Supplemental Publication Material for:

Higher Aircraft Noise Exposure is Linked to Worse Heart Structure and Function by Cardiovascular MRI

Constantin-Cristian Topriceanu^{1,2,3*}, Xiangpu Gong^{4,6*}, Mit Shah^{7,8}, Hunain Shiwani^{2,3}, Katie Eminson^{4,5}, Glory O Atilola⁹, Calvin Jephcote⁴, Kathryn Adams⁴, Marta Blangiardo⁹, James C Moon^{2,3}, Alun D Hughes^{1,2}, John Gulliver¹⁰, Alex V. Rowlands^{11,12}, Nishi Chaturvedi^{1,2}, Declan P O'Regan^{7,8}, Anna L. Hansell^{4,5,6,8§}, and Gabriella Captur^{1,2,12§}

* Joint 1st authors § Joint last authors

Author Affiliations:

- 1. UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
- 2. UCL Institute of Cardiovascular Science, University College London, London, UK
- 3. Cardiac MRI Unit, Barts Heart Centre, London, UK
- 4. Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK
- 5. National Institute for Health Research (NIHR) Leicester Biomedical Research Centre (BRC), Leicester General Hospital, Leicester, UK
- 6. The National Institute of Health Research (NIHR) Health Protection Research Unit (HPRU) in Environmental Exposure and Health at the University of Leicester, Leicester, UK
- 7. National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK
- 8. MRC London Institute of Medical Sciences, Imperial College London, London, UK
- 9. MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- 10. Population Health Research Institute, St George's University of London, London UK
- 11. Diabetes Research Centre, Leicester Diabetes Centre, Leicester General Hospital Gwendolen Rd, Leicester, UK
- 12. The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, London, UK

Corresponding author

Dr. Gabriella Captur

Consultant Cardiologist in Inherited Heart Muscle Conditions, The Royal Free Hospital Senior Clinical Lecturer, Institute of Cardiovascular Science, University College London E-mail: gabriella.captur@ucl.ac.uk, Phone No: +442074600595

Supplemental Equation 1:

$$L_{
m den} = 10 \cdot \log_{10} \left(rac{1}{24} \left(12 \cdot 10^{rac{L_{
m day}}{10}} + 4 \cdot 10^{rac{L_{
m evening}+5}{10}} + 8 \cdot 10^{rac{L_{
m night}+10}{10}}
ight)
ight)$$

 L_{den} = A-weighted equivalent noise level over a 24-hour day, but with a penalty of +10 decibels (A) for nighttime noise (23:00 to 07:00) and +5 decibels (A) for evening noise (19:00 to 23:00) L_{day} = A-weighted equivalent noise level between 07:00 to 19:00 $L_{evening}$ = A-weighted equivalent noise level between 19:00 to 23:00 L_{night} = A-weighted equivalent noise level between 23:00 to 07:00 **Supplemental Table 1.** Field IDs or return ID of the UK Biobank variables used in the study and their descriptions.

Variable name	Field ID/return ID in UK biobank	Description/definition	Answers/outcomes used in analysis
CMR data	2383	Biobank Brain and Cardiac Mutual Risk Indexing study	lvedvml lvesvml lvsvml lvef lvmg wt_aha_1mm wt_aha_2mm wt_aha_3mm wt_aha_4mm wt_aha_5mm wt_aha_6mm wt_aha_7mm wt_aha_8mm wt_aha_9mm wt_aha_10mm wt_aha_11mm wt_aha_12mm wt_aha_13mm wt_aha_14mm wt_aha_15mm wt_aha_16mm wt_globalmm ecc_aha_1 ecc_aha_2 ecc_aha_3 ecc_aha_4 ecc_aha_5 ecc_aha_6 ecc_aha_7 ecc_aha_8 ecc_aha_9 ecc_aha_10 ecc_aha_11 ecc_aha_12 ecc_aha_13 ecc_aha_14 ecc_aha_15 ecc_aha_16 ecc_global err_aha_1 err_aha_2 err_aha_3 err_aha_4 err_aha_5 err_aha_6 err_aha_7 err_aha_8 err_aha_9 err_aha_10 err_aha_11 err_aha_12 ecr_aha_7 err_aha_8 err_aha_9 err_aha_10 err_aha_5 err_aha_6 err_aha_7 err_aha_8 err_aha_9 err_aha_10 err_aha_11 err_aha_12 err_aha_13 err_aha_8 err_aha_9 err_aha_10 err_aha_11 err_aha_12
Abdominal MRI	22410 & 22408 & 22407	Total trunk fat volume Abdominal subcutaneous adipose tissue volume Visceral adipose tissue volume	All values were used
Sex	31	Answers in the questionnaire: 0 Female 1 Male	0 Female 1 Male
Age	34	Field 34 contains participants' year of birth. Age in 2006 is calculated by subtracting the value of Field 34 from the year 2006, while the age in 2011 is calculated by subtracting the value of Field 34 from the year 2011.	All values were used
Height	50	Standing height	All positive values were used
Time at current address	699	Answers within the range between 1 and 85. There are three special values: -10 Less than a year -1 Do not know -3 Prefer not to answer	All positive values were used
Ethnic background	21000	Answers in the questionnaire: 1 White 1001 British	1 White 2 Mixed 3 Asian or Asian British

		2001 White and Black Caribbean	4 Black or Black British
		3001 Indian	5 Chinese
		4001 Caribbean	6 Other ethnic group
		2 Mixed	o other entitle group
		1002 Irish	
		2002 White and Black African	
		2002 White and Diack Amean 2002 Dakistani	
		4002 African	
		3 Asian or Asian British	
		1003 Any other white background	
		2002 White and Asian	
		2003 White and Asian	
		4002 Any other Black background	
		4005 Ally Other Black Dackground	
		4 DIALK OF DIALK DITUST	
		2004 Any other Asian background	
		S Chinese	
		b Other ethnic group	
		-1 Do not know	
		-3 Prefer not to answer	
Townsend deprivation index at	22189	Townsend deprivation index calculated immediately prior to	All values were used
recruitment		participant joining UK Biobank. Based on the preceding	
		national census output areas. Each participant is assigned a	
		score corresponding to the output area in which their	
		postcode is located.	
		The values here are rounded to 2 decimal places, replacing	
		an earlier unrounded version.	
вмі	21001		All values were used
Smoking status	20116	-3 Prefer not to answer	0 Never
		0 Never	1 Previous
		1 Previous	2 Current
		2 Current	
Alcohol consumption	1558	1 Daily or almost daily	1 Daily or almost daily
		2 Three or four times a week	2 Three or four times a week
		3 Once or twice a week	3 Once or twice a week
		4 One to three times a month	4 One to three times a month

		5 Special occasions only	5 Special occasions only
		6 Never	6 Never
		-3 Prefer not to answer	
Total number of vigorous or	884 (Number of	Numbers between 0 and 7.	We used the largest number of days between 884 and 904.
moderate physical activities (in	days/week of	In addition, there are two special values:	Only positive values were used.
days)	moderate physical	-1 Do not know	
	activity) and 904	-3 Prefer not to answer	
	(Number of		
	days/week of		
	vigorous physical		
	activity 10+ minutes)		
Average annual household income	738	1 Less than 18,000	1 Less than 18,000
before tax		2 18,000 to 30,999	2 18,000 to 30,999
		3 31,000 to 51,999	3 31,000 to 51,999
		4 52,000 to 100,000	4 52,000 to 100,000
		5 Greater than 100,000	5 Greater than 100,000
		-1 Do not know	
		-3 Prefer not to answer	
PM _{2.5} concentration	24006	PM _{2.5} (particulate matter with diameter less than or equal	All values were used
		to 2.5 micrometers); Land Use Regression (LUR) estimate	
		for annual average 2010.	
Diabetes diagnosed by a doctor	2443	ACE touchscreen question 'Has a doctor ever told you that	We used 1 Yes
		you have diabetes?'	
		Answers include	
		1 Yes	
		0 No	
		-1 Do not know	
		-3 Prefer not to answer	
Hypertension (based on self-	6150 & 6153 & 6177	6150 Vascular/heart problems diagnosed by doctor	Hypertension was identified for individuals who met any of the
reported doctor-diagnosed cases	& 4079 & 4080	6153 Medication for cholesterol, blood pressure, diabetes,	following criteria:
at baseline, self-reported use of		or take exogenous hormones	 they reported "High blood pressure" (answer 4) on question
medication to treat hypertension		6177 Medication for cholesterol, blood pressure or diabetes	6150;
at baseline, or recorded blood		4079 Diastolic blood pressure, automated reading	or indicated "Blood pressure medication" (answer 2) on
pressure readings showing systolic	;	4080 Systolic blood pressure, automated reading	questions 6153 or 6157;
blood pressure ≥140 or diastolic			3. or had values of 4079 greater than or equal to 90, or 4080
blood pressure ≥90 at baseline)			greater than or equal to 140.

