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BACKGROUND: Accurate individualized assessment of preeclampsia preeclampsia. Median gestational age at cell-free DNA measurement was
risk enables the identification of patients most likely to benefit from initi-

ation of low-dose aspirin at 12 to 16 weeks of gestation when there is

evidence for its effectiveness, and enables the guidance of appropriate

pregnancy care pathways and surveillance.

OBJECTIVE: The primary objective of this study was to evaluate the

performance of artificial neural network models for the prediction of

preterm preeclampsia (<37 weeks’ gestation) using patient characteris-

tics available at the first antenatal visit and data from prenatal cell-free

DNA screening. Secondary outcomes were prediction of early-onset

preeclampsia (<34 weeks’ gestation) and term preeclampsia (�37

weeks’ gestation).

METHODS: This secondary analysis of a prospective, multicenter,

observational prenatal cell-free DNA screening study (SMART)

included singleton pregnancies with known pregnancy outcomes.

Thirteen patient characteristics that are routinely collected at the first

prenatal visit and 2 characteristics of cell-free DNA (total cell-free

DNA and fetal fraction) were used to develop predictive models for

early-onset (<34 weeks), preterm (<37 weeks), and term (�37

weeks) preeclampsia. For the models, the “reference” classifier was a

shallow logistic regression model. We also explored several feedfor-

ward (nonlinear) neural network architectures with �1 hidden layers,

and compared their performance with the logistic regression model.

We selected a simple neural network model built with 1 hidden layer

and made up of 15 units.

RESULTS: Of the 17,520 participants included in the final analysis, 72
(0.4%) developed early-onset, 251 (1.4%) preterm, and 420 (2.4%) term
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12.6 weeks, and 2155 (12.3%) had their cell-free DNA measurement at

�16 weeks’ gestation. Preeclampsia was associated with higher total

cell-free DNA (median, 362.3 vs 339.0 copies/mL cell-free DNA; P<.001)

and lower fetal fraction (median, 7.5% vs 9.4%; P<.001). The expected,

cross-validated area under the curve scores for early-onset, preterm, and

term preeclampsia were 0.782, 0.801, and 0.712, respectively, for the

logistic regression model, and 0.797, 0.800, and 0.713, respectively, for

the neural network model. At a screen-positive rate of 15%, sensitivity

for preterm preeclampsia was 58.4% (95% confidence interval,

0.569e0.599) for the logistic regression model and 59.3% (95% confi-

dence interval, 0.578e0.608) for the neural network model. The contri-
bution of both total cell-free DNA and fetal fraction to the prediction of term

and preterm preeclampsia was negligible. For early-onset preeclampsia,

removal of the total cell-free DNA and fetal fraction features from the

neural network model was associated with a 6.9% decrease in sensitivity

at a 15% screen-positive rate, from 54.9% (95% confidence interval,

52.9e56.9) to 48.0% (95% confidence interval, 45.0e51.0).
CONCLUSION: Routinely available patient characteristics and cell-free
DNA markers can be used to predict preeclampsia with performance

comparable to that of other patient characteristic models for the prediction

of preterm preeclampsia. Logistic regression and neural network models

showed similar performance.

Key words: cell-free DNA, early-onset preeclampsia, fetal fraction,
linear neural network, noninvasive prenatal screening, nonlinear neural

network, pregnancy, preterm preeclampsia, term preeclampsia
Introduction
Preeclampsia is a major contributing
factor to maternal morbidity and mor-
tality.1 Low-dose aspirin started between
12 and 16 weeks of gestation has been
shown to decrease the risk of early-onset
preeclampsia in high-risk patients.2

Accurate first-trimester assessment of
preeclampsia risk enables identification
of patients most likely to benefit from
initiation of aspirin before 16 weeks’
gestation when there is evidence for
its effectiveness. Risk assessment is
also important for guiding appropriate
pregnancy care pathways and
surveillance.
Current United States Preventive Ser-

vices Task Force guidelines have limited
the clinical ability to identify patients at
risk for preeclampsia, and more accurate
early pregnancy risk assessment has been
identified as a priority.3 Over 100 pre-
dictive models for preeclampsia have
been reported using patient demographic
and clinical characteristics, ultrasound
measurements, and biomarkers, most of
which have applied logistic regression
(LR) or competing risk approaches to
modeling.4e7 However, there is a relative
lack of published research on the use of
neural networks (NNs) for early preg-
nancy prediction of preeclampsia8e15

and few head-to-head comparisons of
newer machine learning methods with
more traditional approaches such as
LR.13,16,17
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AJOG at a Glance

Why was this study conducted?
Preeclampsia risk assessment using patient characteristics alone has poor pre-
dictive performance, whereas models using biomarkers and ultrasound have
superior performance but require additional resources.

Key findings
Artificial intelligence using a neural network model combining routinely
collected clinical data and cell-free DNA markers from noninvasive prenatal
screening had a 58% sensitivity for preterm preeclampsia at a 15% screen-positive
rate. Predictive performance was similar for early-onset but lower for term pre-
eclampsia. Cell-free DNA variables were associated with a substantial increase in
sensitivity for early-onset preeclampsia compared with patient characteristics
alone, but made a negligible contribution to prediction of preterm or term
preeclampsia.

What does this add to what is known?
Routinely available patient characteristics and cell-free DNAmarkers can be used
to predict preeclampsia without the added expense of obtaining biomarkers and
ultrasound measurements.

ajog.org OBSTETRICS Original Research
Patient characteristics known to be
associated with increased risk for pre-
eclampsia18 are routinely collected as
part of prenatal care. In addition, first-
trimester maternal and fetoplacental
cell-free DNA (cfDNA) results, which
may be associated with increased risk for
development of preeclampsia,19 are
frequently available as part of noninva-
sive prenatal cfDNA screening, which is
now the predominant screening test for
fetal chromosomal abnormalities in the
United States of America.20

The primary goal of this study was to
develop and evaluate the performance of
an artificial NNmodel for the prediction
of preterm preeclampsia (<37 weeks’
gestation) using patient characteristics
available at the first antenatal visit and
data from cfDNA screening. Secondary
outcomes were prediction of early-onset
preeclampsia (<34 weeks’ gestation) and
term preeclampsia (�37 weeks’
gestation).

Materials and Methods
This was a secondary analysis of the SNP-
based Microdeletion and Aneuploidy
RegisTry (SMART) study.21 SMARTwas
designed to evaluate the performance
of single-nucleotide polymorphism
(SNP)ebased cfDNA screening in a
general pregnant population undergoing
screening as part of their clinical care.
Twenty-one sites in 6 countries partici-
pated in the study between April 2015
and January 2019. The study was
restricted to singleton pregnancies, �9
weeks’ gestation, and with maternal age
�18 years. Data on patient characteris-
tics, cfDNA screening results, serum
screening results, ultrasound, and preg-
nancy outcomes were collected by local
research coordinators. Data were
managed by the Data Coordinating
Center at the Biostatistics Center at the
George Washington University, Wash-
ington, DC. Ethics committee approval
for SMART was obtained by each of the
participating sites through their local
institutional review boards.

