400)
Central Europe, Eastern Europe, and Central Asia	1990	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	21	1,080 (672-1,490)
Central Europe, Eastern Europe, and Central Asia	1990	Escherichia coli	Aminopenicillin	22	1,060 (319-1,800)
Central Europe, Eastern Europe, and Central Asia	1990	Acinetobacter baumannii	Anti-pseudomonal	23	1,010 (633-1,390)
Central Europe, Eastern Europe, and Central Asia	1990	Streptococcus pneumoniae	Fluoroquinolones	24	899 (328-1.470)
Central Europe, Eastern Europe, and Central Asia	1990	Enterobacter faecalis	Fluoroquinolones	25	896 (589-1,200)
Central Europe, Eastern Europe, and Central Asia	1990	Enterobacter spp.	Anti-pseudomonal	26	889 (724-1.050)
Central Europe, Eastern Europe, and Central Asia	1990	Klebsiella pneumoniae	Carbapenems	27	870 (629-1,110)
r ,		r	· · · · · · · · · · · · · · · · · · ·		

Central Europe, Eastern Europe, and Central Asia	1990	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	28	806 (297-1,310)
Central Europe, Eastern Europe, and Central Asia	1990	Escherichia coli	Aminoglycosides	29	786 (236-1,340)
Central Europe, Eastern Europe, and Central Asia	1990	Streptococcus pneumoniae	Macrolides	30	779 (428-1,130)
Central Europe, Eastern Europe, and Central Asia	1990	Enterococcus faecium	Fluoroquinolones	31	717 (348-1.090)
Central Europe Eastern Europe and Central Asia	1990	Escherichia coli	Carbapenems	32	695 (63-1 330)
Central Europe, Eastern Europe, and Central Asia	1990	Staphylococcus aureus	Vancomycin	33	674 (214-1 130)
Central Europe, Eastern Europe, and Central Asia	1990	Staphylococcus aureus	TMP-SMX	34	642 (355-929)
Central Europe, Eastern Europe, and Central Asia	1990	Serratia enn	Aminoglycosides	35	627 (465-789)
Central Europe, Eastern Europe, and Central Asia	1990	Enterohacter spp.	Carbapenems	36	625 (436-813)
Central Europe, Eastern Europe, and Central Asia	1000	Straptococcus praumoniaa	3GC	37	533 (394 671)
Central Europe, Eastern Europe, and Central Asia	1990	Sirepiococcus pneumonide	Anti negudomongl	29	535 (394-071)
Central Europe, Eastern Europe, and Central Asia	1990	Serrana spp.	Ann-pseudomonai Elucroswinglongs	20	501 (221 720)
Central Europe, Eastern Europe, and Central Asia	1990	Enterobacter spp.	A wine a law a side a	39	J01 (281-720) 408 (205-702)
Central Europe, Eastern Europe, and Central Asia	1990	Enterobacter spp.	Aminoglycosides	40	498 (295-702)
Central Europe, Eastern Europe, and Central Asia	1990	Escherichia coli	Fluoroquinolones	41	498 (89-906)
Central Europe, Eastern Europe, and Central Asia	1990	Enterobacter spp.	4GC	42	461 (392-530)
Central Europe, Eastern Europe, and Central Asia	1990	Acinetobacter baumannii	3GC	43	430 (313-547)
Central Europe, Eastern Europe, and Central Asia	1990	Serratia spp.	4GC	44	396 (345-448)
Central Europe, Eastern Europe, and Central Asia	1990	Citrobacter spp.	Anti-pseudomonal	45	389 (338-440)
Central Europe, Eastern Europe, and Central Asia	1990	Serratia spp.	Carbapenems	46	273 (208-339)
Central Europe, Eastern Europe, and Central Asia	1990	Enterobacter spp.	TMP-SMX	47	250 (34-465)
Central Europe, Eastern Europe, and Central Asia	1990	Serratia spp.	Fluoroquinolones	48	244 (97-391)
Central Europe, Eastern Europe, and Central Asia	1990	Acinetobacter baumannii	4GC	49	242 (202-282)
Central Europe, Eastern Europe, and Central Asia	1990	Citrobacter spp.	4GC	50	239 (209-269)
Central Europe, Eastern Europe, and Central Asia	1990	Proteus spp.	Aminoglycosides	51	234 (127-342)
Central Europe, Eastern Europe, and Central Asia	1990	Proteus spp.	Aminopenicillin	52	224 (174-274)
Central Europe, Eastern Europe, and Central Asia	1990	Enterococcus faecium	Vancomycin	53	222 (164-280)
Central Europe, Eastern Europe, and Central Asia	1990	Proteus spp.	3GC	54	219 (107-331)
Central Europe, Eastern Europe, and Central Asia	1990	Pseudomonas aeruginosa	4GC	55	215 (119-311)
Central Europe, Eastern Europe, and Central Asia	1990	Haemophilus influenzae	Aminopenicillin	56	203 (141-265)
Central Europe, Eastern Europe, and Central Asia	1990	Citrobacter spp.	Fluoroquinolones	57	194 (85-304)
Central Europe, Eastern Europe, and Central Asia	1990	Morganella spp.	Fluoroquinolones	58	180 (90-269)
Central Europe, Eastern Europe, and Central Asia	1990	Enterobacter faecalis	Vancomycin	59	167 (0-395)
Central Europe, Eastern Europe, and Central Asia	1990	Pseudomonas aeruginosa	3GC	60	163 (5-320)
Central Europe, Eastern Europe, and Central Asia	1990	Morganella spp.	4GC	61	161 (102-220)
Central Europe, Eastern Europe, and Central Asia	1990	Mycobacterium tuberculosis	MDR excluding XDR	62	142 (0-471)
Central Europe Eastern Europe, and Central Asia	1990	Haemophilus influenzae	3GC	63	133 (0-369)
Central Europe, Eastern Europe, and Central Asia	1990	Citrobacter spp	Carbapenems	64	127 (60-195)
Central Europe, Eastern Europe, and Central Asia	1990	Group B Streptococcus	Fluoroquinolones	65	117 (53-181)
Central Europe, Eastern Europe, and Central Asia	1990	Group B Streptococcus	Macrolides	66	97 (61-133)
Central Europe, Eastern Europe, and Central Asia	1990	Group A Streptococcus	Macrolides	67	96 (58-134)
Central Europe, Eastern Europe, and Central Asia	1990	Citrobacter spp	Aminoglycosides	68	94 (76-112)
Central Europe, Eastern Europe, and Central Asia	1000	Protaus epp	Fluoroguinolones	60	88 (8 167)
Central Europe, Eastern Europe, and Central Asia	1000	Group B Strantococcus	Penicillin	70	58 (0, 110)
Control Europe, Eastern Europe, and Control Asia	1000	Brotaus opp	TMD SMY	70	56 (0 159)
Central Europe, Eastern Europe, and Central Asia	1990	A ainatohaatar haumannii	Pote Lecteme/Pote Lectemese Inhib	71	54 (25.82)
Control Europe, Eastern Europe, and Control Asia	1000	Morganella enn	2CC	72	40 (26 62)
Central Europe, Eastern Europe, and Central Asia	1990	Morganena spp.	300	73	49 (30-02)
Central Europe, Eastern Europe, and Central Asia	1990	Serratia spp.	360	74	29 (0-88)
Central Europe, Eastern Europe, and Central Asia	1990	Chrobacter spp.	SGC	75	24 (0-54)
Central Europe, Eastern Europe, and Central Asia	1990	Snigena spp.	Fluoroquinolones	/0	11 (0-23) 5 (0,0)
Central Europe, Eastern Europe, and Central Asia	1990	Ivon-typnotaal Salmonella	riuoroquinoiones	70	3 (0-9) 0 (0 1)
Central Europe, Eastern Europe, and Central Asia	1990	Saimonella Typni	MDK	/8	0 (0-1)
Central Europe, Eastern Europe, and Central Asia	1990	Salmonella Typhi	Fluoroquinolones	79	0 (0-0)
Central Europe, Eastern Europe, and Central Asia	1990	Salmonella Paratyphi	Fluoroquinolones	80	0 (0-0)
Central Europe, Eastern Europe, and Central Asia	1990	Salmonella Paratyphi	MDR	81	0 (0-0)
Central Europe, Eastern Europe, and Central Asia	1990	Mycobacterium tuberculosis	XDR	82	0 (0-0)
High-income	1990	Staphylococcus aureus	Methicillin	1	13,800 (7,290-20,300)

High-income	1990	Streptococcus pneumoniae	Carbapenems	2	11,500 (6,890-16,100)
High-income	1990	Pseudomonas aeruginosa	Carbapenems	3	5,570 (3,570-7,570)
High-income	1990	Acinetobacter baumannii	Carbapenems	4	4,920 (3,150-6,680)
High-income	1990	Staphylococcus aureus	Fluoroquinolones	5	4,470 (1,710-7,240)
High-income	1990	Streptococcus pneumoniae	Penicillin	6	4,370 (2,980-5,750)
High-income	1990	Pseudomonas aeruginosa	Fluoroquinolones	7	2,930 (2,050-3,820)
High-income	1990	Acinetobacter baumannii	Fluoroquinolones	8	2,900 (2,330-3,460)
High-income	1990	Staphylococcus aureus	Macrolides	9	2,750 (1,830-3,680)
High-income	1990	Klebsiella pneumoniae	Fluoroquinolones	10	2,430 (1,650-3,200)
High-income	1990	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib.	11	2,310 (780-3,830)
High-income	1990	Klebsiella pneumoniae	Carbapenems	12	2,200 (1,670-2,730)
High-income	1990	Acinetobacter baumannii	Anti-pseudomonal	13	2,070 (1,750-2,390)
High-income	1990	Escherichia coli	Aminopenicillin	14	2,070 (763-3,380)
High-income	1990	Escherichia coli	TMP-SMX	15	2,030 (1,130-2,920)
High-income	1990	Acinetobacter baumannii	Aminoglycosides	16	2,030 (1,420-2,640)
High-income	1990	Streptococcus pneumoniae	TMP-SMX	17	2,020 (0-4,430)
High-income	1990	Streptococcus pneumoniae	Macrolides	18	1,950 (1,220-2,690)
High-income	1990	Pseudomonas aeruginosa	Aminoglycosides	19	1,680 (1,010-2,360)
High-income	1990	Klebsiella pneumoniae	TMP-SMX	20	1,610 (812-2,410)
High-income	1990	Enterococcus faecium	Fluoroquinolones	21	1,560 (808-2,320)
High-income	1990	Enterobacter faecalis	Fluoroquinolones	22	1,510 (984-2,030)
High-income	1990	Enterobacter spp.	Anti-pseudomonal	23	1.510 (1.210-1.800)
High-income	1990	Escherichia coli	3GC	24	1.500 (729-2.260)
High-income	1990	Klebsiella pneumoniae	Aminoglycosides	25	1.460 (962-1.970)
High-income	1990	Pseudomonas aeruginosa	Anti-pseudomonal	26	1.440 (1.040-1.830)
High-income	1990	Enterococcus faecium	Vancomycin	27	1.440 (1.110-1.770)
High-income	1990	Streptococcus pneumoniae	Fluoroquinolones	28	1.420 (621-2.220)
High-income	1990	Escherichia coli	Aminoglycosides	29	1,280 (589-1,980)
High-income	1990	Enterobacter spp	Carbapenems	30	1 160 (883-1 430)
High-income	1990	Staphylococcus aureus	Vancomycin	31	1 100 (466-1 730)
High-income	1990	Escherichia coli	Fluoroquinolones	32	1,000 (320-1,690)
High-income	1990	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib	33	975 (643-1 310)
High-income	1990	Escherichia coli	Carbapenems	34	887 (255-1 520)
High-income	1990	Stanhylococcus aureus	TMP-SMX	35	823 (477-1 170)
High-income	1990	Klehsiella pneumoniae	3GC	36	789 (442-1 140)
High-income	1990	Enterobacter spn	Fluoroquinolones	37	735 (412-1,060)
High-income	1990	Acinetobacter baumannii	AGC	38	721 (491-950)
High-income	1990	Enterobacter spp	Aminoglycosides	30	674 (400-948)
High income	1000	Acinetobacter spp.	3GC	40	668 (576 750)
High income	1990	Haemonhilus influenzae	Aminopenicillin	40	657 (468 845)
High-income	1990	Proteus spp	3GC	42	646 (348-943)
High income	1990	Straptococcus praumoniaa	360	42	605 (417 794)
High-income	1990	Klebsiella preumoniae	Beta-Lactams/Beta-Lactamase Inhih	43	580 (129-1 030)
High-income	1990	Pseudomonas geruginosa	AGC	45	539 (387-690)
High-income	1990	Citrobacter spp	Anti-nseudomonal	46	503 (433-572)
High income	1990	Sarratia spp.	Aminoglycosides	40	470 (309 631)
Ligh income	1990	Brotous app	Aminopopioillin	47	448 (240 547)
High-income	1990	Froteus spp.	Carbanana	40	448 (349-347)
High-income	1990	Serratia opp	Anti negudomonal	49 50	427 (330-318)
High-income	1990	Serrana spp.	TMD SMY	51	408 (322-494)
High-income	1990	Morganella spp.	Fluerequinelenes	52	307 (40-727) 226 (165 508)
Ligh income	1990	Streptozozawa provincija	Pata Lastams/Pata Lastamass Labib	52	225 (105-506)
Ligh income	1990	Screptococcus pneumontae	Eluoroguinolonos	55	333 (100-403)
High-income	1990	Destaura spp.	Aminoslyssocides	54	324 (124-324) 201 (140-422)
High-income	1990	Citradianten ann	Fluerequirelenee	55	271 (147-433)
righ-income	1990	Curovacter spp.	Fluoroquinolones	50	204 (10.497)
High-income	1990	Enterobacter faecalis	vancomycin	57	249 (10-487)

High-income	1990	Enterobacter spp.	4GC	58	244 (182-305)
High-income	1990	Pseudomonas aeruginosa	3GC	59	211 (9-412)
High-income	1990	Serratia spp.	3GC	60	166 (0-401)
High-income	1990	Group A Streptococcus	Macrolides	61	162 (97-226)
High-income	1990	Group B Streptococcus	Macrolides	62	161 (100-221)
High-income	1990	Mycobacterium tuberculosis	MDR excluding XDR	63	155 (0-427)
High-income	1990	Citrobacter spp.	Carbapenems	64	144 (66-221)
High-income	1990	Morganella spp.	4GC	65	132 (81-182)
High-income	1990	Proteus spp.	Fluoroquinolones	66	131 (6-257)
High-income	1990	Citrobacter spp.	4GC	67	131 (114-148)
High-income	1990	Morganella spp.	3GC	68	120 (86-153)
High-income	1990	Serratia spp.	4GC	69	117 (89-146)
High-income	1990	Citrobacter spp.	3GC	70	114 (14-215)
High-income	1990	Haemophilus influenzae	3GC	71	109 (0-267)
High-income	1990	Proteus spp.	TMP-SMX	72	78 (0-215)
High-income	1990	Group B Streptococcus	Fluoroquinolones	73	69 (31-107)
High-income	1990	Citrobacter spp.	Aminoglycosides	74	67 (53-81)
High-income	1990	Group B Streptococcus	Penicillin	75	56 (6-105)
High-income	1990	Non-typhoidal Salmonella	Fluoroquinolones	76	8 (0-16)
High-income	1990	Salmonella Typhi	MDR	77	1 (0-2)
High-income	1990	Shigella spp	Fluoroquinolones	78	1 (0-2)
High-income	1990	Salmonella Typhi	Fluoroquinolones	79	0(0-0)
High-income	1990	Salmonella Paratyphi	Fluoroquinolones	80	0 (0-0)
High-income	1990	Salmonella Paratyphi	MDR	81	0 (0-0)
High-income	1990	Mycobacterium tuberculosis	XDR	82	0(0-0)
Latin America and Caribbean	1990	Streptococcus pneumoniae	Carbanenems	1	5 170 (2 770-7 570)
Latin America and Caribbean	1990	Acinetobacter haumannii	Carbapenems	2	3 930 (2 770-5 090)
Latin America and Caribbean	1990	Staphylococcus aureus	Methicillin	3	2 690 (1 290-4 080)
Latin America and Caribbean	1990	Streptococcus preumoniae	Penicillin	4	2 380 (1,620-3 130)
Latin America and Caribbean	1990	Acinetobacter haumannii	Fluoroquinolones	5	2,120 (1,730-2,520)
Latin America and Caribbean	1990	Pseudomonas aeruginosa	Carbapenems	6	2,100 (1,300-2,900)
Latin America and Caribbean	1990	Streptococcus pneumoniae	TMP-SMX	7	2,060 (0-4,470)
Latin America and Caribbean	1990	Klebsiella pneumoniae	Aminoglycosides	8	2,000 (1,470-2,530)
Latin America and Caribbean	1990	Acinetobacter haumannii	Aminoglycosides	9	1,950 (1,510-2,380)
Latin America and Caribbean	1990	Pseudomonas aeruginosa	Fluoroquinolones	10	1,760 (1,250-2,270)
Latin America and Caribbean	1990	Klehsiella pneumoniae	3GC	11	1,660 (1,060-2,260)
Latin America and Caribbean	1990	Acinetobacter haumannii	Anti-nseudomonal	12	1,520 (1,150-1,900)
Latin America and Caribbean	1990	Fscherichia coli	TMP-SMX	13	1 280 (824-1 730)
Latin America and Caribbean	1990	Klehsiella preumoniae	TMP-SMX	14	1,200 (649-1,890)
Latin America and Caribbean	1990	Klebsiella pneumoniae	Fluoroquinolones	15	1 250 (851-1 650)
Latin America and Caribbean	1990	Pseudomonas aeruginosa	Anti-nseudomonal	16	1,230 (996-1 470)
Latin America and Caribbean	1990	Streptococcus pneumoniae	Fluoroquinolones	17	1 220 (426-2 020)
Latin America and Caribbean	1990	Klehsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib	18	1 110 (521-1 700)
Latin America and Caribbean	1990	Klebsiella pneumoniae	Carbapenems	19	1 020 (750-1 290)
Latin America and Caribbean	1990	Fscherichia coli	3GC	20	1,010 (491-1,530)
Latin America and Caribbean	1990	Pseudomonas aeruginosa	Aminoglycosides	21	978 (621-1 340)
Latin America and Caribbean	1990	Streptococcus pneumoniae	3GC	22	915 (666-1 160)
Latin America and Caribbean	1990	Staphylococcus aureus	TMP-SMX	23	896 (554-1 240)
Latin America and Caribbean	1990	Fscherichia coli	Aminoglycosides	23	814 (429-1 200)
Latin America and Caribbean	1990	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib	25	804 (156-1.450)
Latin America and Caribbean	1990	Staphylococcus aureus	Macrolides	26	710 (462-959)
Latin America and Caribbean	1990	Staphylococcus aureus	Fluoroquinolones	27	700 (251-1 150)
Latin America and Caribbean	1990	Acinetobacter baumannii	3GC	28	604 (488-721)
Latin America and Caribbean	1990	Streptococcus pneumoniae	Macrolides	29	581 (312-850)
Latin America and Caribbean	1990	Escherichia coli	Aminopenicillin	30	509 (248-770)
Latin America and Caribbean	1990	Enterobacter spp.	Anti-pseudomonal	31	506 (403-609)
		11	1	-	

Latin America and Caribbean	1990	Acinetobacter baumannii	4GC	32	500 (443-556)
Latin America and Caribbean	1990	Enterobacter spp.	Aminoglycosides	33	490 (345-635)
Latin America and Caribbean	1990	Escherichia coli	Fluoroquinolones	34	482 (240-724)
Latin America and Caribbean	1990	Escherichia coli	Carbapenems	35	473 (143-803)
Latin America and Caribbean	1990	Serratia spp.	Aminoglycosides	36	403 (282-524)
Latin America and Caribbean	1990	Staphylococcus aureus	Vancomycin	37	398 (204-593)
Latin America and Caribbean	1990	Enterococcus faecium	Vancomycin	38	390 (303-478)
Latin America and Caribbean	1990	Enterobacter spn	Carbanenems	39	387 (291-483)
Latin America and Caribbean	1990	Serratia spp.	Anti-nseudomonal	40	334 (263-406)
Latin America and Caribbean	1990	Enterobacter faecalis	Fluoroquinolones	41	326 (218-433)
Latin America and Caribbean	1000	Streptogoggue prouvonigo	Pote Lectome/Pote Lectomece Inhib	42	326 (128, 514)
Latin America and Caribbean	1000	Enterococcus fracium	Elucrominalonas	42	206 (140,462)
Latin America and Caribbean	1990	Enteroloccus jaecium	Fluoroquinolones	43	282 (165 400)
Latin America and Caribbean	1990	Enterobacier spp.		44	265 (105-400)
Latin America and Caribbean	1990	Serratia spp.	4GC	45	250 (212-287)
Latin America and Caribbean	1990	Serrana spp.	Fluoroquinoiones	40	255 (100-370)
Latin America and Caribbean	1990	Haemophilus influenzae	Aminopenicillin	4/	219 (161-277)
Latin America and Caribbean	1990	Enterobacter faecalis	Vancomycin	48	198 (0-431)
Latin America and Caribbean	1990	Citrobacter spp.	Anti-pseudomonal	49	188 (155-222)
Latin America and Caribbean	1990	Serratia spp.	Carbapenems	50	182 (139-225)
Latin America and Caribbean	1990	Pseudomonas aeruginosa	4GC	51	179 (102-256)
Latin America and Caribbean	1990	Haemophilus influenzae	3GC	52	177 (0-427)
Latin America and Caribbean	1990	Enterobacter spp.	4GC	53	158 (132-184)
Latin America and Caribbean	1990	Proteus spp.	3GC	54	156 (78-234)
Latin America and Caribbean	1990	Proteus spp.	Aminopenicillin	55	149 (117-182)
Latin America and Caribbean	1990	Pseudomonas aeruginosa	3GC	56	146 (62-229)
Latin America and Caribbean	1990	Morganella spp.	Fluoroquinolones	57	140 (70-210)
Latin America and Caribbean	1990	Citrobacter spp.	Fluoroquinolones	58	132 (63-200)
Latin America and Caribbean	1990	Enterobacter spp.	TMP-SMX	59	119 (18-219)
Latin America and Caribbean	1990	Proteus spp.	Aminoglycosides	60	100 (63-137)
Latin America and Caribbean	1990	Mycobacterium tuberculosis	MDR excluding XDR	61	95 (0-275)
Latin America and Caribbean	1990	Morganella spp.	4GC	62	94 (60-128)
Latin America and Caribbean	1990	Non-typhoidal Salmonella	Fluoroquinolones	63	94 (0-207)
Latin America and Caribbean	1990	Group B Streptococcus	Macrolides	64	92 (56-127)
Latin America and Caribbean	1990	Citrobacter spp.	4GC	65	87 (72-102)
Latin America and Caribbean	1990	Citrobacter spp.	Carbapenems	66	78 (36-121)
Latin America and Caribbean	1990	Citrobacter spp.	Aminoglycosides	67	76 (59-92)
Latin America and Caribbean	1990	Group B Streptococcus	Penicillin	68	73 (0-147)
Latin America and Caribbean	1990	Shigella spp.	Fluoroquinolones	69	63 (0-131)
Latin America and Caribbean	1990	Group B Streptococcus	Fluoroquinolones	70	53 (23-83)
Latin America and Caribbean	1990	Serratia spp	3GC	71	52 (0-135)
Latin America and Caribbean	1990	Morganella spp	3GC	72	51 (37-65)
Latin America and Caribbean	1990	Group A Streptococcus	Macrolides	73	48 (29-67)
Latin America and Caribbean	1990	Acinetohacter haumannii	Beta-Lactams/Beta-Lactamase Inhib	73	46 (24-67)
Latin America and Caribbean	1990	Proteus spp	Fluoroguinolones	75	29 (0-58)
Latin America and Caribbean	1990	Proteus spp.	TMP SMY	76	27(0.74)
Latin America and Caribbean	1990	Citrobactor opp	200	70	24 (2 45)
Latin America and Caribbean	1990	Calmanalla Turbi	MDR	70	20 (0.41)
Latin America and Caribbean	1990	Salmonella Typhi	MDR	70	20 (0-41)
Latin America and Caribbean	1990	Salmonella Typili	Fluoroquinoiones	19	3 (1-3) 1 (0, 1)
Latin America and Caribbean	1990	Salmonella Poretunhi	MDD	0U 91	0 (0 1)
Latin America and Caribbean	1990	Musch actenium tub annulacia		01	0(0-1)
Laun America and Caribbean	1990	wycobacterium tuberculosis		82	0 (0-0)
North Africa and Middle East	1990	Streptococcus pneumoniae	Carbapenems	1	8,570 (4,710-12,400)
North Africa and Middle East	1990	Acınetobacter baumannii	Carbapenems	2	3,540 (2,510-4,580)
North Atrice and Middle Fast	1000	a 1 1			2 420 (1 050 4 000)
North Africa and Widdle East	1990	Staphylococcus aureus	Methicillin	3	3,420 (1,950-4,890)
North Africa and Middle East	1990 1990	Staphylococcus aureus Streptococcus pneumoniae	Methicillin Beta-Lactams/Beta-Lactamase Inhib.	3 4	3,420 (1,950-4,890) 3,160 (1,960-4,370)

