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Genome-wide association study 
reveals mechanisms underlying dilated 
cardiomyopathy and myocardial resilience
 

Dilated cardiomyopathy (DCM) is a heart muscle disease that represents an 
important cause of morbidity and mortality, yet causal mechanisms remain 
largely elusive. Here, we perform a large-scale genome-wide association 
study and multitrait analysis for DCM using 9,365 cases and 946,368 
controls. We identify 70 genome-wide significant loci, which show broad 
replication in independent samples and map to 63 prioritized genes. Tissue, 
cell type and pathway enrichment analyses highlight the central role of the 
cardiomyocyte and contractile apparatus in DCM pathogenesis. Polygenic 
risk scores constructed from our genome-wide association study predict 
DCM across different ancestry groups, show differing contributions to DCM 
depending on rare pathogenic variant status and associate with systolic 
heart failure across various clinical settings. Mendelian randomization 
analyses reveal actionable potential causes of DCM, including higher 
bodyweight and higher systolic blood pressure. Our findings provide 
insights into the genetic architecture and mechanisms underlying DCM and 
myocardial function more broadly.

DCM is a disease of the cardiac muscle characterized by increased left 
ventricular (LV) dimensions and decreased contractile function, which 
is not explained by abnormal loading conditions or coronary artery 
disease (CAD)1–5. DCM represents a main cause of morbidity and mor-
tality, as it predisposes to heart failure (HF) and lethal arrhythmias3,4. 
While causal rare genetic variants are found in up to 25% of probands, 
most cases do not harbor a known monogenic cause of disease6,7. Fur-
thermore, actionable disease mechanisms remain elusive, with few 
preventative therapeutics4. Genome-wide association studies (GWAS) 
have recently demonstrated a polygenic contribution to DCM8–11, 
opening an avenue for new mechanistic discovery, although these 
smaller studies were limited in power and identified only a handful 
of significant loci.

Here, we set out to assemble a large-scale GWAS meta-analysis 
using six datasets, comprising clinical DCM case–control and biobank 
sets. We included a total of 4,343 clinically ascertained DCM cases from 
three datasets (Fig. 1 and Supplementary Tables 1 and 2), including  
two published DCM datasets8,10 (one reanalyzed; Supplementary Note) 

and a new clinical dataset from Amsterdam UMC (with one significant 
locus at BAG3; Supplementary Note, Supplementary Table 3 and Sup-
plementary Figs. 1 and 2). We also performed harmonized GWAS of a 
strict, billing-code based phenotype of nonischemic DCM (NI-DCM) 
in three biobank datasets. Substantial yield was afforded by the 
FinnGen study12 (n = 3,350 cases; 14 loci; most significantly at BAG3 and 
HSPB7), with additional contributions from the United Kingdom (UK) 
Biobank (UKB; one locus at BAG3)13 and Mass General Brigham Biobank 
(MGB)13,14 (Supplementary Tables 1 and 2 and Supplementary Figs. 1 
and 2). We found strong genetic support for the strict biobank-based 
DCM construct (Supplementary Tables 4 and 5 and Supplementary 
Note). In comparison, we explored a broader definition of nonischemic 
cardiomyopathy (NICM)15,16, which yielded diminished discovery  
yield despite substantially larger case numbers (Extended Data Fig. 1, 
Supplementary Note and Supplementary Figs. 2 and 3). Therefore,  
we proceeded with the strict NI-DCM phenotype and performed a 
GWAS meta-analysis across all biobank and clinical DCM datasets, 
hereafter ‘GWAS-DCM.’
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Previously published GWAS for DCM used multitrait analyses 
GWAS (MTAG)18 to boost discovery power for new loci11. We similarly 
aimed to maximize discovery using an MTAG approach, using GWAS of 
eight LV traits from 36,083 UKB participants19. We identified two clus-
ters of genetically correlated traits that included endophenotypes with 
strong genetic correlation to GWAS-DCM (Supplementary Fig. 4 and 
Supplementary Table 9). Using the most strongly correlated trait from 
each cluster—global circumferential strain (Ecc; rg = 0.75 with DCM) and 
LV end systolic volume (LVESVi; rg = 0.7 with DCM)—we performed an 
MTAG for DCM (‘MTAG-DCM’). MTAG-DCM identified 65 significant 
loci, 50 of which had not been published previously for DCM (Supple-
mentary Tables 10–12; Extended Data Fig. 3 and Supplementary Note).

We then performed a replication analysis using independent 
samples from HERMES (Heart Failure Molecular Epidemiology for 
Therapeutic Targets), MVP (Million Veteran’s Program) and the ‘All of 
Us’20 datasets, totaling up to 13,258 cases of NICM/DCM and 1,435,287 
controls (Extended Data Fig. 4 and Supplementary Tables 13 and 14). 
Of 36 testable GWAS-DCM loci, all were concordant in effect direction 
and 92% replicated at P < 0.05. Of 64 testable MTAG-DCM loci, 88% rep-
licated at P < 0.05 (81% for ‘MTAG-only’ loci; Supplementary Note). No 
loci showed meaningful heterogeneity in discovery (Supplementary 
Tables 15 and 16). These results confirm the robustness of our GWAS 
and MTAG approaches.

To identify cell types of relevance to DCM biology, we performed 
enrichment analyses using two published LV single nucleus RNA 
sequencing (snRNA-seq) datasets21,22. Only cardiomyocyte-specific 
genes were significantly and robustly enriched for DCM heritability 
across datasets (P < 3 × 10−7 for enrichment coefficient; Supplementary 
Table 17, Extended Data Fig. 5 and Supplementary Fig. 5). Of note, Zheng 
et al. described enrichments for DCM heritability in other cardiac cell 
types17; this discrepancy is most probably due to technical differences, 
including use of a different enrichment statistic23 (Supplementary 
Note). Taken together, our results highlight the central role of cardio-
myocyte dysfunction in DCM pathogenesis.

We applied various approaches for variant-to-gene mapping24–26 
(Methods). In ten GWAS-DCM loci, a lead variant was linked to a 
protein-altering coding variant affecting a single gene (for example,  
BAG3, TTN, FHOD3, ADAMTS7, CAND2; Supplementary Tables 6  
and 10). Among these, BAG3, TTN and FHOD3 represent known  
Mendelian cardiomyopathy genes7,27,28. A well-imputed (INFO = 0.997) 
TUBA8 missense variant (22:18609493:G:A) was a lead variant in 
GWAS-DCM (Supplementary Fig. 6). TUBA8 is an α-tubulin predicted 
to be a component of myocyte cytoskeletons29. The variant was test-
able only in FinnGen, reflecting an 18-fold enrichment in Finnish over 
non-Finnish Europeans30.

Colocalization analyses with molecular traits—using expression 
quantitative trait loci (eQTLs) for LV from the genotype-tissue expres-
sion project (GTEx)31, eQTLs for blood from eQTLGen32 and protein 
quantitative trait loci (pQTLs) in blood from the UKB Pharma Proteom-
ics Project (PPP)33—helped prioritize genes and informed direction of 
effect in certain loci (Supplementary Table 18). We found 24 distinct 
transcripts/proteins associated with DCM at high posterior probability 
(PP4 > 70%). For instance, genetically predicted lower LV expression 
of TMEM182 (encoding a regulator of myoblast differentiation34) and 
lower genetically predicted blood expression of FBXO32 (a recessive 
DCM gene35,36) were associated with increased DCM risk. Higher pre-
dicted expressions of several genes, including MLF1, MMP1 and MAPT, 
were associated with increased DCM risk.

We found that the polygenic priority score method (PoPS) was a 
powerful tool to identify cardiomyopathy genes, as the top 100 genes 
from GWAS-DCM were enriched 119-fold (95% confidence interval 
(CI) (47–285), two-sided P < 2.6 × 10−16; Fisher exact test) for known  
Mendelian DCM and hypertrophic cardiomypathy (HCM) genes  
(ClinGen genes at ≥moderate evidence; Supplementary Table 19). There
fore, PoPS was assigned high weight in our final prioritization score.

GWAS-DCM included 9,365 cases and 946,368 controls and 
included 12,600,235 common variants (minor allele frequency 
(MAF) > 0.5%) after quality control (Fig. 1). The meta-analysis showed 
some genomic inflation (λGC,LDSC = 1.19; λGC, genomic inflation factor; 
LDSC, linkage disequilibrium score regression), which could largely 
be resolved as polygenic signal (LDSC intercept = 1.06; Supplemen-
tary Table 4 and Extended Data Fig. 2). At conventional genome-wide 
significance (P < 5 × 10−8) we uncovered 38 distinct loci, 27 of which 
had not been previously described for DCM (Fig. 2a, Supplementary 
Tables 6–8 and Supplementary Note).