Study population
A total of 20,887 women participated in
the SMART study. For this analysis,
pregnancies were excluded if there was a
fetal chromosomal or major structural
abnormality, termination of pregnancy,
missing data on pregnancy outcome,
participant withdrawal from the study
(n¼1604), or missing data on pre-
eclampsia status or gestational age at
birth (n¼365) (Figure 1). Participants
were also excluded if they had missing
data for any of the variables required for
model development (Figure 1). The final
NOVEMBER 2024 Ameri
cohort used in model development
comprised 17,520 participants: 671 with
preeclampsia and 16,849 without pre-
eclampsia (Figure 1). Of those with
preeclampsia, 72 had early-onset pre-
eclampsia, 251 had preterm preeclamp-
sia, and 420 had term preeclampsia.
Preeclampsia is a pregnancy-associated
condition that consists of hypertension
with or without evidence of organ
dysfunction (eg, liver and kidney
dysfunction), symptoms (headache and
visual disturbance), and in severe cases,
seizures (“eclampsia”).22 The presence of
“preeclampsia” was based on a clinical
diagnosis of preeclampsia documented
in the participant’s medical record.

Patient characteristics
Patient characteristics routinely collected
at the time of enrollment and examined
in the analysis included maternal age,
bodymass index (BMI),maternal height,
maternal weight, country, self-reported
race and ethnicity, parity, use of in vitro
fertilization, chronic hypertension, pre-
pregnancy diabetes, and cigarette smok-
ing during pregnancy. Features obtained
from SNP-based cfDNA screening
comprised total cfDNA and fetal frac-
tion (FF). Patient characteristics were
compared between the groups of patients
with and without preeclampsia. Com-
parison of continuous data was per-
formed using theWilcoxon rank sum test
and comparison of independent cate-
gorical data using the chi-square test.
P values were adjusted for multiple
comparisons using the Holm method.

Outcome measures
The primary outcome was preterm pre-
eclampsia defined as preeclampsia with
birth <37 weeks’ gestation. Secondary
outcomes were early-onset preeclampsia
(preeclampsia with birth <34 weeks’
gestation) and term preeclampsia (pre-
eclampsia with birth �37 weeks’ gesta-
tion). Performance of the artificial
intelligence models was also compared
with that of LR models.

Features in the model
Variables in the predictive models
included 13 patient characteristics
available in the SMART study data and
can Journal of Obstetrics & Gynecology 554.e2
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FIGURE 1
Inclusion and exclusion flowchart of patients included in the analyses

cfDNA, cell-free DNA; FF, fetal fraction; GA, gestational age.
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identified as risk factors for developing
preeclampsia based on the existing
medical literature (Supplemental
Table 1)18 and 2 features obtained from
SNP-based cfDNA screening (total
cfDNA and FF). Five of the 15 features
were encoded as continuous variables;
the remaining 10 features were encoded
as binary (Supplemental Table 1). FF was
estimated through a probability model
554.e3 American Journal of Obstetrics & Gynecol
using SNPs that were deemed homozy-
gous in the maternal alleles. The proba-
bility model used a maximum likelihood
approach, based on the observed minor
allele frequencies, to determine the FF
value that maximizes the likelihood
function.23

Including race and ethnicity in pre-
dictive modeling is controversial and
has the potential to perpetuate racial
ogy NOVEMBER 2024
inequities.24,25 Race and ethnicity were
therefore not included in model devel-
opment. However, given the recent
research supporting the importance of
race in preeclampsia prediction,14 a
sensitivity analysis was performed to
evaluate the effect of including race and
ethnicity on the predictive accuracy of
the model. Self-identified race and
ethnicity information was added as a
binary flag to the feature set in
Supplemental Table 1. Four groups
(Asian, Black, Latina, and White) were
modeled separately using the NN model
development and the cross-validation
protocol described later in this
Methods section. Each group was
modeled one at a time, separately from
other groups. To model a given ethnicity
group, an additional binary feature was
added to the model, with its value set to
“1” for samples reported as being from
the group in question and “0” otherwise.
Area under the curve (AUC) was calcu-
lated for this augmented model and
compared with the AUC for the standard
model without race and ethnicity
information.

Machine learning algorithms for
classification
Separate networks were trained for the
primary outcome (classifying preterm
preeclampsia with respect to no pre-
eclampsia) and the secondary outcomes
(classifying early-onset preeclampsia
with respect to no preeclampsia and
term preeclampsia with respect to no
preeclampsia). First, we considered an
NN model equivalent to LR as a “refer-
ence classifier.” The LRmodel is arguably
the simplest NN architecture and
directly connects the input features to a
single sigmoid output neuron.

In addition, we explored a number of
feedforward, dense, NN models incre-
mentally adding �1 hidden layers of
rectified linear units (ReLu)26,27 to the LR
model. The performance of the classifiers
was evaluated on a number of metrics:
AUC score, sensitivity, positive predictive
value (PPV), and negative predictive
value (NPV) at different values for the
screen-positive rate metric.

All NN models were implemented
and optimized in keras.tensorflow28 using

http://www.AJOG.org


TABLE 1
Baseline demographic and clinical characteristics according to presence of preeclampsia for participants with
complete data (modeling cohort)

Characteristics Preeclampsia No preeclampsia P value Adjusted P value

n (%) 671 (3.8%) 16,849 (96.2%)

Maternal age (y) .022 .109

Median (25%ile, 75%ile) 34.3 (29, 37.9) 34.7 (30.7, 37.5)

<20 14 (2.1%) 215 (1.3%)

20e34 309 (46.1%) 7317 (43.4%)

�35 301 (44.9%) 8095 (48.0%)

Body mass index (kg/m2) <.001 <.001

Median (25%ile, 75%ile) 28.7 (24.3, 33.5) 24.7 (22.2, 28.5)

Underweight <18.5 8 (1.2%) 273 (1.6%)

Normal 18.5e24.9 184 (27.4%) 8459 (50.2%)

Overweight 25.0e29.9 197 (29.4%) 4720 (28.0%)

Class I obesity 30.0e34.9 138 (20.6%) 1929 (11.4%)

Class II obesity 35.0e39.9 67 (10%) 783 (4.6%)

Class III obesity �40.0 69 (10.3%) 448 (2.7%)

Height (cm) <.001 <.001

Median (25%ile, 75%ile) 162.6 (157.5, 167.6) 165 (160, 170)

Weight (kg) <.001 <.001

Median (25%ile, 75%ile) 73.9 (63.7, 89.3) 66.7 (59.4, 76.2)

Country <.001 <.001

United States 502 (74.8%) 8620 (51.2%)

Sweden 81 (12.1%) 3056 (18.1%)

Ireland 70 (10.4%) 3875 (23%)

England 8 (1.2%) 625 (3.7%)

Australia 8 (1.2%) 422 (2.5%)

Spain 2 (0.3%) 251 (1.5%)

Race/ethnicity <.001 <.001

Asian 51 (7.6%) 1441 (8.6%)

Black 135 (20.1%) 1253 (7.4%)

White 274 (40.8%) 10,939 (64.9%)

Latina 187 (27.9%) 2665 (15.8%)

Other 15 (2.2%) 376 (2.2%)