North Africa and Middle East	1990	Klebsiella pneumoniae	Aminoglycosides	6	2,010 (1,450-2,560)
North Africa and Middle East	1990	Acinetobacter baumannii	Fluoroquinolones	7	2,000 (1,620-2,380)
North Africa and Middle East	1990	Streptococcus pneumoniae	Penicillin	8	1,920 (1,280-2,550)
North Africa and Middle East	1990	Streptococcus pneumoniae	Fluoroquinolones	9	1,860 (700-3,030)
North Africa and Middle East	1990	Klebsiella pneumoniae	3GC	10	1.860 (1.130-2.580)
North Africa and Middle East	1990	Pseudomonas aeruginosa	Carbapenems	11	1.770 (1.040-2.490)
North Africa and Middle East	1990	Acinetobacter baumannii	Aminoglycosides	12	1.520 (1.140-1.900)
North Africa and Middle East	1990	Klebsiella pneumoniae	TMP-SMX	13	1.420 (730-2.120)
North Africa and Middle East	1990	Klebsiella pneumoniae	Fluoroquinolones	14	1.420 (935-1.910)
North Africa and Middle East	1990	Acinetobacter baumannii	Anti-pseudomonal	15	1.400 (1.030-1.770)
North Africa and Middle East	1990	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib	16	1 360 (635-2 080)
North Africa and Middle East	1990	Pseudomonas aeruginosa	Anti-nseudomonal	17	1 350 (1 050-1 660)
North Africa and Middle East	1990	Pseudomonas aeruginosa Pseudomonas aeruginosa	Fluoroquinolones	18	1 350 (947-1 760)
North Africa and Middle East	1990	Streptococcus preumoniae	3GC	19	1 340 (930-1 740)
North Africa and Middle East	1990	Escherichia coli	TMP SMY	20	1,340 (818,1,660)
North Africa and Middle East	1000	Pseudomonas aeruginosa	Aminoglygosides	20	1,240 (818-1,000)
North Africa and Middle East	1990	F seudomonas deruginosa	Anniogrycosides	21	1,100 (079-1,510)
North Africa and Middle East	1990	Escherichia coli	Beta-Lactanis/ Beta-Lactaniase minu.	22	1,030 (110-1,930)
North Africa and Middle East	1990	Escherichia coli	Maaralidaa	23	1,050(516-1,540)
North Africa and Middle East	1990	Sirepiococcus pneumoniae	Catherenes	24	947 (318-1,380)
North Africa and Middle East	1990	Klebslella pneumoniae	Carbapenems	25	808 (051-1,110)
North Africa and Middle East	1990	Staphylococcus aureus	Vancomycin	26	811 (443-1,180)
North Africa and Middle East	1990	Escherichia coli	Aminoglycosides	27	711 (310-1,110)
North Africa and Middle East	1990	Staphylococcus aureus	TMP-SMX	28	685 (416-953)
North Africa and Middle East	1990	Acinetobacter baumannii	3GC	29	670 (448-891)
North Africa and Middle East	1990	Staphylococcus aureus	Fluoroquinolones	30	626 (252-1,000)
North Africa and Middle East	1990	Escherichia coli	Carbapenems	31	592 (115-1,070)
North Africa and Middle East	1990	Escherichia coli	Fluoroquinolones	32	577 (264-891)
North Africa and Middle East	1990	Enterobacter spp.	Anti-pseudomonal	33	528 (415-642)
North Africa and Middle East	1990	Staphylococcus aureus	Macrolides	34	484 (312-656)
North Africa and Middle East	1990	Escherichia coli	Aminopenicillin	35	451 (233-669)
North Africa and Middle East	1990	Serratia spp.	Anti-pseudomonal	36	424 (305-543)
North Africa and Middle East	1990	Acinetobacter baumannii	4GC	37	384 (325-442)
North Africa and Middle East	1990	Pseudomonas aeruginosa	4GC	38	381 (216-545)
North Africa and Middle East	1990	Serratia spp.	Aminoglycosides	39	381 (259-502)
North Africa and Middle East	1990	Enterobacter faecalis	Fluoroquinolones	40	352 (226-478)
North Africa and Middle East	1990	Enterobacter spp.	Aminoglycosides	41	342 (225-460)
North Africa and Middle East	1990	Enterobacter spp.	Carbapenems	42	326 (237-415)
North Africa and Middle East	1990	Haemophilus influenzae	3GC	43	324 (0-754)
North Africa and Middle East	1990	Enterococcus faecium	Fluoroquinolones	44	247 (114-381)
North Africa and Middle East	1990	Serratia spp.	Carbapenems	45	243 (184-302)
North Africa and Middle East	1990	Serratia spp.	Fluoroquinolones	46	227 (92-362)
North Africa and Middle East	1990	Haemophilus influenzae	Aminopenicillin	47	226 (172-279)
North Africa and Middle East	1990	Enterobacter spp.	4GC	48	201 (164-238)
North Africa and Middle East	1990	Enterococcus faecium	Vancomycin	49	201 (151-251)
North Africa and Middle East	1990	Citrobacter spp.	Anti-pseudomonal	50	185 (143-228)
North Africa and Middle East	1990	Pseudomonas aeruginosa	3GC	51	185 (52-317)
North Africa and Middle East	1990	Enterobacter faecalis	Vancomycin	52	180 (0-399)
North Africa and Middle East	1990	Proteus spp.	3GC	53	168 (93-243)
North Africa and Middle East	1990	Enterobacter spp.	Fluoroquinolones	54	167 (94-241)
North Africa and Middle East	1990	Group B Streptococcus	Penicillin	55	159 (4-313)
North Africa and Middle East	1990	Morganella spp.	Fluoroquinolones	56	145 (72-218)
North Africa and Middle East	1990	Enterobacter spp.	TMP-SMX	57	140 (22-259)
North Africa and Middle East	1990	Citrobacter spp.	Fluoroquinolones	58	140 (72-209)
North Africa and Middle East	1990	Group B Streptococcus	Fluoroquinolones	59	137 (62-211)
North Africa and Middle East	1990	Proteus spp.	Aminopenicillin	60	118 (80-155)
North Africa and Middle East	1990	Morganella spp.	3GC	61	115 (83-148)

North Africa and Middle East	1990	Serratia spp.	4GC	62	107 (86-127)
North Africa and Middle East	1990	Group B Streptococcus	Macrolides	63	105 (66-145)
North Africa and Middle East	1990	Salmonella Typhi	MDR	64	101 (0-217)
North Africa and Middle East	1990	Proteus spp.	Aminoglycosides	65	101 (59-142)
North Africa and Middle East	1990	Group A Streptococcus	Macrolides	66	95 (58-131)
North Africa and Middle East	1990	Citrobacter spp.	Carbapenems	67	88 (41-135)
North Africa and Middle East	1990	Non-typhoidal Salmonella	Fluoroquinolones	68	88 (0-198)
North Africa and Middle East	1990	Morganella spp.	4GC	69	76 (48-105)
North Africa and Middle East	1990	Citrobacter spp.	Aminoglycosides	70	73 (55-92)
North Africa and Middle East	1990	Shigella spp.	Fluoroquinolones	71	68 (0-149)
North Africa and Middle East	1990	Citrobacter spp.	4GC	72	67 (52-82)
North Africa and Middle East	1990	Serratia spp.	3GC	73	58 (0-159)
North Africa and Middle East	1990	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	74	52 (12-93)
North Africa and Middle East	1990	Mycobacterium tuberculosis	MDR excluding XDR	75	50 (0-136)
North Africa and Middle East	1990	Proteus spp.	Fluoroquinolones	76	39 (3-76)
North Africa and Middle East	1990	Citrobacter spp.	3GC	77	36 (5-66)
North Africa and Middle East	1990	Proteus spp.	TMP-SMX	78	28 (0-76)
North Africa and Middle East	1990	Salmonella Typhi	Fluoroquinolones	79	25 (0-50)
North Africa and Middle East	1990	Salmonella Paratyphi	Fluoroquinolones	80	0 (0-1)
North Africa and Middle East	1990	Salmonella Paratyphi	MDR	81	0 (0-1)
North Africa and Middle East	1990	Mycobacterium tuberculosis	XDR	82	0 (0-0)
South Asia	1990	Streptococcus pneumoniae	Carbapenems	1	26.800 (14.500-39.000)
South Asia	1990	Acinetobacter baumannii	Carbapenems	2	16.400 (10.800-22.000)
South Asia	1990	Staphylococcus aureus	Methicillin	3	14,600 (9,910-19,200)
South Asia	1990	Klehsiella pneumoniae	360	4	12 800 (8 130-17 500)
South Asia	1990	Acinetobacter baumannii	Fluoroquinolones	5	10 800 (8 840-12 800)
South Asia	1990	Streptococcus pneumoniae	3GC	6	10,700 (7,710-13,700)
South Asia	1990	Escherichia coli	3GC	7	10 200 (4 030-16 300)
South Asia	1990	Streptococcus pneumoniae	Fluoroquinolones	8	10 100 (4 090-16 200)
South Asia	1990	Klebsiella pneumoniae	Aminoglycosides	9	9 920 (7 100-12 700)
South Asia	1990	Escherichia coli	TMP-SMX	10	9 860 (6 550-13 200)
South Asia	1990	Klehsiella pneumoniae	Fluoroquinolones	11	9 220 (6 530-11 900)
South Asia	1990	Acinetobacter baumannii	Aminoglycosides	12	8 300 (6 280-10 300)
South Asia	1990	Salmonella Typhi	Fluoroquinolones	13	8 160 (1 170-15 100)
South Asia	1990	Streptococcus pneumoniae	TMP-SMX	14	7 960 (0-17 000)
South Asia	1990	Klehsiella pneumoniae	Carbapenems	15	7 200 (5 200-9 190)
South Asia	1990	Pseudomonas aeruginosa	Carbapenems	16	7,170 (3,990-10,400)
South Asia	1990	Pseudomonas aeruginosa	Fluoroquinolones	17	6 760 (4 770-8 740)
South Asia	1990	Acinetohacter haumannii	Anti-nseudomonal	18	6 740 (4 720-8 760)
South Asia	1990	Klehsiella pneumoniae	TMP-SMX	19	6 730 (3 460-10 000)
South Asia	1990	Escherichia coli	Fluoroquinolones	20	6 200 (3 890-8 510)
South Asia	1990	Escherichia coli	Aminoglycosides	21	5 950 (2 600-9 300)
South Asia	1990	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib	22	5,730 (70-11 400)
South Asia	1990	Pseudomonas aeruginosa	Aminoglycosides	23	5,240 (3,420-7,050)
South Asia	1990	Pseudomonas aeruginosa	Anti-nseudomonal	23	5,080 (3,980-6,170)
South Asia	1990	Klehsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib	25	4 440 (2 360-6 510)
South Asia	1000	Escharichia coli	Carbananame	25	4 390 (1 230 7 540)
South Asia	1990	Stanbylococcus auraus	TMP SMY	20	3 960 (2 430 5 490)
South Asia	1990	Salmonalla Typhi	MDP	28	3,950 (2,430-3,490)
South Asia	1000	Strantococcus praumoniaa	Denicillin	20	3,830 (1,720,5,930)
South Asia	1000	Shigella spp	Fluoroguinolones	30	3 440 (808 6 070)
South Asia	1000	Stankylococcus auraus	Fluoroquinolones	31	2 780 (1 130 4 420)
South Asia	1990	Sarratia spp	Anti pseudomonal	31	2,700 (1,150-4,420)
South Asia	1990	Salmonalla Paratuphi	MDP	32	2,210 (1,390-2,030)
South Asia	1990	Acinetohacter haumarrii	360	33	2,100 (100-4,190)
South Asia	1990	Strantogoggus phoumerics	Maaralidas	34	2,170 (1,750-2,010)
SUUII ASIA	1990	streptococcus pneumontae	Watrondes	55	2,000 (1,050-2,940)

South Asia	1990	Enterobacter faecalis	Fluoroquinolones	36	1,970 (1,300-2,640)
South Asia	1990	Serratia spp.	Aminoglycosides	37	1,960 (1,300-2,610)
South Asia	1990	Enterobacter spp.	Aminoglycosides	38	1,910 (1,340-2,490)
South Asia	1990	Pseudomonas aeruginosa	4GC	39	1,880 (1,160-2,590)
South Asia	1990	Staphylococcus aureus	Macrolides	40	1,870 (1,180-2,560)
South Asia	1990	Enterobacter spp.	Anti-pseudomonal	41	1,850 (1,430-2,270)
South Asia	1990	Haemophilus influenzae	3GC	42	1,770 (0-3,550)
South Asia	1990	Enterobacter spp.	4GC	43	1,510 (1,220-1,800)
South Asia	1990	Enterobacter spp.	Carbapenems	44	1,490 (1,090-1,880)
South Asia	1990	Escherichia coli	Aminopenicillin	45	1,440 (755-2,130)
South Asia	1990	Haemophilus influenzae	Aminopenicillin	46	1.360 (1.040-1.690)
South Asia	1990	Salmonella Paratyphi	Fluoroquinolones	47	1.360 (0-2.720)
South Asia	1990	Enterococcus faecium	Fluoroquinolones	48	1.350 (613-2.080)
South Asia	1990	Morganella spp.	4GC	49	1.270 (874-1.670)
South Asia	1990	Acinetobacter baumannii	4GC	50	1.230 (895-1.570)
South Asia	1990	Enterobacter spp	Fluoroquinolones	51	1 130 (648-1 620)
South Asia	1990	Non-typhoidal Salmonella	Fluoroquinolones	52	1 100 (0-2 600)
South Asia	1990	Proteus spn	3GC	53	1,070 (662-1,480)
South Asia	1990	Citrobacter spp.	Carbanenems	54	1,060 (526-1,590)
South Asia	1990	Serratia spp.	Eluoroquinolones	55	1,000 (320-1,570)
South Asia	1990	Morganella spp.	3GC	56	1,040 (400-1,070)
South Asia	1000	Group B Streptococcus	Fluoroquinolones	57	992 (470 1 510)
South Asia	1990	Citrobactor opp	Fluoroquinolones	59	992 (470-1,510)
South Asia	1000	Enteroaceaus faccium	Vancomucin	50	903 (390-1,330)
South Asia	1990	Enterococcus jaecium	Flueromineleres	59	958 (705-1,170)
South Asia	1990	Citual aster ann	Photoquinoiones	60	810 (453-1,200) 787 (486 1,000)
South Asia	1990	Curobacier spp.	300	01	787 (480-1,090)
South Asia	1990	Serraia spp.	40C	62	(10, (309-802)
South Asia	1990	Serrana spp.	Carbapenems	03	6/9 (494-864)
South Asia	1990	Staphylococcus aureus	Vancomycin	64	666 (286-1,050)
South Asia	1990	Proteus spp.	Aminoglycosides	65	665 (4/2-857)
South Asia	1990	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	66	613 (230-996)
South Asia	1990	Group B Streptococcus	Macrolides	67	611 (379-843)
South Asia	1990	Enterobacter spp.	TMP-SMX	68	591 (100-1,080)
South Asia	1990	Enterobacter faecalis	Vancomycin	69	562 (0-1,330)
South Asia	1990	Citrobacter spp.	Anti-pseudomonal	70	521 (377-666)
South Asia	1990	Citrobacter spp.	Aminoglycosides	71	517 (365-670)
South Asia	1990	Mycobacterium tuberculosis	MDR excluding XDR	72	468 (0-1,910)
South Asia	1990	Group B Streptococcus	Penicillin	73	457 (0-918)
South Asia	1990	Group A Streptococcus	Macrolides	74	421 (262-581)
South Asia	1990	Pseudomonas aeruginosa	3GC	75	376 (1-751)
South Asia	1990	Serratia spp.	3GC	76	291 (0-821)
South Asia	1990	Proteus spp.	Fluoroquinolones	77	282 (97-467)
South Asia	1990	Proteus spp.	Aminopenicillin	78	220 (149-291)
South Asia	1990	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	79	184 (94-274)
South Asia	1990	Citrobacter spp.	4GC	80	158 (109-206)
South Asia	1990	Proteus spp.	TMP-SMX	81	143 (0-376)
South Asia	1990	Mycobacterium tuberculosis	XDR	82	0 (0-0)
Southeast Asia, East Asia, and Oceania	1990	Streptococcus pneumoniae	Carbapenems	1	24,600 (13,800-35,500)
Southeast Asia, East Asia, and Oceania	1990	Streptococcus pneumoniae	Fluoroquinolones	2	19,000 (9,430-28,500)
Southeast Asia, East Asia, and Oceania	1990	Staphylococcus aureus	Methicillin	3	14,200 (8,980-19,500)
Southeast Asia, East Asia, and Oceania	1990	Acinetobacter baumannii	Carbapenems	4	14,100 (8,910-19,200)
Southeast Asia, East Asia, and Oceania	1990	Acinetobacter baumannii	Anti-pseudomonal	5	11,900 (9,820-14,000)
Southeast Asia, East Asia, and Oceania	1990	Klebsiella pneumoniae	Fluoroquinolones	6	8,590 (5,880-11,300)
Southeast Asia, East Asia, and Oceania	1990	Pseudomonas aeruginosa	Carbapenems	7	8,380 (4,820-11,900)
Southeast Asia, East Asia, and Oceania	1990	Acinetobacter baumannii	Fluoroquinolones	8	7,030 (5,550-8,520)
Southeast Asia, East Asia, and Oceania	1990	Klebsiella pneumoniae	3GC	9	6,710 (4,200-9,220)
		· · · · · · · · · · · · · · · · · · ·			
Southeast Asia, East Asia, and Oceania	1990	Acinetobacter baumannii	Aminoglycosides	10	6,150 (4,330-7,960)
--	------	----------------------------	------------------------------------	----	--------------------------------
Southeast Asia, East Asia, and Oceania	1990	Pseudomonas aeruginosa	Fluoroquinolones	11	6,060 (4,190-7,930)
Southeast Asia, East Asia, and Oceania	1990	Streptococcus pneumoniae	Macrolides	12	5,990 (3,640-8,350)
Southeast Asia, East Asia, and Oceania	1990	Streptococcus pneumoniae	Penicillin	13	5,750 (3,430-8,070)
Southeast Asia, East Asia, and Oceania	1990	Pseudomonas aeruginosa	Anti-pseudomonal	14	5,350 (3,950-6,750)
Southeast Asia, East Asia, and Oceania	1990	Klebsiella pneumoniae	Aminoglycosides	15	4,990 (3,360-6,620)
Southeast Asia, East Asia, and Oceania	1990	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib.	16	4,940 (1,120-8,750)
Southeast Asia, East Asia, and Oceania	1990	Escherichia coli	TMP-SMX	17	4,750 (3,110-6,380)
Southeast Asia, East Asia, and Oceania	1990	Streptococcus pneumoniae	TMP-SMX	18	4,560 (0-9,670)
Southeast Asia, East Asia, and Oceania	1990	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	19	4,440 (1.810-7.070)
Southeast Asia, East Asia, and Oceania	1990	Enterobacter spp.	Carbapenems	20	4.040 (3.080-5.000)
Southeast Asia East Asia and Oceania	1990	Mycobacterium tuberculosis	MDR excluding XDR	21	3 840 (0-12 400)
Southeast Asia East Asia and Oceania	1990	Staphylococcus aureus	Fluoroquinolones	22	3 820 (1 410-6 230)
Southeast Asia East Asia and Oceania	1990	Klebsiella pneumoniae	TMP-SMX	23	3 510 (1 750-5 260)
Southeast Asia East Asia and Oceania	1990	Staphylococcus aureus	Macrolides	23	3 330 (2 150-4 510)
Southeast Asia East Asia, and Oceania	1000	Fscharichia coli	Fluoroguinolones	25	3 290 (1 810 4 770)
Southeast Asia, East Asia, and Oceania	1990	Staphylococcus auraus	TMP SMY	25	3,170 (1,850,4,500)
Southeast Asia, East Asia, and Oceania	1000	Escherichia coli	200	20	3,170 (1,050 5 210)
Southeast Asia, East Asia, and Oceania	1990	Escherichia coli	200	27	2 110 (2 100 4 120)
Southeast Asia, East Asia, and Oceania	1990	Sirepiococcus pneumoniae		20	3,110 (2,100-4,130)
Southeast Asia, East Asia, and Oceania	1990	Pseudomonas aeruginosa	Aminoglycosides	29	3,090 (1,780-4,400)
Southeast Asia, East Asia, and Oceania	1990	Escherichia coli	Aminoglycosides	30	2,770 (1,260-4,280)
Southeast Asia, East Asia, and Oceania	1990	Klebsiella pneumoniae	Carbapenems	31	2,600 (1,850-3,340)
Southeast Asia, East Asia, and Oceania	1990	Escherichia coli	Aminopenicillin	32	2,300 (1,530-3,070)
Southeast Asia, East Asia, and Oceania	1990	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	33	2,020 (721-3,330)
Southeast Asia, East Asia, and Oceania	1990	Serratia spp.	4GC	34	2,010 (1,680-2,340)
Southeast Asia, East Asia, and Oceania	1990	Serratia spp.	Anti-pseudomonal	35	1,850 (1,480-2,230)
Southeast Asia, East Asia, and Oceania	1990	Escherichia coli	Carbapenems	36	1,830 (588-3,080)
Southeast Asia, East Asia, and Oceania	1990	Enterobacter spp.	Anti-pseudomonal	37	1,820 (1,460-2,180)
Southeast Asia, East Asia, and Oceania	1990	Enterococcus faecium	Fluoroquinolones	38	1,730 (853-2,600)
Southeast Asia, East Asia, and Oceania	1990	Haemophilus influenzae	Aminopenicillin	39	1,570 (1,160-1,980)
Southeast Asia, East Asia, and Oceania	1990	Serratia spp.	Aminoglycosides	40	1,540 (1,070-2,010)
Southeast Asia, East Asia, and Oceania	1990	Enterobacter faecalis	Fluoroquinolones	41	1,470 (972-1,960)
Southeast Asia, East Asia, and Oceania	1990	Enterobacter spp.	Fluoroquinolones	42	1,410 (821-1,990)
Southeast Asia, East Asia, and Oceania	1990	Staphylococcus aureus	Vancomycin	43	1,300 (628-1,980)
Southeast Asia, East Asia, and Oceania	1990	Pseudomonas aeruginosa	3GC	44	1,220 (377-2,070)
Southeast Asia, East Asia, and Oceania	1990	Enterobacter spp.	Aminoglycosides	45	1,210 (841-1,580)
Southeast Asia, East Asia, and Oceania	1990	Group B Streptococcus	Fluoroquinolones	46	1,170 (587-1,750)
Southeast Asia, East Asia, and Oceania	1990	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	47	1,160 (733-1,590)
Southeast Asia, East Asia, and Oceania	1990	Serratia spp.	Fluoroquinolones	48	1,150 (521-1,780)
Southeast Asia, East Asia, and Oceania	1990	Group A Streptococcus	Macrolides	49	1.090 (675-1.510)
Southeast Asia, East Asia, and Oceania	1990	Group B Streptococcus	Macrolides	50	838 (524-1,150)
Southeast Asia East Asia and Oceania	1990	Pseudomonas aeruginosa	4GC	51	830 (486-1 170)
Southeast Asia East Asia and Oceania	1990	Citrobacter spp	Fluoroquinolones	52	821 (475-1 170)
Southeast Asia Fast Asia and Oceania	1990	Enterohacter spp.	4GC	53	804 (659-948)
Southeast Asia East Asia and Oceania	1990	Citrobacter spp.	Anti-nseudomonal	54	786 (615-956)
Southeast Asia, East Asia, and Oceania	1000	Acinatobactar baumannii	AGC	55	783 (633 032)
Southeast Asia, East Asia, and Oceania	1000	Protous opp	Aminononioillin	56	769 (500 048)
Southeast Asia, East Asia, and Oceania	1990	Froteus spp.	Carbanana	57	704 (522 896)
Southeast Asia, East Asia, and Oceania	1990	Serrana spp.		50	704 (323-880) 661 (486-826)
Southeast Asia, East Asia, and Oceania	1000	Morganetta spp.		50	001 (480-830) 508 (287 808)
Southeast Asia, East Asia, and Oceania	1990	Entenna sept.	Voncomvoin	59	570 (307-000) 592 (415-740)
Southeast Asia, East Asia, and Oceania	1990	Enterococcus jaecium		00	562 (415-749)
Southeast Asia, East Asia, and Oceania	1990	Morganella spp.	Fluoroquinolones	61	5/1 (293-849)
Soutneast Asia, East Asia, and Oceania	1990	Proteus spp.	360	62	511 (252-771)
Southeast Asia, East Asia, and Oceania	1990	Haemophilus influenzae	360	63	495 (0-1,260)
Southeast Asia, East Asia, and Oceania	1990	Citrobacter spp.	Carbapenems	64	485 (219-751)
Southeast Asia, East Asia, and Oceania	1990	Shigella spp.	Fluoroquinolones	65	471 (0-973)

