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Dear Professor Bezzina, 

 

Your Letter, "Genome-wide association study reveals mechanisms underlying dilated cardiomyopathy 

and myocardial resilience" has now been seen by 3 referees. You will see from their comments below 

that while they find your work of interest, some important points are raised. We are interested in the 

possibility of publishing your study in Nature Genetics, but would like to consider your response to 

these concerns in the form of a revised manuscript before we make a final decision on publication. 

 

To guide the scope of the revisions, the editors discuss the referee reports in detail within the team 

with a view to identifying key priorities that should be addressed in revision. In this case, we think all 

three referees have provided constructive reviews aimed at strengthening the analyses and improving 

the presentation. We particularly ask that you perform independent replication, clarify the 

consistencies and novel aspects of the study compared to ref.19, and address all referees' technical 

comments as thoroughly as possible with appropriate revisions. In addition, it would be very helpful to 

provide summary association statistics excluding widely used databases. We hope that you will find 

the prioritized set of referee points to be useful when revising your study. 

 

We therefore invite you to revise your manuscript taking into account all reviewer and editor 

comments. Please highlight all changes in the manuscript text file. At this stage we will need you to 

upload a copy of the manuscript in MS Word .docx or similar editable format. 

 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

 

When revising your manuscript: 
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*1) Include a “Response to referees” document detailing, point-by-point, how you addressed each 

referee comment. If no action was taken to address a point, you must provide a compelling argument. 

This response will be sent back to the referees along with the revised manuscript. 

 

*2) If you have not done so already please begin to revise your manuscript so that it conforms to our 

Letter format instructions, available 

here. 

Refer also to any guidelines provided in this letter. 

 

*3) Include a revised version of any required Reporting Summary: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

It will be available to referees (and, potentially, statisticians) to aid in their evaluation if the 

manuscript goes back for peer review. 

A revised checklist is essential for re-review of the paper. 

 

Please be aware of our guidelines on digital image standards. 

 

Please use the link below to submit your revised manuscript and related files: 

 

[redacted] 

 

Note: This URL links to your confidential home page and associated information about manuscripts 

you may have submitted, or that you are reviewing for us. If you wish to forward this email to co-

authors, please delete the link to your homepage. 

 

We hope to receive your revised manuscript within 3 to 6 months. If you cannot send it within this 

time, please let us know. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss these revisions 

further. 

 

Nature Genetics is committed to improving transparency in authorship. As part of our efforts in this 

direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit www.springernature.com/orcid. 

 

We look forward to seeing the revised manuscript and thank you for the opportunity to review your 

work. 

 

Sincerely, 

Wei 

 

Wei Li, PhD 

Senior Editor 

http://www.nature.com/ng/authors/article_types/index.html
https://www.nature.com/nature-research/editorial-policies/image-integrity
http://www.springernature.com/orcid
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Jurgens et al present a comprehensive GWAS of dilated cardiomyopath (DCM). They identify novel loci 

through a meta analysis of data from ~9000 cases and close to one million controls. These results 

form the basis for a series of downstream analyses: gene prioritization, analysis of cell type specificity 

of these candidate genes, Mendelian randomization (MR) analysis of other traits and polygenic risk 

score (PRS) analysis. The study represents one of the largest GWAS of DCM to date. There is however 

a preprint (ref 19) on a similar effort with ~14000 DCM cases. Especially the MR and PRS analysis 

provide appealing new results on likely causal pathways that go beyond previous studies. Overall the 

study has been executed rigorously using state of the art methods and the presentation is very clear. 

 

A major issue that needs to be addressed is replication in an independent cohort. The authors 

comment that they could replicate 20 of 26 DCM loci identified in a similarly large study (ref 19). What 

about the novel loci, can they be replicated using results from ref 19? Could other data sets such as 

that of the all of us program be used for replication (it is not yet part of the GWAS but it has 

phenotype information used in the PRS analysis)? It seems that the same imaging based traits that 

were analyzed in the current study were also analyzed in ref 19. What is the replication rate there? In 

addition, please assess whether there is heterogeneity of the effect sizes between the different study 

cohorts or if they show large agreement. 

 

A second important question is how the results in the current study more generally compare to those 

of ref 19, given that very similar approaches were applied. How do gene prioritizations agree or differ? 

Do both studies highlight the same or partly different cell types as major contributors? How do the 

PRS compare to each other? 

 

Minor comments: 

 

The eQTL and pQTL analysis is very interesting. However the pQTL data that was used is from blood. 

The authors show that cardiac tissue and specifically cardiomyocytes are key players. Please use heart 

specific pqtl data (e.g. Assum et al. Nat Comms 2022) for this analysis. It would also be interesting to 

characterize the overlap of eQTL and pQTL results. What is the agreement between heart and blood? 

 

The comparison of the genetic associations of the strict and more lenient DCM phenotype definition is 

interesting. What is the genetic correlation of the two traits? Is there more variance in the lenient 

definition? 

 

How do the single cell results compare to those of Reichart et al Science 2022? 
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An interaction analysis of rare variant status (possibly aggregated as genotype +, as currently done) 

and PRS would be highly interesting. 

 

To what extend could the finding of cardiomyocytes as main contributors be a consequence of the 

gene prioritization scheme? Specifically, the pops method is highly weighted and relies strongly on 

expression. As many important loci are cardiomyocyte specific this might lead to a self fulfilling 

prophecy. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The report by Ellinor, Daly, Aragam and Bezzina describes results of a large DCM GWAS meta-

analysis. A large number of novel loci are described and the authors include a broad set of secondary 

analyses. The analyses are well-done and the paper is a pleasure to read. I do have some comments: 

 

 

1) Can the authors provide a pheWAS analysis of their PRS and lead variants? The specificity of the 

associations is not currently explored. 

 

2) How does the PRS compares to carrying a bona fide DCM Mendelian mutation in terms of DCM risk? 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors performed a large-scale genome-wide association study (GWAS) and multi-trait analysis 

(MTAG) for dilated cardiomyopathy (DCM). Using 9,365 DCM cases and 946,368 controls the study is 

about twice as large as previous GWAS. Expectedly, the number of loci showing genome-wide 

significance increased. Further analyses highlight the role of the contractile apparatus in the 

pathogenesis of DCM and mendelian randomization analyses showing that DCM liability is associated 

with an increased risk of systolic heart failure in context of other cardiovascular conditions. 

 

The analyses were conducted with great care, the methodology is sound (as far as I can tell not being 

a bioinformatician) and the paper is written very well. The conclusions appear to be justified. 

 

Major comment 

The combination of the DCM GWAS with the multi-trait analysis is not entirely transparent. 

Specifically, MRI-based measurements of end-systolic volume (LVESV) may reflect body size rather 

than pathological dilatation of the LV. 

This is of relevance, since the previous studies (with overlapping data sets) already provided evidence 

for 42 DCM loci (line 157). This number is similar to the 38 GWAS loci for DCM reported here. Thus, it 

appears that the major novelty comes from the 65 loci identified by MTAG, i.e. by GWAS for global 

circumferential strain (Ecc) and LVESV. However, GWAS on structural and functional evaluations of 

MRI data have been reported before and is unclear whether there is (substantial) overlap with 

previous reports. 

 

- The authors should clarify by which extent the MTAG loci provide at least a Bonferroni-corrected 
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significant signals for DCM, e.g. <0.0007. If some loci offer no signal for DCM, it is questionable 

whether they reflect LV dysfunction and can be meta-analysed with DCM in a meaningful way. 

 

- The authors should be more distinct on the number of novel loci, since GWAS for structural and 

functional evaluations of MRI data have been published before. I.e., loci reported for genome-wide 

association with functional and structural cardiac phenotypes (PMID: 32382064) or heart failure (e.g. 

PMID: 36376295) before should not be declared as novel here. 

 

The reported association between mean platelet thrombocyte volume and DCM is somewhat 

unexpected and not further discussed by the authors. It would be interesting to have some 

background information (or a statement that it may be a false positive association). 
 

Author Rebuttal to Initial comments   

 

Reviewer 1 
 
Jurgens et al present a comprehensive GWAS of dilated cardiomyopath (DCM). 
They identify novel loci through a meta analysis of data from ~9000 cases and 
close to one million controls. These results form the basis for a series of 
downstream analyses: gene prioritization, analysis of cell type specificity of these 
candidate genes, Mendelian randomization (MR) analysis of other traits and 
polygenic risk score (PRS) analysis. The study represents one of the largest 
GWAS of DCM to date. There is however a preprint (ref 19) on a similar effort with 
~14000 DCM cases. Especially the MR and PRS analysis provide appealing new 
results on likely causal pathways that go beyond previous studies. Overall the 
study has been executed rigorously using state of the art methods and the 
presentation is very clear. 
 
We thank the Reviewer for their thorough and positive assessment of our work. 
 
 
A major issue that needs to be addressed is replication in an independent cohort. 
The authors comment that they could replicate 20 of 26 DCM loci identified in a 
similarly large study (ref 19). What about the novel loci, can they be replicated 
using results from ref 19? Could other data sets such as that of the all of us 
program be used for replication (it is not yet part of the GWAS but it has 
phenotype information used in the PRS analysis)? It seems that the same 
imaging based traits that were analyzed in the current study were also analyzed 
in ref 19. What is the replication rate there?  
 
The Reviewer makes a series of valid suggestions to improve our work using 
(cross)replication with other datasets. We agree with the Reviewer that true 
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independent replication of our findings would represent a substantial improvement to 
our study. As suggested, we therefore sought independent replication using other 
GWAS datasets. We used data from independent cohorts from Zheng et al. (HERMES; 
N=~8.4k cases; (Zheng et al. 2023)), data from the All of Us dataset (AoU; N=817 
cases), and samples from the Million Veteran’s Program (MVP; N=3.9k cases).  
 
In the meta-analysis of these replication datasets, we retained up to 13.258 cases and 
1.435.287 controls that were independent of our discovery. While large in number, we 
note that a substantial number of samples from HERMES represent a more broad case 
definition (similar to NICM). Consistent with our heritability analyses, effect sizes were 
somewhat attenuated in this broader case set (attenuated to ~0.50-0.56 of the discovery 
effect sizes, when looking only at previously-established DCM loci).  
 
For our replication, we then focused only on the lead variant in each locus that was 
most significant in discovery, and then retained lead variants with MAF>=1% and with 
>1000 cases contributing to the replication analysis.  
 
For our GWAS-DCM loci, we could perform replication analyses for 36 of 38 loci. We 
found that all loci were concordant in direction of effect (100%), 33 loci were significant 
at a nominal level (92%), and 26 loci were significant at a Bonferroni-corrected level of 
significance (72%). When focusing only on novel loci, replication rates were very similar. 
These data have been added to Supplementary Table 13.  
 
Of the loci showing no replication significance (P>0.05; PLN, FHOD3, and PPP1R3C), 
two are near known Mendelian cardiomyopathy genes. These two loci notably show 
strong associations with relevant traits (including atrial fibrillation, heart rate, LV size, 
and ECG traits; see new PheWAS results later on). We posit that differences in genetic 
architecture (eg. tagging of causal variants) might play a role for these two loci, although 
this cannot be confirmed at this time. 
 