Unknown/not reported 9 (1.3%) 175 (1%)

Parity <.001 <.001

Nulliparous 373 (55.6%) 7301 (43.3%)

Multiparous 298 (44.4%) 9548 (56.7%)

Previous preterm birth 80 (26.8%) 759 (7.9%) <.001 <.001

Previous stillbirth 21 (7%) 269 (2.8%) .023 .109

Previous cesarean delivery 134 (45%) 2849 (29.8%) <.001 .002

Khalil. Predictive model for preeclampsia using artificial neural networks. Am J Obstet Gynecol 2024. (continued)
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TABLE 1
Baseline demographic and clinical characteristics according to presence of preeclampsia for participants with
complete data (modeling cohort) (continued)

Characteristics Preeclampsia No preeclampsia P value Adjusted P value

Recurrent pregnancy loss
(�3 before 20 wk)

20 (3%) 558 (3.3%) .718 1

In vitro fertilization .374 1

Yes 42 (6.3%) 908 (5.4%)

Prepregnancy health

Chronic hypertension 125 (18.6%) 604 (3.6%) <.001 <.001

Prepregnancy diabetes 43 (6.4%) 155 (0.9%) <.001 <.001

Cigarette smoking during pregnancy 13 (1.9%) 306 (1.8%) .934 1

Fetal fraction <.001 <.001

Median (25%ile, 75%ile) 7.5 (5.7, 10.6) 9.4 (7, 12.3)

Fetal fraction percentile <.001 <.001

Median (25%ile, 75%ile) 45.66 (22.90, 73.33) 56.62 (31.21, 78.26)

Total cfDNA copies/mL <.001 <.001

Median (25%ile, 75%ile) 362.3 (290.2, 463) 339 (275.8, 422.7)

Fetal cfDNA copies/mL <.001 <.001

Median (25%ile, 75%ile) 28.4 (20.7, 40.6) 31.4 (23.7, 42)

Maternal cfDNA copies/mL <.001 <.001

Median (25%ile, 75%ile) 333 (261.3, 431.3) 305.4 (244.6, 386.4)

Serum screening .004 .025

Yes 238 (35.5%) 5086 (30.2%)

Gestational age at cfDNA screening (wk) <.001 <.001

Median (25%ile, 75%ile) 12.7 (11.9, 14.6) 12.6 (11.4, 13.7)

cfDNA, cell-free DNA.

*P values were adjusted for multiple comparisons using the Holm method.

Khalil. Predictive model for preeclampsia using artificial neural networks. Am J Obstet Gynecol 2024.
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the binary cross entropy as the loss
function.27 The network’s parameters
were optimized via stochastic gradient
descent, with a constant learning rate of
1e�2 and zero momentum.27

Training and internal validation
The training and validation process
consisted of a series of steps that are lis-
ted and explained below.

Step 1: stratified split
The data set was randomly split into
training and validation data sets of pro-
portions 0.9 and 0.1, respectively. The
random split was also stratified with re-
gard to the outcome.
554.e5 American Journal of Obstetrics & Gynecol
Step 2: dealing with an
unbalanced data set
Of the study population, only 1.4%
developed preterm preeclampsia.
Hence, any machine learning model
applied to such a data set would typi-
cally overpredict the majority class
(patients without preterm preeclamp-
sia) and be quite inefficient in predict-
ing the “rare” events associated with the
minority class (patients who developed
preterm preeclampsia). To address this,
oversampling was applied27 to the
positive samples in the training set, af-
ter the train and validation split, via
uniform random sampling with
replacement, yielding a training set with
ogy NOVEMBER 2024
an equal number of positive and nega-
tive samples.

Step 3: neural network scaling
and noise injection
A standard scaler was fitted against the
oversampled training data set to appro-
priately scale the train and validation
data sets. Gaussian noise with mean
equal to zero and standard deviation
equal to 1e�1 was added to the stan-
dardized training data set. The standard
scaler and the Gaussian noise were
applied only to the continuous input
features. Noise injection was used as a
form of both regularization29 and data
augmentation.27

http://www.AJOG.org


TABLE 2
Diagnostic accuracy metrics for model performance

Early-onset preeclampsia Logistic regression (LR) Neural network (NN)

AUC score (95% CI) 0.782 (0.768e0.796) 0.797 (0.783e0.811)

Sensitivity (95% CI)

10% screen-positive rate 0.475 (0.445e0.505) 0.486 (0.456e0.516)

15% screen-positive rate 0.545 (0.525e0.565) 0.549 (0.529e0.569)

20% screen-positive rate 0.621 (0.601e0.641) 0.651 (0.631e0.671)

Specificity (95% CI)

10% screen-positive rate 0.902 (0.897e0.906) 0.902 (0.897e0.906)

15% screen-positive rate 0.852 (0.846e0.857) 0.852 (0.846e0.857)

20% screen-positive rate 0.802 (0.796e0.808) 0.802 (0.796e0.808)

PPV (95% CI)

10% screen-positive rate 0.020 (0.014e0.028) 0.020 (0.014e0.028)

15% screen-positive rate 0.015 (0.011e0.020) 0.015 (0.011e0.020)

20% screen-positive rate 0.013 (0.009e0.017) 0.013 (0.010e0.018)

NPV (95% CI)

10% screen-positive rate 0.998 (0.997e0.998) 0.998 (0.997e0.998)

15% screen-positive rate 0.998 (0.997e0.998) 0.998 (0.997e0.998)

20% screen-positive rate 0.998 (0.997e0.998) 0.998 (0.997e0.998)

Likelihood ratios (þ, �)

10% screen-positive rate (4.85, 0.58) (4.96, 0.57)

15% screen-positive rate (3.68, 0.53) (3.71, 0.53)

20% screen-positive rate (3.14, 0.47) (3.29, 0.44)

Preterm preeclampsia Logistic regression (LR) Neural network (NN)

AUC score (95% CI) 0.801 (0.795e0.807) 0.800 (0.794e0.806)

Sensitivity (95% CI)

10% screen-positive rate 0.506 (0.491e0.521) 0.503 (0.488e0.518)

15% screen-positive rate 0.584 (0.569e0.599) 0.593 (0.578e0.608)

20% screen-positive rate 0.669 (0.654e0.684) 0.677 (0.662e0.692)

Specificity (95% CI)

10% screen-positive rate 0.906 (0.901e0.910) 0.906 (0.901e0.910)

15% screen-positive rate 0.856 (0.851e0.862) 0.856 (0.851e0.862)

20% screen-positive rate 0.807 (0.801e0.813) 0.807 (0.801e0.813)

PPV (95% CI)

10% screen-positive rate 0.071 (0.059e0.084) 0.071 (0.059e0.084)

15% screen-positive rate 0.054 (0.046e0.064) 0.055 (0.047e0.065)

20% screen-positive rate 0.047 (0.040e0.054) 0.047 (0.041e0.055)

NPV (95% CI)

10% screen-positive rate 0.992 (0.991e0.994) 0.992 (0.991e0.994)

15% screen-positive rate 0.993 (0.992e0.994) 0.993 (0.992e0.995)

20% screen-positive rate 0.994 (0.993e0.995) 0.994 (0.993e0.996)
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Step 4: fit (training data set)
The fitting procedure was then per-
formed on 100 epochs and a minibatch
size of 32 using stochastic gradient
descent with a constant learning rate of
1e�2.