Southeast Asia, East Asia, and Oceania	1990	Enterobacter spp.	TMP-SMX	66	439 (71-807)
Southeast Asia, East Asia, and Oceania	1990	Enterobacter faecalis	Vancomycin	67	437 (0-1,080)
Southeast Asia, East Asia, and Oceania	1990	Acinetobacter baumannii	3GC	68	424 (361-486)
Southeast Asia, East Asia, and Oceania	1990	Non-typhoidal Salmonella	Fluoroquinolones	69	416 (0-974)
Southeast Asia, East Asia, and Oceania	1990	Salmonella Typhi	MDR	70	373 (1-745)
Southeast Asia, East Asia, and Oceania	1990	Group B Streptococcus	Penicillin	71	350 (28-672)
Southeast Asia, East Asia, and Oceania	1990	Salmonella Typhi	Fluoroquinolones	72	315 (22-607)
Southeast Asia, East Asia, and Oceania	1990	Citrobacter spp.	Aminoglycosides	73	246 (192-301)
Southeast Asia, East Asia, and Oceania	1990	Proteus spp.	Aminoglycosides	74	210 (121-300)
Southeast Asia, East Asia, and Oceania	1990	Citrobacter spp.	3GC	75	184 (30-339)
Southeast Asia East Asia and Oceania	1990	Proteus spp	Fluoroquinolones	76	137 (3-272)
Southeast Asia East Asia and Oceania	1990	Citrobacter spp	4GC	77	107 (84-130)
Southeast Asia, East Asia, and Oceania	1990	Proteus spp.	TMP-SMX	78	107 (0-286)
Southeast Asia, East Asia, and Oceania	1990	Serratia spp.	3GC	79	49 (0-137)
Southeast Asia, East Asia, and Oceania	1990	Salmonella Paratyphi	Fluoroquinolones	80	15 (0-33)
Southeast Asia East Asia and Oceania	1990	Salmonella Paratyphi	MDR	81	6 (0-36)
Southeast Asia East Asia and Oceania	1990	Mycobacterium tuberculosis	XDR	82	0 (0-0)
Sub-Saharan Africa	1990	Streptococcus pneumoniae	Carbanenems	1	24 500 (14 300-34 600)
Sub-Saharan Africa	1990	Streptococcus pneumoniae	Fluoroquinolones	2	10 800 (4 470-17 100)
Sub-Saharan Africa	1990	Streptococcus pneumoniae	TMP-SMX	3	9 150 (0-19 400)
Sub-Saharan Africa	1990	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib	4	7 770 (607-14 900)
Sub-Saharan Africa	1990	Escherichia coli	TMP-SMX	5	7 580 (4 960-10 200)
Sub-Saharan Africa	1990	Klebsiella preumoniae	Beta-Lactams/Beta-Lactamase Inhih	6	7,010 (3,250-10,200)
Sub-Saharan Africa	1990	Streptococcus preumoniae	3GC	7	6 740 (4 460-9 020)
Sub-Saharan Africa	1990	Streptococcus pneumonida	Penicillin	8	6 580 (3 920 9 240)
Sub-Saharan Africa	1990	Klebsiella preumoniae	TMP_SMX	9	6 570 (3 390-9 750)
Sub-Saharan Africa	1990	Klebsiella preumoniae	360	10	6 250 (3 790 8 710)
Sub-Saharan Africa	1990	Klebsiella preumoniae	Aminoglycosides	11	6 020 (4 190 7 850)
Sub-Saharan Africa	1990	Riebstettu pheumonide Braudomonas aoruginosa	Anti negudomonal	12	5 210 (2 070 6 650)
Sub-Saharan Africa	1990	F seudomonas deruginosa Stanbylogogaus gurgus	Mathiaillin	12	4 850 (2 170 7 520)
Sub-Saharan Africa	1990	A size stable star because	Corbonomo	15	4,630 (2,170-7,320)
Sub-Saharan Africa	1990	Acineiobacier baumannii Klabaialla an ann an a	Carbapenenins	14	4,080 (2,800-0,370)
Sub-Saharan Africa	1990	Kiedsiena pneumoniae	Fluoroquinolones	15	4,550 (2,980-0,070)
Sub-Saharan Africa	1990		ritoroquinoiones	10	4,480 (3,340-3,420)
Sub-Sanaran Africa	1990	Haemophilus influenzae	SGC	1/	4,400 (850-8,070)
Sub-Sanaran Africa	1990	Acinetobacter baumannii	Ann-pseudomonal	18	4,420 (3,820-5,020)
Sub-Saharan Africa	1990	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	19	4,150 (2,300-6,000)
Sub-Saharan Africa	1990	Escherichia coli	Aminoglycosides	20	3,760 (1,180-6,350)
Sub-Saharan Africa	1990	Pseudomonas aeruginosa	Aminoglycosides	21	3,680 (2,380-4,980)
Sub-Saharan Africa	1990	Escherichia coli	3GC	22	3,410 (0-6,920)
Sub-Saharan Africa	1990	Klebsiella pneumoniae	Carbapenems	23	3,360 (2,450-4,270)
Sub-Saharan Africa	1990	Pseudomonas aeruginosa	Fluoroquinolones	24	3,120 (2,140-4,110)
Sub-Saharan Africa	1990	Streptococcus pneumoniae	Macrolides	25	3,110 (1,610-4,610)
Sub-Saharan Africa	1990	Staphylococcus aureus	TMP-SMX	26	3,080 (1,870-4,290)
Sub-Saharan Africa	1990	Escherichia coli	Carbapenems	27	3,040 (694-5,390)
Sub-Saharan Africa	1990	Acinetobacter baumannii	3GC	28	3,020 (2,590-3,450)
Sub-Saharan Africa	1990	Acinetobacter baumannii	Aminoglycosides	29	3,020 (1,970-4,060)
Sub-Saharan Africa	1990	Shigella spp.	Fluoroquinolones	30	2,650 (262-5,050)
Sub-Saharan Africa	1990	Escherichia coli	Aminopenicillin	31	2,600 (830-4,360)
Sub-Saharan Africa	1990	Acinetobacter baumannii	4GC	32	2,270 (1,590-2,950)
Sub-Saharan Africa	1990	Pseudomonas aeruginosa	Carbapenems	33	2,250 (1,120-3,390)
Sub-Saharan Africa	1990	Escherichia coli	Fluoroquinolones	34	2,070 (870-3,280)
Sub-Saharan Africa	1990	Serratia spp.	Anti-pseudomonal	35	2,000 (1,510-2,500)
Sub-Saharan Africa	1990	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	36	1,920 (1,100-2,740)
Sub-Saharan Africa	1990	Enterobacter spp.	Carbapenems	37	1,630 (1,160-2,100)
Sub-Saharan Africa	1990	Staphylococcus aureus	Vancomycin	38	1,310 (461-2,150)
Sub-Saharan Africa	1990	Group B Streptococcus	Penicillin	39	1,280 (381-2,180)

Sub-Saharan Africa	1990	Serratia spp.	Aminoglycosides	40	1,280 (859-1,700)
Sub-Saharan Africa	1990	Haemophilus influenzae	Aminopenicillin	41	1,220 (751-1,680)
Sub-Saharan Africa	1990	Serratia spp.	4GC	42	1,180 (966-1,390)
Sub-Saharan Africa	1990	Staphylococcus aureus	Fluoroquinolones	43	1,140 (363-1,910)
Sub-Saharan Africa	1990	Citrobacter spp.	Anti-pseudomonal	44	1,030 (772-1,290)
Sub-Saharan Africa	1990	Pseudomonas aeruginosa	4GC	45	1,000 (543-1,460)
Sub-Saharan Africa	1990	Enterobacter spp.	4GC	46	961 (778-1,140)
Sub-Saharan Africa	1990	Staphylococcus aureus	Macrolides	47	921 (569-1,270)
Sub-Saharan Africa	1990	Enterobacter spp.	Aminoglycosides	48	882 (588-1,180)
Sub-Saharan Africa	1990	Serratia spp.	Fluoroquinolones	49	823 (340-1,310)
Sub-Saharan Africa	1990	Group B Streptococcus	Fluoroquinolones	50	811 (403-1,220)
Sub-Saharan Africa	1990	Enterobacter spp.	Anti-pseudomonal	51	803 (608-998)
Sub-Saharan Africa	1990	Enterobacter faecalis	Fluoroquinolones	52	768 (494-1,040)
Sub-Saharan Africa	1990	Serratia spp.	Carbapenems	53	685 (511-860)
Sub-Saharan Africa	1990	Group B Streptococcus	Macrolides	54	601 (380-822)
Sub-Saharan Africa	1990	Non-typhoidal Salmonella	Fluoroquinolones	55	559 (40-1,080)
Sub-Saharan Africa	1990	Mycobacterium tuberculosis	MDR excluding XDR	56	554 (0-1,470)
Sub-Saharan Africa	1990	Enterobacter spp.	Fluoroquinolones	57	526 (295-756)
Sub-Saharan Africa	1990	Citrobacter spp.	Fluoroquinolones	58	468 (237-699)
Sub-Saharan Africa	1990	Proteus spp.	3GC	59	441 (253-629)
Sub-Saharan Africa	1990	Salmonella Typhi	MDR	60	435 (0-952)
Sub-Saharan Africa	1990	Morganella spp.	Fluoroquinolones	61	412 (185-638)
Sub-Saharan Africa	1990	Enterobacter spp.	TMP-SMX	62	361 (62-659)
Sub-Saharan Africa	1990	Pseudomonas aeruginosa	3GC	63	343 (0-726)
Sub-Saharan Africa	1990	Enterococcus faecium	Fluoroquinolones	64	339 (145-533)
Sub-Saharan Africa	1990	Group A Streptococcus	Macrolides	65	310 (191-428)
Sub-Saharan Africa	1990	Morganella spp.	3GC	66	298 (207-390)
Sub-Saharan Africa	1990	Proteus spp.	Aminopenicillin	67	284 (201-367)
Sub-Saharan Africa	1990	Citrobacter spp.	Aminoglycosides	68	271 (200-342)
Sub-Saharan Africa	1990	Enterobacter faecalis	Vancomycin	69	263 (0-645)
Sub-Saharan Africa	1990	Citrobacter spp.	Carbapenems	70	261 (123-400)
Sub-Saharan Africa	1990	Citrobacter spp.	4GC	71	252 (188-316)
Sub-Saharan Africa	1990	Enterococcus faecium	Vancomycin	72	250 (190-310)
Sub-Saharan Africa	1990	Morganella spp.	4GC	73	243 (148-338)
Sub-Saharan Africa	1990	Proteus spp.	Aminoglycosides	74	208 (124-292)
Sub-Saharan Africa	1990	Salmonella Typhi	Fluoroquinolones	75	181 (2-359)
Sub-Saharan Africa	1990	Serratia spp.	3GC	76	115 (0-292)
Sub-Saharan Africa	1990	Citrobacter spp.	3GC	77	85 (14-155)
Sub-Saharan Africa	1990	Proteus spp.	Fluoroquinolones	78	74 (3-146)
Sub-Saharan Africa	1990	Proteus spp.	TMP-SMX	79	55 (0-149)
Sub-Saharan Africa	1990	Salmonella Paratyphi	MDR	80	9 (0-64)
Sub-Saharan Africa	1990	Salmonella Paratyphi	Fluoroquinolones	81	8 (0-17)
Sub-Saharan Africa	1990	Mycobacterium tuberculosis	XDR	82	0 (0-0)

2372	Table S14: 82 fatal	pathogen-drug	combination ran	nking by burden	attributable to A	MR in 2021	, globally and	d by sup	er-regions

Location	Year	Pathogen	Antibiotic Class	Rank	Attributable AMR Deaths
Global	2021	Staphylococcus aureus	Methicillin	1	130,000 (113,000-146,000)
Global	2021	Acinetobacter baumannii	Carbapenems	2	78,100 (62,400-93,900)
Global	2021	Streptococcus pneumoniae	Carbapenems	3	71,600 (51,000-92,100)
Global	2021	Pseudomonas aeruginosa	Carbapenems	4	45,600 (31,600-59,700)
Global	2021	Klebsiella pneumoniae	Carbapenems	5	45,600 (35,700-55,500)
Global	2021	Acinetobacter baumannii	Fluoroquinolones	6	45,000 (36,800-53,300)
Global	2021	Mycobacterium tuberculosis	MDR excluding XDR	7	36,400 (0-86,800)
Global	2021	Klebsiella pneumoniae	Fluoroquinolones	8	36,000 (25,500-46,400)
Global	2021	Escherichia coli	Fluoroquinolones	9	34,100 (22,900-45,400)
Global	2021	Escherichia coli	3GC	10	33,100 (22,500-43,700)
Global	2021	Escherichia coli	Carbapenems	11	27,900 (22,600-33,200)
Global	2021	Klebsiella pneumoniae	Aminoglycosides	12	27,900 (20,900-34,900)
Global	2021	Staphylococcus aureus	Fluoroquinolones	13	25,600 (10,100-41,200)
Global	2021	Acinetobacter baumannii	Aminoglycosides	14	24,200 (18,800-29,600)
Global	2021	Escherichia coli	TMP-SMX	15	24,100 (15,100-33,200)
Global	2021	Pseudomonas aeruginosa	Fluoroquinolones	16	23,800 (16,400-31,300)
Global	2021	Staphylococcus aureus	Macrolides	17	21,600 (14,400-28,700)
Global	2021	Klebsiella pneumoniae	3GC	18	21,200 (13,400-29,100)
Global	2021	Streptococcus pneumoniae	Macrolides	19	20,000 (12,300-27,800)
Global	2021	Klebsiella pneumoniae	TMP-SMX	20	18,300 (9,230-27,300)
Global	2021	Streptococcus pneumoniae	3GC	21	16,300 (11,500-21,100)
Global	2021	Pseudomonas aeruginosa	Anti-pseudomonal	22	16,000 (13,100-18,900)
Global	2021	Streptococcus pneumoniae	TMP-SMX	23	15,500 (0-33,400)
Global	2021	Escherichia coli	Aminopenicillin	24	14,900 (11,400-18,300)
Global	2021	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib.	25	14,800 (5,020-24,500)
Global	2021	Pseudomonas aeruginosa	Aminoglycosides	26	14,200 (9,980-18,400)
Global	2021	Streptococcus pneumoniae	Penicillin	27	13,300 (10,400-16,100)
Global	2021	Streptococcus pneumoniae	Fluoroquinolones	28	13,200 (5,550-20,800)
Global	2021	Enterobacter faecalis	Fluoroquinolones	29	12,400 (8,300-16,500)
Global	2021	Staphylococcus aureus	TMP-SMX	30	12,300 (7,450-17,200)
Global	2021	Escherichia coli	Aminoglycosides	31	11,800 (8,110-15,500)
Global	2021	Enterococcus faecium	Vancomycin	32	11,000 (9,090-13,000)
Global	2021	Enterococcus faecium	Fluoroquinolones	33	10,500 (5,520-15,400)
Global	2021	Enterobacter spp.	Carbapenems	34	9,780 (7,640-11,900)
Global	2021	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	35	9,380 (4,130-14,600)
Global	2021	Acinetobacter baumannii	Anti-pseudomonal	36	8,370 (6,890-9,860)
Global	2021	Enterobacter spp.	Anti-pseudomonal	37	7,470 (6,210-8,740)
Global	2021	Acinetobacter baumannii	3GC	38	7,460 (6,220-8,690)
Global	2021	Staphylococcus aureus	Vancomycin	39	7,110 (5,000-9,220)
Global	2021	Serratia spp.	Anti-pseudomonal	40	5,520 (4,440-6,590)
Global	2021	Serratia spp.	Carbapenems	41	5,160 (4,010-6,310)
Global	2021	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	42	5,160 (2,870-7,450)
Global	2021	Enterobacter spp.	Fluoroquinolones	43	5,040 (2,860-7,220)
Global	2021	Haemophilus influenzae	Aminopenicillin	44	4,770 (3,660-5,880)
Global	2021	Pseudomonas aeruginosa	4GC	45	4,360 (3,340-5,380)
Global	2021	Proteus spp.	3GC	46	4,230 (2,820-5,650)
Global	2021	Proteus spp.	Aminopenicillin	47	4,210 (3,330-5,090)
Global	2021	Group B Streptococcus	Fluoroquinolones	48	4,160 (1,920-6,390)
Global	2021	Shigella spp.	Fluoroquinolones	49	3,960 (748-7,180)
Global	2021	Serratia spp.	Aminoglycosides	50	3,780 (2,550-5,010)
Global	2021	Enterobacter spp.	4GC	51	3,720 (3,110-4,330)
Global	2021	Citrobacter spp.	Carbapenems	52	3,650 (2,180-5,130)
Global	2021	Enterobacter spp.	Aminoglycosides	53	3,590 (2,490-4,700)
Global	2021	Morganella spp.	Fluoroquinolones	54	3,590 (1,850-5,320)
Global	2021	Citrobacter spp.	Anti-pseudomonal	55	3,490 (2,910-4,060)
Global	2021	Citrobacter spp.	Fluoroquinolones	56	3,300 (2,030-4,580)

Global	2021	Acinetobacter baumannii	4GC	57	3 290 (2 770-3 810)
Global	2021	Salmonella Typhi	Fluoroquinolones	58	3 260 (464-6 050)
Global	2021	Mycobactarium tubarculosis	YDP	50	3 250 (176 6 330)
Clobal	2021	Mycobacterium inderculosis	200	60	2 100 (528 5 840)
	2021	Filemophilus injilenzae	50C	60	3,190 (338-3,840)
Global	2021	Enterobacter faecalis	Vancomycin	61	2,990 (1,600-4,380)
Global	2021	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	62	2,860 (1,870-3,860)
Global	2021	Group B Streptococcus	Macrolides	63	2,720 (1,720-3,710)
Global	2021	Morganella spp.	4GC	64	2,710 (1,980-3,450)
Global	2021	Group A Streptococcus	Macrolides	65	2,700 (1,640-3,750)
Global	2021	Proteus spp.	Aminoglycosides	66	2,680 (1,870-3,490)
Global	2021	Salmonella Typhi	MDR	67	2.680 (181-5.180)
Global	2021	Proteus spp.	Fluoroquinolones	68	2,570 (1,050-4,100)
Global	2021	Serratia spp	Fluoroquinolones	69	2 490 (779-4 200)
Global	2021	Serratia spp.	AGC	70	2,300 (1,890-2,710)
Global	2021	Braudomonas acruainosa	200	71	2,100 (1,200,2,080)
Clabal	2021	New tenderic led Celeverelle		71	2,190 (1,290-3,080)
Global	2021	Non-typnoiaal Saimonella	Fluoroquinoiones	72	1,950 (160-3,740)
Global	2021	Enterobacter spp.	TMP-SMX	73	1,900 (246-3,550)
Global	2021	Salmonella Paratyphi	Fluoroquinolones	74	1,670 (270-3,070)
Global	2021	Group B Streptococcus	Penicillin	75	1,390 (480-2,300)
Global	2021	Morganella spp.	3GC	76	1,260 (918-1,600)
Global	2021	Citrobacter spp.	Aminoglycosides	77	1,070 (828-1,310)
Global	2021	Citrobacter spp.	4GC	78	996 (808-1.180)
Global	2021	Citrobacter spp	3GC	79	814 (523-1 110)
Global	2021	Proteus enn	TMD SMY	80	735 (0 1 890)
Clobal	2021	Sarratia opp	200	80 91	525 (47,1,020)
Clubal	2021	Selver lle Densternh	MDB	01	110 (0.222)
	2021	Saimonella Paratyphi	MDR	82	110 (0-253)
Central Europe, Eastern Europe, and Central Asia	2021	Staphylococcus aureus	Methicillin	1	/,/00 (6,0/0-9,330)
Central Europe, Eastern Europe, and Central Asia	2021	Pseudomonas aeruginosa	Carbapenems	2	3,680 (2,560-4,800)
Central Europe, Eastern Europe, and Central Asia	2021	Acinetobacter baumannii	Carbapenems	3	3,580 (2,860-4,310)
Central Europe, Eastern Europe, and Central Asia	2021	Streptococcus pneumoniae	Carbapenems	4	3,370 (2,220-4,520)
Central Europe, Eastern Europe, and Central Asia	2021	Klebsiella pneumoniae	Carbapenems	5	2,700 (2,040-3,350)
Central Europe, Eastern Europe, and Central Asia	2021	Escherichia coli	Fluoroquinolones	6	2,360 (1,310-3,410)
Central Europe, Eastern Europe, and Central Asia	2021	Klebsiella pneumoniae	Fluoroquinolones	7	2.350 (1.670-3.030)
Central Europe, Eastern Europe, and Central Asia	2021	Escherichia coli	3GC	8	2,170 (1,420-2,910)
Central Europe Eastern Europe, and Central Asia	2021	Acinetobacter baumannii	Fluoroquinolones	9	2 100 (1 720-2 490)
Central Europe, Eastern Europe, and Central Asia	2021	Psaudomonas garuginosa	Fluoroquinolones	10	1,930(1,350,2,510)
Control Europe, Eastern Europe, and Control Asia	2021	Myaabaatariium tubaraulasis	MDP avaluding XDP	11	1,930 (1,530-2,510)
Central Europe, Eastern Europe, and Central Asia	2021	Mycoodcierium iubercuiosis	A minomonicillin	12	1,720 (1,200,2,250)
Central Europe, Eastern Europe, and Central Asia	2021	Escherichia con	Ammopenemm	12	1,750 (1,200-2,250)
Central Europe, Eastern Europe, and Central Asia	2021	Klebsiella pneumoniae	Aminoglycosides	13	1,720 (1,310-2,140)
Central Europe, Eastern Europe, and Central Asia	2021	Escherichia coli	TMP-SMX	14	1,540 (859-2,220)
Central Europe, Eastern Europe, and Central Asia	2021	Staphylococcus aureus	Fluoroquinolones	15	1,280 (499-2,060)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacter faecalis	Fluoroquinolones	16	1,220 (797-1,640)
Central Europe, Eastern Europe, and Central Asia	2021	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib.	17	1,130 (306-1,950)
Central Europe, Eastern Europe, and Central Asia	2021	Staphylococcus aureus	Macrolides	18	1,060 (715-1,410)
Central Europe, Eastern Europe, and Central Asia	2021	Pseudomonas aeruginosa	Aminoglycosides	19	1.040 (716-1.370)
Central Europe, Eastern Europe, and Central Asia	2021	Klebsiella pneumoniae	TMP-SMX	20	1.020 (512-1.520)
Central Europe, Eastern Europe, and Central Asia	2021	Acinetobacter baumannii	Aminoglycosides	21	991 (755-1.230)
Central Europe, Eastern Europe, and Central Asia	2021	Enterococcus faecium	Fluoroquinolones	22	963 (501-1 420)
Control Europe, Eastern Europe, and Control Asia	2021	Myaabaatariium tubaraulasis	VDP	22	040 (20 1 850)
Central Europe, Eastern Europe, and Central Asia	2021	Wycobacterium iuberculosis	200	23	940 (50-1,850)
Central Europe, Eastern Europe, and Central Asia	2021	Klebslella pheumoniae		24	906 (343-1,270)
Central Europe, Eastern Europe, and Central Asia	2021	F seudomonas aeruginosa	Anu-pseudomonal	25	0/4 (/32-1,020)
Central Europe, Eastern Europe, and Central Asia	2021	Escherichia coli	Carbapenems	26	845 (666-1,020)
Central Europe, Eastern Europe, and Central Asia	2021	Enterococcus faecium	Vancomycin	27	/94 (627-961)
Central Europe, Eastern Europe, and Central Asia	2021	Streptococcus pneumoniae	TMP-SMX	28	757 (0-1,660)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacter spp.	Anti-pseudomonal	29	754 (626-882)
Central Europe, Eastern Europe, and Central Asia	2021	Escherichia coli	Aminoglycosides	30	689 (463-914)
Central Europe, Eastern Europe, and Central Asia	2021	Staphylococcus aureus	Vancomycin	31	577 (463-691)
Central Europe, Eastern Europe, and Central Asia	2021	Streptococcus pneumoniae	Macrolides	32	572 (337-807)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacter spp.	Carbapenems	33	444 (326-562)
Central Europe, Eastern Europe, and Central Asia	2021	Streptococcus pneumoniae	Penicillin	34	387 (312-461)
r ,					