For our MTAG-DCM loci, we could perform replication analyses for 64 of 65 loci. We 
found that 62 loci were concordant in direction of effect (97%), 56 loci were significant at 
a nominal level (88%), and 36 loci were significant at a Bonferroni-corrected level of 
significance (56%). When focusing only on loci that were not identified in GWAS-DCM, 
we found that 81% reached the nominal significance level and 52% reached the 
Bonferroni-corrected significance level. The replication rates were only marginally less 
than the expectation based on the effect sizes in discovery and the attenuation we 
computed based on established loci. These replication data have been added to 
Supplementary Table 14. Of the discordant loci, one was near CSRP3 (a known 
Mendelian cardiomyopathy gene) and another near IGFBP3. 
 

https://paperpile.com/c/eH0gh9/OOK5
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Overall, these results confirm a high replication rate of our initial GWAS, and secondly 
provide reassurance of our MTAG approach. The summary of our replication is shown 
in Figure R1, which has also been added to the manuscript as Extended Data Figure 
4.  
 

 
Figure R1: Summary of replication. 

 
 
 
Manuscript change: 



 
 

 

8 
 

 

 

Page 4: 
“To assess the robustness of our loci, we performed a replication analysis using independent samples 
from HERMES, MVP and All of Us, totalling up to 13,258 cases of NICM/DCM and 1,435,287 controls 
(Extended Data Figure 4; Supplementary Tables 13-14). Of 36 testable GWAS-DCM loci, all were 
concordant in effect direction and 92% replicated at P<0.05. Of 64 testable MTAG-DCM loci, 88% 
replicated at P<0.05 (81% for ‘MTAG-only’ loci; Supplementary Note). Furthermore, none of the 
significant loci showed meaningful heterogeneity in discovery (Supplementary Tables 15-16). These 
results confirm the robustness of our GWAS and MTAG approaches.”  

 
 
Supplementary Materials change: 
Page 30: 
“We aimed to assemble a large replication cohort to validate the findings from our discovery analyses. To 
this end, we combined data from a parallel GWAS effort for DCM from the Heart Failure Molecular 
Epidemiology for Therapeutic Targets (HERMES) consortium31, data from the Million Veteran Program 
(MVP), and data from the All of Us Research Program. In our approach, we were careful to include only 
samples that were not already included in our discovery datasets (as outlined in more detail for each 
dataset below), which yielded a replication meta-analysis of up to 13,258 cases and 1,435,678 controls.  
 
 
HERMES 
 
In a parallel effort, the HERMES consortium recently released a manuscript describing a European-
ancestry GWAS meta-analysis for DCM. This effort included both ‘hard DCM’ cases and ‘broad’ DCM 
cases (defined as LV systolic dysfunction in absence of a number of secondary causes), totalling 14,255 
cases and 1,199,156 controls. We refer to the associated preprint for details on genotyping, phenotyping 
and GWAS analyses31. We note that a substantial number of ‘hard DCM’ datasets from HERMES also 
contributed to the present GWAS-DCM. Therefore, to remove the possibility of overlapping samples, the 
HERMES meta-analyses were rerun restricting to non-overlapping datasets. These included BioVU, CHB, 
deCODE, DiscovEHR-GSA, DiscovEHR-Omni, EstBiobank, GoDARTS-ILLUMINA, PIVUS, ULSAM, 
DCM-UCL, and GEL. The datasets were combined using an inverse-variance-weighted fixed-effects 
meta-analysis, totalling up to 8,480 cases and 756,404 controls. The lead variants from GWAS-DCM and 
MTAG-DCM were extracted from this meta-analysis.  
 
 
MVP 
 
Cohort description 
The Veterans Affairs Million Veteran Program (MVP) started recruiting US military veterans from 63 
Veterans Affairs (VA) facilities across the United States in 2011 (ref.32). Veterans aged 18 years and 
older are recruited into MVP where participants are linked to VA electronic health records (EHR), 
complete a questionnaire, and submit a blood sample at enrollment. The EHR includes information on 
inpatient International Classification of Disease (ICD) diagnosis codes, Current Procedural Terminology 
(CPT) procedure codes, and clinical laboratory measurements. Genotyping and quality control in MVP 
has been reported previously33,34 and are summarized in detail below 
 
Genotyping and quality control 
Specimen collection and genotype quality control have been described in detail before33,34. In brief, 
blood specimens were collected at recruitment sites across the country then shipped within 24 hours to 
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the VA Central Biorepository in Boston, MA for processing and storage. Study participants were 
genotyped using a customized Affymetrix Axiom biobank array (the MVP 1.0 Genotyping Array), 
containing 723,305 variants.  Duplicate samples were excluded from the genetic analysis. Additional 
exclusion criteria included: samples with observed heterozygosity greater than the expected 
heterozygosity, missing genotype call rate greater than 2.5%, and incongruence between sex inferred 
from genetic information and gender extracted from phenotype data. Probes with high missingness 
(>20%), those that were monomorphic, or those with a Hardy Weinberg Equilibrium p<1x10-06 in both the 
overall cohort and within one of the 3 major harmonized race/ethnicity and genetic ancestry (HARE)35 
race or ethnicity groups (non-Hispanic White, non-Hispanic Black, or Hispanic/Latino). See below for 
HARE methods.  
 
KING13 was used to measure relatedness between individuals in the sample. ADMIXTURE36 was used 
to calculate loadings on five 1000Genomes reference populations3 representing the majority of ancestry 
within the United States - GBR (British), PEL (Peruvian), YRI (Yoruba/Nigerian), CHB (Han Chinese), and 
LWK (Luhya/Kenyan). Pre-analysis QC was performed to remove SNPs that were rare (MAF < 1%), had 
high missingness (> 5%), or had excess heterozygosity (Fst < -0.1). SNPs that passed filters were then 
merged with the 1000 Genomes phase 3 reference panel3, removing SNPs that were not shared in both 
filesets. LD pruning was performed using the 'indep-pairwise' command in PLINK version 1.9, with 
window = 1000, shift = 50, and r2 = 0.05, and excluding loci with complicated LD structure (i.e. MHC and 
KIR). Principal components (PCs) were computed using plink2 (ref.11).  
 
The HARE approach, developed by MVP, was used to assign individuals to populations or groups35. This 
machine learning algorithm leverages information from both the self-identified race/ethnicity data from the 
survey and data from the genome-wide array to create respective variables for downstream analyses. 
HARE categorized Veterans into four mutually exclusive groups: (1) non-Hispanic White, (2) non-Hispanic 
Black, (3) Hispanic or Latino, or (4) Asian. High concordance was observed between HARE-defined non-
Hispanic White and non-Hispanic Black populations, and genetically inferred European and African 
ancestry populations, respectively. 
 
Imputation to TOPMed Imputation Panel 
Genetic imputation was performed to the TOPMed reference panel24. Pre-phasing was performed using 
SHAPEIT4 (v 4.1.3; ref.37) using 20MB chunks and 5MB overlap, and Minimac4 (ref.38) software was 
used for imputation using 20MB chunks with 3MB overlap between chunks. 
 
Genetically Inferred Ancestry (GIA) definition 
To estimate ancestry, we obtained a reference dataset from the 1000 Genomes Project and used the 
smartpca module in the EIGENSOFT package (https://github.com/DReichLab/EIG) to project the PC 
loadings from a group of unrelated individuals in the reference dataset. We merged this dataset with the 
MVP dataset and ran smartpca to project the PCA loadings from the reference dataset. We trained a 
random forest classifier using continental ancestry meta-data based on the top 10 principal components 
from the reference training data to define genetically inferred ancestry. We then applied this random 
forest to the predicted MVP PCA data and assigned ancestries to individuals with a probability greater 
than 50%. Those with a probability less than 50% for any particular ancestry group were excluded from 
the study. The final GIA population classifications were (1) African (AFR), (2) Admixed American (AMR), 
(3) East Asian (EAS), (4) European (EUR), or (5) South Asian (SAS). 
 
Cardiomyopathy Phenotyping 
NI-DCM cases and controls were defined using International Classification of Diseases, 9th or 10th 
Revision (ICD-9; ICD-10) billing codes. In MVP, the version 21.1 clinical data freeze was used, which 
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contains EHR data up to September 30, 2021. Cases were defined by the presence of ‘dilated 
cardiomyopathy’ code (I42.0) excluding individuals with prior ischemic cardiomyopathy (I25.5) or coronary 
artery disease (CAD; I21-I24, I25.2, 410-412), or presence of a CAD code with 30 days after their first 
DCM code. Controls were defined by a lack of DCM code then individuals were excluded if they ever had 
codes for heart failure, hypertrophic cardiomyopathy (I42.1, I42.2, 425.1), alcoholic cardiomyopathy 
(I42.6, 425.5), peripartum cardiomyopathy (O90.3, 674.5), secondary cardiomyopathy (425.9), or drug 
induced cardiomyopathy (I42.7). Date of first event was defined as the date of the occurrence of the first 
code. This left a total of 3,964 cases (1,239 AFR, 223 AMR, 2,502 EUR) and 522,610 controls (99,878 
AFR, 53,475 AMR, 369,257 EUR) for GWAS analysis. 
 
GWAS 
A case-control genome-wide association analysis (GWAS) for DCM was performed within each GIA 
group using REGENIE, then combined in an inverse variance weighted meta-analysis using GWAMA. 
Only AFR, AMR, and EUR had enough cases for analysis. A mixed model approach was implemented 
with adjustment for age at study enrollment, biological sex, and the first 10 genetic PCs. The lead variants 
from GWAS-DCM and MTAG-DCM were extracted from this meta-analysis.    
 
 
All of Us 
 
Details on sequencing and DCM phenotyping in the All of Us Research Program are described earlier in 
this document. For purposes of replication, we ran a GWAS analysis for our NI-DCM phenotype. Since 
the MGB health system contributed some samples to All of Us, we took a restrictive approach to minimize 
the potential for sample overlap between discovery and replication. In particular, we removed any sample 
in All of Us with a ZIP code from Massachusetts. This procedure left 815 NI-DCM cases, and 156,209 
controls. We then used REGENIE v3.2.2 to perform a GWAS for the NI-DCM phenotype, using an 
approximate Firth’s regression model. The lead variants from GWAS-DCM and MTAG-DCM were 
extracted from this multi-ancestry analysis. 
 
Meta-analysis and quality-control 
To combine data from the several replication cohorts, we performed an inverse-variance-weighted fixed-
effects meta-analysis. This meta-analysis included up to 13,258 cases and 1,435,678 controls. We then 
filtered these results based on several criteria. First, we retained variants with MAF>1% in the replication 
meta-analysis and with at least 1000 cases contributing to the replication meta-analysis. Second, per 
locus, we restricted to the single strongest lead variant in discovery. This procedure left qualifying 
replication results for 36/38 GWAS-DCM loci and for 64/65 MTAG-DCM loci. P-values were computed as 
one-sided P-values taking into account the direction of effect in discovery. 
 
