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development of growth-restricted neonates at term using routine data from a late 44 

third-trimester ultrasound scan.  45 
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Objective   62 

Growth-restricted neonates are at risk of short and long-term adverse outcomes.1 63 

Accurate prenatal identification of at-risk fetuses is critical to improving these 64 

outcomes. False positives can lead to unnecessary interventions and increased 65 

healthcare costs, while missed cases increase the risk of perinatal morbidity and 66 

mortality. Machine learning can enhance the predictive accuracy of various health-67 

related outcomes. This study uses late-third trimester scan data to evaluate a novel 68 

machine-learning algorithm to improve predictive accuracy at term.  69 

Study Design 70 

This cohort study retrospectively analyzed data from singleton pregnancies that 71 

underwent routine third-trimester ultrasound scans between 35+0 and 37+6 weeks of 72 

gestation. Pregnancies with significant structural or genetic abnormalities or 73 

incomplete outcome data were excluded. Maternal demographic characteristics, 74 

extracted from hospital electronic records, included maternal age, ethnicity, nulliparity, 75 

previous stillbirth, body mass index, smoking or alcohol consumption, mode of 76 

conception, and the development of gestational diabetes or hypertensive disorders of 77 

pregnancy. The routine ultrasound scans measured the fetal head circumference, 78 

abdominal circumference (AC), femur length, the pulsatility index (PI) of the umbilical 79 

artery, middle cerebral artery, uterine artery Doppler and cerebroplacental ratio (CPR). 80 

Fetal biometry was evaluated following the ISUOG guidelines2, and the estimated fetal 81 

weight (EFW) was calculated. AC, EFW, Doppler parameters, and neonatal 82 

birthweight were adjusted for gestational age by converting them into centiles.3-6 83 

Logistic regression and Random Forest machine learning models were developed to 84 

predict the study outcome: a growth-restricted neonate, defined as either a birthweight 85 

<3rd centile or a birthweight between the 3rd and 10th centiles with adverse outcomes, 86 

including intrauterine death, neonatal death, or neonatal intensive care unit admission 87 

for at least 48 hours. Model performance was assessed using the Area Under the 88 

Receiver Operating Characteristic Curve (AUROC), sensitivity, positive predictive 89 

value (PPV), negative predictive value (NPV), likelihood ratios (LR), and feature 90 

importance. 91 

Results 92 

The study included 14,917 pregnancies, with a median gestational age of 36+0 weeks 93 

at an ultrasound scan. There were 182 (1.2%) growth-restricted neonates. The 94 

demographic and clinical characteristics of patients with and without a growth-95 

restricted neonate as well as the variables included in the prediction models are 96 

presented in Supplementary Table 1. For the prediction of a growth-restricted neonate, 97 

at a false-positive rate of 10%, the machine-learning model had an AUROC of  0.94, 98 

sensitivity 81%, PPV 89% and NPV 82% compared to 0.95, 83%, 89%, 84%, 99 

respectively for the traditional logistic regression model (Table 1). Feature importance 100 

analysis revealed that the EFW centile was the most influential variable in the model. 101 

After removing the EFW centile from the model, the CPR centile emerged as the most 102 

important sonographic feature.  103 

Conclusion 104 
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Machine learning algorithms can predict the development of a growth-restricted 105 

neonate at term using routine data from a late third-trimester ultrasound scan with a 106 

high degree of accuracy, similar to that of traditional logistic regression models. The 107 

variables contributing most significantly to the machine learning models were the EFW 108 

centile, followed by the CPR and, to a lesser extent, other Doppler parameters. Future 109 

studies should aim to externally validate and practically implement these models in 110 

clinical settings to maximize their potential benefits. 111 
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Table 1. Evaluating the predictive performance for growth-restricted neonates. A 136 

comparison of Random Forest and Logistic Regression models using maternal 137 

demographics, Estimated fetal weight, and Doppler parameters 138 

 139 
 140 
  141 

 Logistic Regression Random Forest 

Area under the receiver 
operator curve (AUROC) 

0.945 (0.941 - 0.950) 0.940 (0.936 - 0.946) 

Sensitivity   

10% FPR 83% 81% 

15% FPR 88% 90% 

20% FPR 93% 93% 

Positive predictive value   

10% FPR 89% 89% 

15% FPR 85% 85% 

20% FPR 82% 82% 

Negative predictive value   

10% FPR 84% 82% 

15% FPR 88% 89% 

20% FPR 92% 92% 

Likelihood ratio (-, +)   

10% FPR 0.188, 8.298 0.206, 8.135 

15% FPR 0.129, 5.197 0.117, 6.000 

20% FPR 0.084, 4.649 0.083, 4.640 

FPR – False positive rate.  
Estimated fetal weight centile, Doppler parameters, and demographic parameters were used in the 
model. 
Maternal demographic characteristics: Nulliparity, Ethnicity, Body Mass Index, Smoking status, 
Hypertensive disorders of pregnancy (HDP), BMI  
Doppler characteristics: **Doppler characteristics: Umbilical artery pulsatility index (PI) centile, 
Middle cerebral artery  PI centile, Cerebroplacental ratio centile, Uterine artery PI centile 
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Supplementary Table 1.  Baseline demographic, clinical, and sonographic 142 

characteristics of the study cohort according to whether they resulted in a growth-143 

restricted neonate or not 144 

 145 

146 

  FGR 
(n=182)  

Controls 
(n=14735) 