Most of the previously published DCM loci were recapitulated in 
GWAS-DCM8,11 (Supplementary Table 6 and Extended Data Fig. 3). Fur-
thermore, most loci overlapped with DCM loci from a recent preprint by 
Zheng et al.17 (Supplementary Note). GWAS-DCM signals showed strong 
pleiotropic effects on relevant cardiovascular traits, including cardiac 
magnetic resonance imaging (MRI) traits, electrocardiographic traits, 
blood pressure, HF and arrhythmia (Supplementary Note).
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Fig. 1 | Study design and flowchart. a, Design of genetic discovery analyses. 
GWAS were conducted in biobank cohorts for NICM and NI-DCM, and in clinical 
cohorts that ascertained DCM cases. GWAS results for NI-DCM and clinical 
DCM were aggregated in a meta-analysis (GWAS-DCM). GWAS-DCM was further 
combined with GWAS data for cardiac MRI traits (global circumferential strain 
and left ventricular end systolic volume) in an MTAG. Case and control numbers 
are represented as no. of cases/no. of controls. b, Various downstream analyses 
conducted using GWAS-DCM and MTAG-DCM results. We used tissue and 
cardiac-cell-type-specific enrichment analyses to identify tissues and cell types 
of relevance to DCM. To identify potentially causal genes from the analyses, five 
complementary methods were used to prioritize genes from associated loci. 
Prioritized genes were further evaluated in gene set enrichment and cell-type-
specific DE analyses. To identify potential causes and consequences of DCM, 
we used Mendelian randomization analyses, modeling DCM both as exposure 
and outcome, across a range of common diseases and traits. PRS for DCM 
were constructed and their utility in predicting NI-DCM was assessed across 
different ancestries; we assessed the prediction of systolic heart failure across 
a range of clinical settings. Within the Amsterdam cohort, we assessed the 
predictive capacity of PRS for DCM, and assessed whether PRS distributions and 
contributions differed depending on rare pathogenic variant status.
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Fig. 2 | Locus and gene discovery for DCM. a, Miami plot for the GWAS and 
MTAG for DCM. Top, results from the GWAS meta-analysis for DCM (GWAS-DCM) 
that included 9,365 cases and 946,368 controls; bottom, results from the MTAG 
integrating the GWAS-DCM with cardiac MRI traits (MTAG-DCM). In both plots, 
the y axis represents the −log10 of the P value, and the x axis represents genomic 
positions (chromosome, and chromosomal positions) of variants, where each 
dot represents a single test statistic for a single variant. P values are derived from 
inverse-variance-weighted meta-analysis of logistic regression models (GWAS-
DCM) or from MTAG analysis of such statistics (MTAG-DCM); reported P values 
are two-sided and unadjusted for multiple testing. The significance threshold 
is determined by the dotted lines at the conventional genome-wide level 
(α = 5 × 10−8). Significant loci are annotated with their most highly prioritized 

gene (Methods); loci not overlapping with previous genome-wide significant 
loci (from published DCM-GWAS or published multitrait studies) are highlighted 
in bold. b, Gene prioritization overview for the top prioritized genes from  
MTAG-DCM. The heatmaps show the different gene prioritization methods on 
the y axis and prioritized genes on the x axis. Genes are ordered from left to right 
based on their priority score (high to low); the top part of the heatmap shows the 
genes with the highest scores. A color mar indicates assignation of points based 
on the given prioritization method; prioritized genes were defined as genes 
with 2.5 or higher points, which were also the most highly prioritized in their 
respective loci. For a similar plot for GWAS-DCM, see Extended Data Fig. 6.  
coloc, colocalization analyses.
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We synthesized the various prioritization approaches into one 
score to identify a list of prioritized genes (Fig. 2b and Supplementary 
Tables 20 and 21; Methods). Across prioritized GWAS-DCM genes 
(n = 35 genes with ≥2.5 points) and MTAG-DCM genes (n = 60 genes), we 
narrowed down to 63 unique prioritized genes (defined as ≥2.5 points  
and highest score within a locus in either GWAS-DCM or MTAG-DCM; 
Fig. 2b and Extended Data Fig. 6). Among these prioritized genes 
were—as expected—several Mendelian cardiomyopathy genes,  
but also several genes with unknown or lesser-known roles in  
the heart (for example, CRIM1, MLF1, HSPA4, ERBB4, MITF, MLIP, 
MAP3K7, NEDD4L, DNAJC18 and HSPB8). HSPB8, HSPA4 and DNAJC18 
encode proteins from the heatshock family, along with HSPB7, a gene 
functionally validated in DCM biology after being identified initially 
through GWAS37.

Accordingly, gene set enrichment analyses, using the 63 prior-
itized genes, identified several significant gene sets including ‘Cellular 
response to heat stress’ (Supplementary Tables 22 and 23 and Sup-
plementary Fig. 7). Most remaining gene sets were related to (cardiac) 
muscle development and function. Other distinct pathways emerged 
including ERBB signaling22 and cytoskeletal organization38,39, as well 
as ‘Apoptosis by doxorubicin’ and ‘Aberrant mitosis by docetaxel.’ 

Doxorubicin and docetaxel are chemotherapeutics that may induce 
DCM-like phenotypes40.

To scrutinize the prioritized genes further, we queried published 
single-cell data of the human LV from three datasets21,22,41—includ-
ing data from 61 nonfailing donors and 81 DCM patients. We found 
that many of the prioritized genes showed high and/or preferential 
expression in cardiomyocytes (Fig. 3 and Supplementary Table 24). 
These genes underscore the role of the contractile apparatus in DCM 
pathogenesis42, through known cardiac sarcomeric genes (for exam-
ple, TTN, OBSCN and ACTN2), but also lesser-described structural 
genes including SVIL (encoding an actin-binding protein recently 
implicated in HCM19) and PDLIM5 (encoding a cytoskeletal linker43). 
Other genes with cardiomyocyte-specific expression included MITF 
(encoding a transcription factor implicated in cardiac hypertrophy 
in vitro44) and MLIP (encoding a lamin-interacting protein associated 
with myocardial adaptation in mice45). Several genes showed signifi-
cant differential expression (DE) between DCM and nonfailing hearts 
(Fig. 3 and Supplementary Table 25). Notably, within cardiomyocytes, 
such genes included MAP3K7 (encoding a mitogen-activated protein 
implicated in cardiospondylofacial syndrome46), ADAMTS7 (encoding 
a thrombospondin-regulating metalloprotease47) and both PRKCA and 
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Fig. 3 | Cell-type-specific expression and DE of the top prioritized genes 
for DCM from three single-cell LV datasets. Bubble-heatmap showing data 
collected from three published sn/scRNA-seq datasets of DCM and control 
LVs21,22,41. The y axis represents a shortlist of highly prioritized genes from 
GWAS-DCM and MTAG-DCM (63 genes), while the x axis shows different LV cell 
types harmonized across the three expression datasets. Cell type expression 
data were computed by combining reformatted data from the three datasets, 
after restricting to LV samples from nonfailing donors (nmax = 61 donors; 
Supplementary Note and Supplementary Table 24). The size of the dots 
represent the percentage of nuclei/cells expressing a given gene in a given cell 
type at nonzero values, while the color of the dot represents the scaled relative 
normalized expression of the given gene in the given cell type (as compared  

with all other cell types). A black border indicates that the given gene is 
significantly differentially expressed in the given cell type in DCM LVs (nmax = 82 
patients) as compared with the nonfailing LVs (nmax = 61 donors); significant 
DE was declared if the gene reached Padj < 0.05 with concordant direction of 
effect in at least two of the sn/scRNA-seq datasets within similar cell types 
(Supplementary Table 25). P values were derived from DEseq2 DE frameworks; 
P values are two-sided. Of note, not all cell types were assessed in DE testing in 
all three datasets, and therefore the approach is conservative for less-abundant 
cell types (for example, epicardial, adipocyte, lymphatic endothelial), although 
useful for more abundant cell types (for example, cardiomyocyte, fibroblast, 
cardiac endothelial). Padj, transcriptome-wide multiple-testing-adjusted two-
sided P value.

http://www.nature.com/naturegenetics


Nature Genetics

Letter https://doi.org/10.1038/s41588-024-01975-5

CAMK2D (involved in calcium handling48,49). Of note, several genes 
highlighted from both GWAS and single-cell data are being investi-
gated as targets for other conditions (Supplementary Table 26). These 
results show how integration of GWAS and single-cell data—paired with 
appropriate cell type priors—may identify plausible gene candidates 
for cardiomyopathy and LV function.

We next used genetic data to identify potential causes and  
consequences of DCM through Mendelian randomization (MR)50. 
We performed a bidirectional MR screen using the weighted median 
(WM) method, based on genetic instruments constructed from  
GWAS for 73 common diseases and quantitative traits (Methods). 
At Bonferroni significance, we identified five potential causal risk 
factors for DCM (weight, body mass index (BMI), atrial fibrillation 
(AF), systolic blood pressure (SBP) and height), and two potential 
consequences of DCM liability (HF and mean platelet thrombocyte 
volume; Fig. 4a, Supplementary Table 27 and Supplementary Note). 
Weight, systolic blood pressure and AF remained as independent risk 
factors for DCM in multivariable MR (Supplementary Table 28). While 
these results partially recapitulate previous descriptions of causal 
factors for general HF51, we did not observe evidence for a causal 
role of coronary disease (g = −0.09, P = 0.13) or diabetes (g = −0.05, 
P = 0.18) on DCM.