Total cholesterol	23400	Total cholesterol (continuous) was measured at baseline	All values were used
		using a non-fasting blood sample.	
Hearing difficulties	2247	1 Yes	We excluded any participants who reported either yes (answer 1), I am
		0 No	completely deaf (answer 99) or negative values (-1 Do not know, or -3
		99 I am completely deaf	Prefer not to answer).
		-1 Do not know	
		-3 Prefer not to answer	
CVD death	40000 & 40001	40001 Underlying (primary) cause of death: ICD10	We included any deaths due to primary causes assigned an ICD code
		40000 Date of death	within ICD Chapter I.
CVD inpatient	41202 & 41262	41202 Diagnoses - main ICD10	We included any individuals with inpatient records due to conditions
Diabetes inpatient	1	Date of first in-patient diagnosis - main ICD10	assigned an ICD code within ICD Chapter I.
Hypertension inpatient	1		
High cholesterol inpatient]		
Ischemic Heart Disease inpatient	1		
Cerebrovascular Disease inpatient	1		
Arrythmias inpatient	1		
Heart Failure inpatient			
Cardiomyopathy inpatient	1		

Noise variables (aircraft, road, and rail) and NO₂ air concentrations used are not currently available from the UK Biobank. They were derived and linked to the UK Biobank dataset, as described in the methods section.

Supplemental Table 2. Correlations between aircraft noise and other environmental exposures.

	Aircraft noise in 2011								
Other environmental exposures	L _{night} ≥45dB		L _{den} ≥50dB						
	Correlation coefficient	<i>p</i> -value	Correlation coefficient	<i>p</i> -value					
Road noise in 2013, dB	0.02	0.281	0.00	0.776					
Rail noise in 2011, dB	0.03	0.043	0.08	<0.001					
NO₂ air concentration , μg/m ³	0.03	0.054	-0.01	0.640					
PM_{2.5} air concentration , μg/m ³	0.11	<0.001	0.13	<0.001					

As aircraft noise and road/rail noise were binary, we calculated the phi correlation coefficient. Since both air pollution variables were continuous, but aircraft noise was binary, we calculated the point-biserial correlation coefficient.

dB = decibels; L_{den} = 24-hour day-evening-night aircraft noise indicator; L_{night} = nighttime aircraft noise indicator; NO₂ = nitrogen dioxide; PM_{2.5} = particulate matter with a diameter ≤2.5 μm.

Supplemental Table 3. C	Characteristics of participants who	had CMR and MACE outcome	data but no aircraft noise exposure.
-------------------------	-------------------------------------	--------------------------	--------------------------------------

	MACE	No MACE	<i>p</i> -value
	n = 1,272 (6.0%)	n = 20,088 (94.0%)	
	Demographics		
Age at baseline, years	58.00 (53.00, 62.00)	53.00 (47.00, 58.00)	<0.001
Male sex, %	962 (74.2%)	9,301 (46.4%)	<0.001
Ethnicity			
White, %	1,234 (97.4%)	19,607 (97.9%)	
Mixed, %	<5	70 (0.3%)	
Asian or Asian British, %	19 (1.5%)	155 (0.8%)	0.028
Black or Black British, %	<5	78 (0.4%)	
Chinese, %	<5	55 (0.3%)	
Other, %	7 (0.6%)	70 (0.3%)	
Townsend deprivation index in 2011	-2.56 (-3.86, -0.37)	-2.72 (-3.94, -0.80)	<0.001
(lower values indicate less deprivation)			
Household income			
<£18,000, %	214 (18.2%)	2,300 (12.5%)	
£18000-30999, %	309 (26.3%)	4,221 (23.0%)	
£31000-51999, %	363 (30.9%)	5,707 (31.1%)	<0.001
£52000-100000, %	237 (20.2%)	5,050 (27.5%)	
>£100000, %	52 (4.4%)	1,096 (6.0%)	
	Lifestyle		
Smoking Status			
Current, %	110 (8.7%)	1,180 (5.9%)	
Former, %	548 (43.1%)	6,511 (32.5%)	<0.001
Never, %	612 (48.2%)	12,350 (61.6%)	
Alcohol Consumption			
Daily, %	278 (21.9%)	4,298 (21.4%)	
3-4 times/week, %	358 (28.1%)	5,689 (28.3%)	
1-2 times/week, %	315 (24.8%)	5,309 (26.4%)	0.511
1-3 times/month, %	135 (10.6%)	2,192 (10.9%)	

Occasional, %	117 (9.2%)	1,627 (8.1%)	
Never, %	69 (5.4%)	961 (4.8%)	
Physical Activity, days/week	3.00 (2.00, 5.00)	3.00 (2.00, 5.00)	0.854
	Environmental exposures		
NO ₂ air concentrations in 2009, μg/m ³	26.71 (23.05, 30.81)	26.82 (23.08, 30.80)	0.951
PM _{2.5} air concentrations in 2010, μg/m ³	9.86 (9.19, 10.57)	9.86 (9.15, 10.52)	0.453
BMI, kg/m ²	27.46 (25.08, 30.02)	25.98 (23.63, 28.80)	<0.001
Hypertension, %	926 (72.8%)	8,705 (43.3%)	<0.001
Diabetes, %	90 (7.1%)	451 (2.2%)	<0.001
High cholesterol, %	391 (30.7%)	7,222 (36.0%)	<0.001
CVD, %	809 (63.6%)	280 (1.4%)	<0.001
	CMR heart structure and function metrics	•	
LVEDV _i , ml/m ^{1.7}	61.55 (54.54, 70.42)	58.75 (52.35, 65.93)	<0.001
LVESV _i ,ml/m ^{1.7}	25.53 (21.19, 30.74)	23.37 (19.86, 27.67)	<0.001
LVmass _i , g/m ^{1.7}	37.99 (33.19, 42.70)	33.64 (29.35, 38.79)	<0.001
LV MV, ml	91.52 (77.38, 105.72)	78.23 (64.95, 95.42)	<0.001
LV WT, mm	6.00 (5.50, 6.52)	5.53 (5.02, 6.11)	<0.001
LV MWT, mm	7.55 (6.87, 8.35)	6.95 (6.26, 7.71)	<0.001
IVST, mm	5.93 (5.44, 6.51)	5.48 (4.95, 6.09)	<0.001
LV lateral WT, mm	6.06 (5.57, 6.63)	5.62 (5.12, 6.19)	<0.001
SLWR, unitless	0.98 (0.93, 1.02)	0.97 (0.93, 1.02)	0.108
LV RWM, g/ml	0.60 (0.55, 0.67)	0.57 (0.52, 0.63)	<0.001
LV MCF, unitless	1.00 (0.88, 1.13)	1.09 (0.97, 1.23)	<0.001
LV EF, %	58.51 (53.97, 62.49)	59.90 (56.02, 63.73)	<0.001
Absolute LV circumferential strain index, m ^{1.7} /g			
Global	0.56 (0.46, 0.68)	0.67 (0.54, 0.80)	<0.001
Basal	0.57 (0.48, 0.70)	0.68 (0.56, 0.81)	<0.001
Mid	0.56 (0.46, 0.68)	0.65 (0.54, 0.78)	<0.001
Apical	0.68 (0.57, 0.83)	0.80 (0.65, 0.96)	<0.001
Absolute LV radial strain index, m ^{1.7} /g			
Global	1.13 (0.92, 1.40)	1.33 (1.07, 1.62)	<0.001

Basal	1.12 (0.89, 1.40)	1.36 (1.07, 1.67)	<0.001				
Mid	1.24 (1.01, 1.53)	1.43 (1.16, 1.76)	<0.001				
Apical	1.32 (1.07, 1.59)	1.50 (1.22, 1.81)	<0.001				
Absolute LV longitudinal strain index, m ^{1.7} /g							
Global	0.48 (0.39, 0.57)	0.55 (0.45, 0.65)	<0.001				
Basal	0.51 (0.42, 0.60)	0.58 (0.48, 0.69)	<0.001				
Mid		N/A					
Apical							

All variables are presented as percentages if categorial or median (interquartile range) if continuous. Comparisons were made using the Chi-Squared test with Yates continuity correction for categorical variables and the Mann-Whitney U-test for continuous variables. Significant *p*-values are presented in bold.

% = percentage; BMI = body mass index; CMR = cardiovascular magnetic resonance; EF = ejection fraction; IVST = interventricular septal wall thickness; LV = left ventricle; LVmass_i = LV mass indexed to height^{1.7}; LVEDV_i = LV end diastolic volume indexed to height^{1.7}; LVESV_i = LV end-systolic volume indexed to height^{1.7}; MCF = myocardial contraction fraction; MV = myocardial volume; MWT = maximal wall thickness; N/A = not available; RWM = relative wall mass; SLWR = septal-to-lateral WT ratio; WT = wall thickness; WT = mean wall thickness. Other abbreviations as **in Supplemental Table 2**.