P value 

Maternal age in years, median (IQR) 31.7 (27.2-36.6) 33.3 (29.8-36.3) <0.001 

Nulliparity, n (%)  125 (68.7) 7485 (50.8) <0.001 

Maternal ethnicity, n (%)    

White (1) 57 (31.3) 7196 (48.8) <0.001 

Black (2) 20 (11.0) 1564 (10.6) 0.870 

Asian (3) 61 (33.5) 2465 (16.7) <0.001 

Mixed (4) 10 (5.5) 570 (3.9) 0.259 

Other (5) 34 (18.7) 2940 (20.0) 0.670 

Fertility treatment, n (%) 10 (7.9) 743 (6.7) 0.582 

Previous stillbirth, n (%)   0 (0.0) 33 (0.5) 0.590 

Smoker, n (%) 19 (10.4) 447 (3.0) <0.001 

Alcohol, n (%)   2 (1.1) 108 (0.7) 0.567 

Maternal BMI at booking in Kg/m2, median (IQR) 24.0 (21.0-27.0) 24.4 (22.0-28.0) 0.012 

Gestational diabetes, n (%) 17 (9.3) 1756 (11.9) 0.286 

Hypertensive disorders of pregnancy, n (%)   15 (8.2) 453 (3.1) <0.001 

Induction of labor, n (%)  107 (58.8) 5200 (35.3) <0.001 

Gestational age at ultrasound in weeks, median 
(IQR) 

36.0 (36.0-36.0) 36.0 (36.0-36.0) 0.451 

Estimated fetal weight centile, median (IQR) 19.7 (8.8 – 33.0) 61.3 (44.4 - 76.7) <0.001 

Abdominal circumference centile, median (IQR) 15.6 (6.3-30.4) 56.0 (38.7-72.4) <0.001 

Gestational age at birth in weeks, median (IQR) 39.0 (37.0 - 40.0) 39.0 (39.0 - 40.0) <0.001 

Scan to birth interval in weeks, median (IQR) 3.0 (1.0 - 4.0) 3.0 (3.0 - 4.0) <0.001 

Birthweight in grams, median (IQR) 2350 (2160-2500) 3400 (3100-3700) <0.001 

Birthweight centile, median (IQR) 2.1 (1.2 - 2.5) 59.5 (34.2 - 81.4) <0.001 

Umbilical artery PI centile, median (IQR) 58.3 (36.1 -80.9) 43.7 (21.1 – 65.7) <0.001 

Middle cerebral artery PI centile, median (IQR) 39.6 (19.1 - 66.3) 53.3 (30.8 – 75.3) <0.001 

Cerebroplacental ratio centile, median (IQR) 37.7 (20.0 – 67.4) 59.5 (38.4 – 79.1) <0.001 

Uterine artery PI centile, median (IQR) 52.4 (20.2 – 90.0) 36.7 (16.3 – 66.8) <0.001 

FGR – Fetal growth restriction, IQR – Interquartile range, BMI – Body Mass Index, 
GA – Gestational age, PI – Pulsatility Index  
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Supplementary Table 2. Prediction models for growth-restricted neonates using 147 

Random Forest machine learning and traditional logistic regression with different 148 

variable combinations 149 

 AUROC 
(95% CI) 

Shrinkage (%) 
Sensitivity 
(10% FPR) 

Logistic regression 

Umbilical artery PI centile only 0.632 (0.620 - 0.644) -0.005 27% 

Middle cerebral artery PI centile only 0.616 (0.604 - 0.628) -0.005 23% 

Cerebroplacental ratio centile only 0.666 (0.654 - 0.678) 0.007 28% 

Uterine artery PI centile only 0.592 (0.581 - 0.604) -0.001 25% 

Estimated fetal weight centile only 0.908 (0.903 - 0.914) 0.006 67% 

Demographic characteristics* and 
Doppler parameters** 

0.812 (0.803 - 0.821) -0.001 68% 

EFW centile and Doppler 
parameters** 

0.925 (0.920 - 0.931) 0.002  73% 

EFW with demographic 
characteristics* and Doppler 
parameters** 

0.945 (0.941 - 0.950) 0.002 83% 

Random Forest Machine learning 

Umbilical artery PI centile only 0.841 (0.833 - 0.849) 0.011 54% 

Middle cerebral artery PI centile only 0.770 (0.760 - 0.780) 0.020 42% 

Cerebroplacental ratio centile only 0.771 (0.761 - 0.781) 0.031 40% 

Uterine artery PI centile only 0.740 (0.730 - 0.750) 0.029 40% 

Estimated fetal weight centile only 0.930 (0.925 - 0.935) 0.020 78% 

Demographic characteristics* and 
Doppler parameters** 

0.840 (0.832 - 0.848) 0.002 71% 

EFW centile and Doppler 
parameters** 

0.968 (0.966 - 0.972) 0.009 93% 

EFW with demographic 
characteristics* and Doppler 
parameters** 

0.940 (0.936 - 0.946) 0.005 81% 

AUROC: Area under the receiver operator curve, CI: confidence interval, FPR: False positive rate, EFW – 
Estimated fetal weight, PI – Pulsatility index.  
*Demographic characteristics: Nulliparity, Ethnicity, Body Mass Index, Smoking, Hypertensive disorders of 
pregnancy **Doppler characteristics: Umbilical artery PI centile, Middle cerebral artery PI centile, 

Cerebroplacental ratio centile, Uterine artery PI centile 
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