Control Europe Eastern Europe and Control Asia	2021	Connetin com	Anti manudamanal	25	259 (206 420)
Central Europe, Eastern Europe, and Central Asia	2021	Serralia spp.	Ann-pseudomonai	55	538 (290-420)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacter spp.	Fluoroquinolones	36	335 (187-484)
Central Europe, Eastern Europe, and Central Asia	2021	Staphylococcus aureus	TMP-SMX	37	330 (187-473)
Central Europe, Eastern Europe, and Central Asia	2021	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib	38	330 (114-546)
Control Europe, Eastern Europe, and Control Asia	2021	Entarchaster opp	400	20	217 (265 269)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacier spp.	400	39	317 (203-308)
Central Europe, Eastern Europe, and Central Asia	2021	Proteus spp.	Aminopenicillin	40	289 (222-355)
Central Europe, Eastern Europe, and Central Asia	2021	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	41	288 (160-415)
Central Europe, Eastern Europe, and Central Asia	2021	Citrobacter spp.	Anti-pseudomonal	42	275 (233-317)
Control Europe, Eastern Europe, and Control Asia	2021	Enterchaster facalic	Vancomyoin	12	261 (124 299)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacier faecaus	Valiconiyeni	45	201 (134-388)
Central Europe, Eastern Europe, and Central Asia	2021	Streptococcus pneumoniae	3GC	44	254 (185-324)
Central Europe, Eastern Europe, and Central Asia	2021	Proteus spp.	Aminoglycosides	45	248 (164-331)
Central Europe, Eastern Europe, and Central Asia	2021	Citrobacter spp	Fluoroquinolones	46	243 (133-353)
Control Europe, Eastern Europe, and Control Asia	2021	Entarchaster opp	Aminoglycosides	47	220 (156 221)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacier spp.	Ammogrycosides	4/	239 (130-321)
Central Europe, Eastern Europe, and Central Asia	2021	Serratia spp.	Carbapenems	48	239 (188-290)
Central Europe, Eastern Europe, and Central Asia	2021	Proteus spp.	Fluoroquinolones	49	237 (73-400)
Central Europe, Eastern Europe, and Central Asia	2021	Serratia spp.	Aminoglycosides	50	233 (151-316)
Central Europe, Eastern Europe, and Central Asia	2021	Straptococcus praumoniaa	Fluoroquinolones	51	225 (88 362)
Central Europe, Eastern Europe, and Central Asia	2021	Streptococcus pneumonute	Thuoroquinorones	51	225 (88-502)
Central Europe, Eastern Europe, and Central Asia	2021	Morganella spp.	Fluoroquinolones	52	224 (113-335)
Central Europe, Eastern Europe, and Central Asia	2021	Acinetobacter baumannii	3GC	53	224 (165-282)
Central Europe, Eastern Europe, and Central Asia	2021	Acinetobacter baumannii	Anti-pseudomonal	54	211 (144-279)
Central Europe, Eastern Europe, and Central Asia	2021	Serratia spp	4GC	55	211 (180 242)
Central Europe, Eastern Europe, and Central Asia	2021	Serraia spp.	400	55	211 (100-242)
Central Europe, Eastern Europe, and Central Asia	2021	Proteus spp.	3GC	56	204 (127-281)
Central Europe, Eastern Europe, and Central Asia	2021	Pseudomonas aeruginosa	4GC	57	200 (158-243)
Central Europe, Eastern Europe, and Central Asia	2021	Serratia spp	Fluoroquinolones	58	165 (50-281)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacter con	TMD SMY	50	162 (15 300)
Central Europe, Eastern Europe, and Central Asia	2021	Enterobacier spp.	100	59	102 (13-309)
Central Europe, Eastern Europe, and Central Asia	2021	Citrobacter spp.	4GC	60	146 (124-167)
Central Europe, Eastern Europe, and Central Asia	2021	Citrobacter spp.	Carbapenems	61	138 (75-200)
Central Europe, Eastern Europe, and Central Asia	2021	Pseudomonas aeruginosa	3GC	62	132 (73-191)
Central Europe Eastern Europe and Central Asia	2021	Haemonhilus influenzae	360	63	125 (4-246)
	2021	nuemophilus influenzae	56C	05	125 (76, 174)
Central Europe, Eastern Europe, and Central Asia	2021	Group A Streptococcus	Macrolides	64	125 (76-174)
Central Europe, Eastern Europe, and Central Asia	2021	Acinetobacter baumannii	4GC	65	120 (91-149)
Central Europe, Eastern Europe, and Central Asia	2021	Haemophilus influenzae	Aminopenicillin	66	112 (78-145)
Central Europe Eastern Europe and Central Asia	2021	Morganella spp	4GC	67	106 (70-142)
Central Europe, Eastern Europe, and Central Asia	2021	Crown B. Strantoneous	Magnalidas	69	105 (67 142)
Central Europe, Eastern Europe, and Central Asia	2021	Gloup B Streptococcus	Macrondes	08	103 (67-142)
Central Europe, Eastern Europe, and Central Asia	2021	Group B Streptococcus	Fluoroquinolones	69	96 (37-156)
Central Europe, Eastern Europe, and Central Asia	2021	Citrobacter spp.	Aminoglycosides	70	96 (76-116)
Central Europe, Eastern Europe, and Central Asia	2021	Proteus spp	TMP-SMX	71	72 (0-191)
Control Europe, Eastern Europe, and Control Asia	2021	Morganella opp	200	72	62(45,70)
Central Europe, Eastern Europe, and Central Asia	2021	Morganetta spp.	500	12	02 (43-79)
Central Europe, Eastern Europe, and Central Asia	2021	Group B Streptococcus	Penicillin	13	42 (6-77)
Central Europe, Eastern Europe, and Central Asia	2021	Citrobacter spp.	3GC	74	36 (10-62)
Central Europe, Eastern Europe, and Central Asia	2021	Serratia spp.	3GC	75	31 (0-73)
Central Europe, Eastern Europe, and Central Asia	2021	Acinatohactar haumannii	Beta Lactame/Beta Lactamase Inhib	76	25 (13 36)
Control Europe, Eastern Europe, and Central Asia	2021		Electronic lasta l	70	11 (0.24)
Central Europe, Eastern Europe, and Central Asia	2021	Shigella spp.	Fluoroquinolones	//	11 (0-24)
Central Europe, Eastern Europe, and Central Asia	2021	Non-typhoidal Salmonella	Fluoroquinolones	78	2 (0-4)
Central Europe, Eastern Europe, and Central Asia	2021	Salmonella Typhi	MDR	79	0 (0-0)
Central Europe Eastern Europe and Central Asia	2021	Salmonella Paratyphi	Fluoroquinolones	80	0(0-0)
Control Europe, Eastern Europe, and Control Asia	2021	Salmonella Turbi	Fluoroquinolones	Q1	
Central Europe, Eastern Europe, and Central Asia	2021	Sumonetta Typin	Fuoroquinorones	01	0 (0-0)
Central Europe, Eastern Europe, and Central Asia	2021	Salmonella Paratyphi	MDR	82	0 (0-0)
High-income	2021	Staphylococcus aureus	Methicillin	1	31,000 (26,300-35,800)
High-income	2021	Pseudomonas aeruginosa	Carbapenems	2	6.540 (4.630-8.450)
High income	2021	Stankylogogaus gurgus	Fluoroquinolonos	2	5 700 (2 440 0 150)
II'sh income	2021	Suprylococcus unreas	Carboners	5	5,750 (2,440-5,150)
rign-income	2021	Streptococcus pneumoniae	Carbapenems	4	5,500 (4,420-6,700)
High-income	2021	Staphylococcus aureus	Macrolides	5	5,000 (3,340-6,670)
High-income	2021	Escherichia coli	Fluoroquinolones	6	4,760 (2,830-6,680)
High-income	2021	Escherichia coli	Aminopenicillin	7	4 450 (3 440-5 460)
High income	2021	A ain stohastan haunamii	Carbananama	0	2 870 (2 110 4 640)
righ-income	2021	Acinelobacier baumannii	Caroapenenis	8	3,670 (3,110-4,040)
High-income	2021	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib.	9	3,820 (1,190-6,450)
High-income	2021	Enterococcus faecium	Vancomycin	10	3,550 (2,990-4,100)
High-income	2021	Escherichia coli	3GC	11	3,480 (2,280-4,680)
High-income	2021	Pseudomonas aeruginosa	Fluoroquinolones	12	3 190 (2 200-4 190)
ingn-meome	2021	i senaomonas aeraginosa	1 Iuoroquinorolles	14	5,170 (2,200-4,170)

Tick income	2021	East mistin anti	TMD CMV	12	2 050 (1 640 4 270)
Tigh-income	2021	Escherichia cou		1.5	2,950 (1,040-4,270)
High-income	2021	Enterococcus faecium	Fluoroquinolones	14	2,520 (1,410-3,630)
High-income	2021	Klebsiella pneumoniae	Aminoglycosides	15	2,380 (1,660-3,110)
High-income	2021	Acinetobacter baumannii	Fluoroquinolones	16	2,370 (1,940-2,810)
High-income	2021	Klebsiella pneumoniae	Fluoroquinolones	17	2.060 (1.460-2.670)
High-income	2021	Klebsiella preumoniae	Carbanenems	18	1,980(1,540-2,430)
High-income	2021	D l	A ati anna 1	10	1,950 (1,940-2,450)
High-income	2021	Pseudomonas deruginosa	Anti-pseudomonal	19	1,850 (1,490-2,200)
High-income	2021	Streptococcus pneumoniae	Macrolides	20	1,590 (959-2,230)
High-income	2021	Enterobacter spp.	Anti-pseudomonal	21	1,590 (1,290-1,890)
High-income	2021	Staphylococcus aureus	Vancomvcin	22	1.580 (1.250-1.900)
High-income	2021	Escherichia coli	Carbanenems	23	1 350 (1 100-1 600)
High-income	2021	Esterek astar fassalia	Elucrospinolonos	23	1,350 (1,100-1,000)
rigi-income	2021	Enterobacier Jaecalis	Fluoroquinorones	24	1,240 (802-1,670)
High-income	2021	Klebsiella pneumoniae	TMP-SMX	25	1,060 (541-1,570)
High-income	2021	Acinetobacter baumannii	Aminoglycosides	26	1,050 (817-1,280)
High-income	2021	Proteus spp.	Aminopenicillin	27	1,020 (769-1,270)
High-income	2021	Klebsiella pneumoniae	3GC	28	1 020 (603-1 430)
High-income	2021	Escherichia coli	Aminoglycosides	29	1 010 (644-1 380)
High-income	2021	De l	Aminogrycosides	20	0.60 (708 1 220)
High-income	2021	Pseudomonas aeruginosa	Aminoglycosides	30	969 (708-1,230)
High-income	2021	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	31	875 (402-1,350)
High-income	2021	Haemophilus influenzae	Aminopenicillin	32	797 (628-965)
High-income	2021	Streptococcus pneumoniae	TMP-SMX	33	765 (0-1.680)
High income	2021	Enterobacter spp	Carbananame	34	756 (606 905)
Tigh-income	2021	Circle I spp.	TMD SMX	25	(75 (428 022)
High-income	2021	Staphylococcus aureus	TMP-SMX	35	675 (428-922)
High-income	2021	Citrobacter spp.	Anti-pseudomonal	36	570 (462-678)
High-income	2021	Acinetobacter baumannii	Anti-pseudomonal	37	544 (455-633)
High-income	2021	Streptococcus pneumoniae	Penicillin	38	528 (407-649)
High-income	2021	Streptococcus pneumoniae	Fluoroquinolones	39	507 (291-724)
High income	2021	Brotous opp	2CC	40	404 (228 650)
rigi-income	2021	rioleus spp.	300	40	494 (328-039)
High-income	2021	Acinetobacter baumannii	360	41	489 (410-568)
High-income	2021	Enterobacter faecalis	Vancomycin	42	455 (303-606)
High-income	2021	Morganella spp.	Fluoroquinolones	43	425 (204-645)
High-income	2021	Proteus spp.	Fluoroquinolones	44	406 (163-650)
High-income	2021	Enterobacter spp	Fluoroquinolones	45	385 (220-549)
High income	2021	Savatia con	Anti negudomonal	46	277 (206 459)
righ-income	2021	Serraia spp.	Anti-pseudomonai	40	377 (290-438)
High-income	2021	Serratia spp.	Carbapenems	47	351 (2/1-430)
High-income	2021	Group B Streptococcus	Macrolides	48	312 (197-427)
High-income	2021	Serratia spp.	Fluoroquinolones	49	300 (104-496)
High-income	2021	Citrobacter spp.	Fluoroquinolones	50	287 (185-388)
High income	2021	Psaudomonas aeruginosa	AGC	51	276 (216 336)
High-income	2021	Crown A Strents regimest	Manulidae	52	272 (166 291)
rigi-income	2021	Group A Streptococcus	Macrondes	32	2/3 (100-381)
High-income	2021	Proteus spp.	Aminoglycosides	53	261 (187-335)
High-income	2021	Group B Streptococcus	Fluoroquinolones	54	240 (132-347)
High-income	2021	Citrobacter spp.	Carbapenems	55	232 (142-321)
High-income	2021	Morganella spp.	3GC	56	207 (150-265)
High-income	2021	Serratia spp	Aminoglycosides	57	196 (129-264)
High income	2021	Citrahantan ann	200	50	170 (122 226)
rign-income	2021	Curobacier spp.		58	179 (123-230)
High-income	2021	Enterobacter spp.	Aminoglycosides	59	179 (123-234)
High-income	2021	Morganella spp.	4GC	60	166 (113-218)
High-income	2021	Enterobacter spp.	TMP-SMX	61	160 (22-299)
High-income	2021	Acinetohacter haumannii	4GC	62	146 (101-192)
High income	2021	Strantococcus pnaumenias	Rata Lactame/Rata Lactamace Inhih	62	145 (66 224)
	2021	Streptococcus pneumoniae	Deta-Lactanis/Deta-Lactaniase Inilib.	05	140 (04 154)
High-income	2021	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	64	119 (84-154)
High-income	2021	Mycobacterium tuberculosis	MDR excluding XDR	65	115 (0-310)
High-income	2021	Pseudomonas aeruginosa	3GC	66	111 (55-168)
High-income	2021	Proteus spp.	TMP-SMX	67	111 (0-287)
High-income	2021	Enterobacter spp	AGC	68	106 (85-127)
High income	2021	Lacmonhilus influenza	200	60	102 (54 150)
rign-income	2021	naemopnius injiuenzae	500	69	102 (34-150)
High-income	2021	Streptococcus pneumoniae	3GC	70	102 (63-140)
High-income	2021	Group B Streptococcus	Penicillin	71	74 (58-90)
High income	2021	Serratia spp	3GC	72	68 (0-150)

High-income	2021	Citrobacter spp.	Aminoglycosides	73	61 (47-74)
High-income	2021	Serratia spp.	4GC	74	52 (42-62)
High-income	2021	Mycobacterium tuberculosis	XDR	75	38 (0-81)
High-income	2021	Citrobacter spp.	4GC	76	30 (23-37)
High-income	2021	Non-typhoidal Salmonella	Fluoroquinolones	77	12 (0-36)
High-income	2021	Shigella spp.	Fluoroquinolones	78	4 (1-6)
High-income	2021	Salmonella Paratyphi	Fluoroquinolones	79	0 (0-0)
High-income	2021	Salmonella Typhi	MDR	80	0(0-0)
High income	2021	Salmonella Typhi	Fluoroquinalonos	80 91	0(0-0)
High-income	2021	Salmonetta Typin	MDD	01	
	2021	Sumonena Paratypin	MDK	02	0 (0-0)
Latin America and Caribbean	2021	Staphylococcus aureus	Methicillin	1	9,240 (7,620-10,900)
Latin America and Caribbean	2021	Acinetobacter baumannii	Carbapenems	2	5,970 (4,850-7,100)
Latin America and Caribbean	2021	Streptococcus pneumoniae	Carbapenems	3	5,170 (3,550-6,790)
Latin America and Caribbean	2021	Pseudomonas aeruginosa	Carbapenems	4	4,870 (3,450-6,290)
Latin America and Caribbean	2021	Klebsiella pneumoniae	Carbapenems	5	3,800 (2,990-4,610)
Latin America and Caribbean	2021	Acinetobacter baumannii	Fluoroquinolones	6	3,380 (2,760-4,000)
Latin America and Caribbean	2021	Klebsiella pneumoniae	Fluoroquinolones	7	3,100 (2,190-4,010)
Latin America and Caribbean	2021	Klebsiella pneumoniae	Aminoglycosides	8	2,530 (1,880-3,180)
Latin America and Caribbean	2021	Escherichia coli	Fluoroquinolones	9	2,490 (1,490-3,500)
Latin America and Caribbean	2021	Pseudomonas aeruginosa	Fluoroquinolones	10	2,140 (1,470-2,810)
Latin America and Caribbean	2021	Escherichia coli	3GC	11	2,050 (1,310-2,800)
Latin America and Caribbean	2021	Staphylococcus aureus	Macrolides	12	2,020 (1,340-2,690)
Latin America and Caribbean	2021	Escherichia coli	TMP-SMX	13	1.890 (1.080-2.710)
Latin America and Caribbean	2021	Acinetobacter baumannii	Aminoglycosides	14	1 680 (1 300-2 060)
Latin America and Caribbean	2021	Enterococcus faecium	Vancomycin	15	1 550 (1 290-1 810)
Latin America and Caribbean	2021	Klebsiella pneumoniae	TMP_SMX	16	1,510(762-2.260)
Latin America and Caribbean	2021	Klebsiella pneumoniae	3GC	17	1,450 (887-2,020)
Latin America and Caribbean	2021	Stanbylogogaus gurgus	Fluerominalones	19	1,400(540,2,250)
Latin America and Caribbean	2021	Escherichia coli	Aminoponioillin	10	1,400 (349-2,230)
Latin America and Caribbean	2021	Escherichia con	Aminopenicinin	19	1,360 (333-1,700)
Latin America and Caribbean	2021	Pseudomonas deruginosa	Aminogiycosides	20	1,000 (777-1,340)
Latin America and Caribbean	2021	Streptococcus pneumoniae	Macrolides	21	1,010 (591-1,430)
Latin America and Caribbean	2021	Streptococcus pneumoniae	IMP-SMX	22	1,000 (0-2,180)
Latin America and Caribbean	2021	Escherichia coli	Beta-Lactams/Beta-Lactamase Inhib.	23	994 (144-1,840)
Latin America and Caribbean	2021	Escherichia coli	Carbapenems	24	985 (730-1,240)
Latin America and Caribbean	2021	Pseudomonas aeruginosa	Anti-pseudomonal	25	969 (791-1,150)
Latin America and Caribbean	2021	Escherichia coli	Aminoglycosides	26	767 (487-1,050)
Latin America and Caribbean	2021	Enterobacter faecalis	Fluoroquinolones	27	733 (504-962)
Latin America and Caribbean	2021	Streptococcus pneumoniae	Penicillin	28	727 (498-955)
Latin America and Caribbean	2021	Enterococcus faecium	Fluoroquinolones	29	714 (395-1,030)
Latin America and Caribbean	2021	Proteus spp.	Aminopenicillin	30	629 (503-756)
Latin America and Caribbean	2021	Enterobacter spp.	Anti-pseudomonal	31	617 (507-727)
Latin America and Caribbean	2021	Staphylococcus aureus	Vancomycin	32	572 (453-692)
Latin America and Caribbean	2021	Enterobacter spp.	Carbapenems	33	554 (440-667)
Latin America and Caribbean	2021	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	34	503 (160-846)
Latin America and Caribbean	2021	Staphylococcus aureus	TMP-SMX	35	425 (265-586)
Latin America and Caribbean	2021	Serratia spp.	Carbapenems	36	423 (335-512)
Latin America and Caribbean	2021	Mycobacterium tuberculosis	MDR excluding XDR	37	417 (0-1 110)
Latin America and Caribbean	2021	Acinetobacter haumannii	Anti-nseudomonal	38	414 (342-485)
Latin America and Caribbean	2021	Strentococcus preumoniae	Fluoroquinolones	39	408 (124-692)
Latin America and Caribbean	2021	Acinetobacter baumannii	3GC	40	378 (309 447)
Latin America and Caribbean	2021	Enterphysical foreglin	Vanaomuuin	41	250 (178 520)
Latin America and Caribboon	2021	Enterobacter juccuits	Fluoroguinalonas	41	258 (210 507)
Latin America and Caribboon	2021	Morganella epp	Fluoroquinolones	42	211 (156 466)
Latin America and Caribbean	2021	Morganetta spp.	Anti-neer lance not	43	205 (242 266)
Latin America and Caribbean	2021	Serratia spp.	Anu-pseudomonal	44	303 (243-300)
Latin America and Caribbean	2021	Streptococcus pneumoniae	300	45	289 (209-369)
Latin America and Caribbean	2021	Cutrobacter spp.	Anti-pseudomonal	46	269 (225-313)
Latin America and Caribbean	2021	Enterobacter spp.	Aminoglycosides	47	255 (165-344)
Latin America and Caribbean	2021	Proteus spp.	3GC	48	250 (150-350)
Latin America and Caribbean	2021	Citrobacter spp.	Fluoroquinolones	49	241 (138-343)
Latin America and Caribbean	2021	Serratia spp.	Fluoroquinolones	50	232 (81-383)

Latin America and Caribbean	2021	Enterobacter spp	4GC	51	230 (186 273)
Latin America and Caribbean	2021	Linerobucier spp.	Aminononioillin	52	230 (100-275)
	2021	naemophilus injluenzae	Anniopenicinii	52	222 (155-266)
Latin America and Caribbean	2021	Pseudomonas aeruginosa	400	53	213 (164-261)
Latin America and Caribbean	2021	Serratia spp.	Aminoglycosides	54	205 (138-272)
Latin America and Caribbean	2021	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	55	194 (87-301)
Latin America and Caribbean	2021	Proteus spp.	Fluoroquinolones	56	186 (62-310)
Latin America and Caribbean	2021	Pseudomonas aeruginosa	360	57	176 (65-287)
Latin America and Caribbean	2021	Protous spp	Aminoglycosides	58	173 (112 235)
	2021	Troleus spp.	The characteristics	50	175 (112-255)
Latin America and Caribbean	2021	Enterobacter spp.	IMP-SMX	59	1/0 (1/-324)
Latin America and Caribbean	2021	Citrobacter spp.	Carbapenems	60	157 (96-218)
Latin America and Caribbean	2021	Morganella spp.	4GC	61	150 (102-198)
Latin America and Caribbean	2021	Group B Streptococcus	Macrolides	62	148 (92-204)
Latin America and Caribbean	2021	Group B Streptococcus	Fluoroquinolones	63	138 (56-220)
Latin America and Caribbean	2021	Haemonhilus influenzae	3GC	64	108 (38-178)
Latin America and Caribbean	2021	A sin stab a star h sum suuii	400	65	106 (97 126)
Latin America and Caribbean	2021	Acineiobacier baumannii	400	05	100 (87-120)
Latin America and Caribbean	2021	Serratia spp.	4GC	66	100 (80-120)
Latin America and Caribbean	2021	Group A Streptococcus	Macrolides	67	98 (59-136)
Latin America and Caribbean	2021	Group B Streptococcus	Penicillin	68	76 (23-130)
Latin America and Caribbean	2021	Mycobacterium tuberculosis	XDR	69	76 (0-174)
Latin America and Caribbean	2021	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib	70	68 (39-98)
Latin America and Caribbean	2021	Citrobacter spp	Aminoglycosides	71	63 (49-77)
Latin America and Caribbean	2021	Postore spp.	TMD CMV	71	50 (0,149)
Latin America and Caribbean	2021	Proteus spp.	IMP-SMA	72	59 (0-148)
Latin America and Caribbean	2021	Morganella spp.	3GC	73	56 (40-72)
Latin America and Caribbean	2021	Citrobacter spp.	4GC	74	50 (41-58)
Latin America and Caribbean	2021	Citrobacter spp.	3GC	75	38 (13-62)
Latin America and Caribbean	2021	Shigella spp.	Fluoroquinolones	76	31 (3-58)
Latin America and Caribbean	2021	Serratia spp	3GC	77	27 (8-46)
Latin America and Caribbean	2021	Non turboidal Salmonolla	Flueroguinelenes	79	21(0.54)
Latin America and Carlobean	2021	Non-typhotaal Salmonetta	Fluoroquinoiones	70	2(1,5)
Latin America and Caribbean	2021	Saimonella Typni	Fluoroquinoiones	/9	3 (1-5)
Latin America and Caribbean	2021	Salmonella Typhi	MDR	80	3 (0-6)
Latin America and Caribbean	2021	Salmonella Paratyphi	Fluoroquinolones	81	1 (0-2)
Latin America and Caribbean	2021	Salmonella Paratyphi	MDR	82	0 (0-0)
North Africa and Middle East	2021	Staphylococcus aureus	Methicillin	1	8,160 (6,160-10,100)
North Africa and Middle East	2021	Streptococcus pneumoniae	Carbapenems	2	6.250 (4.260-8.240)
North Africa and Middle East	2021	Acinatohactar haumannii	Carbananame	3	4 900 (3 910 5 890)
North Africa and Middle East	2021	nemeloodeler oddinamit	Carbapenenis	4	2,220 (2,220,4,220)
North Africa and Middle East	2021	Pseudomonas deruginosa	Carbapenems	4	5,550 (2,550-4,550)
North Africa and Middle East	2021	Acinetobacter baumannii	Fluoroquinolones	5	2,700 (2,180-3,220)
North Africa and Middle East	2021	Klebsiella pneumoniae	Carbapenems	6	2,240 (1,680-2,790)
North Africa and Middle East	2021	Klehsiella preumoniae	T1 · 1		
North Africa and Middle East		Riebsiella pheumoniae	Fluoroquinolones	7	1,810 (1,250-2,360)
TTOTH FILLER AND MILLION LAST	2021	Escherichia coli	GC Fluoroquinolones	7 8	1,810 (1,250-2,360) 1,710 (1,160-2,260)
North Africa and Middle East	2021 2021	Escherichia coli Klebsiella pneumoniae	Filoroquinoiones 3GC Aminoglycosides	7 8 9	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900)
North Africa and Middle East	2021 2021 2021	Escherichia coli Klebsiella pneumoniae Escherichia coli	Fluoroquinolones 3GC Aminoglycosides Eluoroquinolones	7 8 9	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1 950)
North Africa and Middle East North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021	Escherichia coli Klebsiella pneumoniae Escherichia coli	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides	7 8 9 10	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1551,750)
North Africa and Middle East North Africa and Middle East North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021	Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbeargement	7 8 9 10 11	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,220 (012,1,740)
North Africa and Middle East North Africa and Middle East North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021	Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli	Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems	7 8 9 10 11 12	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740)
North Africa and Middle East North Africa and Middle East North Africa and Middle East North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021	Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones	7 8 9 10 11 12 13	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Klebsiella pneumoniae Escherichia coli Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC 3GC	7 8 9 10 11 12 13 14	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX	7 8 9 10 11 12 13 14 15	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (355-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Klebsiella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones	7 8 9 10 11 12 13 14 15 16	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Klebsiella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX	7 8 9 10 11 12 13 14 15 16 17	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,300 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560) 935 (467,1400)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Klebsiella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides	7 8 9 10 11 12 13 14 15 16 17	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (355-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,000 (665-1,510) 1,090 (665-1,510) 977 (393-1,560) 935 (467-1,400) 843 (560 1130)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides Mangida	7 8 9 10 11 12 13 14 15 16 17 18	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560) 935 (467-1,400) 843 (560-1,130) 849 (550-1,130)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Klebsiella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides Macrolides Macrolides	7 8 9 10 11 12 13 14 15 16 17 18 19	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560) 935 (467-1,400) 843 (560-1,130) 818 (533-1,100) 70 (90 500)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Klebsiella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus Staphylococcus pneumoniae	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides Macrolides TMP-SMX	7 8 9 10 11 12 13 14 15 16 17 18 19 20	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (355-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560) 935 (467-1,400) 843 (560-1,130) 818 (533-1,100) 791 (0-1,700)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Riebsiella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus Streptococcus pneumoniae Streptococcus pneumoniae	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides Macrolides TMP-SMX Macrolides	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560) 935 (467-1,400) 843 (560-1,130) 818 (533-1,100) 791 (0-1,700) 759 (456-1,060)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Ricbardia Ricbardia Escherichia coli Ricbardia Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Ricbardia Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus Staphylococcus aureus Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides Macrolides TMP-SMX Macrolides Fluoroquinolones	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560) 935 (467-1,400) 843 (560-1,130) 818 (533-1,100) 791 (0-1,700) 759 (456-1,060) 752 (324-1,180)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Kiebsiella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus Staphylococcus aureus Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides Macrolides TMP-SMX Macrolides Fluoroquinolones Beta-Lactams/Beta-Lactamase Inhib.	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (355-1,950) 1,400 (1,050-1,750) 1,300 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560) 975 (467-1,400) 843 (560-1,130) 818 (533-1,100) 791 (0-1,700) 759 (456-1,060) 752 (324-1,180) 749 (424-1,070)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Riebsiella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Enterobacter faecalis	Fluoroquinolones GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones GC TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides Macrolides TMP-SMX Macrolides Fluoroquinolones Beta-Lactams/Beta-Lactamase Inhib. Fluoroquinolones	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,020 (807-1,580) 1,090 (665-1,510) 1,050 (615-1,510) 977 (393-1,560) 935 (467-1,400) 843 (560-1,130) 818 (533-1,100) 759 (456-1,060) 752 (324-1,180) 749 (425-953)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Ricostella pneumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus neumoniae Streptococcus pneumoniae Streptococcus neumoniae Streptococcus neumoniae Streptococcus neumoniae Streptococcus neumoniae Streptococcus neumoniae Streptococcus neumoniae Streptococcus neumoni	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Macrolides TMP-SMX Macrolides Fluoroquinolones Beta-Lactams/Beta-Lactamase Inhib. Fluoroquinolones TMP-SMX	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,090 (615-1,510) 977 (393-1,560) 935 (467-1,400) 843 (560-1,130) 818 (533-1,100) 791 (0-1,700) 759 (456-1,060) 752 (324-1,180) 749 (424-1,070) 704 (455-953) 617 (375-860)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Ricbardia Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus aureus Streptococcus aneumoniae Streptococcus aneumoniae Streptococcus aneumoniae Streptococcus aneumoniae Streptococcus aureus Streptococcus aneumoniae Streptococcus aureus Streptococcus aureus Streptococcus aureus Streptococcus aureus Enterobacter faecalis Staphylococcus aureus	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Macrolides TMP-SMX Macrolides Fluoroquinolones Beta-Lactams/Beta-Lactamase Inhib. Fluoroquinolones TMP-SMX Vancomvein	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (355-1,950) 1,400 (1,050-1,750) 1,300 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 1,060 (615-1,510) 977 (393-1,560) 975 (467-1,400) 843 (560-1,130) 818 (533-1,100) 791 (0-1,700) 759 (456-1,060) 752 (324-1,180) 749 (424-1,070) 704 (455-953) 617 (375-860) 612 (479 745)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Richardia Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Staphylococcus aureus Staphylococcus aureus Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus gneumoniae Streptococcus gneumoniae Enterobacter faecalis Staphylococcus aureus	Fluoroquinolones GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones GC TMP-SMX Fluoroquinolones TMP-SMX Macrolides TMP-SMX Macrolides Fluoroquinolones Beta-Lactams/Beta-Lactamase Inhib. Fluoroquinolones TMP-SMX Vancomycin Patte Leatemar/Beta Lactamase Likit	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (355-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,000 (665-1,510) 1,090 (665-1,510) 977 (393-1,560) 977 (393-1,560) 973 (467-1,400) 843 (560-1,130) 818 (533-1,100) 791 (0-1,700) 759 (456-1,060) 752 (324-1,180) 749 (424-1,070) 704 (455-953) 617 (375-860) 612 (479-745) 591 (165 009)
North Africa and Middle East North Africa and Middle East	2021 2021 2021 2021 2021 2021 2021 2021	Ricbardia preumoniae Escherichia coli Klebsiella pneumoniae Escherichia coli Acinetobacter baumannii Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Escherichia coli Staphylococcus aureus Klebsiella pneumoniae Pseudomonas aeruginosa Staphylococcus aureus Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus pneumoniae Streptococcus aureus Enterobacter faecalis Staphylocccus aureus Enterococcus faecium Escherichia coli	Fluoroquinolones 3GC Aminoglycosides Fluoroquinolones Aminoglycosides Carbapenems Fluoroquinolones 3GC TMP-SMX Fluoroquinolones TMP-SMX Aminoglycosides Macrolides TMP-SMX Macrolides Fluoroquinolones Beta-Lactams/Beta-Lactamase Inhib. Fluoroquinolones TMP-SMX Vancomycin Beta-Lactams/Beta-Lactamase Inhib.	7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 27	1,810 (1,250-2,360) 1,710 (1,160-2,260) 1,500 (1,100-1,900) 1,440 (935-1,950) 1,400 (1,050-1,750) 1,330 (913-1,740) 1,200 (807-1,580) 1,090 (665-1,510) 935 (467-1,400) 843 (560-1,130) 818 (533-1,100) 791 (0-1,700) 759 (456-1,060) 752 (324-1,180) 749 (424-1,070) 704 (425-953) 617 (375-860) 612 (479-745) 581 (165-998) 71 (0-1,700)