CMR heart st	ructure and		LV volumes				I	V structure				LV systolic function	
function	metrics	LVEDV _i	LVESV _i	LV MV	LVmass _i	LV WT	LV MWT	IVST	LV	SLWR	LV	LV EF	LV MCF
									lateral WT		RWM		
Aircraft	Absolute	2.72	1.69	5.88	2.42	0.20	0.23	0.19	0.24	-0.01	0.01	-0.76	-0.03
noise	value	(2.33,	(0.56 <i>,</i>	(3.84,	(1.55,	(0.12,	(0.15,	(0.11,	(0.13, 0.36)	(-0.01,	(0.00,	(-2.53,	(-0.07, 0.02)
L _{night} ≥45dB	(95% CI)	3.11)	2.82)	7.92)	3.29)	0.29)	0.31)	0.28)		-0.00)	0.02)	1.01)	
	<i>p</i> -value	<0.001	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.008	0.013	0.399	0.216
	n	3,149	3,149	3,153	3,149	3,151	3,151	3,151	3,151	3,151	3,153	3,153	3,153
Aircraft	Absolute	0.87	0.43	2.49	1.16	0.12	0.14	0.13	0.12	0.00	0.01	-0.32	-0.02
noise	value	(0.56,	(-0.13,	(1.04,	(0.53,	(0.03,	(-0.02,	(0.05 <i>,</i>	(0.01, 0.22)	(-0.00,	(-0.00,	(-1.19,	(-0.03,
L _{den} ≥50dB	(95% CI)	1.19)	0.98)	3.94)	1.79)	0.21)	0.31)	0.21)		0.01)	0.02)	0.56)	-0.01)
	<i>p</i> -value	<0.001	0.133	0.001	<0.001	0.008	0.084	0.001	0.027	0.347	0.125	0.477	<0.001
	n	3,149	3,149	3,153	3,149	3,151	3,151	3,151	3,151	3,151	3,153	3,153	3,153
CMR absolu	ute strain		LV circum	ferential			LV ı	adial		LV long	itudinal		
index m	netrics	Global	Basal	Mid	Apical	Global	Basal Mid Apical		Global Basal				
Aircraft	Absolute	-0.05	-0.05	-0.05	-0.05	-0.08	-0.09	-0.09	-0.07	-0.03	-0.03		
noise	value	(-0.07 <i>,</i>	(-0.08 <i>,</i>	(-0.07,	(-0.09 <i>,</i>	(-0.14,	(-0.14,	(-0.16,	(-0.15,	(-0.05,	(-0.05,		
L _{night} ≥45dB	(95% CI)	-0.02)	-0.01)	-0.02)	-0.02)	-0.03)	-0.04)	-0.01)	-0.00)	-0.02)	-0.01)		
	<i>p</i> -value	0.001	0.005	0.001	0.003	0.004	<0.001	0.025	0.046	<0.001	0.002		
	n	3,145	3,145	3,145	3,145	3,145	3,145	3,145	3,145	3,029	3,029		
Aircraft	Absolute	-0.03	-0.03	-0.03	-0.03	-0.07	-0.06	-0.06	-0.07	-0.01	-0.02		
noise	value	(-0.04,	(-0.04,	(-0.04,	(-0.05 <i>,</i>	(-0.09,	(-0.09 <i>,</i>	(-0.09,	(-0.09,	(-0.03,	(-0.03,		
L _{den} ≥50dB	(95% CI)	-0.01)	-0.01)	-0.02)	-0.01)	-0.04)	-0.04)	-0.04)	-0.04)	0.00)	-0.00)		
	<i>p</i> -value	<0.001	<0.001	<0.001	0.012	<0.001	<0.001	<0.001	<0.001	0.060	0.028		
	n	3,145	3,145	3,145	3,145	3,145	3,145	3,145	3,145	3,029	3,029		

Supplemental Table 4. Absolute differences in CMR metrics between those exposed and unexposed to higher aircraft noise levels.

LVEDV, LVESV, and LVmass were indexed to height^{1.7}. Strain metrics were indexed to LVmass_i.

All reported analyses consisted of generalized linear models with a gamma distribution and log link. The absolute differences in heart structure and function CMR metrics between those exposed and unexposed to higher aircraft noise levels are presented. Each model was adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center, non-mover status, and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. Strain models were also adjusted for the use of antihypertensives. Significant *p*-values are in bold.

CI = *confidence interval; exp* β = *exponentiated regression coefficient.* Other abbreviations as in **Supplemental Tables 2** and **3**.

Supplemental Table 5. Percentage differences in CMR metrics between those exposed and unexposed to higher aircraft noise levels using regression models weighted with propensity scores.

CMR metrics		L _{night} ≥45dB vs. L _{night} <4	l5dB	L _{den} ≥50dB vs. L _{den} <50dB		
		% difference (95% Cl)	<i>p</i> -value	% difference (95% Cl)	<i>p</i> -value	
LVEDVi		2.36% (1.05, 3.68)	<0.001	1.76% (-1.17, 4.77)	0.242	
LVESVi		3.74% (-2.82, 10.74)	0.271	2.11% (0.02, 4.24)	0.048	
LV MV		4.83% (3.39, 6.29)	<0.001	4.28% (2.40, 6.19)	<0.001	
LVmass _i		6.01% (1.63, 10.57)	0.007	4.28% (1.10, 7.57)	0.008	
LV WT		3.98% (1.94, 6.06)	<0.001	2.78% (1.82, 3.75)	<0.001	
LV MWT		2.38% (0.28, 4.53)	0.026	3.45% (1.89, 5.03)	<0.001	
IVST		3.60% (1.41, 5.83)	0.001	3.06% (1.39, 4.75)	<0.001	
LV lateral WT		5.42% (3.51, 7.37)	<0.001	2.73% (2.44, 3.02)	<0.001	
SLWR		-1.82% (-2.22, -1.42)	<0.001	0.39% (-1.10, 1.91)	0.607	
LV RWM		2.34% (0.72, 4.00)	2.34% (0.72, 4.00) 0.005		0.070	
LV EF		-0.19% (-2.46, 2.13)	0.872	0.08% (-1.44, 1.62)	0.919	
LV MCF		-2.11% (-4.75, 0.60) 0.126		-1.08% (-2.50, 0.36)	0.142	
LV circumferential strain index	Global	-8.67% (-13.71, -3.34)	0.002	-2.69% (-5.18, -0.14)	0.039	
	Basal	-11.44% (-18.06, -4.29)	0.002	-4.23% (-8.44, 0.17)	0.060	
	Mid	-8.84% (-12.26, -5.28)	<0.001	-2.31% (-6.00, 1.53)	0.235	
	Apical	-5.78% (-11.55, 0.37)	0.065	-1.86% (-4.49, 0.84)	0.175	
LV radial strain index	Global	-7.11% (-13.40, -0.36)	0.039	-3.93% (-4.80, -3.05)	<0.001	
	Basal	-10.10% (-13.45, -6.63)	<0.001	-4.87% (-6.49, -3.22)	<0.001	
	Mid	-5.78% (-13.84, 3.03)	0.192	-2.82% (-5.10, -0.49)	0.018	
	Apical	-3.13% (-10.30, 4.63)	0.419	-3.69% (-5.13, -2.23)	<0.001	
LV longitudinal strain index	Global	-6.26% (-13.38, 1.44)	0.109	-3.10% (-6.75, 0.70)	0.108	
	Basal	-6.13% (-13.37, 1.72)	0.123	-3.25%(-5.90, -0.52)	0.020	

All reported analyses consisted of generalized linear models with a gamma distribution and log link, weighted by propensity scores. The % differences between those exposed and unexposed to higher aircraft noise levels are presented. Each model was adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center, non-mover status, and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. Strain models were also adjusted for the use of antihypertensives. Significant *p*-values are in bold.

Abbreviations as in **Supplemental Tables 2**, **3**, and **4**.