We first assessed the calibration of effect sizes between replication and discovery. When restricting to 
previously-established DCM loci, we found that effect sizes in replication were attenuated to ~0.5 of the 
GWAS-DCM discovery effect sizes. For MTAG-DCM, previously-established loci were attenuated to 
~0.56 of discovery. Similar calibration was seen also when assessing all loci (Extended Data Figure 4). 
The attenuation of effect sizes is likely a reflection of i) the broader case definition used in most of the 
HERMES cohorts - for which we established a substantially lower heritability estimate - and ii) the older 
age of DCM cases included in MVP. Other contributory factors may be the inclusion of several non-
European ancestry samples from MVP and AoU, and Winner’s curse inflating effect sizes in discovery. 
These last points do not seem substantial, however, as restriction to European ancestry samples did not 
meaningfully alter effect sizes, and effect size calibration was highly similar between known and novel loci 
on average. 
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Power calculations 
 
We then computed the expected power in replication. To this end, we computed the effective sample size 
for each variant in each contributing dataset, computed using the formula 4/(1/cases + 1/controls), and 
then computed the meta-analysis effective sample size as the sum of these values. We then used the 
function genpwr.calc() in R package genpwr to compute power for each variant. We used the effective 
sample size in replication, the minor allele frequency in replication, and the ‘attenuated’ effect sizes based 
on discovery as input; we computed power assuming a logistic additive model. The attenuated effect 
sizes were computed based on the effect size attenuation based on previously-established DCM loci only. 
Power was computed at the ‘nominal’ level (one-sided alpha=0.05) and at the Bonferroni-corrected level 
(one-sided alpha=0.05/number of testable loci). To then calculate the total number of expected replicating 
loci, we took the sum of the power values across loci. Assuming all discovery loci are true and assuming 
homogeneous effect size attenuation across loci, we estimated that we had power to replicate ~35.6 / 36 
GWAS-DCM loci at the nominal level, and ~31.8 / 36 loci at the Bonferroni-corrected level. When 
considering only novel loci, we had power to detect ~24.6 / 25 GWAS-DCM loci at the nominal level and 
at ~21.7 / 25 loci at the Bonferroni-corrected level. For MTAG-DCM, we calculated that we had power to 
replicate ~60.4 / 64 loci at the nominal level and ~43.2 / 64 loci at the Bonferroni-corrected level. When 
considering only MTAG loci that were not identified in GWAS-DCM, we calculated that we had power to 
replicate ~28 / 31 loci at the nominal level and ~19.1 / 31 loci at the Bonferroni-corrected level.    
 
 
Replication rates and results 
 
For GWAS-DCM, we found that 36/36 (100%) of loci were concordant in direction of effect, 33/36 loci 
reached the nominal significance level (92%), and 26/36 loci (72%) were replicated at the Bonferroni-
corrected level (Extended Data Figure 4). When considering only novel loci, 23/25 reached the nominal 
level (92%) and 18/25 reached the Bonferroni-corrected level (72%). Of non-replicating loci (P>0.05) two 
were near Mendelian cardiomyopathy genes (PLN and FHOD3). We posit that differences in genetic 
architecture (eg, tagging of causal variants) might underlie the difference, although this can not be proven 
at this time. The third non-replicating locus was near PPP1R3C. 
 
For MTAG-DCM, we found that 62/64 loci (97%) were concordant in direction of effect, 56/64 (88%) 
reached the nominal level, and 36/64 (56%) reached the Bonferroni-corrected level (Extended Data 
Figure 4). When considering only loci not already identified in GWAS-DCM, we found that 25/31 (81%) 
reached the nominal level, and 16/31 (52%) reached the Bonferroni-corrected significance level. Of note, 
the observed replication rates for MTAG-DCM were only slightly lower than what could be expected 
based on our power calculations. Of discordant loci, one was near CSRP3 (a Mendelian cardiomyopathy 
gene) and one near IGFBP3. 
 
Overall, the replication analyses demonstrate a substantial replicability of our initial GWAS-DCM findings. 
Secondly, the replication analyses provide reassurance of our MTAG approach to identify genetic signals 
for DCM. ” 
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In addition, please assess whether there is heterogeneity of the effect sizes 
between the different study cohorts or if they show large agreement. 
 
As suggested, we have added Supplementary Table 15 and Supplementary Table 
16, which highlight heterogeneity test results for all lead variants in GWAS-DCM and 
MTAG-DCM, respectively. For GWAS-DCM, only 2 lead variants showed a nominal 
level of significance (P<0.05; 2.3 expected by chance), both of which were secondary 
signals in their respective loci. For MTAG-DCM, 4 lead variants showed a nominal level 
of significance (P<0.05; 4.3 expected by chance), of which two represented secondary 
signals in their respective loci. Of the remaining 2 loci, one was near HSPA4 (P=0.045) 
and one near MAP3K7 (P=0.042); in both of these loci, the association with DCM was 
convincingly confirmed in our replication set. Taken together, we found no evidence of 
substantial heterogeneity across datasets in our GWAS meta-analysis. 
 
Manuscript change: 
Page 4: 
“To assess the robustness of our loci, we performed a replication analysis using independent samples 
from HERMES, MVP and All of Us, totalling up to 13,258 cases of NICM/DCM and 1,435,287 controls 
(Extended Data Figure 4; Supplementary Tables 13-14). Of 36 testable GWAS-DCM loci, all were 
concordant in effect direction and 92% replicated at P<0.05. Of 64 testable MTAG-DCM loci, 88% 
replicated at P<0.05 (81% for ‘MTAG-only’ loci; Supplementary Note). Furthermore, none of the 
significant loci showed meaningful heterogeneity in discovery (Supplementary Tables 15-16). These 
results confirm the robustness of our GWAS and MTAG approaches.”  

 
 
A second important question is how the results in the current study more 
generally compare to those of ref 19, given that very similar approaches were 
applied.  
 
We thank the Reviewer for this point. We have added a Supplementary Note 
discussing the similarities and differences between our study and the HERMES study 
(Zheng et al. 2023).  
 
How do gene prioritizations agree or differ?  
 
First, we discuss the overlap of loci and genes prioritized within the overlapping loci. Of 
GWAS-DCM loci, 27 overlapped loci from any of the analyses in Zheng et al., while 46 
of 65 MTAG-DCM loci overlapped any of the loci from Zheng et al. While both studies 
nominated the same gene in only about 70% of overlapping loci, we found that this was 
mainly due to discordance in loci with no clear ‘winner’ in one or both of the studies. 
Among loci with strongly prioritized genes in both studies, we strikingly find ~94% 
concordance (only one discordant locus across GWAS and MTAG, near CRIM1).  
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Do both studies highlight the same or partly different cell types as major 
contributors?  
 
Second, we discuss the divergent cell type enrichment results between our study and 
the results of Zheng et al. While both studies find strong enrichments within 
cardiomyocytes, Zheng et al. additionally report significant enrichments in other cell 
types, including mural/vascular cells and fibroblasts. As discussed in the extensive 
Supplementary Note, the additional enrichments in Zheng et al. came from ‘disease-
dependent’ gene programs - ie, using genes with differential expression between DCM 
and non-failing hearts. We therefore performed additional analyses for cell type-specific 
and disease-dependent gene programs using two independent single cell datasets (see 
Figures R2-3 and the new Supplementary Figure 13).  
 
In both datasets, we found no meaningful enrichments for other cell types, using our 
predefined enrichment statistic. Of note, Zheng et al. used a more liberal enrichment 
statistic for hypothesis testing, and this likely contributed partly to the divergent cell type 
results. In addition, other technical differences likely contributed to some extent - 
including a slightly different underlying phenotype in GWAS and a different approach to 
gene mapping. These technical differences are explained in greater detail in the 
Supplementary Note. Taken together, we recommend that - outside of cardiomyocytes 
- enrichments in other cell types should be treated as interesting, but preliminary, at this 
stage. 
 
How do the PRS compare to each other? 
 
Third, we compared the predictive capacity of PRS constructed from both studies. 
Within three different datasets, our PRSs achieved better prediction accuracy than the 
respective PRSs from Zheng et al., when assessed by several performance metrics 
(effect sizes, AUC, variance explained). For instance, in UK Biobank, our GWAS-DCM 
and MTAG-DCM scores achieved effect sizes of OR~1.64 and OR~1.91 per standard 
deviation, while the Zheng et al. scores achieved effect sizes of OR~1.61 and OR~1.83 
per standard deviation, respectively. Our MTAG-DCM score explained ~9.5% of 
variance on the liability scale, while the Zheng et al. MTAG score explained ~7.9% of 
variance on the liability scale. The detailed comparison has been added to new 
Supplementary Table 41. The better prediction accuracy is consistent with the larger 
number of significant loci identified in our study, but also potentially consistent with the 
larger number of variants in our PRS. Nevertheless, both PRS show strong associations 
with DCM. We have added these comparisons to the Supplementary Note.  
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Manuscript change: 
Page 5: 
“Of note, Zheng et al. described enrichments for DCM heritability in other cardiac cell types19; this 
discrepancy is most likely due to technical differences, including use of a different enrichment statistic24 
(Supplementary Note). Taken together, our results highlight the central role of cardiomyocyte dysfunction 
in DCM pathogenesis.”  
 

 
Supplementary Materials change: 
Pages 56: 
“Comparison with results from Zheng et al. 
 
Genes prioritized in overlapping loci 
 
Similar to our study, Zheng et al. performed a GWAS and MTAG for DCM, followed by gene prioritization 
through integration of several lines of evidence31. Of our 38 significant loci in GWAS-DCM, 20 
overlapped genome-wide significant loci from GWAS for NICM/DCM reported by Zheng et al., while a 
total of 27 overlapped loci reported by the authors at more inclusive discovery thresholds (ie, DCM-Broad 
analyses at FDR1%, DCM-Strict analyses at genome-wide significance, or MTAG analyses at genome-
wide significance31). Details on locus overlap is described in Supplementary Table 39. Across the 27 
overlapping loci, gene prioritization from both studies nominated the exact same gene as the most likely 
causal gene in ~67% of the time, while ~19% of loci were partially concordant (ie, Zheng et al. described 
multiple genes with equal prio scores, one of which was concordant with our prioritized gene), and ~15% 
of loci were discordant. Of note, this intersection analysis considers all loci, even those with no gene 
highly-prioritized by our definitions. Therefore, we then restricted the comparison to loci with highly 
prioritized genes in both studies (ie, >=2.5 points and prioritized in our study AND >=3 points in Zheng et 
al. without ties). Strikingly, among 16 overlapping loci with ‘strong prioritization’ in both studies, the 
nominated gene was concordant in 94% of the time; only one locus was discordant - with CRIM1 
prioritized in our study and STRN prioritized in Zheng et al. (Supplementary Table 39). When focusing on 
the 65 loci from our MTAG-DCM, 46 overlapped any of the significant loci from Zheng et al., with similar 
convergence of prioritization. Of all overlapping loci, ~72% nominated the same causal gene, ~13% 
showed partial concordance, and in ~15% of loci the most strongly prioritized gene differed between the 
two studies (Supplementary Table 40). More importantly, when restricting to loci where both studies 
strongly prioritized a gene, ~96% were concordant (again, only the CRIM1 locus was discordant).  
 
Interestingly, we note that both CRIM1 and STRN are differentially expressed across several cell types in 
the single cell comparison of DCM LVs versus non-failing LVs. Furthermore, in our analyses (in both 
GWAS-DCM and MTAG-DCM) we identified two lead variants in this locus, of which one closer to CRIM1 
and one closer to STRN. These findings entertain the possibility that both genes have a causal role in 
DCM biology, although this would require functional validation.  
 