To scrutinize the potential causal associations further, we 
employed two additional methods. First, we used MR-Egger regres-
sion50 and found that most of the signals survived filtering using 
this method (Pslope < 0.05 and Pintercept > 0.1; Fig. 4 and Supplementary 
Table 27). Second, we used CAUSE—an approach that models a pleio-
tropic pathway and tests whether a causal model is a better fit for 
the data than a sharing model52 (Supplementary Table 29 and Sup-
plementary Figs. 8–10). CAUSE estimated that BMI, weight and SBP 
all conferred increased risk of DCM (Fig. 4b). The causal role of blood 
pressure is consistent with the main pharmacotherapeutic approach to 
DCM, which consists partly of blood-pressure-lowering medications4. 
Similarly, there is a growing body of observational evidence linking 
obesity to risk of HF, DCM and other cardiomyopathies53–55. In summary, 
our data support that SBP and weight are reasonable parameters for 
action in (premorbid) DCM management.

We then constructed polygenic risk scores (PRS) from our 
GWAS-DCM and MTAG-DCM summary statistics56, and tested these 
in three datasets. PRS constructed from GWAS-DCM and MTAG-DCM 
were associated significantly and strongly with DCM (Fig. 5 and Sup-
plementary Tables 30–32), with MTAG-DCM scores yielding the best 
predictive performance across all tested strata (Extended Data Figs. 7 
and 8, Supplementary Fig. 12 and Supplementary Note). For instance, 
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Fig. 4 | Bidirectional MR screen for DCM and 73 common diseases and 
quantitative traits. a, Bubble plot showing results from the MR screen using the 
WM method. Left panel, results from analysis modeling DCM as outcome; right 
panel, results modeling DCM as exposure. In both panels, the y axis represents 
the signed −log10 of the P value from the MR analysis where each bubble 
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are signed by the direction of the MR effect estimate. In both panels, the diseases/
traits are ordered by their signed −log10 (P values) from high (left) to low (right). 
The full red and blue lines represent the Bonferroni-corrected significance level 
(P < 0.05; 146 tests), while the dotted lines represent P < 0.01. Traits/diseases 
reaching Bonferroni significance in the screen are annotated with their names. 
Reported P values are two-sided and unadjusted for multiple testing. b, Forest 

plots showing more detailed results and sensitivity analyses performed for 
two traits associated with increased DCM that passed all MR filters. Left panel, 
results for MR of bodyweight; right panel, results for SBP. The different MR effect 
estimates represent results from different methods: WM (discovery analysis), 
MR-Egger and CAUSE. The MR-Egger and WM P values are two-sided. For CAUSE, 
the P value is not based on the CI of the estimate, but rather represents a one-
sided P value for the comparison with a pleiotropy model (Methods). For weight, 
ninstruments = 733 in the WM and MR-Egger analyses, while ninstruments = 2,286 in the 
CAUSE analysis. For SBP, ninstruments = 376 in the WM and MR-Egger analyses, while 
ninstruments = 1,846 in the CAUSE analysis. Error bars, 95% CIs for the estimated 
effect. All reported P values are unadjusted for multiple testing.
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in the All of Us dataset, PRS was associated strongly with DCM among 
European (OR per s.d. = 1.73; P = 9.0 × 10−37) and African ancestries 
(OR per s.d. = 1.61; P = 2.5 × 10−10), with a weaker but significant signal 
among Admixed-American ancestry (OR per s.d. = 1.34; P = 2.4 × 10−3).

In the Amsterdam UMC dataset, clinical DCM cases carrying 
rare disease-causing variants (‘genotype-positive’) had significantly 
lower PRS than genotype-negative DCM cases (P = 0.0015), and 
genotype-negative cases were enriched more strongly for higher PRS 
(Fig. 6). Nevertheless, DCM PRS was enriched significantly in both 
groups compared with controls. These results highlight that polygenic 
burden contributes to disease risk in carriers and in noncarriers of rare 
pathogenic alleles, although carriers might need less polygenic burden 
to reach disease state57,58.

Finally, we assessed whether DCM PRS may have value for predic-
tion of systolic HF—a condition associated with substantial morbidity 
and healthcare costs59,60. In All of Us, we found significant associa-
tions for DCM PRS with systolic HF (OR per s.d. = 1.30; P = 7.8 × 10−73), 
which persisted after removal of NI-DCM and NICM cases (OR per 
s.d. = 1.24; P = 8.4 × 10−43; Supplementary Table 33). Furthermore, the 

PRS was a predictor of systolic HF across a range of settings, includ-
ing after AF diagnosis (P = 1.4 × 10−13), after hypertension diagnosis 
(P = 2.4 × 10−39), after myocardial infarction (P = 4.4 × 10−4) and among 
carriers of pathogenic rare variants for DCM (P = 5.2 × 10−7; Fig. 5 and 
Extended Data Fig. 9). These findings support the notion that the DCM 
PRS captures liability to intrinsic myocardial dysfunction or structural 
weakness, which may determine the resilience of the LV upon experi-
encing adverse events or prolonged stress.

In summary, we performed a large-scale GWAS and MTAG for 
DCM—including 9,365 strict DCM cases—and identified 70 loci at 
genome-wide significance. Several main conclusions arise from our 
work. First, on a cell-type level, we found that the heritability of DCM 
is enriched predominantly for cardiomyocyte expression, highlighting 
the central role of cardiomyocyte dysfunction in DCM pathogenesis. 
Second, mapping of loci to genes using various methods identified 63 
potential effector genes, which may inform on-target and off-target 
effects in therapeutics development. Third, MR analyses support a 
causal role of bodyweight and SBP in DCM risk, indicating that early 
blood pressure regulation and weight reduction may be considerations 
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Fig. 5 | DCM genetic liability as a predictor of systolic HF across a range of 
settings in All of Us. a, MR scatter plot for DCM liability on risk of HF. The x axis 
shows beta coefficients (±s.e.) for 37 genetic instruments identified from 
GWAS-DCM, while the y axis shows the corresponding beta coefficients on 
general HF50. The estimated causal association lines for two methods are added, 
including the WM method (black line) and CAUSE (dotted line). b, Forest plot for 
associations of DCM PRS in the All of Us dataset: NI-DCM (n = 928/181,773 cases/
controls);systolic HF (n = 5,123/190,410 cases/controls) and systolic HF after 
removing DCM/NICM (n = 4,273/189,976 cases/controls). Statistics are derived 
from logistic regression models (two-sided, unadjusted for multiple testing). 
c, Prevalence of systolic HF in the All of Us dataset across a range of settings, 
stratified by DCM PRS. Left, results for individuals who carry rare disease-

causing variants for DCM (n = 1,429), where the y axis represents the percentage 
with systolic HF at any time and the x axis stratifies those individuals into low, 
middle and high PRS tertiles. Right, a similar plot restricting to three different 
clinical settings: after hypertension diagnosis (n = 76,985), after AF diagnosis 
(n = 11,369) and after myocardial infarction (n = 5,098). Cases with systolic HF 
coded before or concurrently to the index event were removed, leaving n = 3,877; 
1,634 and 1,028 cases, respectively. Data are presented as percentages with 95% 
CIs. Beneath each setting, the OR and P value for PRS are added, from logistic 
regression with the quantitative PRS used as predictor (two-sided, unadjusted for 
multiple testing). ClinGen PLP, carriers of disease-causing rare variants for DCM; 
T1, tertile 1 of PRS; T2, tertile 2 of PRS; T3, tertile 3 of PRS.
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in DCM patients or at-risk people. Fourth, a PRS derived from our GWAS 
predicts DCM, with impactful—albeit potentially differing—contribu-
tions in carriers and noncarriers of rare pathogenic variants. Fifth, the 
genetic liability to DCM underlies systolic HF, and may modulate risk 
of systolic failure across a range of settings. Our results have implica-
tions for our understanding of the mechanisms underlying DCM and 
myocardial resilience.
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Methods
GWAS for dilated cardiomyopathy
We collected data from three case–control datasets that ascertained 
clinical DCM patients, and data from three large biobank studies. The 
clinical DCM datasets included (1) a published GWAS by Garnier et al. 
that enrolled 2,651 DCM cases from France, Germany, Italy, the UK and 
the United States8; (2) a reanalyzed dataset of 909 DCM cases from 
Heidelberg, Germany10 (Supplementary Note) and (3) a new dataset 
of Dutch DCM cases from Amsterdam UMC. The Amsterdam cohort 
comprised DCM patients referred for genetic testing at Amsterdam 
UMC, who underwent chart review for DCM diagnosis and had evidence 
of hypocontractility on imaging; 978 DCM cases passed all genotype 
quality-control criteria, of which 783 homogeneous cases of patients 
of European ancestry were included in GWAS (Supplementary Note 
and Supplementary Table 3). Further details for the various cohorts 
are described in the Supplementary Note and are summarized in Sup-
plementary Tables 1 and 2. All clinical DCM cohorts applied imaging 
criteria as part of case definition.