CMR metrics		L _{den} ≥50dB										
	ACME		Total eff	ects	PoM		ACM	E	Total effe	ects	PoM	
	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% CI)	<i>p</i> -value
LVEDVi	0.68	<0.001	2.73	<0.001	25% (22, 27)	<0.001	0.28	0.021	0.90	<0.001	31% (-7, 69)	0.113
	(0.47, 0.89)		(1.91, 3.55)				(0.04, 0.52)		(0.52, 1.28)			
LVESVi	0.43	<0.001	1.49	0.016	29% (7, 51)	0.010	0.15	0.026	0.44	0.087	35% (-36, 105)	0.333
	(0.26, 0.6)		(0.28, 2.69)				(0.02, 0.29)		(-0.06, 0.95)			
LV MV	1.46	<0.001	4.36	0.007	33% (5, 62)	0.020	0.81	0.138	2.03	0.078	40% (-8, 88)	0.104
	(0.96, 1.96)		(1.2, 7.51)				(-0.26, 1.89)		(-0.23, 4.29)			
LVmass _i	0.62	<0.001	1.97	0.003	32% (5, 58)	0.020	0.35	0.119	0.98	0.051	36% (-14, 86)	0.157
	(0.43, 0.81)		(0.66, 3.27)				(-0.09, 0.8)		(0.00, 1.97)			
LV WT	0.05	0.001	0.16	0.004	32% (-7, 71)	0.104	0.03	0.173	0.09	0.104	37% (-17, 91)	0.184
	(0.02, 0.08)		(0.05, 0.26)				(-0.01, 0.08)		(-0.02, 0.20)			
LV MWT	0.07	0.002	0.15	0.068	45% (-16, 106)	0.145	0.05	0.199	0.11	0.264	45% (-6 <i>,</i> 95)	0.081
	(0.03, 0.11)		(-0.01, 0.31)				(-0.03, 0.12)		(-0.08, 0.31)			
IVST	0.05	0.001	0.14	0.004	34% (-7, 75)	0.105	0.03	0.205	0.1	0.056	32% (-13, 77)	0.169
	(0.02, 0.08)		(0.04, 0.24)				(-0.02, 0.08)		(0.00, 0.20)			
LV lateral WT	0.05	0.001	0.19	0.006	26% (-7, 59)	0.117	0.03	0.146	0.09	0.198	39% (-25, 103)	0.236
	(0.02, 0.08)		(0.06, 0.33)				(-0.01, 0.08)		(-0.05, 0.22)			
LV EF	-0.18	<0.001	-0.33	0.633	54% (-176, 284)	0.645	N/A	N/A	N/A	N/A	N/A	N/A
	(-0.27, -0.09)		(-1.7, 1.03)									
LV MCF	-0.01	0.010	-0.02	0.241	49% (-70, 168)	0.420	-0.01	0.203	-0.02	0.007	44% (-19, 107)	0.173
	(-0.02, 0.00)		(-0.06, 0.02)				(-0.02, 0.00)		(-0.03, 0.00)			
Global absolute LV	-0.01	<0.001	-0.05	<0.001	24% (7, 41)	0.006	-0.01	0.120	-0.02	<0.001	27% (-11, 64)	0.161
circumferential strain index	(-0.02, -0.01)		(-0.08, -0.03)				(-0.01, 0.00)		(-0.03, -0.02)			
Global absolute LV radial strain	-0.02	<0.001	-0.09	<0.001	26% (13, 39)	<0.001	-0.01	0.080	-0.05	<0.001	18% (1, 35)	0.038
index	(-0.03, -0.02)		(-0.13, -0.05)				(-0.02, 0.00)		(-0.07, -0.04)			
Global absolute LV longitudinal	-0.01	<0.001	-0.04	<0.001	22% (5, 39)	0.013	0.00	0.104	-0.01	0.010	31% (8, 53)	0.007
strain index	(-0.01, 0.00)		(-0.05, -0.02)				(-0.01, 0.00)		(-0.03, 0)			

Supplemental Table 6. Mediation analyses for total trunk fat volume.

We aimed to explore to what extent total trunk fat volume (estimated from abdominal MRIs) explains the relationships between higher aircraft noise exposure and worse heart structure and function CMR metrics using the Imai, Tingley, and Yamamoto framework of causal inference. We calculated the ACME of total trunk fat volume and total effects, and then the PoM via total trunk fat volume as their ratio expressed as a percentage. Models were adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center, non-mover status, and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. If the model did not converge, N/A was added to the table. Significant *p*-values are in bold.

ACME = average causal mediation effect; PoM = proportion of mediation. Other abbreviations as in Supplemental Tables 2, 3, and 4.

CMR metrics			L _{night} ≥4	15dB					L _{den} ≥5	0dB		
	ACM	E	Total e	ffects	PoM		ACME		Total effe	ects	PoM	
	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% Cl)	<i>p</i> -value	β (95% CI)	<i>p</i> - value	β (95% CI)	<i>p</i> -value	Proportion (95% CI)	<i>p</i> -value
LVEDVi	0.68 (0.52, 0.85)	<0.001	2.65 (2.02, 3.28)	<0.001	26% (14, 37)	<0.001	0.29 (0.00, 0.58)	0.049	0.83 (0.55, 1.12)	<0.001	35% (-12, 82)	0.141
LVESVi	0.40 (0.27, 0.53)	<0.001	1.43 (0.37, 2.49)	0.008	28% (1, 56)	0.045	0.15 (-0.02, 0.32)	0.083	0.40 (-0.08, 0.87)	0.102	38% (-49, 126)	0.392
LV MV	1.47 (0.71, 2.23)	<0.001	4.23 (1.35, 7.11)	0.004	35% (-5, 74)	0.085	0.81 (-0.3, 1.92)	0.153	1.92 (-0.28, 4.13)	0.088	42% (-13, 98)	0.137
LVmass _i	0.60 (0.26, 0.94)	0.001	1.91 (0.71, 3.12)	0.002	31% (-4, 67)	0.084	0.34 (-0.12, 0.80)	0.144	0.93 (-0.04, 1.9)	0.061	37% (-20, 93)	0.201
LV WT	0.05 (0.01, 0.09)	0.014	0.15 (0.05, 0.26)	0.004	31% (-14, 76)	0.173	0.03 (-0.02, 0.08)	0.192	0.09 (-0.02, 0.2)	0.111	36% (-23, 94)	0.231
LV MWT	0.06 (0.01, 0.11)	0.014	0.15 (-0.01, 0.3)	0.068	43% (-27, 113)	0.233	0.04 (-0.03, 0.11)	0.215	0.10 (-0.08, 0.29)	0.282	43% (-13, 100)	0.134
IVST	0.05 (0.01, 0.09)	0.013	0.14 (0.05, 0.24)	0.004	34% (-15, 83)	0.175	0.03 (-0.02, 0.08)	0.207	0.10 (0, 0.2)	0.057	32% (-17, 80)	0.203
LV lateral WT	0.05 (0.01, 0.09)	0.016	0.19 (0.06, 0.33)	0.005	25% (-12, 62)	0.188	0.03 (-0.01, 0.08)	0.176	0.08 (-0.05, 0.22)	0.209	38% (-33, 108)	0.293
LV EF	-0.13 (-0.25, 0.00)	0.046	-0.32 (-1.65, 1.02)	0.643	40% (-148, 228)	0.678	N/A	N/A	N/A	N/A	N/A	N/A
LV MCF	-0.01 (-0.02, 0.00)	0.030	-0.02 (-0.06, 0.01)	0.238	40% (-63, 143)	0.444	-0.01 (-0.02, 0.00)	0.247	-0.02 (-0.03, 0.00)	0.008	39% (-24, 102)	0.227
Global absolute LV circumferential strain index	-0.01 (-0.02, -0.01)	<0.001	-0.05 (-0.08, -0.03)	<0.001	21% (3, 40)	0.025	-0.01 (-0.01, 0.00)	0.149	-0.02 (-0.03, -0.02)	<0.001	25% (-12, 62)	0.194
Global absolute LV radial strain index	-0.02 (-0.03, -0.01)	<0.001	-0.09 (-0.13, -0.06)	<0.001	22% (7, 38)	0.006	-0.01 (-0.02, 0.00)	0.119	-0.05 (-0.07, -0.04)	<0.001	16% (-1, 34)	0.071
Global absolute LV longitudinal strain index	-0.01 (-0.01, 0.00)	0.002	-0.04 (-0.05, -0.03)	<0.001	19% (0, 38)	0.045	0.00 (-0.01, 0.00)	0.096	-0.01 (-0.02, 0.00)	0.016	30% (12, 49)	0.002

Supplemental Table 7. Mediation analyses for abdominal subcutaneous adipose tissue volume.

We aimed to explore to what extent abdominal subcutaneous adipose tissue volume (estimated from abdominal MRIs) explains the relationships between higher aircraft noise exposure and worse heart structure and function CMR metrics using the Imai, Tingley, and Yamamoto framework of causal inference. We calculated the ACME of abdominal subcutaneous adipose tissue volume and total effects, and then the PoM via abdominal subcutaneous adipose tissue as their ratio expressed as a percentage. Models were adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center, non-mover status, and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. If the model did not converge, N/A was added to the table. Significant *p*-values are in bold.