Overall, the locus comparison results highlight a strong consistency in gene prioritization between our 
study and Zheng et al., in particular for genes identified with high prioritization scores. 
 
 
 
Cell type enrichments 
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In the current study, we identified significant enrichment for DCM heritability only in cardiomyocyte gene 
programs. Zheng et al. additionally reported significant enrichment for several other cell types (eg. 
fibroblasts, mural cells). To understand the source of these discrepancies, we compared the similarities 
and differences between the two studies in more detail. Similar to our study, Zheng et al. performed cell 
type enrichment analyses by integrating results from their DCM GWAS data with snRNAseq data of the 
heart31. The authors re-processes the Reichart dataset45 to serve as their expression set, and utilized 
an analytical pipeline similar to our cell type enrichment pipeline. Using cell type-specific gene programs - 
similar to our findings - the authors report significant enrichment of DCM heritability only in 
cardiomyocytes31. In contrast, the authors additionally report significant enrichment for several other cell 
types (eg. fibroblasts, mural cells) when using ‘disease-dependent’ gene programs. In disease-dependent 
gene program analyses (details on methods described in a previous Supplementary Note above), we did 
not uncover robust enrichments for any cell type at Bonferroni significance. At nominal significance, only 
cardiomyocytes showed a (weak) consistent signal (P=0.04 in the Reichart dataset with positive 
coefficient in the Chaffin dataset). 
 
Initially, we considered several potential explanations for this discrepancy. First, the cases included in the 
GWAS by Zheng et al. were only partially overlapping with our cases (including up to ~10k non-
overlapping cases included in their effort). Perhaps more importantly, several of the included cohorts in 
Zheng et al. utilized a wider case definition - ie, any systolic dysfunction in absence of secondary causes. 
As such, the underlying GWAS data may have been inherently different between both studies. 
Nevertheless, we should note that the top loci from both studies show strong convergence, and the 
genetic correlations with cardiac endophenotypes were comparable between both efforts. For these 
reasons, we considered it less likely that the differences in the underlying GWAS data entirely explained 
the divergent cell type enrichment results, it may have contributed to an extent. 
 
Second, we considered that differences in the construction of ‘disease-dependent’ gene programs from 
the snRNAseq data may have caused different results. Analytically, the approaches between both studies 
were highly similar. Zheng et al. used the Reichart dataset45, which was also one of the two datasets 
used in our study. The authors used a similar pipeline to define  ‘disease-dependent’ gene programs - 
including similar DCM/non-failing sample definitions, use of pseudo-bulking for DE-testing, and similar 
cutoffs for logFC and P-value in DE testing. One difference was that Zheng et al. re-processed the 
expression counts using CellBender to remove potentially remaining background noise, while we used 
the counts as provided by Reichart et al. We nevertheless note that CellBender was used to adjust count 
data in the Chaffin dataset39 - where we also did not identify any significant enrichments for disease-
dependent programs in our analyses. 
 
Third, we considered that analytical differences in the statistical enrichment pipeline may have caused 
different results. Overall, the enrichment pipelines between both studies were reasonably comparable. 
Zheng et al. used parts of the sc-linker pipeline to perform their analyses46; sc-linker uses s-LDSC for 
enrichment testing44, which is also the tool used by us for enrichment testing of cell type programs. We 
note that sc-linker uses activity-by-contact (ABC) mapping to link genes to genomic regions46, while we 
used a more simple approach based on close proximity to gene bodies44. We note, however, that our 
approach yielded similar - or even stronger - enrichments for cell type-specific cardiomyocyte programs, 
which would indicate that this technical difference needn’t be substantial. Nevertheless, as compared to 
cell type-specific gene programs, it is possible that ABC mapping is more important for disease-
dependent programs (for which genes may be more distally regulated). Overall, the genomic mapping 
approach may have contributed to some extent to the different cell type enrichment results. 
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Critically, we found that Zheng et al. used a different statistic for hypothesis testing than used in our work. 
Specifically, the authors reported the ‘enrichment’ statistic or Ec. In contrast, we performed all hypothesis 
testing based on the ‘enrichment coefficient’ or Tau_C. When using the enrichment statistic instead of the 
coefficient, we recapitulate many of the significant findings reported in Zheng et al., including a pattern 
where a large proportion of  disease-dependent gene programs reach nominal P<0.05 (Supplementary 
Figure 13). Within the s-LDSC and sc-linker frameworks, there are 4 major output statistics that 
involve/describe enrichment of heritability44,46. The simplest is the ‘enrichment’ or Ec statistic, which is 
the proportion of total heritability captured by the functional annotation of interest, divided by the 
proportion of SNPs included in the given annotation; this statistic is not conditional on other 
annotations/features fed into the s-LDSC model. The ‘coefficient’ or Tau_C is the regression coefficient 
from s-LDSC, which captures an ‘adjusted’ enrichment parameter conditional on the other annotations fed 
into s-LDSC. In our work, all coefficients are conditional on the baseline model (which incorporates 
annotations for functional regions, including coding regions, enhancer regions, UTRs, etc); additionally, 
for disease-dependent programs, we included an annotation for all genes that could be assessed in 
differential expression testing (to account for the correct background of genes in the tissue). A third s-
LDSC statistic is the Tau_C* , which is simply a re-scaled standardized Tau_C statistic to represent an 
effect size per standard deviation of the underlying annotation. The final enrichment statistic is the 
‘enrichment score’ or E-score, which was newly proposed as part of the sc-linker framework46. E-score 
essentially represents the difference between the Ec statistic for a given annotation and the background 
enrichment of all protein-coding genes with the relevant genomic-mapping in the given tissue. For cell 
type enrichment, the developers of s-LDSC previously recommended using Tau_C (or Tau_C*) 
conditional on at least the baseline model for hypothesis testing40,44, as this statistic corrects for the 
inherent enrichment of important genomic regions one might expect in GWAS. Since the publication of 
sc-linker, the developers recommend using E-score as an alternative46, since it is corrected for the 
background of protein-coding regions while potentially yielding more power than Tau_C. Overall, one 
might conclude that Ec is the most ‘liberal’ statistic for enrichment testing (although prone to inflated type 
1 error in cell type analyses; ref.40), while Tau_C is the most ‘conservative’ statistic when conditioned on 
the baseline model and an appropriate background of genes40. In their study, Zheng et al. used the 
‘enrichment’ statistic or Ec, and we could indeed recapitulate several of their findings by performing 
hypothesis testing on Ec (Supplementary Figure 13). Importantly, these enrichments could not be 
recapitulated by us when conditioning on the baseline model and the appropriate background of genes 
(ie, when using Tau_C).  
 
Taken together, the differing results from cell type enrichment analyses - of disease-dependent gene 
programs - may be partly explained by the reporting of a different enrichment statistic. Nevertheless, 
other technical differences likely contributed to some extent too - including a slightly different phenotype 
in GWAS and the use of a more simple genomic mapping approach in our work. In all, across the GWAS 
studies, consistent evidence was found only for cardiomyocytes. For these reasons, we recommend that - 
outside of cardiomyocytes - enrichments in other cell types should be treated as interesting, but 
preliminary, at this stage. 
 
 
 
Polygenic score prediction 
 
Similar to our study, Zheng et al. report strong prediction of DCM using a PRS constructed from their 
GWAS. The authors tested their PRS in the UK Biobank, and reported prediction effect sizes of 1.76 OR 
increment per SD of PRS (95% CI 1.64 to 1.90). To more directly compare results, we then also tested 
our PRS within the UK Biobank, using the same dataset described in our GWAS and further restricting to 
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samples with i) high-quality exome sequencing and genotyping array data available, ii) European genetic 
ancestry48, iii) who were not related at a third degree or closer, and iv) who were not included within the 
first 45k participants with cardiac MRI data (since these samples contributed to the MTAG analyses). This 
procedure left 793 NI-DCM cases and 325313 controls. We then reran our main GWAS-DCM excluding 
UK Biobank, and constructed a new PRS using PRScs as described in our main methods49. Using this 
GWAS-DCM score (which was standardized to mean 0 and unit variance, and out of which the first 12 
PCs were regressed), we then assessed the association with NI-DCM, adjusting for sex, age, age^2, 
PC1-12 and the genotyping array. Similarly, we re-ran the MTAG analysis using the GWAS-
DCM[exclUKB] as base GWAS, and created MTAG-DCM[exclUKB] scores. The GWAS-DCM[exclUKB] 
score was strongly associated with NI-DCM in this dataset, with an OR increment per SD of PRS of 1.64 
(95%CI 1.53 to 1.76), as was our MTAG-DCM[exclUKB] score at an OR increment per SD of PRS of 1.91 
(95%CI 1.78 to 2.05). To compare more directly with the Zheng et al. PRS, we then downloaded their 
scoring files from the PGS catalog (GWAS:https://www.pgscatalog.org/score/PGS004861/ and MTAG: 
https://www.pgscatalog.org/score/PGS004861/), and scored the same samples using both scoring files. 
We found that the GWAS (OR per SD 1.61; 95%CI 1.53 to 1.76) and MTAG scores (OR per SD 1.83; 
95%CI 1.70 to 1.98) from the authors did well in prediction of NI-DCM, although slightly less well than the 
scores from our GWAS and MTAG, respectively. Using other metrics for prediction accuracy - including 
the variance explained, the AUC, and the AUPRC - similar patterns were observed (Supplementary Table 
41). We note that we observed a slightly larger effect size for the Zheng et al. scores than reported by the 
authors; we posit that this difference is a reflection of the more stringent phenotype definition (ie, NI-DCM 
as compared to ‘any’ DCM).     
 
Therefore, within the UK Biobank, the Zheng et al. PRSs seem to perform somewhat less well than the 
PRSs constructed from our data - although the confidence intervals were still overlapping. We therefore 
additionally assessed the Zheng et al. PRSs in the European subset of the All of Us dataset and within 
the Amsterdam dataset. In these datasets, we found that our GWAS-DCM and MTAG-DCM scores 
consistently achieved higher effect sizes, AUCs, and variances explained than the GWAS and MTAG 
scores from Zheng et al., respectively (Supplementary Table 41). The only exception was for AUPRC 
values in the All of Us dataset, which were marginally higher for the Zheng et al. scores.      
 
Overall, the above results show that both studies produce scores that strongly predict NI-DCM and can 
transfer to datasets from different countries. The slightly better prediction of our PRS - despite 
considerably smaller case numbers - might reflect the higher specificity of our underlying phenotype. This 
would be consistent with the larger number of significant loci identified in our study. Alternatively, we note 
that Zheng et al. used ~700k variants for their PRS (as per PGS catalog), while our PRS was built using 
~1.1M variants. The higher genome coverage might have contributed somewhat to a better prediction 
power using our PRS. Taken together, both studies produce strongly predictive PRS for DCM, with our 
PRS showing slightly better prediction of DCM in European ancestry.” 

 
 
Minor comments: 
 
The eQTL and pQTL analysis is very interesting. However the pQTL data that was 
used is from blood. The authors show that cardiac tissue and specifically 
cardiomyocytes are key players. Please use heart specific pqtl data (e.g. Assum 
et al. Nat Comms 2022) for this analysis.  
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We thank the Reviewer for pointing us towards the study by Assum et al., who 
computed cardiac-specific pQTLs. As suggested, we have applied our MR and 
colocalization analyses to this pQTL dataset. We note that the pQTL data were based 
on only ~75 samples, and therefore power to identify instrumental variables was limited. 
Indeed, only one significant signal was identified in MR analyses across GWAS-DCM 
and MTAG-DCM, namely BAG3. While an interesting finding, it does not change gene 
prioritization meaningfully. For these reasons, we opt to leave these data out at this 
stage. 
 