We further performed GWAS in three biobanks, namely FinnGen 
(freeze 11)12, UKB13 and MGB14 (Supplementary Tables 1 and 2 and Sup-
plementary Note). In these datasets, we defined two phenotypes using 
International Classification of Disease (ICD) coding. First, we defined 
an NICM phenotype as described previously15, using ICD10 code I42.0 
‘dilated cardiomyopathy’ and ICD codes for ‘left heart failure,’ with 
exclusion of—at minimum—antecedent acute coronary syndromes and 
revascularization procedures (Supplementary Table 1 and Supplemen-
tary Note). Across biobanks, the NICM definition totaled 13,478 cases. 
We also defined a strict NI-DCM phenotype using only I42.0 (again 
with minimum exclusion of antecedent acute coronary syndromes 
and/or revascularization procedures), totaling 5,022 cases (Supple-
mentary Tables 1 and 2). In all biobank datasets, individuals with other 
HF codes—but not fulfilling the case criteria—were removed from the 
controls. In all biobanks, REGENIE61 was used for GWAS. Further details 
are presented in Supplementary Table 2 and Supplementary Note.

All study cohorts either collected informed consent from research 
participants, or received appropriate approval from ethical/review 
committees to waive the requirement of informed consent. All study 
protocols were approved by appropriate ethical/review committees; 
approval was granted as described in the original publications for 
published cohorts8,10–14; the Amsterdam UMC study protocol—focused 
on GWAS for heritable cardiovascular diseases—was approved by the 
Amsterdam UMC Medical Ethical Review Committee.

GWAS meta-analyses
Stringent variant quality control was applied in each dataset. Vari-
ants were filtered to high imputation quality (INFO) ≥ 0.5 or R2 ≥ 0.5; 
MAF ≥ 0.5%; INFO ≥ 0.8 if MAF < 1%; INFO × MAF × Ncases × 2 ≥ 5; 
and variants with nonambiguous alleles (Supplementary Table 2). 
Before meta-analysis, variants were aligned to genome build GRCh38, 
using the liftOver command line tool if not already on the correct 
genome build62. GWAS meta-analyses were then performed using an 
inverse-variance weighted fixed-effects approach implemented in 
METAL63 (March 25, 2011 release). GWAS meta-analyses were performed 
combining the three clinical DCM datasets, combining the three NICM 
GWAS from the biobank datasets and combining the NI-DCM-GWAS 
from the biobanks. After meta-analyses, results were filtered to com-
mon variants (MAF > 0.5%). Variants were considered significant if 
reaching the conventional genome-wide significance level (P < 5 × 10−8). 
In all GWAS, hypothesis tests were two-sided.

Heritability and genetic correlations
We used LDSC64 (v.1.0.1) to estimate the heritability attributable to 
common single nucleotide polymorphism (SNP) variants (h2

SNP) for 
different meta-analyses. The European subset of the 1000Genomes65 
(v.3.5) dataset was used as a linkage disequilibrium (LD) reference panel, 

and analyses were subsetted to nonambiguous HapMap3 variants.  
Heritability values were transformed to the liability scale, assuming 
a population prevalence of 0.4% for DCM4 and 1.2% for NICM (based 
on UKB prevalence). We further used bivariate LDSC to estimate  
the genetic correlations (rg) between the various meta-analyses4,66. 
Hypothesis tests were performed using a null hypothesis of 0, using 
two-sided tests.

The biobank NI-DCM meta-analysis showed a comparable h2
SNP  

and high rg with the clinical DCM meta-analysis (see above), and there-
fore we proceeded with an overall meta-analysis combining the clinical 
DCM-GWAS with the biobank NI-DCM-GWAS, from here referred to as 
GWAS-DCM.

Multitrait analyses
MTAG leverages the genetic correlation between a target GWAS (for 
example, for DCM) and GWAS for related traits (for example, LV para
meters) to increase the discovery power, while accounting for potential 
sample overlap. We used MTAG (v.1.0.8) to first estimate a genetic 
correlation matrix between GWAS-DCM, NICM, HCM19, and eight LV 
MRI traits from a previous GWAS (n = 36,083 participants from UKB)19. 
Per SNP effective sample sizes (nsnp-eff) were computed from the s.e., 
using the formula

nsnp-eff = 1/(2 ×MAF × (1 −MAF ) × (s.e.2))

MTAG developers recommend utilizing GWAS of traits that are strongly 
genetically correlated with the target GWAS (rg > 0.7). We addition-
ally aimed to reduce the number of included traits to limit potential 
false-positive findings. After computing an initial genetic correlation 
matrix (Supplementary Table 9), we identified two large clusters of 
MRI traits correlated strongly with GWAS-DCM. From the clusters of 
genetically correlated traits (a ‘contractility’ cluster and a ‘volumetric’ 
cluster; Supplementary Fig. 4), we identified two index traits with 
rg > 0.7 (Ecc and LVESVi). We then ran MTAG—including GWAS-DCM, Ecc 
GWAS and LVESVi GWAS—using default parameters. MTAG estimated 
that the boosted summary statistics for DCM equated to an increase 
in effective sample size of approximately 73% (ref. 18). The maximum 
false-discovery rate computed by MTAG was 0.03, meaning that, under 
the most unfavorable distribution of trait-specific effect sizes, 3% of 
signals may represent false positives18. Imaging-based contractility 
and LV dimensions represent direct (diagnostic) endophenotypes 
of DCM3–5,67. Therefore, the true false-discovery rate is probably even 
lower. The results from this analysis are referred to as ‘MTAG-DCM.’ 
Significance was determined at the conventional genome-wide level 
(P < 5 × 10−8). In all MTAG, hypothesis tests were two-sided.

Locus definitions, variant annotation and gene prioritization
Functional mapping and annotation processing and annotation. 
GWAS-DCM and MTAG-DCM were processed in Functional Mapping and 
Annotation (FUMA)68 v.1.6.1. Lead variants were defined as variants at 
genome-wide significance (P < 5 × 10−8) and r2 < 0.05 (using ‘1KG/Phase3 
EUR’ as LD reference). Genomic loci were subsequently defined by merg-
ing over 1 Mb distances. FUMA utilizes Multi-marker Analysis of GenoMic 
Annotation (MAGMA) v.1.08 to perform gene-based testing69; FUMA 
then uses the MAGMA genes for tissue enrichment analysis based on 
GTEx v.8 expression (GTEx/v8/gtex_v8_ts_general_avg_log2TPM)31. Vari-
ants, and their LD partners, were further annotated using ANNOVAR70 
(v.2017-07-17). Loci were considered new if none of the lead variants over-
lapped (at 1 Mb windows) known lead variants from previous DCM-GWAS 
and DCM MTAG8,11, or were found associated with DCM according  
to GWAS Catalog71 or OpenTargets24,72 (queried in October 2023).

Protein-altering variation and closest protein-coding gene. For 
gene prioritization, we first assessed whether lead variants were  
in LD (r2 > 0.65) with protein-coding protein-altering variants based 
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on ANNOVAR annotations in FUMA. Second, we identified the  
closest protein-coding gene for lead variants, based on OpenTargets 
(22.10 update).

OpenTargets Variant2Function. Third, we used Variant2Function 
(V2F) from the OpenTargets platform24 (22.10 update) to map variants 
to genes. V2F is a phenotype-agnostic machine-learning algorithm that 
identifies potential genes affected by genomic variants; we extracted 
the top three genes identified by V2F as being potentially affected by 
lead variants from GWAS-DCM and MTAG-DCM.

Polygenic priority score. Fourth, we used the PoPS method25. PoPS 
uses gene-level associations—computed from GWAS summary statis-
tics—to learn gene features associated with the trait in a joint model 
by polygenic enrichment; features consist of cell-type-specific gene 
expression, biological pathways and protein–protein interactions 
(PPIs). We first performed gene region based analysis with MAGMA69 
v.1.10 using the European subset of the 1000Genomes Phase 3 as a refer-
ence dataset. Based on gene-level results from MAGMA, we computed 
polygenic priority scores for 18,383 genes using the full set of features 
provided with PoPS v.0.2.