Abbreviations as in Supplemental Tables 2, 3, 4, and 6.

CMR metrics			L _{night} ≥4	5dB		L _{den} ≥50dB						
	ACME		Total effe	cts	PoM		ACMI	-	Total eff	ects	PoM	
	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% Cl)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% CI)	<i>p</i> -value
LVEDVi	0.21 (-0.14, 0.56)	0.236	2.74 (1.75, 3.73)	<0.001	8% (-2, 18)	0.130	0.10 (0, 0.2)	0.049	0.96 (0.52, 1.39)	<0.001	11% (-1, 22)	0.062
LVESV _i	0.19 (0.07, 0.31)	0.003	1.52 (0.20, 2.83)	0.023	12% (8, 17)	<0.001	0.07 (0.03, 0.11)	0.001	0.49 (-0.07, 1.04)	0.087	14% (-6, 34)	0.178
LV MV	0.63 (0.14, 1.12)	0.012	4.24 (1.14, 7.34)	0.007	15% (4, 25)	0.006	0.46 (-0.19, 1.12)	0.163	2.07 (-0.37, 4.5)	0.096	22% (-1, 46)	0.066
LVmass _i	0.30 (0.14, 0.46)	<0.001	1.97 (0.64, 3.29)	0.004	15% (7, 24)	0.001	0.21 (-0.05, 0.48)	0.119	1.02 (-0.02, 2.07)	0.056	21% (-4, 45)	0.095
LV WT	0.03 (0.01, 0.06)	0.016	0.15 (0.05, 0.25)	0.003	20% (-2, 43)	0.078	0.02 (-0.01, 0.06)	0.166	0.09 (-0.02, 0.21)	0.115	26% (-6, 58)	0.117
LV MWT	0.05 (0.01, 0.08)	0.022	0.15 (-0.01, 0.3)	0.070	31% (1, 62)	0.046	0.04 (-0.02, 0.09)	0.183	0.11 (-0.08, 0.31)	0.265	32% (4, 59)	0.024
IVST	0.03 (0, 0.06)	0.056	0.14 (0.05, 0.23)	0.003	20% (-5, 45)	0.122	0.02 (-0.01, 0.06)	0.230	0.10 (-0.01, 0.21)	0.070	21% (-6, 49)	0.125
LV lateral WT	0.03 (0.01, 0.05)	0.002	0.19 (0.06, 0.32)	0.004	17% (-1, 36)	0.064	0.02 (-0.01, 0.06)	0.127	0.09 (-0.05, 0.22)	0.218	28% (-11, 67)	0.157
LV EF	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
LV MCF	-0.01 (-0.02, 0.00)	0.004	-0.02 (-0.06, 0.02)	0.248	45% (-62, 152)	0.409	-0.01 (-0.01, 0.00)	0.133	-0.02 (-0.03, -0.01)	0.003	38% (-6, 81)	0.091
Global absolute LV circumferential strain index	-0.01 (-0.01, 0.00)	<0.001	-0.05 (-0.08, -0.03)	<0.001	17% (4, 30)	0.001	0.00 (-0.01, 0.00)	0.096	-0.02 (-0.03, -0.02)	<0.001	20% (-5, 44)	0.114
Global absolute LV radial strain index	-0.02 (-0.02, -0.01)	<0.001	-0.09 (-0.13, -0.05)	<0.001	19% (13, 25)	<0.001	-0.01 (-0.01, 0.00)	0.044	-0.06 (-0.07, -0.04)	<0.001	14% (3, 24)	0.009
Global absolute LV longitudinal strain index	-0.01 (-0.01, 0.00)	<0.001	-0.04 (-0.05, -0.02)	<0.001	14% (3, 25)	0.013	0.00 (-0.01, 0.00)	0.141	-0.02 (-0.03, 0.00)	0.015	19% (0, 38)	0.046

Supplemental Table 8. Mediation analyses for visceral adipose tissue volume.

We aimed to explore to what extent visceral adipose tissue volume (estimated from abdominal MRIs) explains the relationships between higher aircraft noise exposure and worse heart structure and function CMR metrics using the Imai, Tingley, and Yamamoto framework of causal inference. We calculated the ACME of visceral adipose tissue volume and total effects, and then the PoM via visceral adipose tissue volume as their ratio expressed as a percentage. Models were adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center, non-mover status, and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. If the model did not converge, N/A was added to the table. Significant *p*-values are in bold.

Abbreviations as in Supplemental Tables 2, 3, 4, and 6.

CMR metrics			L _{night} ≥	45dB				L _{den} ≥500	₿			
	ACM	E	Total ef	fects	PoN	Λ	ACM	E	Total eff	ects	PoM	
	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% Cl)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% CI)	<i>p</i> -value
LVEDVi	0.03 (-0.08, 0.13)	0.606	2.64 (2.04, 3.25)	<0.001	1% (-3, 5)	0.595	0.19 (-0.02, 0.40)	0.070	1.00 (0.88, 1.13)	<0.001	19% (-1, 39)	0.061
LVESV _i	0.00 (-0.02, 0.03)	0.758	1.69 (0.5, 2.88)	0.005	0% (-1, 2)	0.733	0.08 (0.04, 0.13)	<0.001	0.67 (0.25, 1.08)	0.002	13% (4, 21)	0.003
LV MV	0.12 (-0.33, 0.57)	0.609	5.27 (2.99, 7.55)	<0.001	2% (-6, 10)	0.593	0.64 (0.11, 1.16)	0.017	2.67 (0.92, 4.43)	0.003	24% (19, 29)	<0.001
LVmass _i	0.06 (-0.09, 0.21)	0.470	2.21 (1.29, 3.14)	<0.001	3% (-4, 9)	0.449	0.34 (0.08, 0.59)	0.009	1.20 (0.35, 2.04)	0.005	28% (26, 31)	<0.001
LV WT	0.01 (-0.01, 0.02)	0.441	0.18 (0.11, 0.26)	<0.001	3% (-4, 10)	0.416	0.03 (0.00, 0.06)	0.023	0.11 (0.02, 0.21)	0.015	30% (23, 37)	<0.001
LV MWT	0.01 (-0.02, 0.03)	0.455	0.21 (0.12, 0.29)	<0.001	5% (-8, 17)	0.480	0.05 (0.01, 0.09)	0.014	0.14 (-0.03, 0.3)	0.100	36% (15, 57)	0.001
IVST	0.01 (-0.01, 0.02)	0.403	0.17 (0.1, 0.24)	<0.001	3% (-4, 9)	0.367	0.03 (0.00, 0.07)	0.059	0.12 (0.04, 0.21)	0.004	27% (15, 39)	<0.001
LV lateral WT	0.01 (-0.01, 0.02)	0.469	0.23 (0.13, 0.33)	<0.001	3% (-4, 9)	0.440	0.03 (0.01, 0.06)	0.010	0.11 (0.00, 0.22)	0.045	30% (22, 37)	<0.001
LV EF	0.01 (-0.02, 0.04)	0.583	-0.72 (-2.23, 0.79)	0.351	-1% (-4, 1)	0.314	-0.03 (-0.09, 0.03)	0.356	-0.28 (-0.99, 0.43)	0.439	10% (-12, 32)	0.366
LV MCF	0.00 (0.00, 0.00)	0.508	-0.03 (-0.07, 0)	0.090	3% (-4, 10)	0.454	-0.01 (-0.01, 0.00)	0.062	-0.02 (-0.03, -0.01)	<0.001	31% (11, 52)	0.003
Global absolute LV circumferential strain index	0.00 (0.00, 0.00)	0.083	-0.06 (-0.08, -0.03)	<0.001	4% (-1, 8)	0.091	0.00 (-0.01, 0.00)	0.077	-0.03 (-0.03, -0.02)	<0.001	18% (0, 35)	0.048
Global absolute LV radial strain index	0.00 (-0.01, 0.00)	0.127	-0.1 (-0.13, -0.07)	<0.001	2% (0, 5)	0.097	-0.01 (-0.01, 0.00)	0.123	-0.06 (-0.08, -0.05)	<0.001	9% (-1, 19)	0.092
Global absolute LV longitudinal strain index	0.00 (0.00, 0.00)	0.334	-0.04 (-0.05, -0.03)	<0.001	2% (-2, 6)	0.284	0.00 (-0.01, 0.00)	0.072	-0.02 (-0.03, 0.00)	0.029	20% (-10, 50)	0.182

We aimed to explore to what extent hypertension (defined as self-reported doctor diagnosis, systolic \geq 140mmHg or diastolic \geq 90mmHg at the baseline visit, or the use of anti-hypertensives) explains the relationships between higher aircraft noise exposure and worse heart structure and function CMR metrics using the Imai, Tingley, and Yamamoto framework of causal inference. We calculated the ACME via hypertension and total effects, and then the PoM via hypertension as their ratio expressed as a percentage. Models were adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center, non-mover status, and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. Significant *p*-values are in bold.