 
It would also be interesting to characterize the overlap of eQTL and pQTL results. 
What is the agreement between heart and blood? 
 
These are interesting questions raised by the Reviewer. The proteomic assay used by 
the UKB-PPP only covers ~15% of potentially protein-coding genes, which complicates 
a direct comparison of transcript and protein MR results. Indeed, we identified only a 
handful of significant proteins using the blood proteome, most of which did not show 
evidence of colocalization and did not overlap significant transcripts from the 
transcriptome-wide MR. Therefore, the transcriptome-wide MR contributed much more 
information to gene prioritization than did the proteome-wide MR. We note, however, 
that several sub-threshold proteome-MR signals were consistent with findings from our 
transcriptome-MR analysis, indicating that larger DCM GWAS might yield bioligically-
informative results from proteome-MR, in the future. 
 
 
The comparison of the genetic associations of the strict and more lenient DCM 
phenotype definition is interesting. What is the genetic correlation of the two 
traits? Is there more variance in the lenient definition? 
 
The genetic correlation between our GWAS-DCM and the broader biobank-based NICM 
phenotype was around 0.93 (95%CI [0.87; 0.99]). Nevertheless, as described in our 
main text, the SNP-heritability estimate for NICM is substantially lower (~6-7%) than for 
DCM (12-16%). While we acknowledge that there is case overlap between these sets, 
these results show that DCM and NICM have a strongly shared genetic basis, although 
the total contribution of genetics is higher in DCM.  
 
To assess the heterogeneity of the genetic architectures for both traits, we used 
stratified LD fourth moments regression (sLD4M). sLD4M quantifies the polygenicity of 
traits from GWAS data, where polygenicity is defined as the effective number of causal 
variants (Me) (O’Connor et al. 2019). Traits with larger Me values have more evenly 

https://paperpile.com/c/eH0gh9/LWyw5
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distributed genetic effects across many variants in the genome; traits with smaller Me 
values have less evenly distributed effects across fewer variants in the genome. 
 
For GWAS-DCM, we found that Me was equal to 1264 (95%CI [846; 1681]) with a 
similar estimate for biobank-only NI-DCM (1223, 95%CI [730; 1717]). Consistent with a 
more heterogeneous architecture, the Me estimate for NICM was numerically (but not 
significantly) higher at 1415 (95%CI [931; 1899]). Consistently, the mean heritability per 
effectively causal variant was numerically almost double in DCM (9.6e-05, 95%CI [7.2e-
05; 0.000143]) as compared to NICM (4.9e-05, 95%CI [3.6e-05; 7.4e-05]), although 
again not significantly so.  
 
These new analyses give an indication that the genetic architecture of DCM is less 
heterogeneous than NICM, despite a larger total genetic contribution in DCM. However, 
given currently large confidence intervals, we do not want to over-emphasize these 
results. We therefore opt to leave these data out of the manuscript at this stage.  
 
 
How do the single cell results compare to those of Reichart et al Science 2022? 
 
This is an interesting question raised by the Reviewer. Our single cell analyses 
consisted of two parts: One part focused on cell type enrichment, and the other on 
expression patterns and differential expression for candidate genes.  
 
As suggested, we replicated our cell type enrichment analyses using the Reichart et al. 
dataset (Reichart et al. 2022). We processed the snRNAseq data using custom 
pipelines, and then performed the cell type enrichment analysis in a similar manner as 
described for the Chaffin et al. dataset. In both datasets, using cell type-specific gene 
programs, we only find robust evidence for enrichment of cardiomyocyte gene programs 
(Figure R2 and Extended Data Figure 5). We have added these results to 
Supplementary Table 17. We also performed enrichment analyses for ‘disease-
dependent’ gene programs, as discussed in our response to the previous comment. As 
mentioned, we find no robust evidence for enrichment of other cell types using disease-
dependent gene programs (added to the new Supplementary Table 17). 
 

https://paperpile.com/c/eH0gh9/cebb
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Figure R2: Cell type enrichment results using cell type-specific gene programs from two 
snRNAseq datasets.  
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Figure R3: Cell type enrichment results using disease-dependent gene programs from two 
snRNAseq datasets.  

 
 
 
To improve our analyses focused on cell type specific expression patterns and 
differential expression patterns, we now combine data from three different single cell 
datasets (Chaffin et al. 2022; Reichart et al. 2022; Koenig et al. 2022). In particular, to 
declare a gene significantly differentially expressed between DCM and non-failing 
hearts, we now require a consensus of at least 2 of 3 datasets. The data are showcased 
in Figure R4 and new Figure 3. 
 

https://paperpile.com/c/eH0gh9/tReU+cebb+IIju
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Figure R4: Cell type-specific expression and differential expression of the top prioritized genes for 
DCM from three single-cell datasets of the left ventricle.  

 
 
 
Manuscript change:  
Page 5: 
“Cell type enrichment analyses - using two published LV single nucleus RNA sequencing (snRNAseq) 
datasets22,23 - highlighted cell types of relevance to DCM. Only cardiomyocyte-specific genes were 
significantly and robustly enriched for DCM heritability across datasets (P<3e-7 for enrichment coefficient; 
Supplementary Table 17; Extended Data Figure 5; Supplementary Figure 5). ” 
 

Page 6: 
“To scrutinize the prioritized genes further, we queried published single cell data of the human LV from 
three datasets22,23,43 - including data from 61 non-failing donors and 81 DCM patients. We found that 
many of the prioritized genes showed high and/or preferential expression in cardiomyocytes (Figure 3; 
Supplementary Table 24). These genes underscore the role of the contractile apparatus in DCM 
pathogenesis44, through known cardiac sarcomeric genes (eg. TTN, OBSCN and ACTN2), but also 
lesser-described structural genes including SVIL (encoding an actin-binding protein recently implicated in 
HCM21) and PDLIM5 (a cytoskeletal linker45). Other genes with cardiomyocyte-specific expression 
included MITF (a transcription factor implicated in cardiac hypertrophy in vitro46) and MLIP (a lamin-
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interacting protein associated with myocardial adaptation in mice47). Several genes showed significant 
differential expression between DCM and non-failing hearts (Figure 3; Supplementary Table 25). Notably, 
within cardiomyocytes, such genes included MAP3K7 (a mitogen-activated protein implicated in 
cardiospondylofacial syndrome48), ADAMTS7 (a thrombospondin-regulating metalloprotease49), and 
both PRKCA and CAMK2D (involved in calcium-handling50,51). Of note, several genes highlighted from 
both GWAS and single cell data are being investigated as targets for other conditions (Supplementary 
Table 26). Taken together, these results show how integration of GWAS and single cell data - paired with 
appropriate cell type priors - may identify plausible gene candidates for cardiomyopathy and LV function.” 
 

Page 18: 
“To identify causal cell types for GWAS-DCM and MTAG-DCM, we used stratified-LDSC, as described in 
Finucane et al., 2018 (ref.24). To this end, we utilized two published single-nucleus RNA-sequencing 
(snRNAseq) datasets, one from Chaffin et al., 2022 (ref.22) and another from Reichart et al., 2022 
(ref.23). The Chaffin et al. dataset included LV expression data on 11 DCM hearts, 16 non-failing hearts 
and 15 hypertrophic cardiomypathy hearts. The cardiomyopathy samples came from explanted hearts 
with end-stage disease. Chaffin et al. identified 17 major cell types, which were used to define cell type-
specific gene programs for enrichment testing (see Supplementary Note for detailed methods). The 
Reichart et al. dataset included data on 61 end-stage cardiomyopathy hearts (52 with DCM) and 18 non-
failing controls. Reichart et al. identified 9 major cell types in the LV, which were used to define cell type-
specific gene programs for enrichment testing (see Supplementary Note for detailed methods). Finally, in 
addition to the ‘cell type-specific’ expression annotations described above, we also explored ‘disease-
dependent’ cell type annotations. Disease-dependent programs were based on genes with significant 
differential expression between DCM samples and non-failing samples, irrespective of their cell type-
specificity. The detailed methods for this analysis are described in the Supplementary Note. Of note, cell 
type enrichment analyses were not informed in any way by our GWAS/MTAG gene prioritization scheme.” 

 
Page 19: 
“We then aimed to identify cell type expression patterns and cellular functions for the prioritized genes 
from our GWAS and MTAG. To this end, we used available snRNAseq or scRNAseq data from three 
published datasets, including Chaffin et al.22, Reichart et al.23, and Koenig et al.43. Koenig et al. 
performed snRNAseq/scRNAseq on 18 LVs from DCM patients and 27 LVs from control donors.  
 
Using the processed AnnData/Seurat objects from each study, we first restricted to control/non-failing 
samples from the LV, and then log-normalized the expression data with scale 10000 (if not already 
normalized). To harmonize cell type data across datasets, we then used the available cell type and/or cell 
state annotations to collapse or split cell types into ‘harmonized’ cell types (Supplementary Note). For 
genes with at least 0.5 points from our prioritization scheme in GWAS-DCM or MTAG-DCM, we then 
exported several expression measures from each dataset. These included i) the mean normalized 
expression within harmonized cell types and pseudo-bulk data and ii) the percentage of nuclei/cells with 
non-zero expression for each harmonized cell type and in pseudo-bulk. We then combined data by taking 
the weighted average of expression values (weighted by the number of nuclei/cells contributing in each 
dataset). For plotting purposes, we then focused on the list of 63 prioritized genes and computed the 
scaled relative normalized expression of a given gene in a given cell type, as compared to all other cell 
types. 
 
We further aimed to identify genes differentially expressed between DCM and non-failing hearts. To this 
end, we utilized results from cell type-specific differential expression (DE) analysis for DCM versus non-
failing hearts, as described in Chaffin et al.22 and Koenig et al.43 For the published Chaffin et al. DE 
analysis, we consider results suggestive if reaching transcriptome-wide multiple-testing-adjusted two-
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sided P<0.05 using CellBender-adjusted counts, without failing the ‘background contamination’ flag. For 
the published Koenig et al. DE analysis, we considered results suggestive if reaching transcriptome-wide 
multiple-testing-adjusted two-sided P<0.05. Finally, we used the Reichart et al. dataset23, to perform a 
new DE analysis, comparing the 52 DCM LVs to 18 control LVs, using the same cell types that could be 
included for DE testing in their original publication (Supplementary Note). Again, a transcriptome-wide 
multiple-testing-adjusted two-sided P<0.05 was considered suggestive. While we acknowledge that the 
cell types included in DE testing were not perfectly aligned across datasets, we approximately matched 
cell types to identify signals that were consistent across datasets (Supplementary Table 25). Finally, we 
declared significance for a gene, if at least two of three datasets showed a suggestive result with 
concordant direction of effect within comparable cell types.“ 
 
 

Supplementary Materials change: 
Page 38: 
“Cell type enrichment analysis using the Chaffin et al. snRNAseq dataset 
 
Using the snRNA-seq data obtained from Chaffin et al., 2022 (ref.33), we performed several analyses 
focused on cell type enrichment. The dataset consisted of LV samples from 11 DCM patients, 16 non-
failing controls and 15 HCM patients. In terms of analyses, we i) generated cell type-specific annotations 
for enrichment testing using stratified linkage disequilibrium score regression (s-LDSC)34 and ii) 
generated ‘disease-dependent’ cell type annotations for enrichment testing using s-LDSC.  
 