MR and colocalization for eQTLs and pQTLs. Fifth, we used MR of 
quantitative trait loci for expression (eQTLs) and protein abundance 
(pQTLs), followed by colocalization26. As instruments for expression 
in the heart, we used cis-eQTLs for LV from GTEx30 v.8 (n = 386 left 
ventricular samples). As instruments for expression in whole blood, we 
used cis-eQTLs from the eQTLGen consortium32 (n = 31,684 samples; 
we used the 2019 dataset, downloaded from https://www.eqtlgen. 
org/cis-eqtls.html). As instruments for protein abundance, we used 
pQTLs derived from the UKB PPP, which used the Olink platform for 
proteomic profiling33; we downloaded summary statistics for the ‘com-
bined’ set (from https://www.synapse.org/#!Synapse:syn51364943/ 
files/; n = ~34,000 samples) and defined cis-pQTLs as variants present 
within 1 Mb of the associated protein. All three datasets were subse-
quently processed the same way and harmonized with GWAS-DCM or 
MTAG-DCM summary statistics (Supplementary Note). We defined  
our instruments by clumping the cis-eQTL/cis-pQTL variants, using 
two-sided P < 5 × 10−8, r2 < 0.0005 and window size of 10 Mb in PLINK2 
(refs. 32,73). The R-package TwoSampleMR (v.0.5.6) was used to per-
form two-sample MR, using Wald ratio tests for single-instruments 
exposures and using the inverse-variance weighted approach for expo-
sures with multiple instruments74. P values from MR were all two-sided. 
Analyses were performed for both GWAS-DCM and MTAG-DCM; sepa-
rate Bonferroni corrections were applied to both, and separate correc-
tions were applied for eQTL and pQTL datasets. Significant hits were 
subsequently subjected to colocalization75 using the R-package coloc 
(v.4.0.4) using strict priors (p1 = 1 × 10−4, p2 = 1 × 10−4, p12 = 1 × 10−6). 
A posterior probability for a shared causal variant (PP4) of >0.5 was 
considered some evidence of colocalization, while PP4 > 0.7 was con-
sidered strong colocalization.

Omnibus gene prioritization score. We then assembled the informa-
tion from the five prioritization methods into one score. Given that 
PoPS showed a marked enrichment of known Mendelian DCM and 
HCM genes genome-wide, this method was strongly weighted in the 
score. In summary:

•	 We assigned 1 point to a gene if it was the top gene prioritized 
by PoPS within a locus (defined as within ±500 kb from the lead 
variant, or ±1 Mb if fewer than two genes within 500 kb) or  
0.5 point if within the top three genes.

•	 We assigned an additional point to genes if they were also 
among the top 100 PoPS genes genome-wide, or 0.5 points if 
within place 101–200 genome-wide.

•	 We assigned 1 point to a gene if it was the nearest protein-coding 
gene to the lead variant.

•	 We assigned 1 point to a gene if it was affected by 
protein-altering variation (in LD with) a lead variant, or 
0.5 points if several genes in the locus were implicated by 
protein-altering variation.

•	 We assigned 1 point to the highest OpenTargets V2F gene for a 
lead variant, or 0.5 points for second and third genes.

•	 We assigned 1 point to a gene within a locus if there was strong 
evidence from eQTL/pQTL colocalization (PP4 > 0.7), or 0.5 
points if there was moderate evidence (PP4 > 0.5) and/or several 
genes were implicated in the locus by this approach.

In total, therefore, any given gene could attain between 0 and 6 
points. For downstream analyses, we assigned the gene with the high-
est score across lead variants in the locus as the most highly prioritized 
gene for that locus. In case of ties, we first assessed whether the gene 
was convincingly prioritized in the locus based on the other discovery 
approach (that is, GWAS or MTAG); if not, then one was picked at ran-
dom. From these genes, we further defined a final list of prioritized 
targets, using a prioritization score cutoff of ≥2.5 points.

Gene set enrichment analyses
We used two platforms for gene set enrichment analyses. First, we 
used the FUMA Gene2Func function68 (v.1.6.1), to perform enrich-
ment analyses restricting to FUMA-curated pathways. As input we 
used the curated set of prioritized genes across GWAS-DCM and 
MTAG-DCM (n = 63 genes), and used all Ensembl (v.102) protein-coding 
genes as background. We required at least two overlapping genes to 
identify a potential gene set, and we determined significance using  
a false-discovery-rate adjusted one-sided P < 0.05 (by two-step  
Benjamini–Krieger–Yekutieli method).

We additionally used the g:Profiler platform76 (v. September 2023) 
to test for enrichment of gene sets from several predefined sources. 
The g:Profiler algorithm uses one-sided Fisher’s exact tests to test for 
enrichment of a prespecified list of genes across many gene sets, and 
subsequently adjusts one-sided P values for multiple testing while tak-
ing into account the correlation between gene sets (g:SCS method76). 
Again the 63 prioritized genes were put forward for enrichment testing; 
g:Profiler used Ensembl v.110 as the background of protein-coding 
genes.

Since our prioritized genes may have been preselected towards 
genes with high cardiac expression (that is, through gene features 
learnt by PoPS), we performed a sensitivity analysis using genes nomi-
nated by MAGMA69—a method based only on association signals near 
gene regions.

Cardiac-cell-type enrichment
To identify causal cell types for GWAS-DCM and MTAG-DCM, we used 
stratified LDSC, as described in Finucane et al.23. To this end, we utilized 
two published single-nucleus RNA sequencing (snRNA-seq) datasets, 
one from Chaffin et al.21 and another from Reichart et al.22. The Chaffin 
et al. dataset included LV expression data on 11 DCM hearts, 16 nonfail-
ing hearts and 15 HCM hearts. The cardiomyopathy samples came 
from explanted hearts with end-stage disease. Chaffin et al. identi-
fied 17 main cell types, which were used to define cell-type-specific 
gene programs for enrichment testing (see Supplementary Note for 
detailed methods). The Reichart et al. dataset included data on 61 
end-stage cardiomyopathy hearts (52 with DCM) and 18 nonfailing 
controls. Reichart et al. identified nine main cell types in the LV, which 
were used to define cell-type-specific gene programs for enrichment 
testing (see Supplementary Note for detailed methods). Finally, in 
addition to the ‘cell-type-specific’ expression annotations described 
above, we also explored ‘disease-dependent’ cell-type annotations. 
Disease-dependent programs were based on genes with significant 
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DE between DCM samples and nonfailing samples, irrespective of 
their cell-type-specificity. The detailed methods for this analysis are 
described in the Supplementary Note. Of note, cell-type-enrichment 
analyses were not informed in any way by our GWAS/MTAG gene pri-
oritization scheme.

Single-cell expression and DE
We then aimed to identify cell-type-expression patterns and cellular 
functions for the prioritized genes from our GWAS and MTAG. To this 
end, we used available snRNA-seq or scRNA-seq data from three pub-
lished datasets, including Chaffin et al.21, Reichart et al.22 and Koenig 
et al.41. Koenig et al. performed snRNA-seq/scRNA-seq on 18 LVs from 
DCM patients and 27 LVs from control donors.

Using the processed AnnData/Seurat objects from each study, 
we first restricted to control/nonfailing samples from the LV, and then 
log-normalized the expression data with scale 10,000 (if not already 
normalized). To harmonize cell-type data across datasets, we then used 
the available cell-type and/or cell-state annotations to collapse or split 
cell types into ‘harmonized’ cell types (Supplementary Note). For genes 
with at least 0.5 points from our prioritization scheme in GWAS-DCM or 
MTAG-DCM, we then exported several expression measures from each 
dataset. These included (1) the mean normalized expression within 
harmonized cell types and pseudobulk data and (2) the percentage 
of nuclei/cells with nonzero expression for each harmonized cell type 
and in pseudobulk. We then combined data by taking the weighted 
average of expression values (weighted by the number of nuclei per 
cells contributing in each dataset). For plotting purposes, we then 
focused on the list of 63 prioritized genes and computed the scaled 
relative normalized expression of a given gene in a given cell type, as 
compared with all other cell types.

We further aimed to identify genes differentially expressed 
between DCM and nonfailing hearts. To this end, we utilized results  
from cell-type-specific DE analysis for DCM versus nonfailing hearts,  
as described in Chaffin et al.21 and Koenig et al.41 For the published 
Chaffin et al. DE analysis, we consider results suggestive if reach-
ing transcriptome-wide multiple-testing-adjusted two-sided 
P < 0.05 using CellBender-adjusted counts, without failing the 
‘background contamination’ flag. For the published Koenig et al. DE 
analysis, we considered results suggestive if reaching transcriptome- 
wide multiple-testing-adjusted two-sided P < 0.05. Finally, we used the 
Reichart et al. dataset22, to perform a new DE analysis, comparing the 
52 DCM LVs with 18 control LVs, using the same cell types that could 
be included for DE testing in their original publication (Supplemen-
tary Note). Again, a transcriptome-wide multiple-testing-adjusted 
two-sided P < 0.05 was considered suggestive. While we acknowledge 
that the cell types included in DE testing were not perfectly aligned 
across datasets, we approximately matched cell types to identify sig-
nals that were consistent across datasets (Supplementary Table 25). 
Finally, we declared significance for a gene, if at least two of three 
datasets showed a suggestive result with concordant direction of effect 
within comparable cell types.

MR for DCM
We used two-sample MR to identify potential causes and consequences 
of DCM using genetic data50. To this end, we utilized the GWAS-DCM 
summary statistics and additionally collected published GWAS sum-
mary statistics for various common diseases and potential risk factors, 
including AF77, CAD78, type 2 diabetes79, chronic kidney disease80, HF50, 
thyroid disease81, BMI82, alcohol use (drinks per day)83, smoking (ciga-
rettes per day)83 and an additional 65 commonly measured quantita-
tive traits (including blood pressure, anthropometry and laboratory 
values)84. The GWAS summary statistics were chosen such that they 
were largely of European ancestry (and if European-only summary 
statistics were available, those were used; this was chosen to make the 
LD structure most comparable with the DCM-GWAS) and such that 

FinnGen was not included in the GWAS (to keep sample overlap to a 
reasonable minimum for two-sample MR).