Abbreviations as in Supplemental Tables 2, 3, 4, and 6.

CMR metrics			L _{night} ≥	45dB			L _{den} ≥50dB					
	ACM	E	Total ef	fects	PoM		ACM	E	Total ef	fects	PoM	
	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% Cl)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	β (95% CI)	<i>p</i> -value	Proportion (95% Cl)	<i>p</i> -value
LVEDVi	0.10 (0.04, 0.16)	0.001	2.67 (2.13, 3.21)	<0.001	4% (1, 6)	0.005	0.00 (-0.05, 0.05)	0.897	1.00 (0.87, 1.12)	<0.001	0% (-5, 5)	0.898
LVESVi	-0.34 (-0.8, 0.12)	0.152	1.66 (0.49, 2.84)	0.005	-20% (-56, 16)	0.267	0.00 (-0.04, 0.03)	0.898	0.66 (0.25, 1.06)	0.002	0% (-6, 5)	0.900
LV MV	-0.81 (-2.35, 0.73)	0.303	5.12 (2.55, 7.69)	<0.001	-16% (-50, 19)	0.369	0.00 (-0.09, 0.08)	0.919	2.68 (0.98, 4.39)	0.002	0% (-3, 3)	0.918
LVmass _i	-0.26 (-0.87, 0.36)	0.411	2.15 (1.15, 3.15)	<0.001	-12% (-42, 18)	0.434	0.00 (-0.02, 0.02)	0.916	1.18 (0.37, 1.99)	0.004	0% (-2, 1)	0.916
LV WT	-0.04 (-0.11, 0.04)	0.314	0.18 (0.09, 0.26)	<0.001	-21% (-68, 25)	0.368	0.00 (-0.01, 0.01)	0.893	0.11 (0.03, 0.20)	0.012	0% (-5, 5)	0.891
LV MWT	-0.04 (-0.15, 0.06)	0.432	0.19 (0.11, 0.28)	<0.001	-22% (-76, 31)	0.414	0.00 (0.00, 0.00)	0.901	0.14 (-0.02, 0.29)	0.085	0% (-3, 3)	0.895
IVST	-0.04 (-0.11, 0.03)	0.273	0.16 (0.07, 0.25)	<0.001	-25% (-79, 29)	0.363	0.00 (-0.01, 0.01)	0.892	0.12 (0.05, 0.2)	0.002	0% (-6, 5)	0.891
LV lateral WT	-0.04 (-0.12, 0.04)	0.342	0.22 (0.11, 0.33)	<0.001	-17% (-57, 22)	0.389	0.00 (-0.01, 0.01)	0.894	0.11 (0.00, 0.22)	0.043	0% (-6, 6)	0.892
LV EF	0.46 (-0.02, 0.94)	0.060	-0.68 (-2.24, 0.88)	0.396	N/A	N/A	0.00 (-0.06, 0.07)	0.909	-0.25 (-0.95, 0.45)	0.482	-1% (-28, 25)	0.915
LV MCF	0.02 (-0.01, 0.04)	0.198	-0.03 (-0.07, 0.01)	0.183	-55% (-204, 94)	0.469	0.00 (0.00, 0.00)	0.912	-0.02 (-0.03, -0.01)	<0.001	-1% (-11, 10)	0.911
Global absolute LV circumferential strain index	0.01 (-0.01, 0.02)	0.339	-0.05 (-0.08, -0.03)	<0.001	-13% (-45, 19)	0.422	0.00 (0.00, 0.00)	0.834	-0.03 (-0.03, -0.02)	<0.001	0% (-1, 1)	0.835
Global absolute LV radial strain index	0.01 (-0.02, 0.03)	0.529	-0.10 (-0.13, -0.06)	<0.001	-8% (-35, 19)	0.565	0.00 (0.00, 0.00)	0.853	-0.06 (-0.08, -0.05)	<0.001	0% (-2, 2)	0.850
Global absolute LV longitudinal strain index	0.01 (-0.01, 0.02)	0.395	-0.04 (-0.05, -0.02)	<0.001	-16% (-53, 20)	0.383	0.00 (0.00, 0.00)	0.781	-0.01 (-0.03, 0.00)	0.024	-2% (-15, 11)	0.758

Supplemental Table 10. Mediation analyses for high cholesterol.

We aimed to explore to what extent high cholesterol (defined as a baseline total serum cholesterol level \geq 6.2mmol/l) explains the relationships between higher aircraft noise exposure and worse heart structure and function CMR metrics using the Imai, Tingley, and Yamamoto framework of causal inference. We calculated the ACME of high cholesterol and total effects, and then the PoM via high cholesterol as their ratio expressed as a percentage. Models were adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center, non-mover status, and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. If the model did not converge, N/A was added to the table. Significant *p*-values are in bold.

Abbreviations as in Supplemental Tables 2, 3, 4, and 5.

CMR heart st	tructure a	nd function		LV volum	es				LV structure	1			LV systolic function	
	metrics		LVEDV _i	LVESV _i	LV MV	LVmass _i	LV WT	LV MWT	IVST	LV	SLWR	LV	LV EF	LV MCF
										lateral WT		RWM		
Aircraft noise	Model	% difference	4.47%	6.99%	7.14%	6.84%	3.49%	3.13%	3.28%	4.20%	-0.73%	1.83%	-1.25%	-2.57%
L _{night} ≥45dB	1	(95% CI)	(3.52,	(1.97,	(3.98,	(3.84,	(1.86,	(1.83,	(1.65,	(2.07,	(-1.27,	(0.31,	(-4.15,	(-6.33,
			5.43)	12.25)	10.39)	9.92)	5.15)	4.45)	4.93)	6.38)	-0.18)	3.37)	1.74)	1.34)
		<i>p</i> -value	<0.001	0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.009	0.018	0.407	0.194
	Model	% difference	4.42%	6.97%	7.16%	6.87%	3.55%	3.18%	3.32%	4.27%	-0.77%	1.91%	-1.29%	-2.72%
	2	(95% CI)	(3.52,	(1.97,	(4.02,	(3.85,	(1.93,	(1.83,	(1.71,	(2.16,	(-1.33,	(0.33,	(-4.20,	(-6.47,
			5.33)	12.22)	10.38)	9.98)	5.19)	4.56)	4.96)	6.43)	-0.21)	3.51)	1.71)	1.19)
		<i>p</i> -value	<0.001	0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.007	0.018	0.397	0.170
	Model	% difference	4.56%	7.15%	7.22%	6.94%	3.54%	3.18%	3.33%	4.26%	-0.73%	1.85%	-1.28%	-2.64%
	3	(95% CI)	(3.68,	(2.22,	(4.16,	(4.04,	(1.97,	(1.92,	(1.77,	(2.18,	(-1.27,	(0.38,	(-4.17,	(-6.36,
			5.45)	12.33)	10.37)	9.93)	5.14)	4.45)	4.91)	6.38)	-0.19)	3.36)	1.69)	1.23)
		<i>p</i> -value	<0.001	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.008	0.014	0.394	0.178
Aircraft noise	Model	% difference	1.57%	2.24%	3.33%	3.49%	2.13%	2.03%	2.31%	2.05%	0.30%	1.69%	-0.48%	-1.93%
L _{den} ≥50dB	1	(95% CI)	(1.25,	(0.24,	(1.21,	(1.17,	(0.42,	(-0.42,	(0.79,	(0.04,	(-0.34,	(-0.61,	(-1.89,	(-2.70,
			1.89)	4.28)	5.48)	5.87)	3.86)	4.54)	3.85)	4.11)	0.95)	4.04)	0.96)	-1.15)
		<i>p</i> -value	<0.001	0.028	0.002	0.003	0.014	0.104	0.003	0.046	0.354	0.150	0.512	<0.001
	Model	% difference	1.53%	2.23%	3.35%	3.52%	2.17%	2.08%	2.35%	2.12%	0.27%	1.76%	-0.50%	-2.04%
	2	(95% CI)	(1.23,	(0.20,	(1.20,	(1.20,	(0.48,	(-0.38,	(0.83,	(0.13,	(-0.35 <i>,</i>	(-0.51,	(-1.96,	(-2.74,
			1.82)	4.30)	5.54)	5.89)	3.89)	4.61)	3.88)	4.14)	0.89)	4.08)	0.98)	-1.33)
		<i>p</i> -value	<0.001	0.031	0.002	0.003	0.011	0.099	0.002	0.036	0.390	0.130	0.506	<0.001
	Model	% difference	1.53%	2.19%	3.29%	3.44%	2.11%	2.02%	2.29%	2.03%	0.31%	1.68%	-0.46%	-1.90%
	3	(95% CI)	(1.28,	(0.31,	(1.13,	(1.03,	(0.36,	(-0.46,	(0.74,	(-0.02,	(-0.35 <i>,</i>	(-0.64,	(-1.86,	(-2.71,
			1.79)	4.11)	5.50)	5.91)	3.88)	4.55)	3.87)	4.14)	0.96)	4.06)	0.95)	-1.08)
		<i>p</i> -value	<0.001	0.022	0.003	0.005	0.018	0.111	0.004	0.053	0.360	0.158	0.520	<0.001
	•		•		•	-			•			•		•

Supplemental Table 11. Percentage differences in CMR metrics between those exposed and unexposed to higher aircraft noise levels.