Cell type specific gene programs 
Based on the Chaffin et al. dataset, we defined cell type-specific gene expression profiles by collapsing 
nuclei into 17 major cell types from the human left ventricle. We then identified differentially expressed 
genes in each cell type compared to all other cell types. To control for the inherent correlation of nuclei 
from the same individual, we created a pseudo-bulk expression profile after summing gene expression 
counts across all nuclei for each combination of individual and cell type. Individual and cell type 
combinations with fewer than 50 nuclei were omitted and lowly expressed genes were removed using the 
function filterByExpr() in edgeR35. Gene expression was normalized withDESeq236 and differential 
expression testing was performed using limma-voom37. Using a  design matrix  ~0 + cell_type + 
individual, we extracted an explicit contrast comparing expression in each cell type to all other cell types. 
For each cell type, we defined the cell type-specific profile as the top 10% most upregulated genes based 
on the t-statistic from the differential expression test.  
 
s-LDSC analysis of cell type specific gene programs 
We annotated SNPs within a 100 Kb window on either side of the transcribed region for each set of cell 
type specific genes, as in Finucane et al, 2018 (ref.38). Gene coordinates were based on the GRCh38 
gene reference used in the snRNAseq data analysis. Using these annotations, we tested for cell type 
enrichment using s-LDSC, controlling for an annotation derived from all genes tested for differential 
expression and the baseline annotations from Finucane et al., 2015 (ref.34). As recommended, we report 
two-sided P-values from the tau ‘coefficient’ - which is conditional on all other annotations included in the 
model - and not the ‘enrichment’ statistic. As LD reference, we used the previously derived 1000 
Genomes European ancestry LD reference provided with the software. To account for the 17 cell types 
tested for GWAS-DCM and MTAG-DCM, we applied a Bonferroni significance cutoff by setting 
significance at 0.05/17=0.0029. P-values were one-sided.  
 
s-LDSC analysis of disease-dependent gene programs 
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As described below for the Reichart dataset, we also performed an analysis of disease-dependent gene 
programs using the Chaffin et al. dataset (ref.33). We took the results from the differential expression 
analysis as described previously33 (using CellBender-adjusted expression counts), and considered 
genes with |logFC| > 0.5 and an FDR-adjusted P < 0.05 as ‘disease-dependent’ genes in the given cell 
type. We annotated SNPs within +/-100KB from each gene identified for each cell type and ran s-LDSC to 
identify GWAS heritability enrichment of these annotations, adjusting for baseline annotations from 
Finucane et al. 2015 (ref.34) and a set of annotations derived from all genes tested for differential 
expression in the given cell type. As recommended by Finucane et al., we report test statistics and 
corresponding P-values from the tau ‘coefficient’ - which is conditional on all other annotations in the 
model - and not the ‘enrichment’ statistic (which is not conditional on the other annotations). 
 
 
Cell type enrichment and differential expression analyses in the Reichart et al. snRNAseq dataset 
 
Using the snRNA-seq data obtained from Reichart et al., 2022 (ref.39), we performed several analyses 
focused on cell type enrichment and differential expression. The dataset consisted of samples from 
several anatomical locations (including several locations across the left and right ventricle) from 61 
cardiomyopathy patients - of which 52 with DCM - and 18 non-failing controls. In terms of analyses, we i) 
generated cell type-specific annotations for enrichment testing using stratified linkage disequilibrium score 
regression (s-LDSC)34, ii) generated differential expression data comparing left ventricles from DCM 
patients with non-failing control left ventricles, and iii) generated ‘disease-dependent’ cell type annotations 
for enrichment testing using s-LDSC.  
 
Cell type specific gene programs 
First, to test for enrichment of cell type specific gene programs in our GWAS/MTAG data, we generated a 
list of cell type specific genes. We removed nuclei labeled as ‘native’ or ‘lowQC’ prior to estimating cell 
type specific genes. We then performed ‘pseudo-bulk’ aggregation by summing gene counts across 
nuclei for each donor/tissue region combination, by cell type. We only retained a given donor/tissue 
region combination if they had at least 50 nuclei of that cell type. Lowly expressed genes identified with 
the filterByExpr() function in edgeR were removed. We normalized the pseudo-bulk expression with 
DESeq2 and fit the differential expression model ~0+cell_type+donor_tissue using limma-voom. Notably, 
we included a covariate for the donor/tissue region combination because each donor/tissue region will be 
represented across most cell types. We then extracted contrasts comparing gene expression in each 
focal cell type to all other cell types.  
 
s-LDSC analysis of cell type specific gene programs 
To generate annotations for s-LDSC, we sorted all genes tested for each cell type by t-statistic and 
selected the top 10% of genes to represent each cell type, as in Finucane et al, 2018 (ref.38). We 
annotated any SNP within +/-100KB of the genes for each cell type as ‘cell type specific’ SNPs. Using 
these annotations, we tested for cell type enrichment using s-LDSC, controlling for an annotation derived 
from all genes tested for differential expression and the baseline annotations from Finucane et al., 2015 
(ref.34). As recommended by Finucane et al., we report test statistics and corresponding P-values from 
the tau ‘coefficient’ - which is conditional on all other annotations included in the model - and not the 
‘enrichment’ statistic (which is not conditional on other annotations). To account for the 9 cell types tested 
for GWAS-DCM and MTAG-DCM, we applied a Bonferroni significance cutoff by setting significance at 
0.05/9=0.0.0056. P-values were one-sided.  
 
Differential expression analysis of DCM versus controls 
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Second, we generated a list of differentially expressed genes between dilated cardiomyopathy (DCM) 
cases and normal controls by cell type. We first restricted our analysis to samples from the left ventricle 
(LV) and removed any nuclei flagged as low quality. Next, for a given cell type, we summed 
transcriptional counts across all nuclei from each donor of origin. Of note, we only generated a ‘pseudo-
bulk’ profile for a donor if they had more than 20 nuclei of the given cell type. We then removed 
mitochondrial genes, ribosomal genes, and any gene that was found in <1% of nuclei from both DCM 
nuclei and control nuclei. We further removed lowly expressed genes using the function filterByExpr() 
from edgeR. We normalized the expression data using DESeq2 normalization, and then tested for 
differential expression between DCM cases (Nmax=52) and non-failing controls (Nmax=18) using limma-
voom with the model of ~1 + disease + sex. Multiple testing correction was performed using the 
Benjamini-Hochberg procedure.  
 
s-LDSC analysis of disease-dependent gene programs 
In contrast to the cell type specific gene programs defined by high cell type specificity of expression, we 
then also generated ‘disease-dependent’ gene programs for cell types. Disease-dependent gene 
programs consist of genes that are differentially expressed between the disease state and the healthy 
state, and therefore may consist partly of genes that are not expressed to a high degree in the given cell 
type or may not be cell type-specific. Such programs may capture disease-response mechanisms, rather 
than disease initiation mechanisms40. To generate disease-dependent cell type annotations of s-LDSC, 
we used the results from the differential expression analysis described above, and considered genes with 
|logFC| > 0.5 and an FDR-adjusted P < 0.05 as ‘disease-dependent’ genes in the given cell type. Of note, 
only 3 genes were identified in adipocytes with this procedure, and therefore we excluded adipocytes for 
the s-LDSC analysis. We annotated SNPs within +/-100KB from each gene identified for each cell type 
and ran s-LDSC to identify GWAS heritability enrichment of these annotations, adjusting for baseline 
annotations from Finucane et al. 2015 (ref.34) and a set of annotations derived from all genes tested for 
differential expression in the given cell type. As recommended by Finucane et al., we report test statistics 
and corresponding P-values from the tau ‘coefficient’ - which is conditional on all other annotations in the 
model - and not the ‘enrichment’ statistic (which is not conditional on the other annotations).” 

 
Page 41: 
“Harmonization of cell types across single cell datasets to construct LV expression patterns 
 
We used three single cell datasets of heart to construct expression patterns for genes identified from our 
GWAS-DCM and MTAG-DCM. These datasets included Chaffin et al.33 , Reichart et al.39 , and Koenig 
et al.41. To harmonize cell type data across datasets, we used the available cell type and/or cell state 
annotations to collapse or split cell types into ‘harmonized’ cell types. In the Reichart dataset, nuclei with 
cell state ‘PC1’, ‘PC2’ or ‘PC3’ were collapsed into ‘Pericytes’; nuclei with cell state ‘SMC1.1’, ‘SMC1.2’, 
or ‘SMC2’ were collapsed into ‘VSMC’; nuclei with cell state ‘EC7’ were assigned ‘Endocardial’; nuclei 
with cell state ‘Meso’ were assigned ‘Epicardial’; nuclei with cell state ‘EC8’ were assigned ‘Lymphatic 
endothelial’; nuclei with cell state ‘EC1.0’, ‘EC2.0’, ‘EC5.0’, or ‘EC6.0’ were assigned ‘Cardiac 
endothelial’. In the Koenig dataset, cells/nuclei with cell type ‘NK/T Cells’ or ‘B Cells’ were collapsed into 
‘Lymphocyte’. In the Chaffin dataset, ‘Cardiomyocyte_I’, ‘Cardiomyocyte_II’, and ‘Cardiomyocyte_III’ were 
collapsed into ‘Cardiomyocyte’; ‘Endothelial_I’, ‘Endothelial_II’, and ‘Endothelial_III’ were collapsed into 
‘Cardiac Endothelial’; ‘Fibroblast_I’, ‘Fibroblast_II’ and ‘Activated_fibroblast’ were collapsed into 
‘Fibroblast’; ‘Pericyte_I’ and ‘Pericyte_II’ were collapsed into ‘Pericyte’; and ‘Macrophage’ and 
‘Proliferating_macrophage’ were collapsed into ‘Myeloid’. “ 
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An interaction analysis of rare variant status (possibly aggregated as genotype +, 
as currently done) and PRS would be highly interesting. 
 
As suggested, we assessed the joint contribution of PRS and rare pathogenic variants 
to DCM risk. Because this analysis requires calling rare variants in both DCM cases and 
healthy controls, we turned to the AllofUs dataset for this analysis.  
 
We acknowledge that rare variant status in AllofUs was defined using LOF variants (for 
genes where truncation is an established disease mechanism) and high-confidence 
ClinVar P/LP variants. For this reason, it is possible that some carriers are missed, 
although our variant curation is likely quite specific for P/LP. We used the same high-
confidence genes as used previously; we designated this carrier definition as 
“ClinGen_PLP”. 
 
We then performed logistic regression analyses among unrelated individuals, assessing 
the risk for DCM conferred by 3 tertiles of PRS in carriers and noncarriers of 
ClinGen_PLP. This analysis yielded a nice gradient of risk across tertiles in both carriers 
and noncarriers, suggesting that PRS and rare variants jointly contribute to DCM risk. 
The data are presented in Figure R4 and the new Extended Data Figure 8.  
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Figure R4: Joint contribution of PRS and rare pathogenic variants to DCM risk in the All of Us 
dataset.  