We performed a bidirectional MR screen, where the above- 
mentioned traits were modeled as exposure and DCM modeled as 
outcome, and vice versa (DCM modeled as exposure). Harmonization 
of summary statistics is described in the Supplementary Note. For 
our discovery analysis, we used the WM method implemented in the 
R-package TwoSampleMR (v.0.5.6); the WM method may give more 
robust results than the inverse-variance-weighted approach in case 
of outliers50. Results at a Bonferroni correction (two-sided P < 0.05; 
146 comparisons) were considered significant. As a secondary filter 
for significant results, we then used the MR-Egger method. MR-Egger 
has lower power but may better account for directional pleiotropy, and 
further provides an estimate of the regression intercept (which may 
flag implausible relationships between outcome and exposure effects 
due to correlated directional pleiotropy)50. We required that signals 
persisted with Egger-slope two-sided P < 0.05 without a substantial 
Egger-intercept (two-sided P > 0.1).

For any ‘exposure to DCM’ or ‘DCM to outcome’ pairs that remained 
after discovery and MR-Egger filtering, we then assessed the potential 
causal effect using CAUSE52 (v.1.2.0)—a recently proposed mixture 
approach that accounts for correlated and uncorrelated pleiotropy. In 
short, CAUSE assesses whether GWAS data for two traits are consistent 
with a causal effect, by fitting and comparing two nested models. These 
include a ‘sharing’ model that allows only a pleiotropic pathway, and 
a ‘causal’ model that additionally estimates a causal pathway. These 
models are compared using the expected log pointwise posterior 
density, and a one-sided P value is computed from a Z-test comparing 
the ‘causal’ model with the ‘sharing’ model52. For step 1 of CAUSE (esti-
mating nuisance parameters), we used default parameters that include 
using 1 M random genome-wide markers for parameter estimation. For 
step 2 of CAUSE (estimating causal effects) we used filtered and pruned 
variants (two-sided P < 0.001 and r2 < 0.0005 over 10 Mb windows) and 
otherwise default parameters.

PRS analyses
We then aimed to assess the performance of DCM PRS for prediction of 
DCM and systolic HF across ancestries and different clinical settings. To 
this end, we used the Amsterdam DCM cohort and the All of Us Research 
Program, as described below. In addition, we assessed the predictive 
capacity of the PRS in a third dataset, the UKB, as described in detail in 
the Supplementary Note.

Association with DCM and systolic HF in All of Us. All of Us is a cohort 
study enrolling participants from across the United States, with an 
emphasis on participants classically underrepresented in genetics 
research20,85. Whole genome sequencing data were available for over 
245,000 participants, of which 84% had complete electronic health 
record linkage. After quality control (Supplementary Note), we were 
left with 195,533 unrelated samples, of which 102,886 (52.6%) were of 
genetically defined European ancestry, and of which 928 had NI-DCM. 
Characteristics can be found in Supplementary Table 30.

From the GWAS-DCM and MTAG-DCM summary statistics, we 
created various PRS. Since MGB and All of Us have some overlapping 
samples86, we reran our GWAS meta-analyses and MTAG omitting 
MGB for all PRS analyses described in All of Us. Using these updated 
summary statistics (DCM-GWAS (excluding MGB) and MTAG-DCM 
(excluding MGB)) we created genome-wide PRS using PRScs (v.2022-11 
(ref. 56)). We used the ‘auto’ function that learns the optimal shrinkage 
parameter directly from the GWAS summary statistics. Considering 
our discovery GWAS was of largely European ancestry, we used the 
ldblk_ukbb_eur files as LD reference. Participants in the All of Us data-
set were subsequently scored using the ‘--score’ function in PLINK2 
(ref. 73). To account for ancestral differences in PRS distribution in 
this multi-ancestry dataset, we first regressed the first ten ancestral 
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principal components (PCs) of ancestry out of the PRS values, and then 
standardized them to mean 0 and unit variance.

We first tested the association of both PRS with NI-DCM, using 
logistic regression models adjusting for age, age2, sex and PCs 1–10. We 
assessed the association of PRS in the entire multi-ancestry cohort, as 
well as within the three largest ancestral subgroups, namely European 
(n = 102,886), African (n = 40,496), and Admixed-American (n = 30,358) 
ancestry. Correcting for the number of tests, we considered results with 
P < 0.05 ((2 × 4)) = 0.00625 significant. In all PRS analyses, hypothesis 
tests were two-sided.

Using the best performing PRS for DCM prediction (MTAG-DCM 
(excluding MGB)), we then assessed whether PRS could predict systolic 
HF. We used logistic regression models to predict systolic HF—defined 
using ICD10-CM code I50.2 (and subcodes; Supplementary Note)—
using PRS, adjusting for age, age2, sex and PCs 1–10. Additionally, we 
assessed whether the PRS could predict these outcomes across a range 
of clinical settings as a ‘second hit,’ namely after AF diagnosis, after 
hypertension diagnosis and after myocardial infarction. In these analy-
ses, individuals with systolic HF coded before or concurrently with the 
initial event (for example, AF, hypertension, myocardial infarction) 
were removed from the respective analyses. Furthermore, we also 
assessed whether the PRS could predict systolic HF in carriers of likely 
pathogenic or pathogenic variants in high-confidence DCM genes 
(ClinGen strong/definitive; Supplementary Note). The significance 
cutoff was set to two-sided P < 0.05 (6) = 0.0083. In all these models, 
we performed sensitivity analyses removing participants with NI-DCM 
and NICM to assess whether potential signals were driven by these 
hard phenotypes; we also performed analyses restricting to European 
ancestry participants to assess whether results were driven solely by 
continental ancestry.

Cumulative contribution of rare and common variation to DCM in 
the Amsterdam cohort. We next assessed the distribution and dis-
criminatory capacity of DCM PRS within the Amsterdam DCM cohort. 
The same general methodological framework from the All of Us cohort 
was applied to construct PRScs scores56 in the Amsterdam (AUMC) 
dataset. Notably, however, we included MGB and omitted the Amster-
dam cohort from GWAS-DCM and MTAG-DCM to prevent overfitting. 
As such, PRScs scores were created for GWAS-DCM (excluding AUMC) 
and MTAG-DCM (excluding AUMC). After scoring all individuals, the 
first ten PCs of ancestry were regressed out of the PRS values, and were 
scaled to mean 0 and variance 1 within the dataset.

We then tested whether the PRS based on GWAS-DCM (exclud-
ing AUMC) and MTAG-DCM (excluding AUMC) could discriminate 
between cases and controls, using logistic regression models adjust-
ing for the first ten PCs of ancestry and sex. To assess performance 
in various subgroups, we assessed (1) all individuals, (2) individuals 
of European ancestry, (3) individuals of non-European ancestry, (4) 
male participants only and (5) female participants only. To determine 
significance, we used Bonferroni correction at two-sided P < 0.05  
(2 scores × 5) = 0.005. We focused further analyses on the MTAG-DCM  
(excluding AUMC) PRS, which performed the best across groups  
(see above).

We then aimed to assess the cumulative contribution of com-
mon and rare genetic variation to clinical DCM, as described previ-
ously for rare arrhythmia syndromes57,58. We grouped DCM cases into 
‘rare genotype-positive,’ ‘rare genotype-negative’ and ‘uncertain rare 
genotype,’ based on clinical genetic testing findings (Supplementary 
Note). We performed logistic regression analyses restricting to either 
‘genotype-positive’ cases or ‘genotype-negative’ cases, comparing 
either with the general control group. We also assessed distributions 
of PRS using density plots across (1) controls, (2) all cases (n = 978), 
(3) genotype-positive cases (n = 193) and (4) genotype-negative cases 
(n = 294). To identify statistical difference between PRS distribution 
among genotype-positive and genotype-negative cases, we used linear 