CMR absolute	e strain in	dex metrics		LV circu	umferential			LV r	adial		LV longi	tudinal
				Basal	Mid	Apical	Global	Basal	Mid	Apical	Global	Basal
Aircraft noise	Model	% difference	-7.76%	-8.04%	-7.71%	-7.17%	-6.96%	-7.31%	-6.87%	-5.35%	-6.29%	-5.85%
L _{night} ≥45dB	1	(95% CI)	(-11.75,	(-12.40,	(-11.39,	(-11.13,	(-10.21,	(-9.84,	(-10.91,	(-9.77,	(-8.74,	(-8.75,
			-3.58)	-3.47)	-3.88)	-3.03)	-3.59)	-4.71)	-2.64)	-0.71)	-3.78)	-2.86)
		<i>p</i> -value	<0.001	0.001	<0.001	0.001	<0.001	<0.001	0.002	0.024	<0.001	<0.001
	Model	% difference	-7.83%	-8.07%	-7.76%	-7.24%	-7.00%	-7.35%	-6.91%	-5.34%	-6.31%	-5.86%
	2	(95% CI)	(-11.85,	(-12.43,	(-11.48,	(-11.19 <i>,</i>	(-10.35,	(-9.89 <i>,</i>	(-10.98,	(-9.82,	(-8.84,	(-8.82,
			-3.63)	-3.48)	-3.89)	-3.12)	-3.53)	-4.74)	-2.65)	-0.64)	-3.70)	-2.81)
		<i>p</i> -value	<0.001	0.001	<0.001	0.001	<0.001	<0.001	0.002	0.027	<0.001	<0.001
	Model	% difference	-7.83%	-8.11%	-7.78%	-7.25%	-7.02%	-7.38%	-6.92%	-5.41%	-6.37%	-5.91%
	3	(95% CI)	(-11.83,	(-12.50,	(-11.46,	(-11.16,	(-10.28,	(-10.03,	(-10.95,	(-9.80,	(-8.73,	(-8.73,
			-3.66)	-3.50)	-3.95)	-3.17)	-3.64)	-4.66)	-2.70)	-0.81)	-3.96)	-3.01)
		<i>p</i> -value	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	0.002	0.022	<0.001	<0.001
Aircraft noise	Model	% difference	-4.03%	-3.71%	-4.04%	-3.89%	-4.93%	-4.68%	-4.70%	-4.21%	-2.71%	-2.84%
L _{den} ≥50dB	1	(95% CI)	(-5.10,	(-5.17,	(-4.77,	(-6.25,	(-6.10,	(-5.70 <i>,</i>	(-5.69 <i>,</i>	(-5.53 <i>,</i>	(-5.40,	(-5.10,
			-2.95)	-2.23)	-3.30)	-1.48)	-3.74)	-3.65)	-3.69)	-2.87)	0.07)	-0.53)
		<i>p</i> -value	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	0.056	0.016
	Model	% difference	-4.10%	-3.73%	-4.08%	-3.96%	-4.97%	-4.72%	-4.74%	-4.21%	-2.72%	-2.85%
	2	(95% CI)	(-5.11,	(-5.20,	(-4.80,	(-6.25,	(-6.09,	(-5.79 <i>,</i>	(-5.71,	(-5.43,	(-5.39 <i>,</i>	(-5.13,
			-3.08)	-2.25)	-3.36)	-1.61)	-3.83)	-3.65)	-3.76)	-2.97)	0.03)	-0.52)
		<i>p</i> -value	<0.001	<0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	0.052	0.017
	Model	% difference	-4.01%	-3.69%	-4.02%	-3.86%	-4.90%	-4.64%	-4.68%	-4.19%	-2.66%	-2.81%
	3	(95% CI)	(-5.10,	(-5.12,	(-4.76,	(-6.27,	(-6.14,	(-5.75 <i>,</i>	(-5.71,	(-5.58 <i>,</i>	(-5.37,	(-5.11,
			-2.89)	-2.24)	-3.27)	-1.40)	-3.65)	-3.52)	-3.64)	-2.78)	0.12)	-0.45)
		<i>p</i> -value	<0.001	<0.001	<0.001	0.002	<0.001	<0.001	<0.001	<0.001	0.061	0.020

All reported analyses consisted of generalized linear models with a gamma distribution and log link. The % differences between those exposed and unexposed to higher aircraft noise levels were calculated as $100^{*}(exp \ \beta-1)$. Each model was adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center, non-mover status, and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. Strain models were also adjusted for the use of antihypertensives. Model 2 was additionally adjusted for the presence of diabetes (beyond model 1). Model 3 was additionally adjusted for the presence of cardiovascular disease (beyond model 1). Significant *p*-values are in bold.

Abbreviations as in Supplemental Tables 2, 3, and 4.

Supplemental Table 12. Characteristics of participants who lived near one of the four UK airports, had CMR, and did not move home during follow-up.

	Movers	Non-movers	<i>p</i> -value
	n = 1,103 (30.3%)	n = 2,532 (69.7%)	
	Demographics		
Age at baseline, years	51.00 (44.00, 57.00)	53.00 (47.00, 59.00)	<0.001
Male sex, %	512 (46.4%)	1,133 (44.7%)	0.352
Ethnicity			
White, %	1,047 (95.3%)	2,401 (95.1%)	
Mixed, %	7 (0.6%)	18 (0.7%)	
Asian or Asian British, %	22 (2.0%)	43 (1.7%)	0.602
Black or Black British, %	11 (1.0%)	40 (1.6%)	
Chinese, %	<5	11 (0.4%)	
Other, %	8 (0.7%)	11 (0.4%)	
Townsend deprivation index in 2011	-2.16 (-3.79, -0.69)	-2.67 (-3.98, -0.67)	<0.001
(lower values indicate less deprivation)			
Household income			
<£18,000, %	106 (10.7%)	245 (10.6%)	
£18000-30999, %	198 (19.9%)	491 (21.2%)	
£31000-51999, %	285 (28.7%)	684 (29.6%)	0.131
£52000-100000, %	295 (29.7%)	702 (30.4%)	
>£100000, %	110 (11.1%)	190 (8.2%)	
	Lifestyle		
Smoking Status			
Current, %	89 (8.1%)	181 (7.2%)	0.531
Former, %	343 (31.2%)	774 (30.6%)	
Never, %	668 (60.7%)	1,574 (62.2%)	
Alcohol Consumption			
Daily, %	261 (23.7%)	582 (23.0%)	
3-4 times/week, %	299 (27.1%)	691 (27.3%)	0.945
1-2 times/week, %	255 (23.1%)	618 (24.4%)	
1-3 times/month, %	128 (11.6%)	290 (11.5%)	

Occasional, %	102 (9.3%)	216 (8.5%)	
Never, %	57 (5.2%)	135 (5.3%)	
Physical Activity, days/week	3.00 (2.00, 5.00)	3.00 (2.00, 5.00)	0.030
	Environmental exposures		
Aircraft noise in 2011,			
L _{den} ≥ 50dB, %	132 (12.0%)	172 (6.8%)	<0.001
L _{den} < 50dB, %	971 (88.0%)	2,360 (93.2%)	
$L_{night} \ge 45 dB, \%$	45 (4.1%)	62 (2.4%)	0.007
L _{night} < 45dB, %	1,058 (95.9%)	2,470 (97.6%)	
Road noise in 2013,			
L _{den} ≥ 50dB, %	792 (71.8%)	1,825 (72.1%)	0.866
L _{den} < 50dB, %	311 (28.2%)	707 (27.9%)	
L _{night} ≥ 45dB, %	605 (54.9%)	1,315 (51.9%)	0.106
L _{night} < 45dB, %	498 (45.1%)	1,217 (48.1%)	
Rail noise in 2011,			
L _{den} ≥ 50dB, %	41 (3.7%)	78 (3.1%)	0.321
L _{den} < 50dB, %	1,062 (96.3%)	2,454 (96.9%)	
$L_{night} \ge 45 dB, \%$	33 (3.0%)	60 (2.4%)	0.275
L _{den} < 50dB, %	1,070 (97.0%)	2,472 (97.6%)	
NO ₂ air concentrations in 2009, $\mu g/m^3$	32.67 (27.98, 37.31)	32.12 (27.57, 36.09)	<0.001
PM _{2.5} air concentrations in 2010, μg/m ³	9.92 (9.32, 10.58)	9.89 (9.33, 10.49)	0.373
BMI, kg/m ²	26.11 (23.46, 28.95)	25.80 (23.43, 28.68)	0.278
Hypertension, %	454 (41.2%)	1,123 (44.4%)	0.074
Diabetes, %	29 (2.6%)	77 (3.0%)	0.497
High cholesterol, %	359 (32.5%)	876 (34.6%)	0.230
CVD, %	34 (3.1%)	120 (4.7%)	0.023
	CMR heart structure and function metrics		
LVEDV _i , ml/m ^{1.7}	59.81 (52.56, 67.58)	59.00 (52.65, 66.81)	0.285
LVESV _i , ml/m ^{1.7}	24.14 (20.42, 28.34)	23.58 (20.01, 27.88)	0.354
LVmass _i , g/m ^{1.7}	33.62 (29.21, 38.97)	33.43 (29.14, 38.89)	0.506
LV MV, ml	78.73 (65.15, 95.86)	76.77 (64.32, 95.96)	0.211