 
Manuscript change:  
Page 9: 
“and among carriers of pathogenic rare variants for DCM (P=5.2x10-7; Figure 5; Extended Data Figure 8). 
” 
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To what extend could the finding of cardiomyocytes as main contributors be a 
consequence of the gene prioritization scheme? Specifically, the pops method is 
highly weighted and relies strongly on expression. As many important loci are 
cardiomyocyte specific this might lead to a self fulfilling prophecy. 
 
This is an excellent point made by the Reviewer. If genes prioritized by external data 
are used for enrichment analyses, then these might be liable to some circular 
reasoning. We should note, however, that our cell type enrichment analysis was 
performed agnostic of our gene-prioritization approach. We used stratified LD score 
regression (sLDSC) for this analysis. As input, we used our GWAS summary statistics 
and cell type annotations - which were based on proximity to cell type-specific genes 
from the snRNAseq data. sLDSC then tested whether these regions were enriched for 
GWAS/MTAG heritability (without taking into account any gene prioritization schemes 
based on GWAS/MTAG).  
 
At the same time, we acknowledge that our pathway enrichment analyses may have 
been affected by our gene prioritization scheme. In these analyses, prioritized genes 
were used as input, which might bias towards pathways that are strongly cardiac 
specific. While we stress that PoPS was agnostic to tissue a priori (it learnt tissue 
features on its own), we did decide to perform a secondary analysis for the pathway 
enrichment section. In this sensitivity analysis, we used only genes nominated by 
MAGMA. MAGMA is purely a distance-based gene prioritization tool that uses no 
external (tissue-specific) expression data. Reassuringly, for pathways that were 
potentially strongly cardiac-specific, the general pattern of enrichments persisted (eg, 
sarcomere organization, myofibril assembly, actin cytoskeleton, ErbB signalling, 
cardiomyocyte signalling pathways converging on titin, left ventricular systolic 
dysfunction, dilated cardiomyopathy, etc). These data show that our pathway 
enrichment results were not driven purely by our gene prioritization scheme. These data 
have been added to Supplementary Table 23.  
 
Manuscript change:  
Page 6: 
“Accordingly, gene set enrichment analyses, using the 63 prioritized genes, identified several significant 
gene sets including “Cellular response to heat stress” (Supplementary Table 22-23, Supplementary 
Figure 7).” 
 

Manuscript change:  
Page 18: 
“Since our prioritized genes may have been pre-selected towards genes with high cardiac expression (ie, 
through gene features learnt by PoPs), we performed a sensitivity analysis using genes nominated by 
MAGMA39 - a method based only on association signals near gene regions.” 
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Reviewer 2 
 
Remarks to the Author: 
The report by Ellinor, Daly, Aragam and Bezzina describes results of a large DCM 
GWAS meta-analysis. A large number of novel loci are described and the authors 
include a broad set of secondary analyses. The analyses are well-done and the 
paper is a pleasure to read. I do have some comments: 
 
We are grateful to the Reviewer for their thoughtful consideration of our work. 
 
1) Can the authors provide a pheWAS analysis of their PRS and lead variants? 
The specificity of the associations is not currently explored.  
 
As suggested, we performed a pleiotropy analysis of our lead variants. To this end, we 
used the Cardiovascular Disease Knowledge Portal (CVDKP) to perform a look-up for 
several cardiovascular diseases and quantitative traits. The CVDKP assembles, 
harmonizes and meta-analyzes large-scale GWAS for important cardiovascular traits to 
produce well-powered and well-controlled large-scale GWAS data. The phenotypes 
included in this portal range from ECG traits, cardiac MRI traits, arrhythmia, heart 
failure, lipids, coronary disease, and more. Overall, most of the loci showed pleiotropic 
effects on ECG traits, blood pressure, heart rate, heart failure, atrial fibrillation, and 
cardiac functional and volumetric traits. The results from this look up are discussed in 
the main text, and have been added to Supplementary Tables 34, 35 and 38.  
 
Since the above look-up is focused strongly on cardiovascular traits, we also performed 
a phenome-wide look-up using the UK Biobank PheWeb portal. This portal hosts GWAS 
data on thousands of disease codes, tested in the UK Biobank. We did not observe 
consistent patterns of association between our lead variants and extra-cardiac 
diseases, although - as expected - several lead variants were associated with atrial 
fibrillation, hypertension or heart failure. These results have been added to 
Supplementary Tables 36 and 37.     
 
Manuscript change:  
Page 4: 
“GWAS-DCM signals showed strong pleiotropic effects on relevant cardiovascular traits, including cardiac 
MRI traits, electrocardiographic traits, blood pressure, heart failure, and arrhythmia (Supplementary 
Note). “ 
 
Supplementary Materials change: 
Page 29: 
“Assessment of pleiotropy for significant loci 
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We aimed to identify pleiotropic effects for the lead variants identified in our GWAS-DCM and MTAG-
DCM analyses (Supplementary Tables 34-38). First, we queried the Cardiovascular Disease Knowledge 
Portal (CVDKP; https://cvd.hugeamp.org/) to identify pleiotropic associations for relevant cardiovascular 
diseases and quantitative traits. At the suggestive significance level set by the portal, 33 of 38 GWAS-
DCM loci showed potential pleiotropic associations with relevant traits (Supplementary Tables 34 and 38), 
which include cardiac MRI traits, ECG traits, HF, atrial fibrillation, and heart rate. In contrast, only two loci 
showed pleiotropic effects on coronary artery disease, of which one had a discordant effect between 
DCM and coronary disease (ADAMTS7). Similarly, of 65 MTAG-DCM loci, 40 loci showed potential 
pleiotropic associations with relevant traits (excluding MRI traits; Supplementary Tables 36 and 38); only 
three loci showed pleiotropic effects on coronary artery disease (again including the discordant 
ADAMTS7 locus). 
The above look-up was based on the CVDKP, which is focused on cardiovascular traits. As such, this 
pleiotropy look-up was naturally biased towards potentially relevant traits, and would miss important 
pleiotropic associations outside of the cardiovascular system. We therefore performed a second look-up 
using a publicly-available phenome-wide disease analysis (PheWAS) from the UK Biobank 
(Supplementary Tables 35 and 37). Reassuringly, the vast majority of suggestive associations involved 
arrhythmia, conduction disease, hypertension, heart failure, and related cardiovascular diseases; there 
were only limited suggestive associations in other organ systems. These findings show that the 
phenotypic consequences of our DCM loci largely involve the cardiovascular system; furthermore, these 
results support the validity of DCM loci.  “ 

 
 
2) How does the PRS compares to carrying a bona fide DCM Mendelian mutation 
in terms of DCM risk? 
 
This is an interesting question raised by the Reviewer. In preliminary analyses 
performed within the UK Biobank, we found that individuals in the top centile of PRS 
have approximately 4-fold increased odds of DCM compared to all other individuals. In 
contrast, we found that carriers of pathogenic or likely pathogenic variants for DCM had 
an over 20-fold increased odds of DCM, as compared to noncarriers (in All of Us, the 
effect sizes were slightly lower at ~10-14-fold). These data suggest that PRS cannot yet 
identify individuals with the same risk as carriers of single monogenic mutations.  
 
At the same time, as a quantitative variable, it is expected that PRS explains a larger 
proportion of disease variance in the general population. Indeed, we found that our PRS 
explains ~8-9% of population-wide variance on the liability-scale, while rare pathogenic 
and likely pathogenic variants explain ~2%. These results are similar to findings in 
hypertrophic cardiomyopathy (Biddinger et al. 2022). While interesting, these data are 
currently out of scope of our already dense study, and therefore we have opted to not 
pursue these analyses further.  
 
  

https://paperpile.com/c/eH0gh9/06se
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Reviewer 3 
 
Remarks to the Author: 
The authors performed a large-scale genome-wide association study (GWAS) and 
multi-trait analysis (MTAG) for dilated cardiomyopathy (DCM). Using 9,365 DCM 
cases and 946,368 controls the study is about twice as large as previous GWAS. 
Expectedly, the number of loci showing genome-wide significance increased. 
Further analyses highlight the role of the contractile apparatus in the 
pathogenesis of DCM and mendelian randomization analyses showing that DCM 
liability is associated with an increased risk of systolic heart failure in context of 
other cardiovascular conditions. 
 
The analyses were conducted with great care, the methodology is sound (as far 
as I can tell not being a bioinformatician) and the paper is written very well. The 
conclusions appear to be justified. 
 
We appreciate the helpful guidance of the Reviewer.  
 
 
Major comment 
The combination of the DCM GWAS with the multi-trait analysis is not entirely 
transparent. Specifically, MRI-based measurements of end-systolic volume 
(LVESV) may reflect body size rather than pathological dilatation of the LV. 
 
This is a good point, since LV volumetric traits may be affected by body size in a non-
pathological way. We should note, however, that the LVESV GWAS data were indexed 
for body-surface-area, as is standard in clinical practice. While potentially not perfect, 
we posit that this approach should largely remove strong body-size effects.  
 
To further assess the role of body size on risk of DCM, we have now added multi-
variable Mendelian randomization (MVMR) analyses. In MVMR analyses, we jointly 
modeled several of the potentially causal risk factors. Reassuringly, we found that body 
weight, systolic blood pressure and atrial fibrillation all represented independent risk 
factors, while height was abolished upon adding body weight to the model (b=-
0.03111133, P=0.6). These analyses imply that any causal effect of height on DCM may 
be mediated through body weight. We have added these results to the new 
Supplementary Table 28. 
 
Manuscript change: 
Page 7: 
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“Weight, systolic blood pressure and AF remained as independent risk factors for DCM in multivariable 
MR analyses (Supplementary Table 28).“ 
 

 
This is of relevance, since the previous studies (with overlapping data sets) 
already provided evidence for 42 DCM loci (line 157). This number is similar to the 
38 GWAS loci for DCM reported here. Thus, it appears that the major novelty 
comes from the 65 loci identified by MTAG, i.e. by GWAS for global 
circumferential strain (Ecc) and LVESV. However, GWAS on structural and 
functional evaluations of MRI data have been reported before and is unclear 
whether there is (substantial) overlap with previous reports. 
 
We thank the Reviewer for this point. We would like to clarify some aspects of our 
results and methodology. Firstly, we acknowledge that the sentence on line 157 was 
ambiguous; the 42 lead variants referred to variants that were discovered in the current 
study and which were evaluated against previously reported GWAS of left ventricular 
parameters. The most recent comparable GWAS of a simple DCM outcome, reported in 
a preprint by Zheng et al., identified 26 genome-wide significant loci, whereas the 
current study identified 38 distinct loci, of which 27 have not been previously described. 
 
With respect to related traits, the main focus of our work was to perform a GWAS for 
DCM. We leveraged GWAS data for cardiac functional/volumetric traits from a recent 
preprint (Tadros et al. 2023), with the goal of enhancing the DCM GWAS using 
correlated traits. To this end, we used an MTAG framework. MTAG takes >1 input 
GWAS and computes new summary statistics for all input GWAS, taking into account 
the shared genetics across the inputs.  
 