regression analyses with PRS as outcome and rare variant status as 
predictor (adjusting for sex and PC 1–10; Supplementary Note). In 
sensitivity analyses, all above approaches were repeated, restricting 
to individuals of genetically determined European ancestry, to assess 
whether results were driven by continental ancestry.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics for our GWAS meta-analyses have been made avail-
able for download through the Cardiovascular Disease Knowledge 
Portal (https://cvd.hugeamp.org/downloads.html); summary statistics 
for various meta-analyses, including clinical dataset-only and biobank 
dataset-only, are available (https://api.kpndataregistry.org/api/d/ 
CQyqth). Our PRS scoring weights—for both GWAS and MTAG scores—
have been deposited into the PGS Catalog (publication ID: PGP000672; 
score IDs: PGS004946–PGS004951) and into the Cardiovascular Dis-
ease Knowledge Portal (https://api.kpndataregistry.org/api/d/9jevLe). 
Access to individual-level data for the Meder et al. cohort, the Garnier 
et al. cohort, the Amsterdam UMC cohort and MGB will not be made pub-
licly available at this time, due to the restrictive/sensitive nature of the 
genomic and/or phenotypic data in question. Access to individual-level 
UK Biobank data, both phenotypic and genetic, is available to bona fide 
researchers through application on the UK Biobank website (https://
www.ukbiobank.ac.uk). Access to individual-level phenotypic and 
genetic data from All of Us Research Program is currently available to 
bona fide researchers within the United States through the All of Us 
Researcher Workbench—a cloud-based computing platform (https:// 
www.researchallofus.org/register/). The Finnish biobank data can be 
accessed through the Fingenious services (https://site.fingenious.fi/ 
en/) managed by FINBB. Finnish Health register data can be applied for 
from Findata (https://findata.fi/en/data/). All processed snRNA-seq/ 
scRNA-seq datasets used in the present study are publicly available: the 
Chaffin et al. dataset is available for download from the Broad Single 
Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/ 
SCP1303/single-nuclei-profiling-of-human-dilated-and-hypertrophic- 
cardiomyopathy); the Reichart et al. dataset was downloaded from 
GEO (https://www.ncbi.nlm.nih.gov/geo/download/?acc=GSE183852& 
format=file&file=GSE183852%5FDCM%5FIntegrated%2ERobj%2Egz); 
the Koenig et al. dataset was downloaded from CellxGene (https:// 
datasets.cellxgene.cziscience.com/3716fb19-cedd-4fe5-abc4- 
5dbeb007fb65.rds). Other datasets include cis-eQTLs from the eQTL-
Gen consortium (https://www.eqtlgen.org/cis-eqtls.html); cis-eQTLs 
from GTEx v.8 (https://www.gtexportal.org/home/downloads/adult- 
gtex#qtl) and tissue expression levels from GTEx v.8 (https://www. 
gtexportal.org/home/downloads/adult-gtex#bulk_tissue_expression); 
pQTLs derived from the UK Biobank PPP (summary statistics for the 
‘combined’ set from https://www.synapse.org/#!Synapse:syn51364943/ 
files/); the 22.10 update of the OpenTargets platform (https://genetics.
opentargets.org/); GWAS Catalog queried in October 2023 (https:// 
www.ebi.ac.uk/gwas/); ANNOVAR v.2017-07-17 (https://annovar.open 
bioinformatics.org/en/latest/); 1000Genomes project Phase 3 (https:// 
www.internationalgenome.org/data/); gnomAD exomes v.2.1 (https:// 
gnomad.broadinstitute.org/downloads); the ClinVar database (https:// 
www.ncbi.nlm.nih.gov/clinvar/) was accessed in April 2023.

Code availability
Processing of genotype data, quality control, imputation and 
genome-wide association analyses were performed with various soft-
ware tools as described in Supplementary Table 2. Notably, in most of the 
datasets, various versions of PLINK were used for quality control (https:// 
www.cog-genomics.org/plink/ and https://www.cog-genomics.org/ 
plink/2.0/) and various versions of REGENIE were used for GWAS 
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(https://github.com/rgcgithub/regenie). Meta-analysis of GWAS was 
performed using the 2011-03-25 release of METAL (https://github. 
com/statgen/METAL). Heritability and genetic correlation parameters 
were computed using LDSC v.1.0.1 (https://github.com/bulik/ldsc). 
Multitrait analysis of GWAS was performed using MTAG v.1.0.8 (https:// 
github.com/JonJala/mtag). For Mendelian randomization analyses, 
we used R-packages TwoSampleMR v.0.5.6 (https://mrcieu.github. 
io/TwoSampleMR/), coloc v.4.0.4 (https://github.com/chr1swallace/ 
coloc) and CAUSE v.1.2.0 (https://github.com/jean997/cause/tree/ 
master), implemented in custom MR pipelines (https://github.com/ 
seanjosephjurgens/MR_pipeline_sjj). Annotation of GWAS was per-
formed using FUMA v.1.6.1 (https://fuma.ctglab.nl/) as well as MAGMA 
v.1.10 (https://ctg.cncr.nl/software/MAGMA/prog/magma_v1.10.zip) 
and PoPS v.0.2 (https://github.com/FinucaneLab/pops). Gene set 
enrichment analyses were performed using FUMA v.1.6.1 (https://fuma. 
ctglab.nl/) and g:Profiler v.September 20 2023 (https://biit.cs.ut.ee/ 
gprofiler/). For cell-type-specific heritability analyses, we used 
R-packages edgeR v.3.22.3 (https://github.com/OliverVoogd/edgeR), 
DESeq2 v.1.20.0 (https://github.com/thelovelab/DESeq2) and limma 
v.3.36.2 (https://bioconductor.org/packages/release/bioc/html/
limma.html) as well as stratified LDSC v.1.0.1 (https://github.com/bulik/
ldsc). For wrangling of single-cell/nucleus data, we used R-package 
Seurat v.5.0 (https://github.com/satijalab/seurat). For polygenic scor-
ing analyses, we used PRScs v.2022-11 (https://github.com/getian107/
PRScs) and PLINK2 (https://www.cog-genomics.org/plink/2.0/; various 
versions from May 2020 release onwards). All analyses that were run 
in R, were run in R v.4.0.0.
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Extended Data Fig. 1 | Manhattan plots for biobank meta-analysis for  
NI-DCM and NICM. Each panel shows a Manhattan for a GWAS meta-analysis of 
a phenotype across biobank datasets (FinnGen+UKB+MGB), where the top plot 
shows the results for the strict NI-DCM phenotype (N = 5,022 cases; N = 932,941 
controls), and the bottom plot shows results for the broader NICM phenotype 
(N = 13,478 cases; N = 932,873 controls). In both figures, each dot represents a 
single tested variant, the x-axis shows genomic coordinates for those variants 
(chromosome, and position on chromosome), while the y-axis shows the -log10 
of the P-value from GWAS. P-values are derived from inverse-variance-weighted 
meta-analysis of logistic regression models; reported P-values are two-sided and 

unadjusted for multiple testing. The red line indicates the conventional genome-
wide significance level (alpha = 5 × 10−8). Loci reaching above the significance 
line are annotated with a gene name, where the annotated gene is harmonized 
with the locus name from our main GWAS (ie, highest prioritized gene in locus 
from GWAS-DCM/MTAG-DCM) for easy comparisons; sometimes an additional 
gene is highlighted to serve easier comparison to previously-published GWAS; if 
locus was not identified in GWAS-DCM/MTAG-DCM, the closest protein-coding 
gene is used. Note: GWAS, genome-wide association study; NICM, nonischemic 
cardiomyopathy; NI-DCM, nonischemic dilated cardiomyopathy.
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Extended Data Fig. 2 | Quantile-quantile plots for the final meta-analysis 
(GWAS-DCM) and the final MTAG analysis (MTAG-DCM). The quantile-quantile 
plots show results for the GWAS meta-analysis of DCM (left) and for the MTAG 
analysis of DCM with cardiac MRI traits (right). In each quantile-quantile plot, 
the x-axis represents the expected -log10 of the P-value of variants under the 
null hypothesis, while the y-axis represents the observed -log10 of the P-value in 
the analysis. The top corner shows calibration statistics, namely i) the inflation 
factor lambda, computed as the observed X^2 statistic at the median over 
the expected under the null, from all plotted variants, ii) the inflation factor 

computed by LDSC, which filters to high-confidence common genetic variants 
found in their internal reference, iii) the LDSC intercept which quantifies the 
residual inflation (computed as the intercept in a regression of X^2 statistics over 
linkage-disequilibrium scores63), due to biases. P-values are derived from inverse-
variance-weighted meta-analysis of logistic regression models (GWAS-DCM) 
or from MTAG analysis of such results (MTAG-DCM); reported P-values are two-
sided and unadjusted for multiple testing. Note: GWAS, genome-wide association 
study; MTAG, multi-trait analysis GWAS; DCM, dilated cardiomyopathy; LDSC, 
linkage-disequilibrium score regression.
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Extended Data Fig. 3 | Venn Diagram highlighting the loci identified in  
GWAS-DCM and MTAG-DCM. This Venn diagram shows loci that were 
significantly associated in GWAS-DCM, MTAG-DCM, or both. The right ellipse 
shows results from GWAS-DCM, the left ellipse shows results from MTAG-DCM, 
and the overlapping area shows loci found in both. A genomic locus was defined 
based on distance, taking the top index variant in a region, and merging with 
other potential index variants if within a 1 Mb window up or downstream (and 
merging MTAG-DCM and GWAS-DCM loci based on distance as well). Loci 
are annotated with the most highly-prioritized gene using our methodology 