Step 5: calculation of relevant
metrics on the validation data set
Relevant performance metrics were
calculated on the validation data set.
Specifically, the predictive performance
of the 2 classifiers was evaluated by
calculating the AUC in addition to the
sensitivity, PPV, and NPV for fixed
screen-positive rates.

Internal validation
To minimize the bias intrinsic to a single
instance of the random split in Step 1,
Steps 1 through 4 were repeated 200
times. This Monte Carlo cross-valida-
tion30 generated 200 estimations for
each of the performance metrics of in-
terest, corresponding to 200 different
random trainingevalidation splits. As a
result, the collected metrics are de facto
stochastic variables and can be analyzed
as such. For each metric, the mean value
and its 95% confidence interval (CI)
were considered to evaluate the “ex-
pected behavior” of the predictive
models.

Network regularization
In addition to the noise injection
described above, regularization was also
introduced in our models via the ker-
nel_regularizer28 using an L2 penalty
whose magnitude varied between 0.0
and 1e�2.

Hyperparameter optimization
To evaluate for overfitting, an incre-
mental, although partial, grid-based
hyperparameter search was performed,
first considering and fixing the number
of epochs and the batch size. Second, we
explored the number and size of hidden
layers and the following 3 regularization
methods: L2 penalty magnitude in
kernel regularization, percentage in layer
dropout, and standard deviation in
Gaussian noise injection in the training
data set.27
NOVEMBER 2024 American Journal of Obstetrics & Gynecology 554.e6
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TABLE 2
Diagnostic accuracy metrics for model performance (continued)

Preterm preeclampsia Logistic regression (LR) Neural network (NN)

Likelihood ratios (þ, �)

10% screen-positive rate (5.38, 0.55) (5.35, 0.55)

15% screen-positive rate (4.06, 0.49) (4.12, 0.48)

20% screen-positive rate (3.47, 0.41) (3.51, 0.40)

Term preeclampsia Logistic regression (LR) Neural network (NN)

AUC score (95% CI) 0.712 (0.707e0.717) 0.713 (0.708e0.718)

Sensitivity (95% CI)

10% screen-positive rate 0.293 (0.283e0.303) 0.307 (0.297e0.317)

15% screen-positive rate 0.408 (0.398e0.418) 0.417 (0.407e0.427)

20% screen-positive rate 0.490 (0.480e0.500) 0.499 (0.489e0.509)

Specificity (95% CI)

10% screen-positive rate 0.905 (0.900e0.909) 0.905 (0.901e0.909)

15% screen-positive rate 0.856 (0.851e0.862) 0.857 (0.851e0.862)

20% screen-positive rate 0.807 (0.801e0.813) 0.807 (0.801e0.813)

PPV (95% CI)

10% screen-positive rate 0.070 (0.059e0.083) 0.074 (0.062e0.087)

15% screen-positive rate 0.065 (0.056e0.075) 0.067 (0.058e0.077)

20% screen-positive rate 0.059 (0.051e0.067) 0.060 (0.052e0.068)

NPV (95% CI)

10% screen-positive rate 0.981 (0.979e0.983) 0.982 (0.979e0.984)

15% screen-positive rate 0.983 (0.981e0.985) 0.984 (0.981e0.986)

20% screen-positive rate 0.985 (0.983e0.987) 0.985 (0.983e0.987)

Likelihood ratios (þ, �)

10% screen-positive rate (3.08, 0.78) (3.23, 0.77)

15% screen-positive rate (2.83, 0.69) (2.92, 0.68)

20% screen-positive rate (2.54, 0.63) (2.59, 0.62)

Sensitivity, specificity, PPV, NPV, AUC with 95% CIs, and likelihood ratios for both the LR and NN models for predicting early-
onset preeclampsia (<34 weeks), preterm preeclampsia (<37 weeks), and term preeclampsia (�37 weeks’ gestation).

AUC, area under the receiver operating curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive
value.
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Model performance
Model performance was assessed by the
expected AUC score and the sensitivity
for fixed screen-positive rates of 10%,
15%, and 20% for the primary and sec-
ondary outcomes.

Implementation in a real-world
setting
Finally, examples were provided for
how the NN model could be used to
generate posttest probabilities for pre-
eclampsia, which could then guide
554.e7 American Journal of Obstetrics & Gynecol
pregnancy care based on risk
stratification.

Role of the funding source
This study was a secondary analysis of
data from the SMART study, which was
funded by Natera, Inc., Austin, TX.

Results
Characteristics of the study
population
Of 17,520 participants included in the
final analysis, 671 (3.8%) developed
ogy NOVEMBER 2024
preeclampsia: 72 (0.4%) early-onset
preeclampsia, 251 (1.4%) preterm pre-
eclampsia, and 420 (2.4%) term pre-
eclampsia. Median gestational age at
cfDNA measurement was 12.6 weeks,
and 2155 (12.3%) had their cfDNA
measurement at �16 weeks’ gestation.
The characteristics of the 17,520 partic-
ipants in the study cohort (671 with
preeclampsia and 16,849 without pre-
eclampsia) are shown in Table 1. The
racial and ethnic distribution of the study
cohort, stratified by country, is shown in
Supplemental Table 2. In addition, the
preeclampsia rates (with 95%CIs around
the point estimates) of the study cohort,
stratified by country, are shown in
Supplemental Table 3. The group that
developed preeclampsia had a similar
maternal age distribution to those who
did not develop preeclampsia (34.3 vs
34.7 years; P¼.109). The proportion of
participants with a BMI >30 kg/m2 was
significantly higher in the preeclampsia
group (40.8% vs 18.8%; P<.001). Par-
ticipants in the United States and par-
ticipants who were nulliparous, Black, or
had a history of preterm birth, stillbirth,
cesarean delivery, chronic hypertension,
or prepregnancy diabetes were over-
represented in the group that developed
preeclampsia. CfDNA parameters were
also significantly different in the group
that developed preeclampsia. Total
cfDNA was significantly higher (median
of 362.3 vs 339.0 DNA copies/mL;
P<.001) and FF significantly lower (me-
dian of 7.5% vs 9.4%; P<.001) in the
preeclampsia group (Table 1). We addi-
tionally calculated the Mahalanobis dis-
tance (MD), a measure of multivariate
effect size comparing the standardized
difference in cfDNA features between
outcome groups. TheMDcomparing the
preeclampsia and no-preeclampsia
groups was 0.51, indicating consider-
able overlap between group
distributions.