North Africa and Middle Deat	2021	Combal and a second accuracy	Vanaamuain	20	570 (244 706)
North Africa and Middle East	2021	Staphylococcus aureus	Vancomycm	29	370 (344-796)
North Africa and Middle East	2021	Streptococcus pneumoniae	Penicillin	30	561 (457-665)
North Africa and Middle East	2021	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	31	514 (201-828)
North Africa and Middle East	2021	Streptococcus pneumoniae	3GC	32	501 (321-680)
North Africa and Middle East	2021	Enteropopour faccium	Elucroquinclones	22	461 (225 686)
Notifi Africa and Middle East	2021	Emerococcus jaecium	Fluoroquinorones	33	401 (253-080)
North Africa and Middle East	2021	Enterobacter faecalis	Vancomycin	34	443 (251-636)
North Africa and Middle East	2021	Mycobacterium tuberculosis	MDR excluding XDR	35	439 (0-1,240)
North Africa and Middle East	2021	Escherichia coli	Aminopenicillin	36	437 (328-547)
North Africa and Middle East	2021	Eschenishin soli	Aminoalyzasidas	27	424 (256 501)
North Africa and Middle East	2021	Escherichia coli	Anninogrycosides	57	424 (230-391)
North Africa and Middle East	2021	Enterobacter spp.	Carbapenems	38	369 (277-462)
North Africa and Middle East	2021	Enterobacter spp.	Anti-pseudomonal	39	357 (287-426)
North Africa and Middle East	2021	Serratia spp	Anti-nseudomonal	40	316 (249-383)
North Africa and Middle East	2021	Complete and	Contractional	41	282 (220 245)
North Africa and Middle East	2021	Serratia spp.	Carbapenems	41	285 (220-345)
North Africa and Middle East	2021	Pseudomonas aeruginosa	4GC	42	266 (190-343)
North Africa and Middle East	2021	Enterobacter spp.	Fluoroquinolones	43	244 (135-354)
North Africa and Middle East	2021	Proteus spp	Aminopenicillin	44	223 (169-277)
North Africa and Middle Last	2021	A interface to the second seco		45	210 (155 294)
North Africa and Middle East	2021	Acinetobacter baumannii	460	45	219 (155-284)
North Africa and Middle East	2021	Morganella spp.	Fluoroquinolones	46	213 (109-318)
North Africa and Middle East	2021	Proteus spp.	3GC	47	208 (127-289)
North Africa and Middle East	2021	Enterobacter spp	4GC	48	207 (168-247)
	2021	Enterobucier spp.	400	40	207 (106-247)
North Africa and Middle East	2021	Acinetobacter baumannii	Anti-pseudomonal	49	201 (136-266)
North Africa and Middle East	2021	Acinetobacter baumannii	3GC	50	195 (119-270)
North Africa and Middle East	2021	Group B Streptococcus	Fluoroquinolones	51	188 (79-296)
North Africa and Middle East	2021	Develop B Shephoeoceus	200	52	170 (66 272)
North Africa and Middle East	2021	r seudomonas deruginosa	JUC	52	170 (00-273)
North Africa and Middle East	2021	Citrobacter spp.	Fluoroquinolones	53	167 (81-252)
North Africa and Middle East	2021	Citrobacter spp.	Anti-pseudomonal	54	151 (123-179)
North Africa and Middle East	2021	Haemophilus influenzae	Aminopenicillin	55	144 (102-186)
North Africa and Middle East	2021	Haemophilus influenzae	2CC	56	141(0.222)
North Africa and Middle East	2021	Haemophilus influenzae		50	141 (0-525)
North Africa and Middle East	2021	Serratia spp.	Fluoroquinolones	57	138 (38-238)
North Africa and Middle East	2021	Enterobacter spp.	Aminoglycosides	58	138 (81-195)
North Africa and Middle East	2021	Serratia spp	Aminoglycosides	59	134 (80-188)
North Africa and Middle East	2021	Brotaus opp	Aminoglycosides	60	121 (70, 182)
Nonii Africa and Middle East	2021	Proteus spp.	Animogrycosides	00	131 (79-183)
North Africa and Middle East	2021	Citrobacter spp.	Carbapenems	61	114 (60-167)
North Africa and Middle East	2021	Proteus spp.	Fluoroquinolones	62	112 (17-207)
North Africa and Middle Fast	2021	Group B Streptococcus	Macrolides	63	107 (65-148)
North Africa and Middle East	2021	End and a streptococcus	TMD SMV	63	102 (7, 106)
North Africa and Middle East	2021	Enterobacter spp.	TMP-SMX	04	102 (7-196)
North Africa and Middle East	2021	Group A Streptococcus	Macrolides	65	82 (49-116)
North Africa and Middle East	2021	Morganella spp.	4GC	66	82 (55-109)
North Africa and Middle East	2021	Serratia spp	AGC	67	76 (61-91)
North Africa and Middle East	2021	Crown D. Strente and and	Dominillin	69	70 (01-91)
North Africa and Middle East	2021	Group B Streptococcus	Penicilin	68	/3 (7-139)
North Africa and Middle East	2021	Citrobacter spp.	4GC	69	64 (50-78)
North Africa and Middle East	2021	Morganella spp.	3GC	70	62 (44-80)
North Africa and Middle East	2021	Citrobacter spp	Aminoglycosides	71	59 (45-73)
North Africa and Middle Fact	2021	Protout opp	TMD SMV	72	40 (0, 128)
North Africa and Middle East	2021	Proteus spp.	TMP-5MA	12	49 (0-128)
North Africa and Middle East	2021	Shigella spp.	Fluoroquinolones	73	45 (0-91)
North Africa and Middle East	2021	Mycobacterium tuberculosis	XDR	74	44 (0-102)
North Africa and Middle East	2021	Non-typhoidal Salmonella	Fluoroquinolones	75	41 (3-79)
North Africa and Middle Fact	2021	Citrobastar opp	200	76	22 (9 57)
North Africa and Middle East	2021	Curobacier spp.	500	/0	32 (8-37)
North Africa and Middle East	2021	Salmonella Typhi	MDR	- 77	31 (0-69)
North Africa and Middle East	2021	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	78	25 (7-42)
North Africa and Middle East	2021	Serratia spp	3GC	79	25 (0-56)
North Africe and Middle East	2021	Salmonalla Tuphi	Elucrominolonos	00	20 (2 20)
North Africa and Wildle East	2021	Saimonena Typin	ruoroquinoiones	80	20 (2-37)
North Africa and Middle East	2021	Salmonella Paratyphi	Fluoroquinolones	81	1 (0-2)
North Africa and Middle East	2021	Salmonella Paratyphi	MDR	82	0 (0-0)
South Asia	2021	Acinetobacter baumannii	Carbapenems	1	28,300 (22,600-34,100)
South Agia	2021	Stankylogoggus gurgus	Mathiaillin	2	25 600 (20 000 20 200)
	2021	Suprylococcus aureus		2	23,000 (20,900-30,200)
South Asia	2021	Streptococcus pneumoniae	Carbapenems	3	22,800 (13,600-31,900)
South Asia	2021	Mycobacterium tuberculosis	MDR excluding XDR	4	22,000 (0-52,600)
South Asia	2021	Klebsiella pneumoniae	Carbapenems	5	21,400 (16,700-26,100)
South Asia	2021	Acinetohacter haumannii	Fluoroquinolones	6	15 600 (12 800-18 500)
South / Islu	2021	nemenovatier vaanaanna	1 Iuoroquinoroneo	0	12,000 (12,000-10,200)

South Asia	2021	Escherichia coli	Carbapenems	7	15,300 (12,200-18,500)
South Asia	2021	Klebsiella pneumoniae	Fluoroquinolones	8	11,600 (8,470-14,800)
South Asia	2021	Pseudomonas aeruginosa	Carbapenems	9	11,200 (7,320-15,100)
South Asia	2021	Escherichia coli	Fluoroquinolones	10	10,500 (7,480-13,400)
South Asia	2021	Escherichia coli	3GC	11	9,650 (6,600-12,700)
South Asia	2021	Acinetobacter baumannii	Aminoglycosides	12	9,370 (7,300-11,400)
South Asia	2021	Klebsiella pneumoniae	Aminoglycosides	13	8,590 (6,580-10,600)
South Asia	2021	Staphylococcus aureus	Fluoroquinolones	14	7,740 (3,080-12,400)
South Asia	2021	Escherichia coli	TMP-SMX	15	6,000 (3,910-8,080)
South Asia	2021	Streptococcus pneumoniae	Penicillin	16	5,780 (4,340-7,230)
South Asia	2021	Streptococcus pneumoniae	Macrolides	17	5,580 (3,440-7,720)
South Asia	2021	Pseudomonas aeruginosa	Fluoroquinolones	18	5,390 (3,660-7,110)
South Asia	2021	Klebsiella pneumoniae	3GC	19	4,690 (3,000-6,380)
South Asia	2021	Pseudomonas aeruginosa	Aminoglycosides	20	4,520 (3,260-5,770)
South Asia	2021	Enterobacter faecalis	Fluoroquinolones	21	4.030 (2.790-5.270)
South Asia	2021	Klebsiella pneumoniae	TMP-SMX	22	3.950 (2.040-5.860)
South Asia	2021	Escherichia coli	Aminoglycosides	23	3.820 (2.530-5.100)
South Asia	2021	Staphylococcus aureus	Macrolides	24	3.570 (2.340-4.800)
South Asia	2021	Streptococcus pneumoniae	TMP-SMX	25	3,520 (0-7,630)
South Asia	2021	Stanhylococcus aureus	TMP-SMX	26	3 510 (2 160-4 850)
South Asia	2021	Pseudomonas aeruginosa	Anti-nseudomonal	27	3 200 (2 610-3 790)
South Asia	2021	Enterobacter spp	Carbanenems	28	3 030 (2 330-3 720)
South Asia	2021	Enterococcus faecium	Vancomycin	29	2 860 (2 270-3 450)
South Asia	2021	Streptococcus preumoniae	Fluoroquinolones	30	2,730 (1,270-4,200)
South Asia	2021	Salmonalla Typhi	Fluoroquinolones	31	2,520 (385 4,660)
South Asia	2021	Pseudomonas acruainosa		22	2,320 (385-4,000)
South Asia	2021	Salmonalla Tuphi	AOC	22	2,240 (1,000-2,820)
South Asia	2021	Facherichia coli	MDR Bata Lastama/Bata Lastamasa Jubib	24	1,950 (108-5,090)
South Asia	2021	Escherichia con	Eluorominolonoo	25	1,900 (352-5,270)
South Asia	2021	Enterococcus jaecium	Cashananana	33	1,880 (959-2,850)
South Asia	2021	A sin stab astern b sum smuli	Carbapenenis	27	1,670 (1,100-2,050)
South Asia	2021	Actnetobacter baumannii	3UC	3/	1,620 (1,550-1,880)
South Asia	2021		Fluoroquinoiones	38	1,610 (265-2,950)
South Asia	2021	Snigella spp.	Fluoroquinoiones	39	1,580 (555-2,820)
South Asia	2021	Morganeua spp.		40	1,510 (1,140-1,870)
South Asia	2021	Serrana spp.	Carbapenems	41	1,480 (1,110-1,840)
South Asia	2021	Group B Streptococcus	Fluoroquinolones	42	1,440 (697-2,180)
South Asia	2021	Serratia spp.	Aminoglycosides	43	1,380 (933-1,820)
South Asia	2021	Acinetobacter baumannii	Anti-pseudomonal	44	1,370 (1,050-1,700)
South Asia	2021	Enterobacter spp.	Fluoroquinolones	45	1,350 (7/4-1,920)
South Asia	2021	Enterobacter spp.	Anti-pseudomonal	46	1,340 (1,080-1,600)
South Asia	2021	Mycobacterium tuberculosis	XDR	47	1,300 (0-2,710)
South Asia	2021	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	48	1,300 (451-2,160)
South Asia	2021	Proteus spp.	30C	49	1,300 (897-1,700)
South Asia	2021	Serratia spp.	Anti-pseudomonal	50	1,230 (972-1,490)
South Asia	2021	Enterobacter spp.	Aminoglycosides	51	1,180 (837-1,520)
South Asia	2021	Escherichia coli	Aminopenicillin	52	1,080 (756-1,400)
South Asia	2021	Morganella spp.	Fluoroquinolones	53	1,030 (567-1,500)
South Asia	2021	Enterobacter spp.	4GC	54	952 (786-1,120)
South Asia	2021	Haemophilus influenzae	Aminopenicillin	55	912 (641-1,180)
South Asia	2021	Citrobacter spp.	Fluoroquinolones	56	892 (578-1,210)
South Asia	2021	Proteus spp.	Aminoglycosides	57	859 (623-1,100)
South Asia	2021	Proteus spp.	Fluoroquinolones	58	736 (332-1,140)
South Asia	2021	Staphylococcus aureus	Vancomycin	59	732 (426-1,040)
South Asia	2021	Streptococcus pneumoniae	3GC	60	710 (429-991)
South Asia	2021	Group B Streptococcus	Macrolides	61	638 (397-880)
South Asia	2021	Enterobacter faecalis	Vancomycin	62	615 (283-947)
South Asia	2021	Serratia spp.	Fluoroquinolones	63	572 (180-963)
South Asia	2021	Proteus spp.	Aminopenicillin	64	532 (401-663)
South Asia	2021	Pseudomonas aeruginosa	3GC	65	520 (201-840)
South Asia	2021	Non-typhoidal Salmonella	Fluoroquinolones	66	496 (0-1,080)

South Asia	2021	Enterobacter spp.	TMP-SMX	67	490 (60-920)
South Asia	2021	Group A Streptococcus	Macrolides	68	485 (297-673)
South Asia	2021	Morganella spp	3GC	69	449 (320-578)
South Asia	2021	Haemonhilus influenzae	3GC	70	389 (207-570)
South Asia	2021	Citrobactar spp	360	71	371 (257 485)
South Asia	2021	Citrobacter spp.	Anti negudomongl	71	254 (270, 427)
South Asia	2021	Curobacier spp.	Anti-pseudomonar	72	534 (270-457) 204 (224-264)
South Asia	2021	Citrobacter spp.	Aminoglycosides	/3	294 (224-364)
South Asia	2021	Serratia spp.	4GC	74	292 (225-359)
South Asia	2021	Acinetobacter baumannii	4GC	75	248 (162-335)
South Asia	2021	Group B Streptococcus	Penicillin	76	172 (69-274)
South Asia	2021	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	77	153 (62-244)
South Asia	2021	Serratia spp.	3GC	78	152 (0-367)
South Asia	2021	Proteus spp.	TMP-SMX	79	150 (0-380)
South Asia	2021	Citrobacter spp.	4GC	80	113 (79-148)
South Asia	2021	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	81	105 (7-203)
South Asia	2021	Salmonella Paratyphi	MDR	82	102 (0-214)
Southeast Asia Fast Asia and Oceania	2021	Stanholococcus aureus	Methicillin	1	38 200 (29 200-47 200)
Southeast Asia, East Asia, and Oceania	2021	Acinetobacter baumannii	Carbapaname	2	21 800 (17 100 26 500)
Southeast Asia, East Asia, and Oceania	2021	Streptogoggus programonia	Carbapenenis	2	17 200 (12 100 21 200)
Southeast Asia, East Asia, and Oceania	2021	streptococcus pneumonide		5	17,200 (15,100-21,200)
Southeast Asia, East Asia, and Oceania	2021	Acinetobacter baumannii	Fluoroquinoiones	4	12,000 (9,750-14,300)
Southeast Asia, East Asia, and Oceania	2021	Pseudomonas aeruginosa	Carbapenems	5	11,000 (7,480-14,500)
Southeast Asia, East Asia, and Oceania	2021	Klebsiella pneumoniae	Carbapenems	6	8,300 (6,470-10,100)
Southeast Asia, East Asia, and Oceania	2021	Streptococcus pneumoniae	3GC	7	8,110 (5,330-10,900)
Southeast Asia, East Asia, and Oceania	2021	Escherichia coli	3GC	8	7,980 (5,360-10,600)
Southeast Asia, East Asia, and Oceania	2021	Staphylococcus aureus	Macrolides	9	7,620 (5,030-10,200)
Southeast Asia, East Asia, and Oceania	2021	Streptococcus pneumoniae	Macrolides	10	7,620 (4,530-10,700)
Southeast Asia, East Asia, and Oceania	2021	Klebsiella pneumoniae	Fluoroquinolones	11	7.470 (5.240-9.700)
Southeast Asia, East Asia, and Oceania	2021	Escherichia coli	Fluoroquinolones	12	7,450 (4,580-10,300)
Southeast Asia Fast Asia and Oceania	2021	Acinetohacter haumannii	Aminoglycosides	13	6 370 (4 860-7 880)
Southeast Asia, East Asia, and Oceania	2021	Staphylococcus auraus	Fluoroguinolones	14	6 280 (2 110 10 400)
Southeast Asia, East Asia, and Oceania	2021	Braudomonas acruginosa	Flueroquinolones	14	5 580 (2,770 7 200)
Southeast Asia, East Asia, and Oceania	2021	Vieheielle mesunenie e	Aminophypopides	15	4 700 (2 200 6 010)
Southeast Asia, East Asia, and Oceania	2021	Klebslella pheumoniae	Anninogrycosides	10	4,700 (3,390-0,010)
Southeast Asia, East Asia, and Oceania	2021	Escherichia coli	IMP-SMX	17	4,680 (2,720-6,640)
Southeast Asia, East Asia, and Oceania	2021	Escherichia coli	Carbapenems	18	4,160 (3,280-5,040)
Southeast Asia, East Asia, and Oceania	2021	Streptococcus pneumoniae	TMP-SMX	19	4,100 (0-8,850)
Southeast Asia, East Asia, and Oceania	2021	Escherichia coli	Aminopenicillin	20	4,030 (2,770-5,290)
Southeast Asia, East Asia, and Oceania	2021	Pseudomonas aeruginosa	Anti-pseudomonal	21	4,000 (3,120-4,880)
Southeast Asia, East Asia, and Oceania	2021	Klebsiella pneumoniae	3GC	22	3,880 (2,490-5,280)
Southeast Asia, East Asia, and Oceania	2021	Mycobacterium tuberculosis	MDR excluding XDR	23	3,290 (0-9,530)
Southeast Asia, East Asia, and Oceania	2021	Enterococcus faecium	Fluoroquinolones	24	3,210 (1,640-4,790)
Southeast Asia, East Asia, and Oceania	2021	Enterobacter faecalis	Fluoroquinolones	25	3,190 (2,060-4,330)
Southeast Asia, East Asia, and Oceania	2021	Enterobacter spp.	Carbapenems	26	3,170 (2,510-3,820)
Southeast Asia East Asia and Oceania	2021	Streptococcus pneumoniae	Fluoroquinolones	27	3 080 (1 230-4 930)
Southeast Asia East Asia and Oceania	2021	Klehsiella pneumoniae	TMP-SMX	28	3 050 (1 520-4 570)
Southeast Asia, East Asia, and Oceania	2021	Escherichia coli	Bata Lactame/Bata Lactamaca Inhih	20	2 830 (657 4 990)
Southeast Asia, East Asia, and Oceania	2021	Staphylococcus auraus	TMP SMY	30	2,830(057-4,550)
Southeast Asia, East Asia, and Oceania	2021	A ainatabaatar baumannii	Anti negudomonal	21	2,660 (1,010-5,750)
Southeast Asia, East Asia, and Oceania	2021	Reiheibbacier baumannit	Ami-pseudomonai	22	2,070 (1,950-5,400)
Southeast Asia, East Asia, and Oceania	2021	Escherichia coli	Aminoglycosides	32	2,200 (1,440-2,960)
Southeast Asia, East Asia, and Oceania	2021	Pseudomonas aeruginosa	Aminoglycosides	33	2,100 (1,350-2,860)
Southeast Asia, East Asia, and Oceania	2021	Acinetobacter baumannii	3GC	34	2,080 (1,700-2,470)
Southeast Asia, East Asia, and Oceania	2021	Enterobacter spp.	Anti-pseudomonal	35	1,960 (1,570-2,360)
Southeast Asia, East Asia, and Oceania	2021	Staphylococcus aureus	Vancomycin	36	1,820 (1,070-2,560)
Southeast Asia, East Asia, and Oceania	2021	Haemophilus influenzae	Aminopenicillin	37	1,530 (1,110-1,960)
Southeast Asia, East Asia, and Oceania	2021	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	38	1,500 (583-2,420)
Southeast Asia, East Asia, and Oceania	2021	Streptococcus pneumoniae	Penicillin	39	1,500 (1,190-1,810)
Southeast Asia, East Asia, and Oceania	2021	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	40	1,470 (392-2,540)
Southeast Asia, East Asia, and Oceania	2021	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	41	1,420 (934-1,900)
Southeast Asia, East Asia, and Oceania	2021	Enterobacter spp.	Fluoroquinolones	42	1.410 (785-2.040)
Southeast Asia East Asia and Oceania	2021	Group A Streptococcus	Macrolides	43	1 240 (717-1 770)
Southeast Asia East Asia and Oceania	2021	Proteus spp	3GC	44	1 150 (744-1 550)
Sourcest rate, Lust riste, and Occume	2021	· · · · · · · · · · · · · · · · · · ·			·,··· (/ ··· ·,···/