(Methods); in case of different genes prioritized by MTAG-DCM or GWAS-DCM 
(for overlapping loci), one was chosen at random for annotation. Loci are also 
annotated with the genomic coordinates (chromosome:position in megabases) 
for GRCh37. Loci annotated in red were ‘novel’, which was defined as: Not within 
1 Mb distance with a previously described locus from a peer-reviewed published 
genome-wide association study for DCM, or MTAG for DCM, by querying 
GWAScatalog85, OpenTargets23 and two previous larger studies8,11. Note: GWAS, 
genome-wide association study; MTAG, multi-trait analysis GWAS; DCM, dilated 
cardiomyopathy.
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Extended Data Fig. 4 | Independent replication of GWAS-DCM and MTAG-DCM 
loci. The figure shows the summary of the replication effort performed within 
HERMES, the Million Veteran’s Program (MVP) and All of Us (AoU) datasets. Part 
a shows the replication effort for GWAS-DCM loci, while part b shows results 
for replication of the MTAG-DCM loci. In both parts, data are restricted to loci 
passing quality-control for replication, and are restricted to a single lead variant 
per locus (the lead variant with strongest significance in discovery). The left 
panels show dot plots, with on the x-axis the effect sizes from discovery (ie, 
GWAS-DCM or MTAG-DCM) and on the y-axis the estimated effect size from the 
replication set (a meta-analysis of independent cohorts/samples from HERMES, 
MVP, and AoU), totalling up to 13,258 DCM/NICM cases and 1,435,287 controls 
(see Supplementary Note and Supplementary Tables 13 and 14). Data represent 
estimated beta coefficients ± standard errors. A trend line from linear regression 
is added to the plot, with the estimated beta coefficient and standard error from 

this regression added to the top left of the panels. Genes showing substantial 
deviation from the line are annotated with their gene names. The right panels 
represent bar charts that show the replication rate (ie, the percentage of 
replicating loci) using different definitions for replication; the green bars (left) 
represent directional concordance, the light blue bars (middle) represent 
replication at nominal unadjusted one-sided P < 0.05, while the dark blue (right) 
bars represent replication at Bonferroni-adjusted significance (one-sided 
P < 0.05/# loci) which leaves cutoffs of P < 0.0014 and P < 0.002 in part a and 
cutoffs of P < 0.00078 and P < 0.0015 in part b. Given the estimated attenuation 
of effect sizes for previously-established DCM loci, we computed ‘expected’ 
replication rates under the assumption that all loci are true and share the same 
degree of attenuation (Supplementary Note); the expected replication rates are 
added as light gray bars behind the colored bars. Note: OR, odds ratio.
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Extended Data Fig. 5 | Cardiac cell type enrichment of DCM heritability from 
two snRNA sequencing datasets. Bar charts represent the -log10 of the P-value 
from the analysis testing for enrichment of cell type-specific gene programs in 
our GWAS/MTAG results. The x-axis shows different cell types from the respective 
snRNAseq datasets. Part a shows results from enrichment analysis using the 
Chaffin et al.20 snRNAseq dataset, while part b shows results for the Reichart et al.21  
snRNAseq dataset. The dotted lines represent the significance cutoffs within 

the panel, using a Bonferroni correction for the number of included cell types. 
The left panels show the results from testing for enrichment of GWAS-DCM 
heritability, while the right panels show results for testing for enrichment of 
MTAG-DCM heritability. P-values are derived from the Tau statistic from stratified 
LD score regression, and represent one-sided P-values that are unadjusted for 
multiple testing. Note: GWAS, genome-wide association study; MTAG, multi-trait 
analysis GWAS; DCM, dilated cardiomyopathy.
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Extended Data Fig. 6 | Gene prioritization scores for top prioritized genes 
from GWAS-DCM. The bottom side of the figure shows a heatmap with different 
gene prioritization methods on the y-axis and highly-prioritized genes on the 
x-axis. The top side of the figure shows the corresponding gene prioritization 
scores, represented in bar charts, that show the sum of the individual 
components from the heatmap. Genes are ordered from left to right based on 
their priority score (high to low). In the heatmap, a very light blue panel indicates 
no points, a middle-blue panel indicates 0.5 points, while a dark blue panel 

indicates 1 point assigned to the given gene based on the given prioritization 
method. Highly-prioritized genes were defined as genes with 2.5 or higher points, 
which were also the most highly-prioritized genes in their respective loci. For the 
similar plot for MTAG-DCM, see Fig. 2b. Note: GWAS, genome-wide association 
study; DCM, dilated cardiomyopathy; MTAG, multi-trait analysis GWAS; PoPs, 
polygenic priority score method; eQTL, expression quantitative trait locus; 
pQTL, protein quantitative trait locus.
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Extended Data Fig. 7 | Associations between polygenic risk score and DCM 
across three European ancestry datasets. This forest plot shows association 
results for the PRS constructed from GWAS-DCM and MTAG-DCM with DCM 
status across three different datasets. In all cases, association data are shown 
in a European ancestry ‘testing set’ (dataset in which PRS is tested) that is made 
as independent as possible from the ‘training data’ (ie, the base GWAS and 
MTAG data used to construct PRS). In the Amsterdam UMC (AUMC) dataset, 
AUMC samples were omitted from the PRS training data, and PRS was used 
to discriminate clinical DCM cases (N = 783) from referents (N = 6,978). In the 
All of Us (AoU) dataset, samples from Massachusetts General Hospital (MGB) 
were omitted from the PRS training data, and PRS was used to discriminate 
NI-DCM cases (N = 506) from controls (N = 95,510). In the UK Biobank (UKB) 
dataset, samples from UKB were omitted from the base GWAS, and participants 
were excluded from the testing set if they contributed to the MRI sub-study 
of UKB (first 45k); PRS was used to discriminate NI-DCM cases (N = 793) from 
controls (N = 325,313). All PRS were constructed using the PRScs algorithm 

(Methods). In the plot, the x-axis shows odds ratios per standard deviation of 
the PRS distribution, estimated from logistic regression (adjusted at least for 
ancestral principal components in all cases). Data are presented as estimated 
odds ratios with 95% confidence intervals.The first three rows with dark green 
color show results for PRS constructed from GWAS-DCM, while the bottom three 
rows in light green color show results for PRS constructed from MTAG-DCM. 
On the right of the plot we show the R^2 for each PRS in the respective dataset, 
where R^2 represents the residual variance explained by the PRS (computed 
as the improvement of model R^2 inclusive of PRS as compared to the model 
without PRS, divided by the proportion of residual variance); all R^2 values were 
computed on the liability-scale to allow better comparisons across datasets. 
Note: Other performance metrics are presented in Supplementary Table 41. 
GWAS, genome-wide association study; DCM, dilated cardiomyopathy; NI-DCM, 
nonischemic dilated cardiomyopathy; MTAG, multi-trait analysis of GWAS; OR, 
odds ratio; 95%CI, 95% confidence interval; SD, standard error; R^2, variance 
explained.
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Extended Data Fig. 8 | Associations between DCM polygenic risk score and 
NI-DCM across different ancestries in the All of Us dataset. This forest plot 
shows association results for the PRS constructed from GWAS-DCM and MTAG-
DCM with NI-DCM in the All of Us dataset. PRS were constructed using the PRScs 
algorithm (Methods), with x-axis showing odds ratios per standard deviation of 
the PRS distribution, estimated from logistic regression, adjusting for age, age^2, 
sex and ancestral principal components. Data are presented as estimated odds 
ratios with 95% confidence intervals. The figure shows results for all samples 
(N = 928 cases and 181,773 controls), European ancestry only (N = 506 cases and 

95,510 controls), African ancestry only (N = 246 cases and 36,864 controls), and 
Admixed-American ancestry only (N = 107 cases and 28,784 controls). The top 
of the figure shows results for the PRS constructed from GWAS-DCM, while the 
bottom shows results for PRS constructed from MTAG-DCM. Reported P-values 
are two-sided and unadjusted for mutliple testing. Note: Other performance 
metrics are presented in Supplementary Table 32. GWAS, genome-wide 
association study; NI-DCM, nonischemic dilated cardiomyopathy; MTAG,  
multi-trait analysis of GWAS; OR, odds ratio; 95%CI, 95% confidence interval;  
SD, standard error.
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Extended Data Fig. 9 | The additive contribution of PRS and rare pathogenic 
variants to NI-DCM risk in the All of Us dataset. The figures show bar charts, 
where the x-axis shows different strata based on genetics, including three tertiles 
of PRS (tertile one [T1] in very-light blue, tertile two [T2] in light blue, and tertile 
three [T3] in dark blue) and two strata based on rare variant carrier status, that 
is non-carriers and carriers of rare pathogenic or likely pathogenic variants for 
DCM. The y-axis shows the estimated odds ratio for the given group as compared 
to a reference group; odds ratios were estimated using logistic regression 
analyses. Data are presented as estimated odds ratios with 95% confidence 
intervals. Part a shows results inclusive of all individuals passing our quality-

control in All of Us (N = 928 cases and 181,773 controls), while part b is additionally 
restricted to samples with genetically-determined European ancestry (N = 506 
cases and 95,510 controls). In both parts, the left panel shows results where 
the reference group is represented by individuals without rare variants in the 
second tertile of PRS; the right panel shows results where the reference group is 
represented by individuals without rare variants who are in the first tertile of PRS. 
Note: NI-DCM, nonischemic dilated cardiomyopathy; P/LP, likely pathogenic or 
pathogenic rare variants; CI, confidence interval; ALL, all individuals irrespective 
of ancestry; EUR, individuals of genetically-determined European ancestry.
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