Model selection and performance
We analyzed and optimized a relatively
large number of dense, feedforward NN
models using the protocol described
above. In more detail, we considered
NN models with the number of hidden
layers varying between 1 and 5 and the
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TABLE 3
Model performance with and without the cell-free DNA features

AUC score
Sensitivity for 15%
screen positive rate

Early-onset preeclampsia

LR with MFþtotal cfDNA and FF 0.782 (0.768e0.796) 0.545 (0.525e0.565)

LR with MF only 0.768 (0.755e0.781) 0.474 (0.444e0.504)

Preterm preeclampsia

LR with MFþtotal cfDNA and FF 0.801 (0.795e0.807) 0.584 (0.569e0.599)

LR with MF only 0.800 (0.794e0.806) 0.590 (0.575e0.605)

Term preeclampsia

LR with MFþtotal cfDNA and FF 0.705 (0.702e0.708) 0.408 (0.398e0.418)

LR with MF only 0.704 (0.699e0.709) 0.398 (0.388e0.408)

Early-onset preeclampsia

NN with MFþtotal cfDNA and FF 0.797 (0.783e0.811) 0.549 (0.529e0.569)

NN with MF only 0.768 (0.755e0.781) 0.480 (0.450e0.510)

Preterm preeclampsia

NN with MFþtotal cfDNA and FF 0.800 (0.794e0.806) 0.593 (0.578e0.608)

NN with MF only 0.802 (0.798e0.808) 0.582 (0.567e0.597)

Term preeclampsia

NN with MFþtotal cfDNA and FF 0.706 (0.703e0.709) 0.417 (0.407e0.427)

NN with MF only 0.707 (0.702e0.712) 0.413 (0.403e0.423)

Model performance for the LR and NN models with and without cfDNA features. The models where the cfDNA features (total
cfDNA and FF) are omitted are termed “Maternal Factors (MF) only.” Models “with MFþtotal cfDNA and FF” refer to the models
trained and optimized on the full 15 features in Supplemental Table 1.

AUC, area under the receiver operating curve; cfDNA, cell-free DNA; FF, fetal fraction; LR, logistic regression; MF, maternal
features; NN, nonlinear neural networks.
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number of neurons varying between 2
and 1024. On those NN models, we
tested different regularization strategies
such as L2 kernel regularization,
dropout layers, and noise injection in
the training set.27 None of the NN
models analyzed in the study out-
performed the LR model.

The simplest NN model that per-
formed on par with the LRmodel was an
NN with 1 hidden layer composed of 15
ReLu units (resulting in a hidden layer
with same dimension as the input) and
with L2 regularization implemented as
Keras’ kernel_regularizer.28

The expected AUC score, sensitivity,
specificity, PPV, NPV, and likelihood
ratios for fixed screen-positive rates of
10%, 15%, and 20% for each of the
outcomes are shown in Table 2. For
preterm preeclampsia at a set screen-
positive rate of 15%, the NN model
had a PPVof 0.055 and NPVof 0.993. As
expected, the PPV was lower in early-
onset preeclampsia, which had an even
lower incidence (0.4% vs 1.4%). The
numbers shown are mean values ob-
tained from the optimization protocol
described in the Methods, and represent
the expected behavior of the model on
unseen data.

The LR and NN models had similar
predictive performance across each of
the preeclampsia outcomes (early-onset,
preterm, and term preeclampsia). The
AUC scores for early-onset, preterm, and
term preeclampsia were 0.78, 0.80, and
0.71, respectively, for the LR model, and
0.79, 0.80, and 0.71, respectively, for the
NN model (Table 2). Sensitivity was
highest for the primary outcome, pre-
term preeclampsia, with the LR model
predicting 58% of positive cases and the
NN model predicting 59% of positive
cases at a screen-positive rate of 15%
(Table 2). No differences were observed
in predictive performance between the
LR and NN models for the secondary
outcomes (Table 2).

To assess the contribution of the
cfDNA features to the performance of
the models, we performed additional
trainingevalidation runs on a reduced
version of the data set where the FF and
total cfDNA features were omitted. In
these NNmodels, the number of units in
the hidden layer was rescaled to 13 to
match the dimensionality of the input
layer. The contribution of both total
cfDNA and FF to the prediction of term
and preterm preeclampsia was negligible
(Table 3). For early-onset preeclampsia,
removal of the total cfDNA and FF fea-
tures from themodel was associated with
an approximately 7% decrease in sensi-
tivity at a 15% screen-positive rate for
both the LR and NN models (Table 3).
Specifically, removal of the total cfDNA
and FF features from the NN model
decreased sensitivity for early-onset
preeclampsia, at a 15% screen-positive
rate, from 54.9% (95% CI, 52.9%
e56.9%) to 48.0% (95% CI, 45.0%
e51.0%) (Table 3).
The contribution of ethnicity-related

information was evaluated via an addi-
tional set of models, estimating the AUC
NOVEMBER 2024 Ameri
score for preterm preeclampsia and its
95% CI (Supplemental Table 4).
Comparing these results with those lis-
ted in Table 2 (where race and ethnicity
are not included in the models), race and
ethnicity information did not contribute
to the predictive performance of the
models in our study.

Feature importance
The input features that were the major
contributors to both the LR and NN
models’ predictions were maternal
weight, chronic hypertension, prepreg-
nancy diabetes, previous preterm birth,
and previous stillbirth (Figure 2). Mul-
tiparity and increasing height showed a
strong negative correlation with preterm
preeclampsia in both models. When the
cfDNA features were omitted from the
model, the remaining 13 features
can Journal of Obstetrics & Gynecology 554.e8
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FIGURE 2
Contribution of all features for the prediction of preterm preeclampsia

Significance and relative contribution of all 15 features to the final prediction of preterm pre-
eclampsia for (A) the logistic regression model and (B) the nonlinear neural network model. The
average contribution and 95% confidence intervals are shown. The magnitude and direction of the
bars represent the contribution of each single feature to the definition of patients positive for preterm
preeclampsia.
cfDNA, cell-free DNA; FF, fetal fraction; IVF, in vitro fertilization; NIPT, noninvasive prenatal testing.
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adapted to compensate for their absence,
as would be expected (Supplemental
Figure).

Implementation in a real-world
setting
The NNmodel could be implemented in
a real-world setting by providing an
early-pregnancy personalized risk pre-
diction for preterm preeclampsia and
using risk stratification to guide care in
pregnancy. To demonstrate this, posttest
probabilities were generated for 2 pa-
tients using a Bayesian approach and
using the model inputs shown in the
Boxes 1 and 2. The background inci-
dence of preterm preeclampsia in the
554.e9 American Journal of Obstetrics & Gynecol
study cohort was 1.43%. Taking the
output of the NN as the likelihood in a
Bayesian model, the posttest probability
of developing preterm preeclampsia
was obtained as the posterior by
applying a Bayesian update to the prior
probability.
For the example provided in Box 1,

the NN output was 0.92, which was then
used to calculate the posttest probability
based on the following 2 equations:

1. Posttest (posterior) probability of
developing preeclampsia¼k�likeli-
hood of preterm preeclamp-
sia�pretest probability of developing
preterm preeclampsia
ogy NOVEMBER 2024
2. Posttest (posterior) probability of not
developing preterm preeclamp-
sia¼k�likelihood of no preterm
preeclampsia�pretest probability of
not developing preterm preeclampsia

These resulted in the following:

1. Posttest (posterior) probability of
developing preterm preeclampsia¼
k�0.92�0.014

2. Posttest (posterior) probability of not
developing preterm preeclampsia¼
k�(1�0.92)�(1�0.014)

Solving these 2 equations yielded a
posttest probability of 14.6% for devel-
oping preterm preeclampsia. Using the
same approach, for the patient with the
characteristics shown in Box 2, the
posttest probability of developing pre-
term preeclampsia was only 0.32%.