Southoost Asia East Asia and Oceania	2021	Enterna e e entre for e eitere	Vanaamuain	15	1 150 (975 1 420)
Southeast Asia, East Asia, and Oceania	2021	Enterococcus jaecium	vancomychi	45	1,130 (873-1,420)
Southeast Asia, East Asia, and Oceania	2021	Serratia spp.	Carbapenems	46	1,080 (840-1,330)
Southeast Asia, East Asia, and Oceania	2021	Proteus spp.	Aminopenicillin	47	1,030 (777-1,290)
Southeast Asia, East Asia, and Oceania	2021	Citrobacter spp.	Anti-pseudomonal	48	897 (719-1,070)
Southeast Asia East Asia and Oceania	2021	Acinetobacter haumannii	4GC	49	891 (703-1.080)
Southeast Asia East Asia and Oceania	2021	Serratia epp	Anti nseudomonal	50	890 (700 1 080)
Southeast Asia, East Asia, and Oceania	2021	Serraia spp.	Anti-pseudomonai	50	700 (700-1,000)
Southeast Asia, East Asia, and Oceania	2021	Citrobacter spp.	Fluoroquinolones	51	/99 (519-1,080)
Southeast Asia, East Asia, and Oceania	2021	Morganella spp.	Fluoroquinolones	52	788 (375-1,200)
Southeast Asia, East Asia, and Oceania	2021	Enterobacter spp.	Aminoglycosides	53	751 (502-999)
Southeast Asia, East Asia, and Oceania	2021	Citrobacter spp.	Carbapenems	54	709 (441-977)
Southeast Asia East Asia and Oceania	2021	Enterobacter spn	4GC	55	707 (579-835)
Southeast Asia, East Asia, and Oceania	2021	Mycohactarium tubarculosis	YDP	56	696 (0, 1, 690)
Southeast Asia, East Asia, and Oceania	2021	Mycobacterium tuberculosis		50	650 (450, 970)
Southeast Asia, East Asia, and Oceania	2021	Proteus spp.	Aminoglycosides	57	669 (459-879)
Southeast Asia, East Asia, and Oceania	2021	Proteus spp.	Fluoroquinolones	58	655 (247-1,060)
Southeast Asia, East Asia, and Oceania	2021	Group B Streptococcus	Fluoroquinolones	59	644 (295-994)
Southeast Asia, East Asia, and Oceania	2021	Serratia spp.	Aminoglycosides	60	632 (421-843)
Southeast Asia East Asia and Oceania	2021	Enterobacter faecalis	Vancomvcin	61	590 (160-1.020)
Southeast Asia, East Asia, and Oceania	2021	Group B Streptococcus	Macrolides	62	582 (362 802)
Southeast Asia, East Asia, and Oceania	2021	Croup B Streptococcus	Flags series lands	62	562 (172,054)
Southeast Asia, East Asia, and Oceania	2021	Serrana spp.	Fluoroquinoiones	03	363 (172-954)
Southeast Asia, East Asia, and Oceania	2021	Salmonella Typhi	Fluoroquinolones	64	480 (42-917)
Southeast Asia, East Asia, and Oceania	2021	Pseudomonas aeruginosa	3GC	65	471 (65-877)
Southeast Asia, East Asia, and Oceania	2021	Pseudomonas aeruginosa	4GC	66	467 (304-630)
Southeast Asia East Asia and Oceania	2021	Enterobacter spn	TMP-SMX	67	410 (62-758)
Southeast Asia, East Asia, and Oceania	2021	Morganella spp.		69	204 (268 520)
Southeast Asia, East Asia, and Oceania	2021	Morganetia spp.	400	60	394 (208-320)
Southeast Asia, East Asia, and Oceania	2021	Haemophilus influenzae	3GC	69	385 (157-614)
Southeast Asia, East Asia, and Oceania	2021	Serratia spp.	4GC	70	321 (268-373)
Southeast Asia, East Asia, and Oceania	2021	Citrobacter spp.	4GC	71	282 (216-347)
Southeast Asia, East Asia, and Oceania	2021	Morganella spp.	3GC	72	249 (179-318)
Southeast Asia East Asia and Oceania	2021	Proteus spp	TMP-SMX	73	183 (0-470)
Southoast Asia East Asia and Oceania	2021	Citrobactor opp	Aminoglygogides	74	160 (122, 100)
Southeast Asia, East Asia, and Occania	2021	Curobacter spp.	Flager principal and	74	100 (122-199)
Southeast Asia, East Asia, and Oceania	2021	Non-typnolaal Salmonella	Fluoroquinoiones	75	134 (0-285)
Southeast Asia, East Asia, and Oceania	2021	Group B Streptococcus	Penicillin	76	124 (38-210)
Southeast Asia, East Asia, and Oceania	2021	Salmonella Typhi	MDR	77	107 (9-205)
Southeast Asia, East Asia, and Oceania	2021	Serratia spp.	3GC	78	99 (11-188)
Southeast Asia East Asia and Oceania	2021	Shigella spp	Fluoroquinolones	79	91 (0-183)
Southeast Asia, East Asia, and Oceania	2021	Citrobacter spp.	3GC	80	90(31.148)
Southeast Asia, East Asia, and Oceania	2021	Calvan alla Daraturki	Elucrominalance	01	26 (2 70)
Southeast Asia, East Asia, and Oceania	2021		Fluoroquinoiones	01	50 (5-70) A (0, 17)
Southeast Asia, East Asia, and Oceania	2021	Salmonella Paratyphi	MDR	82	4 (0-17)
Sub-Saharan Africa	2021	Streptococcus pneumoniae	Carbapenems	1	11,300 (6,650-15,900)
Sub-Saharan Africa	2021	Acinetobacter baumannii	Carbapenems	2	9,690 (6,660-12,700)
Sub-Saharan Africa	2021	Staphylococcus aureus	Methicillin	3	9.610 (6.520-12.700)
Sub-Saharan Africa	2021	Mycohacterium tuberculosis	MDR excluding XDR	4	8 270 (0-21 400)
Sub Saharan Africa	2021	Klebsiella proumoniae	3GC	5	8 200 (4 840 11 600)
Sub-Saharan Africa	2021	Klebsiella mannaiae	Fluenceuinelence	5	7,550 (4,800,10,200)
Sub-Sanaran Africa	2021	Kiebsiella pneumoniae	Fluoroquinoiones	0	7,550 (4,800-10,300)
Sub-Saharan Africa	2021	Acinetobacter baumannii	Fluoroquinolones	7	6,810 (5,320-8,300)
Sub-Saharan Africa	2021	Klebsiella pneumoniae	TMP-SMX	8	6,740 (3,360-10,100)
Sub-Saharan Africa	2021	Klebsiella pneumoniae	Aminoglycosides	9	6,470 (4,480-8,460)
Sub-Saharan Africa	2021	Streptococcus pneumoniae	3GC	10	6.320 (4.000-8.630)
Sub-Saharan Africa	2021	Escherichia coli	3GC	11	6 050 (3 160-8 940)
Sub-Saharan Africa	2021	Escherichia coli	TMD SMY	12	6,000 (4,020,7,080)
Sub-Sanaran Africa	2021	Escherichia coli	TMP-5MA	12	5,000 (4,020-7,980)
Sub-Saharan Africa	2021	Streptococcus pneumoniae	Fluoroquinolones	13	5,470 (2,000-8,950)
Sub-Saharan Africa	2021	Klebsiella pneumoniae	Carbapenems	14	5,180 (3,730-6,630)
Sub-Saharan Africa	2021	Escherichia coli	Fluoroquinolones	15	5,160 (3,190-7,140)
Sub-Saharan Africa	2021	Pseudomonas aeruginosa	Carbapenems	16	5,010 (2,810-7,220)
Sub-Saharan Africa	2021	Streptococcus pneumoniae	TMP-SMX	17	4 550 (0-9 730)
Sub Sabaran Africa	2021	Pseudomonas aeruginosa	Anti negudomonal	10	4 510 (3 240 5 780)
Sub-Sanaran Africa	2021	r seudomonas aeruginosa	Ann-pseudonionai	10	4,310 (3,240-3,780)
Sub-Sanaran Africa	2021	Pseudomonas deruginosa	Fluoroquinoiones	19	4,420 (2,840-6,010)
Sub-Saharan Africa	2021	Klebsiella pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	20	4,350 (1,850-6,850)
Sub-Saharan Africa	2021	Staphylococcus aureus	TMP-SMX	21	4,100 (2,380-5,820)
Sub Sabaran Africa	2021	Escherichia coli	Carbanenems	22	3 930 (2 050-5 810)

Sub-Saharan Africa	2021	Streptococcus pneumoniae	Penicillin	23	3 780 (2 310-5 240)
Sub Saharan Africa	2021	Pseudomonas geruginosa	Aminoglycosides	24	3 660 (2 340 4 980)
Sub-Saharan Africa	2021	Eash wishin anli	Pata Lastama/Data Lastamasa Inhih	25	2,520(854,6,100)
Sub-Sanaran Africa	2021	Escherichia con	Beta-Lactains/Beta-Lactainase minu.	25	3,320 (834-0,190)
Sub-Sanaran Africa	2021	Acinetobacter baumannii	Aminogrycosides	20	3,330 (2,300-4,350)
Sub-Saharan Africa	2021	Acinetobacter baumannii	Anti-pseudomonal	27	2,950 (2,390-3,520)
Sub-Saharan Africa	2021	Escherichia coli	Aminoglycosides	28	2,900 (1,150-4,650)
Sub-Saharan Africa	2021	Streptococcus pneumoniae	Macrolides	29	2,890 (1,670-4,110)
Sub-Saharan Africa	2021	Acinetobacter baumannii	3GC	30	2,470 (1,990-2,950)
Sub-Saharan Africa	2021	Streptococcus pneumoniae	Beta-Lactams/Beta-Lactamase Inhib.	31	2.210 (1.300-3.120)
Sub-Saharan Africa	2021	Shigella spp	Fluoroquinolones	32	2,200 (0-4,480)
Sub Saharan Africa	2021	Staphylococcus auraus	Fluoroquinolones	33	2 130 (619 3 640)
Sub-Saharan Africa	2021	Samatia spp	Anti negudomonal	24	2,150 (019-5,040)
	2021	Serrada spp.	Anti-pseudomonai	34	2,040 (1,500-2,580)
Sub-Saharan Africa	2021	Haemophilus influenzae	3GC	35	1,940 (0-3,940)
Sub-Saharan Africa	2021	Escherichia coli	Aminopenicillin	36	1,740 (1,060-2,420)
Sub-Saharan Africa	2021	Acinetobacter baumannii	4GC	37	1,560 (1,200-1,920)
Sub-Saharan Africa	2021	Staphylococcus aureus	Macrolides	38	1,460 (923-2,000)
Sub-Saharan Africa	2021	Enterobacter spp.	Carbapenems	39	1,460 (968-1,950)
Sub-Saharan Africa	2021	Group B Streptococcus	Fluoroquinolones	40	1.410 (559-2.270)
Sub-Saharan Africa	2021	Serratia spp.	Carbapenems	41	1.310 (947-1.670)
Sub-Saharan Africa	2021	Enterobacter faecalis	Fluoroquinolones	42	1 300 (819-1 780)
Sub-Saharan Africa	2021	Staphylogogous gurgus	Vancomucin	12	1,270 (528,1,000)
	2021	Staphylococcus unreus		45	1,270 (338-1,990)
Sub-Saharan Africa	2021	Non-typhoidal Salmonella	Fluoroquinolones	44	1,250 (177-2,320)
Sub-Saharan Africa	2021	Serratia spp.	4GC	45	1,250 (954-1,540)
Sub-Saharan Africa	2021	Enterobacter spp.	4GC	46	1,200 (926-1,470)
Sub-Saharan Africa	2021	Acinetobacter baumannii	Beta-Lactams/Beta-Lactamase Inhib.	47	1,060 (584-1,530)
Sub-Saharan Africa	2021	Haemophilus influenzae	Aminopenicillin	48	1.050 (744-1.350)
Sub-Saharan Africa	2021	Serratia spp.	Aminoglycosides	49	1.000 (628-1.370)
Sub-Saharan Africa	2021	Citrobacter spp	Anti-nseudomonal	50	972 (710-1 230)
Sub-Saharan Africa	2021	Enterobacter spp.	Fluoroguinolones	51	957 (500 1 410)
Sub-Saharan Africa	2021	Enterobacter spp.		50	957 (500-1,410)
Sub-Sanaran Africa	2021	Enterobacter spp.	Anti-pseudomonai	52	857 (650-1,060)
Sub-Saharan Africa	2021	Enterobacter spp.	Aminoglycosides	53	853 (547-1,160)
Sub-Saharan Africa	2021	Group B Streptococcus	Penicillin	54	829 (255-1,400)
Sub-Saharan Africa	2021	Group B Streptococcus	Macrolides	55	824 (494-1,150)
Sub-Saharan Africa	2021	Enterococcus faecium	Fluoroquinolones	56	715 (286-1,140)
Sub-Saharan Africa	2021	Pseudomonas aeruginosa	4GC	57	693 (445-940)
Sub-Saharan Africa	2021	Citrobacter spp.	Fluoroquinolones	58	675 (325-1.020)
Sub-Saharan Africa	2021	Proteus spp	3GC	59	631 (372-891)
Sub-Saharan Africa	2021	Salmonella Typhi	MDR	60	612 (0-1 290)
Sub-Saharan Africa	2021	Broudomongs gamainosa	200	61	608 (166 1 050)
Sub-Salialali Alfica	2021	r seudomonus deruginosa	SUC	61	502 (260 025)
Sub-Sanaran Africa	2021	Morganella spp.	Fluoroquinoiones	62	592 (260-925)
Sub-Saharan Africa	2021	Serratia spp.	Fluoroquinolones	63	518 (116-919)
Sub-Saharan Africa	2021	Enterococcus faecium	Vancomycin	64	516 (380-651)
Sub-Saharan Africa	2021	Proteus spp.	Aminopenicillin	65	483 (353-613)
Sub-Saharan Africa	2021	Citrobacter spp.	Carbapenems	66	437 (207-667)
Sub-Saharan Africa	2021	Enterobacter spp.	TMP-SMX	67	404 (50-758)
Sub-Saharan Africa	2021	Group A Streptococcus	Macrolides	68	391 (232-549)
Sub-Saharan Africa	2021	Proteus spp	Aminoglycosides	69	341 (193-489)
Sub-Saharan Africa	2021	Citrobacter spp.	Aminoglycosides	70	334 (240-429)
Sub-Saharan Africa	2021	Citrahastan san	ACC	71	211 (210 402)
Sub-Sanaran Africa	2021	Curobacter spp.	400	71	311 (219-403) 208 (104, 422)
Sub-Saharan Africa	2021	Morganella spp.	460	72	308 (194-423)
Sub-Saharan Africa	2021	Enterobacter faecalis	Vancomycin	73	270 (36-504)
Sub-Saharan Africa	2021	Proteus spp.	Fluoroquinolones	74	243 (26-460)
Sub-Saharan Africa	2021	Salmonella Typhi	Fluoroquinolones	75	233 (7-459)
Sub-Saharan Africa	2021	Morganella spp.	3GC	76	176 (122-231)
Sub-Saharan Africa	2021	Mycobacterium tuberculosis	XDR	77	155 (0-315)
Sub-Saharan Africa	2021	Serratia spp	360	78	133 (0-354)
Sub-Saharan Africa	2021	Protous app	TMD SMV	70	110 (0 206)
	2021	Proteus spp.		19	(10 (0-290) (0 (10 12 c)
Sub-Sanaran Africa	2021	Citrobacter spp.	360	80	68 (10-126)
Sub-Saharan Africa	2021	Salmonella Paratyphi	Fluoroquinolones	81	20 (0-42)
Sub-Saharan Africa	2021	Salmonella Paratyphi	MDR	82	4 (0-33)

Table S15: Deaths (in counts and all-age rates) associated with and attributable to bacterial antimicrobial resistance, for those under 5 years of age and over 5 years of age, globally, by GBD super-region, and region, for 1990, 2019, 2021

			Deaths Associat	ed					Attributed					
			Counts (Thousands)		Rate Per 100	ОК		Counts (Tho	usands)		Rate Per 100	ж	
Super Region	Region	Age	1990	2019	2021	1990	2019	2021	1990	2019	2021	1990	2019	2021
Central Europe, Eastern	Overall	5 plus	235 (198- 271)	267 (240- 295)	255 (226- 284)	61.0 (51.5- 70.5)	68.3 (61.2- 75.3)	65.0 (57.6- 72.3)	52.0 (41.2- 62.9)	65.4 (56.6- 74.3)	61.6 (53.2- 69.9)	13.5 (10.7- 16.3)	16.7 (14.4- 19.0)	15.7 (13.6- 17.8)
Europe, and Central		Under 5	50.3 (40.9- 59.7)	13.5 (10.6- 16.3)	10.1 (7.86- 12.4)	140 (114- 166)	49.8 (39.2- 60.4)	39.4 (30.6- 48.3)	11.0 (8.12- 13.9)	3.19 (2.38- 4.01)	2.39 (1.76- 3.03)	30.7 (22.6- 38.8)	11.8 (8.8- 14.8)	9.32 (6.86- 11.8)
Asia	C Asia	5 plus	22.5 (18.5- 26.6)	32.3 (26.9- 37.8)	31.3 (25.5- 37.0)	37.7 (30.9- 44.5)	38.8 (32.2- 45.4)	36.4 (29.7- 43.1)	5.24 (3.92- 6.57)	8.04 (6.26- 9.83)	7.74 (5.98- 9.5)	8.77 (6.55- 11.0)	9.65 (7.51- 11.8)	9.02 (6.96- 11.1)
		Under 5	32.9 (26.3- 39.4)	10.9 (8.34- 13.5)	8.23 (6.16- 10.3)	345 (276- 414)	111 (84.3- 137)	82.3 (61.7- 103)	7.4 (5.35- 9.46)	2.59 (1.86- 3.33)	1.94 (1.37- 2.51)	77.7 (56.1- 99.3)	26.2 (18.8- 33.6)	19.4 (13.7- 25.1)
	C Europe	5 plus	81.9 (69.2- 94.6)	83.9 (76.0- 91.8)	79.8 (71.0- 88.6)	70.6 (59.7- 81.6)	75.8 (68.7- 83.0)	72.7 (64.7- 80.8)	18.7 (14.9- 22.6)	19.6 (17.4- 21.8)	18.6 (16.4- 20.7)	16.2 (12.9- 19.4)	17.7 (15.8- 19.7)	16.9 (15.0- 18.9)
	o Europe	Under 5	6.91 (5.64- 8.18)	0.682 (0.572- 0.792)	0.477 (0.376- 0.578)	75.6 (61.7- 89.6)	11.9 (9.96- 13.8)	8.54 (6.74- 10.3)	1.55 (1.18- 1.93)	0.154 (0.126- 0.182)	0.108 (0.0837- 0.131)	17.0 (12.9- 21.2)	2.68 (2.19- 3.17)	1.93 (1.5- 2.35)
	EEurope	5 plus	131 (111- 150)	151 (135- 166)	144 (126- 161)	62.4 (52.9- 71.9)	76.4 (68.5- 84.2)	73.0 (64.1- 82.0)	28.1 (22.3- 33.9)	37.7 (32.2- 43.2)	35.3 (29.8- 40.7)	13.4 (10.6- 16.2)	19.1 (16.3- 21.9)	17.9 (15.2- 20.7)
	Luiope	Under 5	10.4 (8.53- 12.2)	1.79 (1.57- 2.02)	1.41 (1.21- 1.6)	60.3 (49.5- 71.0)	15.8 (13.8- 17.7)	13.9 (12.0- 15.8)	2.04 (1.52- 2.55)	0.438 (0.357- 0.52)	0.343 (0.274- 0.411)	11.8 (8.83- 14.8)	3.85 (3.14- 4.57)	3.39 (2.71- 4.06)
High- income	Overall	5 plus	464 (375- 554)	575 (510- 640)	550 (486- 615)	54.8 (44.2- 65.4)	55.8 (49.5- 62.2)	53.1 (46.8- 59.3)	105 (80.7- 130)	130 (114- 145)	124 (109- 139)	12.4 (9.52- 15.3)	12.6 (11.1- 14.1)	12.0 (10.5- 13.4)
		Under 5	12.5 (10.2- 14.9)	3.79 (3.31- 4.26)	3.02 (2.54- 3.49)	20.4 (16.5- 24.2)	6.7 (5.86- 7.55)	5.56 (4.68- 6.44)	2.82 (2.18- 3.46)	0.84 (0.721- 0.96)	0.669 (0.556- 0.781)	4.59 (3.55- 5.63)	1.49 (1.28- 1.7)	1.23 (1.02- 1.44)
	Australasia	5 plus	6.06 (4.66- 7.47)	8.88 (7.79- 9.97)	9.09 (7.9- 10.3)	32.4 (24.9- 39.9)	31.6 (27.7- 35.5)	31.2 (27.1- 35.2)	1.29 (0.947- 1.64)	1.96 (1.65- 2.26)	1.96 (1.63- 2.29)	6.89 (5.06- 8.73)	6.97 (5.89- 8.06)	6.74 (5.61- 7.87)
		Under 5	0.171 (0.131- 0.212)	0.0675 (0.057- 0.0781)	0.0514 (0.0406- 0.0622)	11.1 (8.49- 13.7)	3.7 (3.12- 4.27)	2.83 (2.23- 3.43)	0.035 (0.0254- 0.0446)	0.0143 (0.0115- 0.017)	0.0107 (0.00816- 0.0132)	2.27 (1.65- 2.89)	0.78 (0.629- 0.931)	0.588 (0.449- 0.727)

			81.6	-										
		5 nlus	(67.5-	112 (95.2-	108 (91 8-	50 0 (41 4-	62 3 (53 1-	60 6 (51 3-	19 4 (14 8-	24 4 (20 7-	23 7 (20 0-	11 9 (9 09-	136(116-	13 2 (11 2-
		optus	(07.0	12(00.2	125)	50.0 (41.4 50 C)	71 5)	60.0	22 0)	29.1	20.7 (20.0	14.7)	15.7)	15.2(11.2
	HI Asia Pac		95.7)	120)	123)	56.6)	71.5)	09.9)	23.9)	20.1)	27.3)	14.7)	15.7)	13.3)
		Under	1.87	0.275	0.195	40.0/44.7	0.00/0.5	0.00/0.00	0.451	0.0605	0.0429	4.44.00.04	0.864	0.665
		5	(1.51-	(0.245-	(0.173-	18.3 (14.7-	3.92 (3.5-	3.03 (2.68-	(0.338-	(0.0525-	(0.0369-	4.41 (3.31-	(0.75-	(0.572-
			2.24)	0.304)	0.218)	21.9)	4.34)	3.38)	0.563)	0.0685)	0.0489)	5.51)	0.978)	0.758)
			124											
		5 plus	(98.4-	177 (160-	177 (159-	47.8 (37.9-	51.2 (46.1-	50.7 (45.5-	28.9 (21.7-	41.5 (37.0-	41.6 (37.0-	11.1 (8.36-	12.0 (10.7-	11.9 (10.6-
	HINAm		150)	194)	195)	57.8)	56.2)	55.8)	36.0)	46.0)	46.2)	13.9)	13.3)	13.2)
		Under	3.2						0.721	0.347	0.295			
		5	(2.49-	1.61 (1.38-	1.37 (1.15-	14.8 (11.5-	7.66 (6.57-	6.67 (5.59-	(0.537-	(0.293-	(0.245-	3.32 (2.48-	1.65 (1.39-	1.44 (1.19-
		5	3.91)	1.84)	1.59)	18.0)	8.76)	7.76)	0.905)	0.402)	0.346)	4.17)	1.91)	1.69)
			28.3											
		5 plus	(24.6-	51.4 (47.6-	43.7 (40.1-	63.8 (55.4-	82.7 (76.6-	68.9 (63.2-	6.84 (5.64-	12.7 (11.5-	10.9 (9.86-	15.4 (12.7-	20.4 (18.5-	17.2 (15.5-
			32.0)	55.2)	47.3)	72.2)	88.8)	74.5)	8.04)	13.8)	12.0)	18.1)	22.3)	18.9)
	S Latin Am		4.02	0.953	0.685				0.912	0.231	0.169			
		Under	(3.39-	(0.829-	(0.518-	78.1 (65.9-	20.2 (17.5-	16.0 (12.1-	(0.734-	(0.196-	(0.127-	17.7 (14.3-	4.88 (4.15-	3.94 (2.96-
		5	4.64)	1.08)	0.852)	90.2)	22.8)	19.9)	1.09)	0.265)	0.211)	21.2)	5.6)	4.92)
			224	/	,	,	- ,	,		,		,	/	- 1
		5 plus	(179-	226 (198-	212 (185-	62.0 (49.5-	54.5 (47.8-	51.0 (44.4-	48.9 (37.3-	49.3 (42.8-	45.9 (39.9-	13.5 (10.3-	11.9 (10.3-	11.0 (9.58-
			270)	254)	239)	74.6)	61.3)	57.5)	60.5)	55.8)	52.0)	16.7)	13.5)	12.5)
	W Europe		3.27	0.879	0.716	7	0.110)	0/10/	0.705	0.187	0.151	,	0.856	
		Under	(2.55	(0.764	(0.594	14 2 (11 1	1 01 (3 49	3 37 (2 8	(0.527	(0.16)	(0.123	3 07 /2 3	(0.729	0 71 (0 58
		5	3 98)	0.994)	0.838)	17.3)	4.01 (0.43=	3.95)	0.882)	0.215)	0.178)	3.84)	0.984)	0.84)
Latin	ł		1/2	0.004)	0.000)	17.5)	4.04)	3.33)	0.002)	0.213)	0.170)	5.64)	0.304)	0.04)
Amorioo		E pluo	(101	200 (270	200 (265	41 7 (25 G	57 6 (52 1	EA 7 (40 E	22 2 /26 0	75 A (66 5	72 0 (62 2	0 77 /7 96	14 1 (12 4	12 2/11 6
America		5 pius	(121-	309 (279-	299 (200-	41.7 (35.6-	57.6 (52.1-	54.7 (46.5-	33.3 (20.0-	75.4 (66.5-	72.0 (03.2-	9.77 (7.00-	14.1 (12.4-	15.5 (11.0-
Caribboon	Overall		103)	339)	334)	47.7)	63.1)	61.0)	39.6)	04.4)	02.3)	11.7)	15.7)	15.1)
Canbbean		Under	105	20.0/22.1	00.0/17.0	010 (170	C1 1 (47 F	40.0/00.0	00 4/17 4	7.01/5.4	F 20 (4 01		144/111	11 4 (0 47
		5	(87.1-	29.8 (23.1-	22.9(17.2-	212(176-	61.1 (47.5-	48.3 (36.3-	22.4 (17.4-	7.01 (5.4-	5.38 (4.01-	45.2 (35.1-	14.4 (11.1-	11.4 (8.47-
			123)	36.4)	28.6)	248)	/4./)	60.4)	27.4)	8.61)	6.76)	55.4)	17.7)	14.3)
			18.3											
		5 plus	(15.5-	36.6 (31.3-	32.2 (26.3-	55.9 (47.2-	63.4 (54.2-	53.7 (43.9-	4.14 (3.29-	8.56 (7.26-	7.52 (6.16-	12.7 (10.1-	14.8 (12.6-	12.5 (10.3-
	Andean		21.1)	42.0)	38.1)	64.6)	72.6)	63.5)	4.99)	9.86)	8.88)	15.2)	17.1)	14.8)
	Latin Am	Under	19.9							1.02	0.732			
		5	(16.2-	4.51 (3.48-	3.25 (2.37-	377 (308-	73.8 (56.9-	52.8 (38.6-	4.18 (3.21-	(0.786-	(0.537-	79.2 (60.8-	16.6 (12.9-	11.9 (8.73-
			23.6)	5.54)	4.12)	446)	90.6)	66.9)	5.16)	1.25)	0.926)	97.7)	20.4)	15.0)
			15.1											
		5 plus	(12.4-	28.0 (23.6-	27.2 (22.3-	48.6 (39.8-	65.1 (55.0-	62.4 (51.2-	3.66 (2.83-	6.79 (5.48-	6.6 (5.21-	11.8 (9.09-	15.8 (12.8-	15.1 (12.0-
	Caribbean		17.9)	32.4)	32.0)	57.4)	75.3)	73.5)	4.49)	8.1)	7.99)	14.4)	18.8)	18.3)
	Sumsseam	Under	10.6								1.22			
		5	(8.1-	6.15 (4.63-	5.44 (3.98-	257 (196-	157 (119-	141 (103-	2.33 (1.67-	1.37 (1.0-	(0.867-	56.5 (40.5-	35.1 (25.6-	31.7 (22.4-
			13.1)	7.66)	6.9)	318)	196)	178)	3.0)	1.74)	1.58)	72.5)	44.5)	40.9)
	Central		53.4											
	Central Latin Am	5 plus	(45.6-	113 (103-	113 (99.2-	37.7 (32.2-	49.1 (45.0-	48.5 (42.6-	12.6 (10.1-	27.7 (24.7-	27.7 (23.9-	8.91 (7.13-	12.1 (10.8-	11.9 (10.2-
			61.1)	122)	127)	43.2)	53.1)	54.4)	15.1)	30.7)	31.5)	10.7)	13.4)	13.5)