LV WT, mm	5.52 (5.01, 6.07)	5.47 (4.99, 6.09)	0.693
LV MWT, mm	6.88 (6.20, 7.63)	6.86 (6.21, 7.64)	0.702
IVST, mm	5.50 (4.95, 6.08)	5.43 (4.92, 6.07)	0.416
Lateral WT, mm	5.60 (5.13, 6.16)	5.56 (5.09, 6.18)	0.770
SLWR, unitless	0.57 (0.52, 0.62)	0.56 (0.52, 0.62)	0.719
LV RWM, g/ml	0.98 (0.93, 1.02)	0.97 (0.93, 1.02)	0.159
LV MCF, unitless	1.09 (0.97, 1.23)	1.10 (0.98, 1.23)	0.777
LV EF, %	59.54 (55.76, 63.35)	59.59 (56.01, 63.57)	0.467
Absolute LV circumferential strain index, m ^{1.7} /g			
Global	0.65 (0.54, 0.80)	0.66 (0.54, 0.81)	0.354
Basal	0.68 (0.55, 0.80)	0.68 (0.55, 0.82)	0.335
Mid	0.64 (0.53, 0.78)	0.65 (0.53, 0.79)	0.157
Apical	0.79 (0.65, 0.95)	0.79 (0.64, 0.96)	0.772
Absolute LV radial strain index, m ^{1.7} /g			
Global	1.29 (1.05, 1.60)	1.33 (1.06, 1.64)	0.174
Basal	1.33 (1.06, 1.68)	1.37 (1.06, 1.70)	0.249
Mid	1.41 (1.12, 1.73)	1.43 (1.14, 1.77)	0.117
Apical	1.47 (1.20, 1.78)	1.51 (1.21, 1.84)	0.175
Absolute LV longitudinal strain index, m ^{1.7} /g			
Global	0.54 (0.45, 0.65)	0.55 (0.45, 0.66)	0.927
Basal	0.57 (0.48, 0.69)	0.58 (0.48, 0.69)	0.900
Mid		N/A	
Apical			

All variables are presented as percentages if categorial or median (interquartile range) if continuous. Comparisons were made using the Chi-Squared test with Yates continuity correction for categorical variables and Mann-Whitney U-test for continuous variables. Significant *p*-values are presented in bold.

Abbreviations as in **Supplemental Tables 2** and **3**.

Supplemental Table 13. Differences in CMR metrics between those exposed and unexposed to higher aircraft noise levels in those who did not move home during follow-up.

CMR metrics		L _{night} ≥45dB v	s. L _{night} <45dB		L _{den} ≥50dB v	/s. L _{den} <50dB	
		% difference (95% Cl)	<i>p</i> -value	n	% difference (95% Cl)	<i>p</i> -value	n
LVEDVi		5.44% (1.81, 9.19)	0.003	2,228	1.93% (1.19, 2.69)	<0.001	2,228
LVESVi		7.89% (-2.17, 18.98)	0.128	2,228	2.41% (0.88, 3.96)	0.002	2,228
LV MV		9.13% (1.66, 17.15)	0.016	2,231	3.40% (2.09, 4.73)	<0.001	2,231
LVmass _i		8.52% (2.09, 15.36)	0.009	2,228	3.37% (1.35, 5.43)	0.001	2,228
LV WT		4.22% (1.44, 7.08)	0.003	2,231	1.75% (0.61, 2.91)	0.003	2,231
LV MWT		4.44% (2.97, 5.93)	<0.001	2,231	1.60% (0.69, 2.52)	0.001	2,231
IVST		3.88% (1.30, 6.53)	0.003	2,231	1.55% (0.23, 2.89)	0.022	2,231
LV lateral WT		5.29% (2.08, 8.59)	0.001	2,231	2.22% (0.95, 3.51)	0.001	2,231
SLWR		-1.06%(-1.51, -0.61)	<0.001	2,231	-0.57% (-1.30, 0.16)	0.124	2,231
LV RWM		2.47% (0.13, 4.87)	0.039	2,231	1.34% (-0.16, 2.85)	0.080	2,231
LV EF		-0.93% (-4.76, 3.05)	0.640	2,231	-0.56% (-1.79, 0.69)	0.380	2,231
LV MCF		-2.24% (-7.98, 3.86)	0.464	2,231	-1.31% (-2.39, -0.22)	0.019	2,231
LV circumferential strain index	Global	-9.01% (-16.63, -0.69)	0.034	2,226	-5.05% (-6.82, -3.25)	<0.001	2,226
	Basal	-7.52% (-16.51, 2.43)	0.134	2,226	-3.47% (-7.50, 0.73)	0.104	2,226
	Mid	-9.18% (-16.47, -1.25)	0.024	2,226	-5.44% (-6.91, -3.95)	<0.001	2,226
	Apical	-8.37% (-13.74, -2.65)	0.005	2,226	-5.03% (-8.04, -1.92)	0.002	2,226
LV radial strain index	Global	-7.54% (-15.51, 1.18)	0.088	2,226	-5.85% (-7.37, -4.30)	<0.001	2,226
	Basal	-7.37% (-16.89, 3.25)	0.167	2,226	-5.51% (-10.11, -0.68)	0.026	2,226
	Mid	-7.08% (-15.99, 2.78)	0.154	2,226	-5.82% (-7.13, -4.49)	<0.001	2,226
	Apical	-5.08% (-10.49, 0.65)	0.081	2,226	-4.31% (-5.84, -2.76)	<0.001	2,226
LV longitudinal strain index	Global	-8.30% (-15.00, -1.07)	0.025	2,139	-3.14% (-5.67, -0.55)	0.018	2,139
	Basal	-8.01% (-14.62, -0.90)	0.028	2,139	-3.23% (-5.96, -0.42)	0.025	2,139

LVEDV, LVESV, and LVmass were indexed to height^{1.7}. Strain metrics were indexed to LVmass_i.

All reported analyses consisted of generalized linear models with a gamma distribution and log link. The % differences between those exposed and unexposed to higher aircraft noise levels were calculated as 100*(*exp* 6-1). The models were adjusted for demographic (age, sex, and ethnicity), cohort-related (assessment center and length at the current address), socio-economic (Townsend deprivation index and household income before tax), lifestyle (smoking status, alcohol consumption, and physical activity), and environmental (road noise, rail noise, and air concentrations of NO₂ and PM_{2.5}) confounders. Strain models were also adjusted for the use of antihypertensives. Significant *p*-values are presented in bold.

Abbreviations as in Supplemental Tables S1, 2, and 4.

Supplemental Figure 1. Graphic representation of the mediation analyses.

We explored the extent to which the relationship between higher aircraft noise exposure and worse CMR heart phenotype was explained by CV risk factors through mediation analyses, using the Imai, Tingley, and Yamamoto framework of causal inference. We regressed the noise exposure on the CMR outcomes to calculate the total effects. To calculate the effect of the independent variable on the mediator (the mediator model), we regressed the noise exposure on the CV risk factors. To calculate the effect of the mediator on the dependent variable (the outcome model), we regressed the CV risk factors on the CMR outcomes. All models were adjusted for demographic, cohort-related, socio-economic, lifestyle, and environmental confounders. This allowed us to derive the total effects, average causal mediation effects, average direct effects, and the proportion of mediation as described in the methods section. BMI = body mass index; CMR = cardiovascular magnetic resonance; CV = cardiovascular.

To what extent is any noise-induced LV remodeling indirectly mediated through CV risk factors?