These results have implications for
clinical decision-making. In the case of
the patient in Box 1, whose posttest
probability was 14.6%, the clinician
might recommend a higher dose of low-
dose aspirin (150 instead of 75 mg per
day), increased surveillance of blood
pressure and fetal growth, and provide
information for the patient about their
increased risk for preterm preeclampsia
and about symptoms that should
prompt urgent medical evaluation. For
the patient in Box 2, given the low
posttest probability of preterm pre-
eclampsia (0.32%), the clinician would
likely recommend against low-dose
aspirin.

Comment
Principal findings
Our study showed that an artificial NN
model using patient characteristics
routinely collected at the first antenatal
visit and features available from SNP-
based cfDNA screening (total cfDNA
and FF) can predict preeclampsia, with
performance comparable to that of
previously reported models (expected
AUC score, 0.800; 58% sensitivity at a
15% screen-positive rate and 50.3% at
a 10% screen-positive rate).9,14,31,32

Predictive performance was similar
for early-onset preeclampsia (AUC,
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BOX 1
Probability of preterm preeclampsia based on the neural network predictive
model: high-risk case example

Posttest probability of preterm preeclampsia: 14.6%
HIGH RISK

Patient characteristics Value

Total cfDNA 502.88

Fetal fraction percentile 7.41

Maternal age at delivery (y) 33.34

Height (in) 63

Weight (lb) 120

Gestational age at cfDNA screening 12 wk 2 d

In vitro fertilization No

Smoking during pregnancy No

Parity Multiparous

History of hypertension Yes

Prepregnancy diabetes No

Previous preterm birth Yes

Previous stillbirth No

Previous cesarean delivery Yes

Recurrent pregnancy loss Yes

Probability of preterm preeclampsia based on the neural network predictive model. Patient characteristics and values for an
individual with a high risk of preterm preeclampsia with a posttest probability from the neural network model of 14.6%.
cfDNA, cell-free DNA.
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0.797) but lower for term preeclampsia
(AUC, 0.713). The contribution of
cfDNA variables (total cfDNA and FF)
to the prediction of term and preterm
preeclampsia was negligible, but for
early-onset preeclampsia (<34 weeks’
gestation), the cfDNA variables were
associated with a statistically signifi-
cant 7% increase in sensitivity at a 15%
screen-positive rate. PPVs for the
model were low and NPVs were high,
which is consistent with reporting for
other preeclampsia prediction
models.5,32 PPV and NPV are depen-
dent on the prevalence of the condition
and will also vary according to thresh-
olds for test positivity (typically set at 1
in 100 to 1 in 150 for preeclampsia
prediction models).5 PPV and NPV
may be used in a clinical setting to
determine the appropriate test posi-
tivity threshold for using a test as a
rule-in or rule-out. For instance, in the
case of preterm preeclampsia, given
that the intervention is relatively un-
usual, clinicians may use the NPV and
likelihood ratios as a “rule out” and
minimize the chance of missing pa-
tients who are at risk of subsequently
developing preeclampsia.
Notably, the NN models had very

similar performance to the LRmodels. It
is well known that LR, a type of machine
learning algorithm in and of itself, might
perform equally well as more complex
models for variables with linear re-
lationships. Therefore, our findings
most likely reflect a lack of nonlinear
relationships in the data studied and that
the additional complexity provided by
NNs was not needed to improve
screening performance. This finding
might not be surprising given that many
studies have reported quite small or no
performance advantage of NN over LR
models in health care settings.33 How-
ever, given that in other areas, NNs are
adept at learning complex patterns and
NOVEMBER 2024 Americ
relationships in large data sets,34 we
might potentially observe better perfor-
mance from NNs as data sets become
larger, both in the number of variables
and the number of data points. In
addition, an NN may have better per-
formance than LR models for preterm
preeclampsia prediction as additional
continuous variables are added to the
model. Another potential benefit of us-
ing NN models is that NNs can allow us
to use a “transfer learning”ebased
approach, whereby an NN trained on a
different, large data set is applied to the
current data set, resulting in a boost in
performance, as opposed to an NN
trained from scratch on the current data
set.35

Results in the context of what is
known
The value of early-pregnancy cfDNA for
prediction of preeclampsia remains
controversial.36 In the current analysis,
cfDNA features (total cfDNA and FF)
were both associated with the risk for
preeclampsia. However, cfDNA and FF
contributed to model performance only
for early-onset preeclampsia. This
finding of better biomarker performance
for earlier-onset disease may reflect a
different pathogenic process underlying
early- and later-onset preeclampsia, as
has been previously postulated.37

There is a large body of research
reporting clinical risk factors and pre-
dictive models for preeclampsia.4,5,18

The Fetal Medicine Foundation (FMF)
model, which is based on patient char-
acteristics, mean arterial pressure, uter-
ine artery Doppler, and maternal serum
PlGF (placental growth factor) levels at
11 to 13 weeks of gestation, has been
studied most extensively and has been
reported to have sensitivities ranging
from 75% to 90% at a 10% screen-
positive rate.38 Using patient character-
istics without maternal serum markers
or Doppler, the FMF model achieved a
48% sensitivity for preterm preeclamp-
sia at an 11% false-positive rate.39

Similarly, our LR and NN models, both
based only on patient characteristics and
medical history (not including total
cfDNA and FF), achieved 51% and 52%
sensitivity for preterm preeclampsia,
an Journal of Obstetrics & Gynecology 554.e10
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BOX 2
Probability of preterm preeclampsia based on the neural network predictive
model: low-risk case example

Posttest probability of preterm preeclampsia: 0.32%
LOW RISK

Patient characteristics Value

Total cfDNA 209.12

Fetal fraction percentile 97.28

Maternal age at delivery (y) 37.8

Height (in) 66

Weight (lb) 190

Gestational age at cfDNA screening 9 wk 6 d

In vitro fertilization No

Smoking during pregnancy No

Parity Multiparous

History of hypertension No

Prepregnancy diabetes No

Previous preterm birth No

Previous stillbirth No

Previous cesarean delivery No

Recurrent pregnancy loss No

Probability of preterm preeclampsia based on the neural network predictive model. Patient characteristics and values for
an individual with a low risk of preterm preeclampsia as determined by the neural network model with a posttest probability
of 0.32%.
cfDNA, cell-free DNA.
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respectively, when the screen-positive
rate was set at 11%.