		Under 5	41.9 (34.8- 49.0)	11.8 (9.01- 14.6)	8.69 (6.25- 11.1)	182 (151- 213)	55.5 (42.4- 68.7)	43.3 (31.1- 55.4)	9.13 (7.05-	2.8 (2.13-	2.06 (1.49-	39.7 (30.6- 48.7)	13.2 (10.0- 16.3)	10.3 (7.41- 13.1)
	Trop Latin	5 plus	55.2 (47.3- 63.0)	132 (118- 146)	127 (112- 142)	40.7 (34.9- 46.5)	63.8 (57.0- 70.7)	60.4 (53.3- 67.5)	12.9 (10.4- 15.3)	32.4 (28.0- 36.7)	31.0 (26.6- 35.3)	9.49 (7.68- 11.3)	15.7 (13.6- 17.8)	14.7 (12.7- 16.8)
	Am	Under 5	32.6 (26.5- 38.7)	7.42 (5.6- 9.23)	5.62 (4.21- 7.02)	191 (155- 226)	42.6 (32.2- 53.1)	32.6 (24.5- 40.8)	6.76 (5.19- 8.32)	1.84 (1.39- 2.3)	1.39 (1.03- 1.75)	39.6 (30.4- 48.7)	10.6 (7.96- 13.2)	8.08 (5.99- 10.2)
North Africa	a and Middle	5 plus	107 (90.9- 124)	196 (173- 219)	192 (165- 219)	37.3 (31.6- 43.0)	36.2 (31.9- 40.5)	34.1 (29.4- 38.9)	26.6 (21.3- 32.0)	52.7 (44.8- 60.6)	51.3 (43.0- 59.6)	9.25 (7.39- 11.1)	9.71 (8.26- 11.2)	9.14 (7.66- 10.6)
E	ast	Under 5	157 (125- 189)	46.5 (35.6- 57.4)	34.4 (26.6- 42.2)	307 (244- 369)	72.9 (55.8- 90.1)	56.3 (43.6- 69.0)	36.4 (27.5- 45.3)	12.1 (8.99- 15.1)	8.87 (6.68- 11.1)	71.1 (53.8- 88.3)	18.9 (14.1- 23.8)	14.5 (10.9- 18.1)
Sout	h Asia	5 plus	577 (484- 670)	1020 (905- 1140)	1010 (866- 1150)	61.6 (51.6- 71.6)	62.1 (55.0- 69.2)	59.6 (51.3- 68.0)	130 (107- 153)	275 (231- 319)	271 (224- 318)	13.9 (11.4- 16.4)	16.7 (14.1- 19.4)	16.1 (13.3- 18.8)
	South Asia	Under 5	823 (667- 979)	329 (263- 396)	258 (196- 321)	524 (425- 623)	202 (161- 243)	163 (123- 202)	178 (139- 218)	80.4 (63.0- 97.8)	63.5 (47.6- 79.3)	114 (88.3- 139)	49.3 (38.6- 60.0)	40.0 (30.0- 50.0)
Southeast Asia, East Asia, and	outheast Isia, East Asia, and Oceania	5 plus	673 (553- 794)	1070 (924- 1210)	1090 (953- 1230)	44.5 (36.5- 52.4)	53.0 (45.9- 60.2)	53.4 (46.6- 60.2)	158 (123- 192)	254 (219- 289)	257 (224- 290)	10.4 (8.14- 12.7)	12.6 (10.9- 14.4)	12.5 (10.9- 14.1)
Oceania		Under 5	439 (344- 534)	74.0 (59.3- 88.6)	59.7 (47.4- 71.9)	251 (196- 305)	49.4 (39.6- 59.2)	43.1 (34.3- 52.0)	91.7 (68.1- 115)	16.9 (13.3- 20.4)	13.7 (10.7- 16.6)	52.4 (38.9- 65.9)	11.3 (8.9- 13.6)	9.89 (7.76- 12.0)
	E Acia	5 plus	483 (389- 577)	708 (587- 829)	732 (604- 859)	43.8 (35.3- 52.4)	51.6 (42.8- 60.4)	52.5 (43.4- 61.7)	115 (87.9- 141)	164 (136- 192)	166 (137- 194)	10.4 (7.98- 12.8)	11.9 (9.91- 14.0)	11.9 (9.87- 13.9)
	EASIa	Under 5	257 (194- 319)	18.3 (14.8- 21.8)	13.7 (10.8- 16.6)	222 (168- 276)	20.2 (16.4- 24.1)	17.1 (13.5- 20.7)	54.8 (39.7- 70.0)	3.9 (3.11- 4.69)	2.83 (2.21- 3.45)	47.4 (34.3- 60.4)	4.31 (3.43- 5.18)	3.53 (2.76- 4.31)
	Oceania	5 plus	2.37 (1.76- 2.97)	4.98 (3.84- 6.12)	5.01 (3.83- 6.18)	42.7 (31.8- 53.6)	43.6 (33.6- 53.6)	41.7 (32.0- 51.5)	0.546 (0.386- 0.706)	1.22 (0.887- 1.56)	1.23 (0.89- 1.58)	9.84 (6.96- 12.7)	10.7 (7.76- 13.6)	10.3 (7.42- 13.1)
_		Under 5	3.83 (2.9- 4.75)	4.7 (3.36- 6.05)	4.05 (2.95- 5.15)	381 (289- 473)	253 (181- 325)	209 (152- 266)	0.815 (0.561- 1.07)	1.04 (0.682- 1.39)	0.897 (0.609- 1.19)	81.1 (55.9- 106)	55.7 (36.7- 74.7)	46.4 (31.5- 61.3)
	SE Asia	5 plus	188 (157- 219)	354 (312- 397)	356 (313- 399)	46.2 (38.5- 53.8)	56.5 (49.7- 63.3)	55.5 (48.8- 62.2)	42.8 (33.8- 51.9)	89.1 (76.6- 102)	89.7 (77.9- 102)	10.5 (8.3- 12.7)	14.2 (12.2- 16.2)	14.0 (12.1- 15.8)
	UL Abia	Under 5	179 (142- 216)	51.1 (40.3- 61.9)	42.1 (32.9- 51.3)	307 (243- 370)	89.3 (70.4- 108)	74.8 (58.5- 91.1)	36.1 (26.9- 45.3)	12.0 (9.36- 14.6)	9.98 (7.75- 12.2)	61.9 (46.2- 77.7)	20.9 (16.3- 25.5)	17.7 (13.8- 21.7)

Sub- Saharan Africa	Overall	5 plus Under 5	290 (244- 335) 700 (546- 855)	482 (405- 559) 524 (394- 654)	472 (395- 550) 451 (325- 577)	72.2 (60.8- 83.5) 781 (609- 953)	53.0 (44.5- 61.4) 309 (233- 386)	49.2 (41.1- 57.3) 261 (188- 334)	65.2 (51.5- 78.9) 145 (106- 184)	113 (90.8- 134) 115 (84.3- 145)	111 (88.8- 132) 98.7 (69.4- 128)	16.2 (12.8- 19.6) 162 (118- 205)	12.4 (9.98- 14.8) 67.6 (49.7- 85.4)	11.5 (9.25- 13.8) 57.1 (40.1- 74.1)
	C Sub-Sah	5 plus	30.9 (25.0- 36.9)	63.3 (49.2- 77.3)	63.5 (49.3- 77.7)	69.4 (56.0- 82.7)	57.9 (45.1- 70.8)	54.8 (42.6- 67.0)	7.05 (5.28- 8.83)	15.3 (11.0- 19.6)	15.3 (11.0- 19.6)	15.8 (11.8- 19.8)	14.0 (10.1- 17.9)	13.2 (9.52- 16.9)
_	Africa	Under 5	70.3 (52.4- 88.2)	42.3 (29.5- 55.1)	35.0 (23.4- 46.6)	677 (505- 849)	202 (141- 264)	166 (111- 221)	15.1 (10.5- 19.7)	9.83 (6.64- 13.0)	8.11 (5.19- 11.0)	145 (101- 189)	47.0 (31.7- 62.3)	38.5 (24.6- 52.4)
	E Sub-Sah	5 plus	131 (111- 150)	187 (158- 215)	186 (157- 215)	84.4 (71.9- 97.0)	54.3 (46.1- 62.6)	51.3 (43.3- 59.3)	30.4 (24.3- 36.5)	44.0 (35.2- 52.7)	43.7 (34.9- 52.5)	19.7 (15.7- 23.6)	12.8 (10.2- 15.3)	12.1 (9.62- 14.5)
	Africa	Under 5	277 (219- 335)	154 (117- 191)	134 (96.9- 171)	768 (607- 929)	245 (186- 304)	210 (152- 268)	60.9 (45.0- 76.8)	34.3 (25.6- 43.0)	29.8 (21.1- 38.5)	169 (125- 213)	54.6 (40.7- 68.5)	46.7 (33.1- 60.3)
	S Sub-Sah	5 plus	23.3 (19.3- 27.4)	46.8 (40.5- 53.1)	43.8 (37.6- 50.1)	51.9 (42.9- 61.0)	66.2 (57.3- 75.2)	60.7 (52.0- 69.4)	5.37 (4.15- 6.59)	11.4 (9.35- 13.5)	10.7 (8.67- 12.8)	11.9 (9.23- 14.7)	16.1 (13.2- 19.0)	14.8 (12.0- 17.7)
	Africa	Under 5	22.3 (17.8- 26.9)	12.7 (10.1- 15.4)	10.5 (7.84- 13.2)	299 (238- 359)	155 (123- 187)	131 (97.6- 164)	4.77 (3.55- 5.99)	2.81 (2.17- 3.45)	2.31 (1.68- 2.94)	63.9 (47.6- 80.2)	34.2 (26.5- 42.0)	28.8 (20.9- 36.6)
	W Sub-Sah	5 plus	105 (85.0- 125)	185 (149- 221)	179 (142- 216)	66.7 (54.0- 79.4)	47.9 (38.5- 57.3)	43.7 (34.7- 52.8)	22.3 (17.1- 27.6)	41.9 (32.9- 51.0)	40.8 (31.7- 49.9)	14.2 (10.9- 17.5)	10.9 (8.52- 13.2)	9.96 (7.73- 12.2)
	Africa	Under 5	331 (253- 408)	315 (235- 396)	271 (194- 349)	925 (709- 1140)	407 (303- 511)	339 (242- 437)	64.1 (45.9- 82.3)	67.6 (49.2- 86.0)	58.5 (40.7- 76.3)	179 (128- 230)	87.2 (63.4- 111)	73.1 (50.9- 95.4)

Table S16: DALYs (in counts and all-age rates) associated with and attributable to bacterial antimicrobial resistance, for those under 5 years of age and over 5 years of age, globally, by GBD super-region, and region, for 1990, 2019, 2021

			DALYs											
			Associated						Attributed					
			Counts (The	ousands)		Rate Per 10	ок		Counts (The	ousands)		Rate Per 10	ок	
Super	Region	Age	1990	2019	2021	1990	2019	2021	1990	2019	2021	1990	2019	2021
Region														
Central			5940	6630	6280	1540	1690	1600	1320	1650	1550			
Europe,		5 plus	(5050-	(5970-	(5590-	(1310-	(1530-	(1430-	(1050-	(1420-	(1320-	344 (273-	422 (362-	395 (338-
Eastern	Overall		6830)	7280)	6960)	1770)	1860)	1780)	1600)	1890)	1770)	414)	483)	452)
Europe,	Overall	Under	4520			12600	4480	3550				2760		
and		5	(3670-	1210 (953-	912 (708-	(10200-	(3530-	(2750-	991 (731-	287 (214-	216 (159-	(2040-	1060 (793-	838 (618-
Central		5	5360)	1470)	1120)	14900)	5430)	4340)	1250)	361)	272)	3490)	1330)	1060)
Asia		5 plus	704 (577-	975 (814-	936 (766-	1180 (965-	1170 (976-	1090 (893-	164 (122-	246 (189-	235 (179-	274 (204-	295 (226-	274 (208-
		o pius	832)	1140)	1110)	1390)	1360)	1290)	206)	303)	292)	344)	364)	340)
	C Asia	Under	2950			31000	9940	7400				6990	2360	1740
		5	(2360-	984 (750-	740 (554-	(24800-	(7580-	(5550-	666 (481-	233 (167-	174 (123-	(5050-	(1690-	(1230-
			3540)	1220)	925)	37100)	12300)	9250)	850)	299)	225)	8920)	3020)	2250)
			1940	1800	1700	1680	1620	1550						
		5 plus	(1650-	(1640-	(1520-	(1420-	(1490-	(1390-	448 (359-	426 (383-	401 (358-	386 (309-	385 (346-	366 (326-
	C Europe		2230)	1950)	1880)	1930)	1760)	1710)	537)	469)	445)	463)	424)	406)
		Under				6810						1530		
		5	622 (508-	61.5 (51.6-	43.1 (34.0-	(5560-	1070 (899-	771 (609-	140 (106-	13.9 (11.4-	9.72 (7.58-	(1160-	242 (198-	174 (136-
			736)	71.4)	52.1)	8060)	1240)	933)	174)	16.4)	11.9)	1910)	286)	212)
			3290	3850	3640	1570	1950	1850						
		5 plus	(2810-	(3470-	(3210-	(1340-	(1760-	(1630-	712 (568-	980 (825-	911 (760-	340 (271-	496 (417-	463 (387-
	E Europe		3770)	4230)	4070)	1800)	2140)	2070)	855)	1140)	1060)	409)	575)	540)
		Under				5430	1420	1260						
		5	936 (769-	162 (142-	127 (110-	(4460-	(1250-	(1080-	184 (138-	39.6 (32.2-	30.9 (24.8-	1070 (799-	348 (283-	306 (245-
			1100)	182)	145)	6400)	1600)	1430)	230)	46.9)	37.1)	1340)	412)	366)
High-			9990	11400	10900		1100		2300	2630	2530			
income		5 plus	(8130-	(10400-	(9950-	1180 (959-	(1010-	1050 (959-	(1//0-	(2370-	(2280-	271 (208-	255 (230-	244 (220-
	Overall		11800)	12300)	11900)	1400)	1200)	1150)	2830)	2880)	2770)	334)	280)	267)
		Under	1100 (010		074/004	1840	000 (500	505 (105	055 (107	70 0 (05 5	00.0 (50.0	445 (004	105 (110	440 (00.0
		5	1130 (918-	343 (300-	2/4 (231-	(1490-	608 (532-	505 (425-	255 (197-	76.3 (65.5-	60.8 (50.6-	415 (321-	135 (116-	112 (93.3-
			1340)	386)	317)	2180)	684)	584)	313)	87.0)	70.9)	508)	154)	131)
		5 plus	137 (106-	182 (163-	186 (165-	/30 (563-	649 (580-	639 (566-	29.8 (21.9-	41.3 (35.6-	41.5 (35.2-	159 (117-	147 (127-	142 (121-
	Australasia		108)	201)	207)	896)	/1/)	711)	37.7)	4/.1)	47.9)	201)	108)	164)
		Under	15.5 (11.8-	6.12 (5.17-	4.67 (3.69-	1000 (766-	335 (283-	257 (203-	3.17 (2.3-	1.3 (1.05-	0.974	206 (149-	/1.0 (5/.3-	53.6 (41.1-
		5	19.1)	7.08)	3.65)	1240)	387)	311)	4.03)	1.55)	(0.746-1.2)	262)	04.6)	00.2)
		F	1810	1900	1850	1110 (000	1000/040	1000 (010	40.4 (000	404/070	410 (050	000 (00 4	000 (007	000/001
	HI Asia Pac	5 plus	(1500-	(1690-	(1630-	1110 (922-	1060 (942-	1030 (910-	434 (332-	424 (3/2-	412 (359-	266 (204-	236 (207-	230 (201-
			2110)	2120)	2070)	1290)	1180)	1160)	535)	4/6)	464)	328)	265)	259)

						1650								
		Under	169 (136-	25.1 (22.4-	17.9 (15.9-	(1330-	358 (320-	278 (247-	40.6 (30.5-	5.57 (4.86-	3.98 (3.45-	398 (299-	79.6 (69.4-	61.7 (53.4-
		5	202)	27.7)	19.9)	1970)	396)	309)	50.8)	6.29)	4.51)	497)	89.8)	70.0)
			2830	4070	4060		1180	1160						
		5 plus	(2260-	(3750-	(3730-	1090 (870-	(1090-	(1070-	664 (498-	970 (876-	969 (872-	256 (192-	281 (253-	277 (249-
			3400)	4390)	4390)	1310)	1270)	1260)	830)	1060)	1070)	320)	308)	305)
	HINAM	I la den				1330								
		Under	289 (225-	145 (125-	123 (103-	(1040-	690 (592-	601 (504-	65.1 (48.5-	31.3 (26.4-	26.7 (22.1-	300 (224-	149 (126-	130 (108-
		5	352)	166)	143)	1630)	789)	699)	81.7)	36.2)	31.2)	377)	172)	152)
				1070		1510	1720	1470						
		5 plus	671 (585-	(1010-	934 (871-	(1320-	(1620-	(1370-	164 (136-	271 (249-	240 (219-	370 (306-	436 (401-	378 (346-
			757)	1130)	997)	1710)	1830)	1570)	192)	293)	260)	433)	471)	410)
	S Latin Am	I la den				7040	1820	1440				1600		
		Under	362 (306-	85.9 (74.7-	61.8 (46.8-	(5940-	(1580-	(1090-	82.3 (66.3-	20.8 (17.7-	15.2 (11.5-	(1290-	440 (375-	356 (268-
		5	419)	97.0)	76.8)	8130)	2050)	1800)	98.3)	23.9)	19.0)	1910)	505)	444)
			4540	4140	3900	1260								
		5 plus	(3660-	(3730-	(3490-	(1010-	999 (900-	938 (838-	1010 (773-	921 (821-	864 (767-	279 (214-	222 (198-	208 (184-
	M/ Europo		5430)	4550)	4320)	1500)	1100)	1040)	1240)	1020)	961)	344)	247)	231)
	w Europe	Under				1290								
		E	296 (231-	81.1 (70.5-	66.3 (54.8-	(1000-	371 (322-	312 (258-	63.8 (47.8-	17.3 (14.7-	13.9 (11.4-	278 (208-	78.8 (67.4-	65.6 (53.8-
		5	361)	91.7)	77.8)	1570)	419)	366)	79.9)	19.8)	16.4)	348)	90.3)	77.3)
Latin			4290	7670	7540	1260	1430	1380		1910	1870			
America		5 plus	(3660-	(7050-	(6750-	(1070-	(1310-	(1230-	1010 (814-	(1710-	(1640-	297 (239-	356 (318-	342 (300-
and	Overall		4910)	8300)	8320)	1440)	1550)	1520)	1210)	2110)	2100)	355)	394)	384)
Caribbean	Overall	Under	9430	2680	2060	19000	5500	4350	2020			4070		
		5	(7830-	(2080-	(1550-	(15800-	(4280-	(3260-	(1560-	631 (486-	485 (361-	(3160-	1300 (999-	1020 (764-
		J	11000)	3270)	2570)	22300)	6720)	5440)	2470)	775)	608)	4980)	1590)	1290)
						1710	1480	1300						
		5 plus	559 (472-	856 (732-	778 (632-	(1440-	(1270-	(1050-	127 (101-	203 (172-	185 (150-	389 (310-	352 (297-	308 (250-
	Andean		645)	980)	923)	1970)	1700)	1540)	154)	235)	220)	469)	407)	366)
	Latin Am	Under	1790			33800	6640	4750				7130	1500	
		5	(1460-	406 (314-	292 (214-	(27600-	(5130-	(3470-	376 (289-	91.7 (70.9-	65.9 (48.5-	(5470-	(1160-	1070 (787-
			2110)	498)	371)	40000)	8150)	6020)	464)	113)	83.4)	8780)	1840)	1360)
						1380	1680	1610						
		5 plus	429 (351-	723 (605-	701 (571-	(1120-	(1410-	(1310-	105 (80.9-	179 (144-	174 (136-	337 (260-	416 (334-	398 (313-
	Caribbean		508)	840)	832)	1630)	1960)	1910)	129)	214)	211)	415)	497)	484)
		Under				23100	14100	12600				5070	3150	2850
		5	953 (727-	552 (416-	489 (358-	(17600-	(10700-	(9250-	210 (150-	123 (90.0-	110 (78.0-	(3640-	(2300-	(2020-
			1180)	688)	620)	28500)	17600)	16000)	269)	156)	142)	6510)	4000)	3680)
			1670	2990	3000	1180	1300	1290						
		5 plus	(1420-	(2770-	(2640-	(1010-	(1210-	(1130-	398 (318-	/48 (675-	/48 (647-	282 (225-	326 (294-	321 (278-
	Central		1920)	3210)	3370)	1360)	1400)	1450)	478)	821)	850)	338)	358)	365)
	Latin Am	Under	3/60	4000 /01/	700 (700	16300	5000	3900		050 (100	100/101	3570	1100 (00)	005 (000
		5	(3120-	1060 (811-	/83 (563-	(13600-	(3820-	(2800-	822 (635-	252 (192-	186 (134-	(2760-	1190 (901-	925 (668-
			4400)	1310)	1000)	19100)	6180)	4990)	1010)	313)	238)	4380)	1470)	1180)

			1630	3110	3060	1200	1510	1450						
		5 plus	(1400-	(2840-	(2760-	(1030-	(1380-	(1310-	381 (309-	780 (687-	763 (668-	281 (228-	378 (333-	363 (318-
	Trop Latin	-	1860)	3370)	3350)	1370)	1640)	1590)	454)	873)	857)	335)	423)	408)
	Am	I las de se	2930			17200	3840	2940				3570		
		Under	(2380-	668 (505-	506 (380-	(13900-	(2900-	(2210-	609 (469-	166 (125-	125 (93.1-	(2740-	956 (719-	728 (541-
		5	3480)	831)	633)	20400)	4780)	3680)	750)	207)	158)	4390)	1190)	916)
			3510	5880	5680	1220				1590	1530			
		5 plus	(2940-	(5140-	(4850-	(1020-	1080 (948-	1010 (862-	870 (690-	(1340-	(1280-	302 (240-	293 (248-	272 (227-
North Afric	a and Middle	-	4070)	6610)	6510)	1410)	1220)	1160)	1050)	1830)	1790)	365)	338)	318)
E	ast	I la den	14100	4180	3090	27500	6560	5060	3270			6390	1700	
		Under	(11200-	(3200-	(2400-	(21900-	(5020-	(3920-	(2480-	1090 (810-	798 (602-	(4840-	(1270-	1310 (984-
		5	17000)	5160)	3790)	33100)	8090)	6200)	4070)	1360)	995)	7940)	2140)	1630)
			22500	29600	29000	2410	1800	1720	4730	7720	7590			
		5 plus	(18000-	(25800-	(24600-	(1920-	(1570-	(1460-	(3820-	(6370-	(6190-	505 (408-	469 (387-	450 (367-
Cout	h Acia		27100)	33300)	33300)	2890)	2030)	1970)	5640)	9070)	9000)	603)	551)	533)
Sout	nasia	Under	73800	29600	23200	47000	18200	14600	16000	7240	5710	10200	4440	3600
		Under	(59900-	(23600-	(17600-	(38100-	(14500-	(11100-	(12500-	(5670-	(4290-	(7940-	(3480-	(2700-
		5	87800)	35600)	28800)	55900)	21800)	18200)	19600)	8800)	7140)	12500)	5400)	4500)
Southeast			19100	25700	26000	1260	1280	1270	4440	6190	6190			
Asia, East		5 plus	(15600-	(22500-	(22900-	(1030-	(1120-	(1120-	(3460-	(5370-	(5420-	293 (229-	307 (267-	303 (265-
Asia, and	a, and eania Overall		22500)	28900)	29200)	1490)	1440)	1430)	5420)	7000)	6970)	358)	348)	341)
Oceania	eania Overall	Under	39400	6660	5380	22500	4450	3890	8240	1520		4710		
		5	(30900-	(5350-	(4280-	(17600-	(3570-	(3090-	(6120-	(1200-	1230 (970-	(3500-	1020 (804-	893 (701-
		J	47900)	7970)	6480)	27400)	5320)	4680)	10400)	1840)	1500)	5910)	1230)	1080)
			12900	15900	16300				3050	3730	3720			
		5 plus	(10400-	(13300-	(13300-	1170 (944-	1160 (965-	1170 (958-	(2330-	(3100-	(3060-	277 (211-	271 (225-	267 (220-
	F Asia		15400)	18600)	19200)	1400)	1360)	1380)	3780)	4360)	4390)	343)	317)	315)
	E Asia	Under	23000	1650		19900	1820	1540	4920			4250		
		5	(17400-	(1340-	1240 (975-	(15100-	(1480-	(1220-	(3570-	351 (280-	256 (200-	(3080-	388 (309-	319 (250-
	-		28600)	1960)	1500)	24700)	2170)	1870)	6280)	422)	312)	5420)	466)	389)
						1520	1500	1440						
		5 plus	84.0 (59.8-	171 (128-	172 (128-	(1080-	(1120-	(1070-	19.2 (13.1-	41.6 (29.6-	41.9 (29.6-	346 (237-	364 (259-	350 (247-
	Oceania	L	108)	214)	217)	1950)	1880)	1810)	25.2)	53.6)	54.3)	454)	469)	452)
		Under				34200	22700	18800				7300	5010	4170
		5	344 (261-	422 (302-	364 (265-	(26000-	(16300-	(13700-	73.3 (50.5-	93.1 (61.4-	80.7 (54.8-	(5030-	(3300-	(2830-
			426)	543)	463)	42400)	29200)	23900)	96.0)	125)	107)	9560)	6720)	5510)
			6080	9620	9620	1490	1530	1500	1370	2420	2430	007 (005		070 (000
		5 plus	(5010-	(8480-	(8420-	(1230-	(1350-	(1310-	(1080-	(2090-	(2100-	337 (265-	386 (332-	379 (328-
	SE Asia		/140)	10800)	10800)	1/50)	1/20)	1690)	1670)	2750)	2760)	409)	439)	430)
		Under	16000	4600	3/90	2/500	8040	6/40	3240	1000 (0.15	004 (700	5570	1880	1600
		5	(12/00-	(3640-	(2970-	(21800-	(6340-	(5270-	(2420-	1080 (845-	901 (700-	(4150-	(14/0-	(1240-
Co.t			19300)	5570)	4620)	33200)	9730)	8200)	4070)	1310)	1100)	6980)	2290)	1960)
Sub-	0	-	10800	1/100	16900	2700	1880	1/60	2430	3970	3920	000 (170	400 (0 40	100 (000
Saharan	Overall	5 plus	(8920-	(14100-	(13800-	(2220-	(1550-	(1430-	(1890-	(3150-	(3090-	606 (4/2-	436 (346-	408 (322-
Africa			12700)	20200)	20000)	3170)	2220)	2090)	2970)	4/80)	4/50)	740)	526)	495)