Throughout our work, we discuss only the loci arising from the MTAG output for DCM 
(‘MTAG-DCM’). We do not report or discuss the GWAS or MTAG output for the included 
endophenotypes. Theoretically, all reported loci should be interpreted as genetic loci for 
DCM. Of course, as with any method, MTAG has limitations and assumptions. To 
scrutinize the MTAG-DCM loci, we have added several new layers of analyses. For 
instance, as inspired by the Reviewer, we assessed whether MTAG loci show at least 
some level of significance in GWAS-DCM (see next comment below). Importantly, we 
also added replication in an independent set of cases (which were not aided by MTAG) 
which showed good replication given power (Figure R1). 
 
As suggested, we have also added a look-up regarding the overlap of our DCM loci with 
genome-wide significant loci from previous LV trait and heart failure GWAS. These 
analyses are described in more detail below. 
         

https://paperpile.com/c/eH0gh9/Nyyg
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- The authors should clarify by which extent the MTAG loci provide at least a 
Bonferroni-corrected significant signals for DCM, e.g. <0.0007. If some loci offer 
no signal for DCM, it is questionable whether they reflect LV dysfunction and can 
be meta-analysed with DCM in a meaningful way.  
 
As suggested, we assessed whether MTAG lead variants showed at least some level of 
significance in GWAS-DCM. Focusing only on the strongest lead variant in each locus, 
we found that 60/65 loci reached the Bonferroni-corrected level of significance 
(P<0.00077) in GWAS-DCM, while 63 out of 65 loci reached at least a nominal level of 
significance (P<0.05). Of the loci showing no evidence of association (IGFBP3, 
GATA4), we note that GATA4 was convincingly validated in our independent replication 
cohort. Taken together, our MTAG approach appears largely robust, which is likely a 
reflection of the stringent selection for input traits. Nevertheless, a limited number of loci 
(eg. IGFBP3) may represent false-positives.  
 
 
- The authors should be more distinct on the number of novel loci, since GWAS 
for structural and functional evaluations of MRI data have been published before. 
I.e., loci reported for genome-wide association with functional and structural 
cardiac phenotypes (PMID: 32382064) or heart failure (e.g. PMID: 36376295) 
before should not be declared as novel here. 
 
We thank the Reviewer for this point, and we appreciate their thoughts on novelty 
pertaining to related GWAS/traits. While we partially agree with the Reviewer on this 
point, we think it is a high bar to declare novelty solely for loci not associated with 
related traits. As we will explain, we think novelty for the specific phenotype of DCM is 
scientifically important to the field.  
 
While the genetics of general heart failure (HF) and DCM are correlated, HF represents 
a highly heterogeneous phenotype for which many (extra-myocardial) mechanisms play 
a strong role (eg. stronger lifestyle effects, coronary artery health/disease, blood lipids, 
kidney disease, diabetes, and many more). We therefore feel that highlighting novel 
DCM loci - even if potentially identified for HF - provides valuable information. These 
loci may help tease out mechanisms for myocardial dysfunction, and also increase our 
understanding of HF loci more broadly.  
 
Similarly, we concede that the common variant genetics of DCM and LV 
endophenotypes are highly correlated. However, the genetic correlations are not perfect 
(~0.6-0.75, depending on trait) and several DCM loci do not reach meaningful 
significance for LV traits (eg, PITX2, CAMK2D). At the same time, it becomes a rather 



 
 

 

36 
 

 

 

blurry endeavor to declare novelty based on any published cardiac MRI trait. Where 
should we draw the line (volumetric and contractile; hypertrophy traits; cardiac fibrosis; 
AI-inferred LV shape; etc)?  
 
All that being said, we think it is most clean to retain our ‘primary’ novelty classification 
based on previously published DCM GWAS studies. In agreement with the Reviewer, 
we have also added a ‘secondary’ level of novelty based on the studies provided by the 
Reviewer (using GWAS for HF, LVESVi, LVEDVi, LVEF, and SVi). We have added the 
look-ups to Supplementary Tables 8 and 12, and we refer to these data in the Main 
Text. We posit that this presentation provides a balanced view of novelty for our loci.  
 
Manuscript change: 
Page 3: 
“At conventional genome-wide significance (P<5x10-8) we uncovered 38 distinct loci, of which 27 were 
not previously described for DCM (Figure 2a, Supplementary Tables 6-7). Of novel loci, 12 were also not 
identified in two published GWAS for LV function9 and general HF18 (Supplementary Table 8). “ 
 

Page 3: 
“MTAG-DCM identified 65 significant loci, of which 50 were not previously published for DCM 
(Supplementary Tables 10-11; Extended Data Figure 3). Of novel loci, 24 also did not overlap loci from 
published LV function9 and HF18 GWAS (Supplementary Table 12).” 

 

 
The reported association between mean platelet thrombocyte volume and DCM is 
somewhat unexpected and not further discussed by the authors. It would be 
interesting to have some background information (or a statement that it may be a 
false positive association). 
 
We agree with the Reviewer on this point. We should note that this potentially causal 
association – identified in our MR screen – did not survive our subsequent 
filtering/sensitivity pipeline (unlike the associations that we highlight in the main text). 
We have more clearly stated in a Supplementary Note that this link was not verified 
using all our sensitivity methods, and that it likely represents a false-positive. 
 
Manuscript change:  
“and 2 potential consequences of DCM liability (HF and mean platelet thrombocyte volume; 
Supplementary Table 27; Figure 4a; Supplementary Note).” 
 

Supplementary Materials change: 
Page 48: 
“Causal consequences of DCM liability 
 
In our Mendelian randomization (MR) screen, we identified two potentially causal consequences of DCM 
liability, namely heart failure (HF) and platelet volume. The potentially causal effect of DCM liability on 
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platelet volume was disputed by our sensitivity analyses. In particular, the link did not reach significance 
when using MR-Egger regression (Supplementary Table 27). For these reasons, we posit that this link 
likely represents a false-positive. Of note, the potentially causal link between DCM liability and HF did 
pass all sensitivity analyses and filters. In particular, CAUSE identified a strong causal effect of DCM 
liability on HF risk (g=0.06, 95%CI [0.04, 0.09]; Figure 5a; Supplementary Figure 11). This finding might 
reflect that a subset of HF cases have DCM, or that DCM genetics is causative of systolic HF more 
broadly, as investigated further in our PRS analyses. ” 
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mechanisms underlying dilated cardiomyopathy and myocardial resilience" (NG-LE64126R). It has now 
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pending minor revisions to comply with our editorial and formatting guidelines. 

 

We are now performing detailed checks on your paper and will send you a checklist detailing our 

editorial and formatting requirements soon. Please do not upload the final materials and make any 

revisions until you receive this additional information from us. 

 

Thank you again for your interest in Nature Genetics Please do not hesitate to contact me if you have 

any questions. 

 

Sincerely, 

Wei 

 

Wei Li, PhD 

Senior Editor 

Nature Genetics 

www.nature.com/ng 

 

 

Reviewer #1 (Remarks to the Author): 

 

It was a real pleasure to read this thorough response, which convincingly addressed all of the points 

raised. 

 

 

Reviewer #2 (Remarks to the Author): 

 

N/A 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors performed a number of further analyses that addressed all my comments. 

 

I have no further issues. 
  

 

Final Decision Letter: 

 
8th Oct 2024 

 

Dear Dr. Bezzina, 

 

I am delighted to say that your manuscript "Genome-wide association study reveals mechanisms 

underlying dilated cardiomyopathy and myocardial resilience" has been accepted for publication in an 

upcoming issue of Nature Genetics. 

 

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature Genetics 
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style. Once your paper is typeset, you will receive an email with a link to choose the appropriate 

publishing options for your paper and our Author Services team will be in touch regarding any 

additional information that may be required. 

 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 

request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 

this deadline, please inform us at rjsproduction@springernature.com immediately. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

Due to the importance of these deadlines, we ask that you please let us know now whether you will be 

difficult to contact over the next month. If this is the case, we ask you provide us with the contact 

information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 

and who will be available to address any last-minute problems. 

 

Your paper will be published online after we receive your corrections and will appear in print in the 

next available issue. You can find out your date of online publication by contacting the Nature Press 

Office (press@nature.com) after sending your e-proof corrections. 

 

You may wish to make your media relations office aware of your accepted publication, in case they 

consider it appropriate to organize some internal or external publicity. Once your paper has been 

scheduled you will receive an email confirming the publication details. This is normally 3-4 working 

days in advance of publication. If you need additional notice of the date and time of publication, 

please let the production team know when you receive the proof of your article to ensure there is 

sufficient time to coordinate. Further information on our embargo policies can be found here: 

https://www.nature.com/authors/policies/embargo.html 

 

Before your paper is published online, we shall be distributing a press release to news organizations 

worldwide, which may very well include details of your work. We are happy for your institution or 

funding agency to prepare its own press release, but it must mention the embargo date and Nature 

Genetics. Our Press Office may contact you closer to the time of publication, but if you or your Press 

Office have any enquiries in the meantime, please contact press@nature.com. 

 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 

in the print or electronic media, until the embargo/publication date. These restrictions are not 

intended to deter you from presenting your data at academic meetings and conferences, but any 

enquiries from the media about papers not yet scheduled for publication should be referred to us. 

 

Please note that Nature Genetics is a Transformative Journal (TJ). Authors may publish their research 

with us through the traditional subscription access route or make their paper immediately open access 

through payment of an article-processing charge (APC). Authors will not be required to make a final 

decision about access to their article until it has been accepted. Find out more about Transformative 

Journals 

 

Authors may need to take specific actions to achieve compliance with funder and 

institutional open access mandates. If your research is supported by a funder that requires 

immediate open access (e.g. according to Plan S principles) then you should select the gold OA route, 

and we will direct you to the compliant route where possible. For authors selecting the subscription 
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https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs
https://www.springernature.com/gp/open-research/plan-s-compliance


 
 

 

41 
 

 

 

publication route, the journal’s standard licensing terms will need to be accepted, including <a 

href="https://www.nature.com/nature-portfolio/editorial-policies/self-archiving-and-license-to-

publish. Those licensing terms will supersede any other terms that the author or any third party may 

assert apply to any version of the manuscript. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

If you have posted a preprint on any preprint server, please ensure that the preprint details are 

updated with a publication reference, including the DOI and a URL to the published version of the 

article on the journal website. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to 

read the published article. Recipients of the link with a subscription will also be able to download and 

print the PDF. 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

An online order form for reprints of your paper is available 

at https://www.nature.com/reprints/author-reprints.html. Please let your coauthors and your 

institutions' public affairs office know that they are also welcome to order reprints by this method. 

 

If you have not already done so, we strongly recommend that you upload the step-by-step protocols 

used in this manuscript to protocols.io. protocols.io is an open online resource that allows researchers 

to share their detailed experimental know-how. All uploaded protocols are made freely available and 

are assigned DOIs for ease of citation. Protocols can be linked to any publications in which they are 

used and will be linked to from your article. You can also establish a dedicated workspace to collect all 

your lab Protocols. By uploading your Protocols to protocols.io, you are enabling researchers to more 

readily reproduce or adapt the methodology you use, as well as increasing the visibility of your 

protocols and papers. Upload your Protocols at https://protocols.io. Further information can be found 

at https://www.protocols.io/help/publish-articles. 

 

 

Sincerely, 

Wei 

 

Wei Li, PhD 

Senior Editor 

Nature Genetics 

www.nature.com/ng 
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