The 2 most common computational
approaches reported for model develop-
ment are LRmodels or a competing-risks
model based on the Bayes theorem.16,40

Studies using artificial intelligence or
machine learning approaches for the
prediction of preterm preeclampsia are
more limited,8e15,41e43 and differ from
our model (a subset of these articles are
summarized in Table 48e15). For
example, Mari�c et al9 used the elastic
net algorithm that included mean arterial
pressure, and routine laboratory results,
as well as patientmedications. Thismodel
resulted in an AUC of 0.89 for the pre-
diction of preterm preeclampsia with a
72.3% sensitivity. In addition,
Ansbacher-Feldman et al14 used an arti-
ficial NN that included uterine artery
pulsatility, as well as mean arterial blood
pressure, PlGF, and pregnancy-associated
plasma protein. When these biomarkers
554.e11 American Journal of Obstetrics & Gynec
were included, the AUC for the model
was 0.909, with a 75.3% sensitivity at a
10% screen-positive rate, for the predic-
tion of preterm preeclampsia. The patient
cohort used in the Mari�c et al9 study was
quite small (5245 patients), and the pa-
tient cohort from the Ansbacher-
Feldman et al14 study was recruited
from only 2 centers in the United
Kingdom. In contrast, our model,
although limited to the variables available
in the SMART data set, had the advantage
of being trained in a large, diverse, and
international data set. The study by
Ansbacher-Feldman et al14 reported
similar performance for NN and LR
models in their study cohort, consistent
with the findings of our study. However,
in contrast to our study, the authors re-
ported that adding race and ethnicity
made a significant contribution to their
model performance. The reason why we
observed no difference in model perfor-
mance with the addition of race and
ology NOVEMBER 2024
ethnicity is uncertain but could reflect the
diversity within the broad racial and
ethnic groups among the different coun-
tries participating in the studies.

However, in both the United States and
the United Kingdom, current national
guidelines support a different methodo-
logical approach and recommend a rule-
based algorithm to assess preeclampsia
risk.44e47 Applying these rules to a Eu-
ropean pregnant population, O’Gorman
et al48 reported that the 2015 American
College of Obstetricians and Gynecolo-
gists guidelines44 identified 90% of cases
of preterm preeclampsia at a 64.2%
screen-positive rate and that the United
Kingdom’s 2010 National Institute for
Health and Care Excellence guidelines46

identified 39.0% of preterm preeclamp-
sia at a 10.2% screen-positive rate. Our
model’s 50% sensitivity for preterm pre-
eclampsia at a 10% screen-positive rate,
although not as good as the performance
reported for predictive models that
include blood pressure and biomarkers,
compares favorably with the current
standard of care.

Research and clinical implications
Simple models, such as ours, that use
only routinely collected clinical data
have practical and economic advantages
for clinical implementation over more
complex models (such as those that
include ultrasound measurements), but
at the expense of the accuracy of pre-
eclampsia prediction. However, there is
still potential for incremental
improvement in performance by
including additional routinely collected
data. Mean arterial pressure has been
shown to significantly increase predic-
tive performance for preterm pre-
eclampsia when added to a model based
on patient characteristics alone.38

Although blood pressure data were not
collected as part of the SMART study,
they are typically recorded as part of
routine pregnancy care and could thus
be added to the current model to
potentially improve its performance.
Future research could incorporate
mean arterial pressure and potentially
other routinely collected data, such as
routine laboratory test results, into the
model.
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TABLE 4
Review of published artificial intelligence models that aim to predict preeclampsia early in pregnancy

Study (y)

Gestation at
prediction
(wk) Outcome Model Features AUC Sensitivity

Screen-
positive
rate

External
validation

Mello et al,10

2001
16 Pregnancy-

induced
hypertensive
disorders

Artificial neural
networks

Maternal age, BMI,
urea, creatinine, uric
acid, total proteins,
hematocrit, iron, and
ferritin

0.952 68.9% 14.85% —

Jhee et al,11

2019
14e17 PE >34 wk Stochastic

gradient boosting
(and additional
models)

Maternal variables
Routine laboratory
results

0.924 77.1% — No

Sufriyana
et al,12 2020

PE Random forest
(and additional
models)

Maternal variables 0.76 — — Yes

Mari�c et al,9

2020
16 PE <34 wk

Term
Elastic
net algorithm
(and additional
models)

Maternal variables
Routine laboratory
results Medications

0.89
0.79

72.3%
45.2%

8.8%
8.1%

No

Li et al,13

2021
<20 PE �34 wk

PE <37 wk
Term

XGboost (and
additional
models)

Maternal variables
Mean arterial pressure
Routine laboratory
results

0.93
0.98
0.92

—
—
—

—
—
—

No

Liu et al,8

2022
11e13þ6 PE Random forest

(and additional
models)

Maternal variables
PAPP-A, B-HCG
Uterine artery
Doppler pulsatility
index

0.86 42% — No

Lee et al,15

2022
<14 Pregnancy-

associated
hypertension

Graph-based
semisupervised
learning

Maternal variables,
blood pressure

0.81 in
test set

45.5% in
test set

19.5% No

Ansbacher-
Feldman
et al,14 2022

12e13 Preterm PE Artificial neural
network

Maternal variables
Uterine artery
pulsatility index
Mean arterial blood
pressure.
PlGF, PAPP-A

0.816
0.909

53.3%
maternal
variables
75.3% with
biomarkers

10% Yes

AUC, area under the receiver operating curve; B-HCG, beta-human chorionic gonadotropin; BMI, body mass index; PAPP-A, pregnancy-associated plasma protein A; PE, preeclampsia; PlGF,
placental growth factor.
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The population in the SMART study
was international and diverse. However,
predictive models do not always perform
consistently across different populations.
Future research would therefore also
include evaluation of model perfor-
mance in a different population
(external validation). Even if predictive
performance of a model is acceptable for
clinical implementation, ongoing
research is needed to determine if the
information provided by the model
produces improvements in clinical out-
comes. Additional future research would
include adding further features to the
model, including blood pressure,
routine laboratory test results, bio-
markers, and longitudinal changes in
cfDNA parameters over time.9,17,37,38

Strengths and limitations
Themain strength of this study is the use
of a large prospectively collected inter-
national data set that was used to train an
NOVEMBER 2024 Americ
NN model. The data included baseline
patient characteristics and pregnancy
outcomes. This is one of the largest
studies to assess the contribution of total
cfDNA and FF to the prediction of pre-
eclampsia. However, although FF is
frequently reported in prenatal cfDNA
screening results, total cfDNA is not,
which could impact implementation of
the current model. In addition, FF esti-
mation might not be consistent across
laboratories.49
an Journal of Obstetrics & Gynecology 554.e12
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Although data on patient history and
outcomes are robust, the lack of some
clinical features, such as mean arterial
blood pressure, as well as laboratory and
ultrasonographic parameters, is a limi-
tation. In addition, data were missing for
some participants, resulting in exclusion
of approximately 7.2% of cases; it is
unknown if these data points were
missing at random. Furthermore, we did
not collect data on whether pregnant
participants received aspirin during
pregnancy. This limitation is common in
screening studies on preeclampsia. In
our study, this is in part due to the evi-
dence from a randomized controlled
trial on the benefits of low-dose aspirin
for preeclampsia being published after
the recruitment of participants.50