	Under	62600	47000	40400	69800	27700	23400	13000	10300	8850	14500	6060	5120
	onder	(48800-	(35400-	(29200-	(54400-	(20900-	(16900-	(9480-	(7570-	(6230-	(10600-	(4470-	(3600-
	5	76400)	58600)	51600)	85200)	34600)	29900)	16500)	13000)	11500)	18400)	7660)	6640)
			2270	2270	2570	2070	1960						
	5 plus	1150 (917-	(1750-	(1740-	(2060-	(1600-	(1500-	260 (193-	547 (392-	546 (389-	584 (433-	501 (359-	471 (336-
C Sub-Sah		1370)	2780)	2800)	3080)	2540)	2410)	328)	702)	703)	735)	642)	607)
Africa	Under	6290	3800	3140	60600	18200	14900				13000	4220	3460
	F	(4700-	(2650-	(2100-	(45200-	(12700-	(9990-	1350 (942-	883 (597-	728 (466-	(9070-	(2850-	(2210-
	5	7890)	4940)	4180)	76000)	23700)	19900)	1760)	1170)	991)	16900)	5590)	4700)
		5110	6710	6720	3300	1950	1850		1570	1580			
	5 plus	(4240-	(5600-	(5570-	(2740-	(1630-	(1540-	1190 (938-	(1240-	(1240-	772 (606-	456 (360-	435 (341-
E Sub-Sah		5980)	7820)	7870)	3870)	2270)	2170)	1450)	1900)	1910)	937)	552)	528)
Africa	Under	24800	13800	12000	68700	22000	18900	5460	3080	2680	15100	4900	4200
	5	(19600-	(10500-	(8700-	(54300-	(16700-	(13600-	(4040-	(2300-	(1900-	(11200-	(3660-	(2980-
	5	30000)	17200)	15400)	83100)	27300)	24100)	6880)	3860)	3460)	19100)	6150)	5420)
			1490	1430	1850	2110	1980						
	5 plus	832 (685-	(1280-	(1210-	(1530-	(1810-	(1670-	193 (149-	366 (292-	352 (276-	429 (331-	518 (413-	488 (382-
S Sub-Sah		979)	1710)	1650)	2180)	2420)	2280)	237)	440)	428)	527)	623)	593)
Africa	Under	2010			26800	13900	11700				5750	3080	2580
	5	(1600-	1140 (906-	943 (705-	(21400-	(11000-	(8780-	430 (321-	253 (196-	208 (151-	(4290-	(2380-	(1880-
	3	2410)	1380)	1180)	32300)	16800)	14700)	539)	310)	264)	7220)	3780)	3290)
		3750	6660	6480	2380	1730	1580		1480	1450			
	5 plus	(2940-	(5160-	(4910-	(1870-	(1340-	(1200-	786 (590-	(1130-	(1080-	499 (375-	385 (293-	354 (264-
W Sub-Sah		4560)	8170)	8060)	2890)	2120)	1970)	982)	1840)	1810)	624)	476)	443)
Africa	Under	29500	28200	24300	82500	36400	30400	5740	6060	5240	16000	7810	6550
	5	(22600-	(21000-	(17300-	(63300-	(27100-	(21700-	(4110-	(4410-	(3650-	(11500-	(5690-	(4570-
	5	36400)	35400)	31200)	102000)	45700)	39100)	7360)	7700)	6830)	20600)	9930)	8540)

	Deaths															
	Associate Counts ("	ed Fhousands)			Rate Per	100K			Attribute Counts (T	d Thousands)			Rate Per :	100K		
Region	1990	2019	2021	2050	1990	2019	2021	2050	1990	2019	2021	2050	1990	2019	2021	2050
Andean	38.2	41.2	35.4	71.8	101	64.4	53.6	89.5	8.33	9.58	8.25	16.0	21.9	15.0	12.5	19.9
Latin	(32.1-	(35.2-	(29.0-	(54.2-	(84.4-	(55.1-	(43.8-	(69.0-	(6.56-	(8.13-	(6.76-	(12.1-	(17.3-	(12.7-	(10.2-	(15.4-
America	44.3)	47.1)	41.9)	100)	117)	73.7)	63.4)	123)	10.1)	11.0)	9.74)	22.0)	26.6)	17.3)	14.7)	27.2)
Australasia	6.24	8.95	9.14	19.9	30.8	29.9	29.5	47.3	1.33	1.97	1.97	4.1	6.54	6.59	6.38	9.74
	(4.8-	(7.85-	(7.95-	(15.1-	(23.7-	(26.2-	(25.7-	(35.6-	(0.974-	(1.67-	(1.64-	(3.03-	(4.8-	(5.57-	(5.31-	(7.15-
	7.67)	10.0)	10.3)	23.9)	37.8)	33.5)	33.3)	56.3)	1.68)	2.28)	2.3)	5.08)	8.28)	7.62)	7.44)	12.0)
Caribbean	25.8	34.1	32.6	54.0	73.0	72.8	68.7	109	6.0	8.16	7.83	12.2	17.0	17.4	16.5	24.5
	(20.7-	(28.7-	(26.6-	(42.8-	(58.6-	(61.1-	(56.1-	(87.5-	(4.54-	(6.55-	(6.14-	(9.33-	(12.9-	(14.0-	(12.9-	(19.1-
-	30.8)	39.6)	38.6)	67.3)	87.4)	84.5)	81.4)	135)	7.45)	9.77)	9.51)	16.1)	21.1)	20.8)	20.0)	31.6)
Central Asia	55.4	43.3	39.5	65.8	80.0	46.4	41.2	54.2	12.6	10.6	9.68	15.2	18.2	11.4	10.1	12.5
	(45.1-	(35.8-	(32.3-	(51.4-	(65.0-	(38.3-	(33.7-	(41.6-	(9.31-	(8.24-	(7.47-	(11.4-	(13.4-	(8.84-	(7.8-	(9.4-
	65.8)	50.8)	46.7)	84.3)	94.9)	54.5)	48.7)	69.4)	16.0)	13.0)	11.9)	20.2)	23.1)	14.0)	12.4)	16.4)
Central	88.8	84.6	80.2	95.3	71.0	72.7	69.6	101	20.3	19.8	18.7	21.2	16.2	17.0	16.2	22.4
Europe	(75.0-	(76.6-	(71.4-	(80.4-	(60.0-	(65.9-	(61.9-	(84.3-	(16.1-	(17.6-	(16.5-	(17.8-	(12.9-	(15.1-	(14.3-	(18.7-
	103)	92.5)	89.1)	109)	82.0)	79.5)	77.3)	116)	24.5)	21.9)	20.8)	24.5)	19.5)	18.9)	18.1)	25.8)
Central	95.2	124	122	241	57.9	49.6	48.1	84.6	21.7	30.5	29.7	55.8	13.2	12.2	11.8	19.6
Latin	(81.0-	(114-	(106-	(202-	(49.3-	(45.2-	(42.0-	(70.1-	(17.2-	(27.1-	(25.5-	(46.4-	(10.5-	(10.8-	(10.1-	(16.1-
America	109)	135)	137)	281)	66.6)	54.0)	54.2)	101)	26.2)	33.9]	34.0)	67.3)	15.9)	13.5)	13.4)	24.0)
Central Sub-	101	106	98.5	1//	184	81.1	/1.9	/0./	22.1	25.1	23.4	40.1	40.3	19.3	1/.1	16.0
Saharan	(80.8-	(82.3-	(76.1-	(125-	(14/-	(63.3-	(55.6-	(52.7-	(16.3-	(18.5-	(17.0-	(27.0-	(29.7-	(14.2-	(12.4-	(11.6-
Airica	122)	129)	121)	242)	221)	99.0)	88.3)	92.5	27.9]	31.8)	29.9]	56.9)	50.8	24.4)	21.8)	21.3)
Eastern	/40	121	745	1110	60.8	49.6	50.6	86.1	169	168	169	233	13.9	11.5	11.4	18.2
Asia	(602-	(606-	(618-	(838-	(49.4-	(41.4-	(42.0-	(05.0-	(131-	(140-	(140-	(1//-	(10.8-	(9.55-	(9.52-	(13.9-
Factorn	1/1	152	145	1490)	(2.1)	72.1	70.2	114)	2001	20.2	1975	311)	12.2	10.2	13.4	24.0
Eastern	141	155	145	(150	02.2	75.1	/0.2	110	50.1	30.2	33.0	40.5	13.5	10.5	17.2	23.0 (20 E
Europe	(120-	(137-	(127-	220)	(32.8-	80.6	(01.0-	(90.2-	(23.9-	(32.0-	(30.1-	(30.1-	(10.3-	20.9)	10.0	20.5
Fastern	102)	100)	105)	237)	/1./j	00.0j	70.75	130)	30.4)	43.7]	41.1)	50.05	10.1)	20.75	19.9	30.35
Sub-	408	341	320	509	214	83.8	75.1	64.6	913	78.2	73 5	113	479	192	173	14.4
Saharan	(334-	(281-	(261-	(405-	(175-	(69.1-	(61.2-	(50.2-	(70.0-	(62.6-	(57.8-	(87.6-	(36.7-	(15.4-	(13.6-	(10.9-
Africa	482)	401)	379)	637)	252)	98.5)	89.0)	81.0)	113)	93.91	89.21	145)	59.01	23.1)	20.9)	18.2)
High-	83.5	112	109	158	48.1	60.1	58.6	96.2	19.8	24.5	23.7	34.5	11.4	13.1	12.8	21.1
income Asia	(69.1-	(95.5-	(92.0-	(110-	(39.9-	(51.2-	(49.6-	(66.9-	(15.2-	(20.8-	(20.1-	(24.1-	(8.76-	(11.2-	(10.8-	(14.6-
Pacific	97.8)	129)	125)	205)	56.4)	69.0)	67.6)	123)	24.4)	28.2)	27.4)	44.1)	14.1)	15.1)	14.8)	27.2)
High-													, j			
income	127	179	179	296	45.3	48.7	48.2	73.4	29.6	41.8	41.9	65.3	10.5	11.4	11.3	16.2
North	(101-	(161-	(161-	(225-	(35.9-	(43.9-	(43.4-	(56.6-	(22.3-	(37.3-	(37.3-	(48.7-	(7.92-	(10.2-	(10.1-	(12.2-
America	154)	196)	196)	357)	54.7)	53.4)	53.1)	88.3)	36.9)	46.3)	46.5)	79.3)	13.1)	12.6)	12.6)	19.6)
Oceania	6.19	9.68	9.06	18.3	94.6	72.9	65.0	68.9	1.36	2.26	2.13	4.21	20.8	17.0	15.3	15.8
	(4.81-	(7.45-	(7.05-	(12.7-	(73.4-	(56.1-	(50.6-	(49.0-	(0.971-	(1.62-	(1.55-	(2.73-	(14.8-	(12.2-	(11.2-	(10.6-
	7.58)	11.9)	11.1)	24.8)	116)	89.7)	79.4)	91.2)	1.75)	2.89)	2.71)	5.88)	26.7)	21.7)	19.4)	22.1)

Table S17: Deaths (in counts and all-age rates) associated with and attributable to bacterial antimicrobial resistance, by GBD region, for 1990, 2019, 2021

Southeast	367	406	398	815	78.8	59.2	57.0	102	78.9	101	99.7	191	17.0	14.8	14.3	23.9
Asia	(303-	(357-	(351-	(692-	(65.0-	(52.2-	(50.2-	(86.8-	(61.4-	(87.0-	(86.5-	(160-	(13.2-	(12.7-	(12.4-	(20.2-
	431)	454)	446)	953)	92.6)	66.3)	63.8)	121)	96.5)	115)	113)	226)	20.7)	16.8)	16.2)	28.6)
Southern	32.3	52.3	44.4	85.7	65.3	78.3	65.5	119		12.9	11.1	20.2	15.6	19.3	16.4	28.0
Latin	(28.2-	(48.5-	(40.7-	(69.9-	(56.8-	(72.6-	(60.2-	(96.1-	7.75	(11.7-	(10.0-	(16.2-	(12.9-	(17.5-	(14.8-	(22.8-
America	36.5)	56.1)	48.0)	105)	73.7)	84.0)	70.9)	143)	(6.4-9.1)	14.1)	12.2)	25.0)	18.4)	21.1)	18.0)	34.1)
Southern																
Sub-	45.7	59.5	54.3	71.4	87.1	75.5	67.7	72.4	10.1	14.2	13.0	16.2	19.4	18.0	16.2	16.4
Saharan	(37.6-	(51.1-	(46.2-	(58.5-	(71.7-	(64.8-	(57.6-	(60.9-	(7.79-	(11.7-	(10.5-	(13.2-	(14.9-	(14.8-	(13.1-	(13.6-
Africa	53.8)	67.9)	62.5)	86.7)	103)	86.1)	77.8)	85.4)	12.5)	16.7)	15.5)	20.0)	23.8)	21.2)	19.3)	20.0)
Tropical	87.7	139	133	283	57.5	62.2	58.3	110	19.6	34.2	32.4	64.4	12.9	15.3	14.2	25.0
Latin	(74.8-	(124-	(117-	(205-	(49.0-	(55.6-	(51.6-	(81.8-	(15.8-	(29.6-	(27.9-	(45.7-	(10.3-	(13.2-	(12.2-	(18.5-
America	101)	154)	148)	390)	66.0)	68.8)	65.0)	146)	23.5)	38.8)	36.9)	88.4)	15.4)	17.3)	16.2)	32.4)
Western	228	227	213	324	59.2	52.0	48.6	72.0	49.6	49.5	46.1	67.7	12.9	11.3	10.5	15.0
Europe	(182-	(199-	(185-	(251-	(47.3-	(45.6-	(42.4-	(54.7-	(37.9-	(43.0-	(40.0-	(51.1-	(9.85-	(9.85-	(9.15-	(11.4-
_	273)	255)	240)	376)	71.1)	58.4)	54.9)	83.0)	61.4)	56.0)	52.1)	78.8)	16.0)	12.8)	11.9)	17.7)
Western																
Sub-	435	500	451	709	225	108	92.0	72.4	86.5	110	99.3	153	44.8	23.6	20.3	15.7
Saharan	(341-	(389-	(341-	(513-	(177-	(83.9-	(69.5-	(53.8-	(63.5-	(83.2-	(73.4-	(111-	(32.9-	(18.0-	(15.0-	(11.4-
Africa	530)	612)	561)	939)	274)	132)	114)	95.6)	109)	136)	125)	207)	56.7)	29.3)	25.6)	21.3)

	DALYs																
	Associate Counts (T	d 'housands)			Rate Per 1	100K			Attribute Counts (T	d 'housands)			Rate Per 100K				
Region	1990	2019	2021	2050	1990	2019	2021	2050	1990	2019	2021	2050	1990	2019	2021	2050	
Andean Latin America	2350 (1940- 2750)	1260 (1070- 1460)	1070 (865- 1270)	1390 (1050- 1880)	6170 (5120- 7230)	1970 (1670- 2280)	1620 (1310- 1930)	1730 (1330- 2330)	504 (393- 615)	295 (248- 342)	251 (203- 298)	311 (240- 419)	1330 (1030- 1620)	462 (388- 535)	379 (307- 451)	387 (295- 526)	
Australasia	152 (118- 187)	188 (169- 208)	191 (170- 212)	282 (227- 331)	751 (581- 920)	629 (565- 694)	616 (548- 685)	670 (537- 778)	33.0 (24.3- 41.6)	42.6 (36.7- 48.6)	42.5 (36.1- 48.9)	58.4 (45.3- 71.1)	163 (120- 205)	142 (123- 162)	137 (116- 158)	139 (108- 169)	
Caribbean	1380 (1090- 1680)	1270 (1040- 1510)	1190 (944- 1440)	1240 (950- 1660)	3920 (3080- 4760)	2720 (2220- 3220)	2510 (1990- 3030)	2500 (1940- 3240)	315 (233- 397)	302 (238- 366)	284 (218- 350)	281 (207- 379)	892 (659- 1120)	644 (507- 780)	598 (458- 737)	566 (427- 750)	
Central Asia	3660 (2950- 4360)	1960 (1590- 2330)	1680 (1350- 2000)	1830 (1340- 2490)	5270 (4260- 6290)	2100 (1710- 2490)	1750 (1410- 2080)	1500 (1100- 2010)	830 (605- 1050)	479 (365- 593)	410 (311- 508)	426 (302- 605)	1200 (873- 1520)	514 (391- 636)	428 (325- 530)	351 (246- 492)	
Central Europe	2560 (2170- 2960)	1860 (1700- 2010)	1740 (1560- 1930)	1610 (1400- 1840)	2050 (1740- 2360)	1600 (1460- 1730)	1510 (1350- 1670)	1700 (1490- 1950)	588 (467- 709)	440 (395- 484)	411 (366- 456)	361 (310- 421)	470 (373- 567)	378 (340- 416)	357 (317- 396)	381 (330- 443)	
Central Latin America	5440 (4580- 6290)	4050 (3630- 4470)	3790 (3250- 4320)	4980 (4100- 5990)	3310 (2780- 3830)	1620 (1450- 1780)	1500 (1280- 1710)	1750 (1430- 2130)	1220 (958- 1480)	1000 (881- 1120)	934 (792- 1080)	1160 (938- 1440)	742 (583- 901)	399 (351- 446)	369 (313- 426)	410 (329- 508)	
Central Sub- Saharan Africa	7440 (5740- 9130)	6060 (4560- 7570)	5410 (3990- 6840)	6390 (4260- 9010)	13500 (10400- 16600)	4660 (3500- 5820)	3950 (2910- 4990)	2550 (1780- 3520)	1610 (1160- 2070)	1430 (1030- 1830)	1270 (891- 1660)	1440 (937- 2100)	2930 (2110- 3760)	1100 (791- 1410)	931 (651- 1210)	575 (380- 822)	
Eastern Asia	36000 (28700- 43200)	17600 (14900- 20300)	17500 (14600- 20400)	17500 (13400- 23700)	2950 (2350- 3550)	1200 (1020- 1390)	1190 (991- 1390)	1360 (1040- 1830)	7970 (6070- 9880)	4080 (3440- 4720)	3980 (3310- 4650)	3710 (2830- 4960)	655 (498- 812)	279 (235- 322)	270 (225- 315)	289 (222- 385)	
Eastern Europe	4230 (3610- 4850)	4010 (3620- 4410)	3770 (3330- 4210)	3870 (3100- 4690)	1870 (1590- 2140)	1920 (1730- 2110)	1820 (1610- 2030)	2130 (1770- 2550)	896 (710- 1080)	1020 (858- 1180)	942 (786- 1100)	917 (718- 1120)	395 (313- 477)	488 (411- 565)	456 (380- 531)	505 (404- 613)	
Eastern Sub- Saharan Africa	29900 (24000- 35800)	20500 (16300- 24700)	18700 (14500- 23000)	19600 (14500- 27100)	15700 (12600- 18800)	5050 (4010- 6080)	4400 (3410- 5390)	2490 (1860- 3430)	6660 (5010- 8300)	4650 (3620- 5680)	4250 (3220- 5290)	4320 (3120- 5990)	3490 (2630- 4350)	1140 (890- 1400)	998 (755- 1240)	548 (393- 761)	
High- income Asia Pacific	1970 (1650- 2300)	1930 (1720- 2140)	1870 (1650- 2090)	1930 (1470- 2450)	1140 (952- 1330)	1040 (920- 1150)	1010 (888- 1130)	1180 (883- 1470)	474 (364- 584)	430 (377- 482)	416 (363- 468)	424 (318- 530)	274 (210- 337)	230 (203- 258)	224 (196- 252)	259 (191- 322)	
High- income North America	3120 (2500- 3740)	4220 (3900- 4530)	4180 (3860- 4510)	4840 (3890- 5670)	1110 (887- 1330)	1150 (1060- 1240)	1130 (1040- 1220)	1200 (992- 1390)	729 (549- 910)	1000 (906- 1100)	996 (898- 1090)	1080 (857- 1270)	259 (195- 323)	273 (247- 299)	269 (243- 296)	267 (213- 313)	
Oceania	428 (327- 528)	594 (442- 745)	536 (407- 665)	787 (497- 1180)	6530 (4990- 8060)	4470 (3330- 5610)	3850 (2920- 4780)	2960 (1870- 4290)	92.4 (64.8- 120)	135 (93.7- 176)	123 (87.4- 158)	176 (106- 264)	1410 (989- 1830)	1010 (705- 1320)	881 (628- 1130)	661 (401- 970)	

Table 18: DALYs (in counts and all-age rates) associated with and attributable to bacterial antimicrobial resistance, by GBD region, for 1990, 2019, 2021

Southeast Asia	22100 (17900-	14200 (12400-	13400 (11700-	17000 (14300-	4750 (3850-	2080 (1810-	1920 (1670-	2130 (1800-	4620 (3530-	3500 (3000-	3330 (2860-	3980 (3310-	992 (758-	511 (438-	477 (409-	500 (417-
6 1	26300)	16000)	15200)	20100)	5650)	2340)	21/0)	2550)	5/10)	4000)	3810)	4/60)	1230)	584)	545)	604)
Southern	1030	1160	996	1410	2090	1730	1470	1950	246	292	255	337	497	436	376	467
Latin	(902-	(1090-	(930-	(1160-	(1820-	(1630-	(1370-	(1640-	(204-	(269-	(233-	(278-	(412-	(402-	(344-	(395-
America	1160)	1220)	1060)	1700)	2350)	1830)	1570)	2310)	289)	315)	277)	409)	583)	471)	409)	559)
Southern																
Sub-	2840	2630	2370	2160	5410	3340	2950	2190	623	619	560	488	1190	784	697	494
Saharan	(2310-	(2210-	(1960-	(1690-	(4400-	(2810-	(2440-	(1750-	(474-	(500-	(441-	(376-	(904-	(634-	(549-	(386-
Africa	3370)	3060)	2780)	2730)	6430)	3870)	3470)	2690)	772)	738)	679)	640)	1470)	935)	846)	627)
Tropical	4560	3780	3560	5000	2990	1690	1570	1940	990	947	888	1150	649	423	390	448
Latin	(3820-	(3420-	(3220-	(3760-	(2510-	(1530-	(1410-	(1520-	(785-	(828-	(776-	(840-	(515-	(370-	(341-	(343-
America	5290)	4130)	3910)	6800)	3470)	1850)	1720)	2500)	1200)	1070)	1000)	1550)	784)	476)	440)	575)
Western	4840	4220	3970	4360	1260	967	907	969	1070	938	878	915	279	215	201	203
Europe	(3900-	(3810-	(3550-	(3560-	(1010-	(873-	(813-	(779-	(823-	(837-	(781-	(741-	(214-	(192-	(178-	(163-
•	5780)	4630)	4380)	4950)	1500)	1060)	1000)	1100)	1320)	1040)	975)	1050)	344)	238)	223)	235)
Western																
Sub-	33200	34900	30800	33900	17200	7530	6280	3460	6520	7540	6690	7230	3380	1630	1370	738
Saharan	(25700-	(26400-	(22500-	(22300-	(13300-	(5700-	(4590-	(2360-	(4720-	(5590-	(4780-	(4670-	(2440-	(1210-	(976-	(495-
Africa	40800)	43400)	39100)	48900)	21100)	9360)	7980)	5030)	8330)	9490)	8600)	10400)	4310)	2050)	1760)	1090)