Although some have argued for univer-
sal aspirin administration,2,50,51 a pre-
dictive model for preeclampsia holds
value given that some trials have found
that universal aspirin administrationwas
not associated with a reduction in the
prevalence of preeclampsia in high-risk
individuals.52 Furthermore, others have
reported that aspirin use is associated
with increased rates of bleeding, partic-
ularly in the postpartum period.53 An
additional limitation is that the diagnosis
of preeclampsia may not have been
entirely consistent across clinical sites.
However, the incidence of preeclampsia
in this study is similar to that reported in
the published literature using consensus
guidelines. The optimal time to predict
preeclampsia is before the end of the first
trimester, when the greatest evidence
exists for the effectiveness of low-dose
aspirin. In this study, it was not
possible to assess predictive accuracy
according to the gestational age at
cfDNA sampling because only 12.3% of
participants had cfDNA evaluated at
�16 weeks’ gestation. Several limitations
exist within our model, including the
potential for overfitting in the NN due to
the small data set and class imbalance
(1%e1.5% positive preeclampsia cases).
Further, at this time, the model has not
undergone external validation, which is
an important step to assess the model’s
transportability or ability to perform
consistently in different health care set-
tings. External validation is a future
554.e13 American Journal of Obstetrics & Gynec
research goal. Last, NNs have the
advantage of discerning nonlinear re-
lationships that might exist among
clinical and demographic data. However,
they can be more difficult to interpret
compared with a simple LR algorithm.
Interpretability is especially important in
a clinical setting because clinicians
depend on the outcome of the model to
make decisions regarding the health and
treatment of patients. Thus, although
NNs have exceptional computational
advantages, their complexity hinders
interpretability, which is a limitation of
their utility in clinical settings.

Conclusions
Our study has developed a predictive
model based only on easily acquired,
routinely collected clinical data, all of
which are part of routine clinical care
early in pregnancy. Although the pre-
dictive ability of our model is not as good
as that of models using other biomarkers
and ultrasound, it has the advantage of
maximizing routinely collected input
features without adding the expense of
biomarkers and ultrasound. It could
therefore be incorporated into clinical
care with minimal resource implications
and inconvenience for patients. The
predictive performance of the NN was
very similar to that of the LR. A larger
data set and more discriminatory input
features are needed for future NN
exploration. n
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SUPPLEMENTAL FIGURE
Contribution of maternal factors for the prediction of preeclampsia

Significance and relative contribution of 13 features (maternal factors only, with total cell-free DNA
and fetal fraction omitted) to the final prediction of preterm preeclampsia for (A) the logistic
regression model and (B) the nonlinear neural network model. The average contribution and 95%
confidence intervals are shown. The magnitude and direction of the bars represent the contribution
of each single feature to the definition of patients positive for preterm preeclampsia.
IVF, in vitro fertilization; NIPT, noninvasive prenatal testing.
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SUPPLEMENTAL TABLE 1
Description and encoded type of input variables used in the predictive
models

Description Encoded type

Fetal fraction Continuous

Total cfDNA Continuous

Maternal age (y) Continuous

Maternal height (cm) Continuous

Maternal weight (kg) Continuous

Gestational age at cfDNA screening Continuous

Pregnancy conceived using in vitro fertilization Binary [0,1]

Cigarette smoking during pregnancy Binary [0,1]

Parity: nulliparous vs multiparous Binary [0,1]

Prepregnancy hypertension Binary [0,1]

Prepregnancy diabetes Binary [0,1]

Previous preterm birth (<37 wk of gestation) Binary [0,1]

Previous stillbirth Binary [0,1]

Previous cesarean delivery Binary [0,1]

Recurrent pregnancy loss (�3 losses at <20 wk of
gestation)

Binary [0,1]

cfDNA, cell-free DNA.

Khalil. Predictive model for preeclampsia using artificial neural networks. Am J Obstet Gynecol 2024.

SUPPLEMENTAL TABLE 2
Self-reported race and ethnicity of study participants stratified by country

Race and ethnicity
N (%)

Total
N¼17,520 Australia N¼430 England N¼633 Ireland N¼3945

Spain
N¼253 Sweden N¼3137

United States
N¼9122

Asian 1492 (8.5%) 101 (23%) 64 (10%) 139 (3.5%) 0 (0%) 200 (6.4%) 988 (11%)

Black 1388 (7.9%) 1 (0.2%) 22 (3.5%) 7 (0.2%) 1 (0.4%) 21 (0.7%) 1336 (15%)

Latina 2852 (16%) 2 (0.5%) 1 (0.2%) 39 (1.0%) 8 (3.2%) 54 (1.7%) 2748 (30%)

White 11,213 (64%) 326 (76%) 510 (81%) 3744 (95%) 244 (96%) 2792 (89%) 3597 (39%)

Other 391 (2.2%) 0 (0%) 27 (4.3%) 15 (0.4%) 0 (0%) 69 (2.2%) 280 (3.1%)

Unknown/not reported 184 (1.1%) 0 (0%) 9 (1.4%) 1 (<0.1%) 0 (0%) 1 (<0.1%) 173 (1.9%)
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SUPPLEMENTAL TABLE 3
Preeclampsia rates stratified by country

Preeclampsia
N (%) (95% CI) Total Australia England Ireland Spain Sweden United States

Early-onset 72 (0.4%)
(0.3e0.5)

0 (0%)
(0e0.9)

0 (0%)
(0e0.6)

7 (0.2%)
(0.1e0.4)

0 (0%)
(0e1.5)

4 (0.1%)
(0e0.3)

61 (0.7%)
(0.5%e0.9%)

Preterm 251 (1.4%)
(1.3e1.6)

3 (0.7%)
(0.2e2)

3 (0.5%)
(0.2e1.4)

23 (0.6%)
(0.4e0.9)

1 (0.4%)
(0.1e2.2)

21 (0.7%)
(0.4e1)

200 (2.2%)
(1.9e2.5)

Term 420 (2.4%)
(2.2e2.6)

5 (1.2%)
(0.5e2.7)

5 (0.8%)
(0.3e1.8)

47 (1.2%)
(0.9e1.6)

1 (0.4%)
(0.1e2.2)

60 (1.9%)
(1.5e2.5)

302 (3.3%)
(3e3.7)

Any preeclampsia 671 (3.8%)
(3.6e4.1)

8 (1.9%)
(0.9e3.6)

8 (1.3%)
(0.6e2.5)

70 (1.8%)
(1.4e2.2)

2 (0.8%)
(0.2e2.8)

81 (2.6%)
(2.1e3.2)

502 (5.5%)
(5.1e6)

CI, confidence interval.

Khalil. Predictive model for preeclampsia using artificial neural networks. Am J Obstet Gynecol 2024.

SUPPLEMENTAL TABLE 4
Model performance for preterm preeclampsia prediction with the addition of
race and ethnicity information

Race and ethnicity
LR
AUC scores (95% CI)

NN
AUC scores (95% CI)

Asian 0.796 (0.790e0.802) 0.797 (0.791e0.803)

Black 0.806 (0.799e0.813) 0.806 (0.800e0.812)

Latina 0.804 (0.798e0.810) 0.805 (0.799e0.811)

White 0.799 (0.792e0.806) 0.801 (0.794e0.809)

The AUC scores for the LR and NN models that did not include race and ethnicity were 0.801 and 0.800, respectively (Table 2).

AUC, area under the curve; CI, confidence interval; LR, logistic regression; NN, nonlinear neural networks.
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