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Background: Fetal growth restriction is associated with perinatal morbidity and mortality. Early 
identification of women having at-risk fetuses can reduce perinatal adverse outcomes.

Objectives: To assess the predictive performance of existing models predicting fetal growth restriction 
and birthweight, and if needed, to develop and validate new multivariable models using individual 
participant data.

Design: Individual participant data meta-analyses of cohorts in International Prediction of Pregnancy 
Complications network, decision curve analysis and health economics analysis.

Participants: Pregnant women at booking.
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External validation of existing models (9 cohorts, 441,415 pregnancies); International Prediction of 
Pregnancy Complications model development and validation (4 cohorts, 237,228 pregnancies).

Predictors: Maternal clinical characteristics, biochemical and ultrasound markers.

Primary outcomes: 

1. fetal growth restriction defined as birthweight <10th centile adjusted for gestational age and with 
stillbirth, neonatal death or delivery before 32 weeks’ gestation

2. birthweight.

Analysis: First, we externally validated existing models using individual participant data meta-analysis. 
If needed, we developed and validated new International Prediction of Pregnancy Complications 
models using random-intercept regression models with backward elimination for variable selection and 
undertook internal-external cross-validation. We estimated the study-specific performance (c-statistic, 
calibration slope, calibration-in-the-large) for each model and pooled using random-effects meta-
analysis. Heterogeneity was quantified using τ2 and 95% prediction intervals. We assessed the clinical 
utility of the fetal growth restriction model using decision curve analysis, and health economics analysis 
based on National Institute for Health and Care Excellence 2008 model.

Results: Of the 119 published models, one birthweight model (Poon) could be validated. None 
reported fetal growth restriction using our definition. Across all cohorts, the Poon model had good 
summary calibration slope of 0.93 (95% confidence interval 0.90 to 0.96) with slight overfitting, and 
underpredicted birthweight by 90.4 g on average (95% confidence interval 37.9 g to 142.9 g).

The newly developed International Prediction of Pregnancy Complications-fetal growth restriction 
model included maternal age, height, parity, smoking status, ethnicity, and any history of hypertension, 
pre-eclampsia, previous stillbirth or small for gestational age baby and gestational age at delivery. This 
allowed predictions conditional on a range of assumed gestational ages at delivery. The pooled apparent 
c-statistic and calibration were 0.96 (95% confidence interval 0.51 to 1.0), and 0.95 (95% confidence 
interval 0.67 to 1.23), respectively. The model showed positive net benefit for predicted probability 
thresholds between 1% and 90%.

In addition to the predictors in the International Prediction of Pregnancy Complications-fetal growth 
restriction model, the International Prediction of Pregnancy Complications-birthweight model included 
maternal weight, history of diabetes and mode of conception. Average calibration slope across cohorts in 
the internal-external cross-validation was 1.00 (95% confidence interval 0.78 to 1.23) with no evidence 
of overfitting. Birthweight was underestimated by 9.7 g on average (95% confidence interval −154.3 g to 
173.8 g).

Limitations: We could not externally validate most of the published models due to variations in the 
definitions of outcomes. Internal-external cross-validation of our International Prediction of Pregnancy 
Complications-fetal growth restriction model was limited by the paucity of events in the included 
cohorts. The economic evaluation using the published National Institute for Health and Care Excellence 
2008 model may not reflect current practice, and full economic evaluation was not possible due to 
paucity of data.

Future work: International Prediction of Pregnancy Complications models’ performance needs 
to be assessed in routine practice, and their impact on decision-making and clinical outcomes 
needs evaluation.
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ABSTRACT

Conclusion: The International Prediction of Pregnancy Complications-fetal growth restriction and 
International Prediction of Pregnancy Complications-birthweight models accurately predict fetal growth 
restriction and birthweight for various assumed gestational ages at delivery. These can be used to 
stratify the risk status at booking, plan monitoring and management.

Study registration: This study is registered as PROSPERO CRD42019135045.

Funding: This award was funded by the National Institute for Health and Care Research (NIHR) 
Health Technology Assessment programme (NIHR award ref: 17/148/07) and is published in full in 
Health Technology Assessment; Vol. 28, No. 47. See the NIHR Funding and Awards website for further 
award information.
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Plain language summary

One in ten babies is born small for their age. A third of such small babies are considered to be 
‘growth-restricted’ as they have complications such as dying in the womb (stillbirth) or after birth 

(newborn death), cerebral palsy, or needing long stays in hospital. When growth restriction is suspected 
in fetuses, they are closely monitored and often delivered early to avoid complications. Hence, it is 
important that we identify growth-restricted babies early to plan care.

Our goal was to provide personalised and accurate estimates of the mother’s chances of having a 
growth-restricted baby and predict the baby’s weight if delivered at various time points in pregnancy. To 
do so, first we tested how accurate existing risk calculators (‘prediction models’) were in predicting 
growth restriction and birthweight. We then developed new risk-calculators and studied their clinical 
and economic benefits. We did so by accessing the data from individual pregnant women and their 
babies in our large database library (International Prediction of Pregnancy Complications).

Published risk-calculators had various definitions of growth restriction and none predicted the chances 
of having a growth-restricted baby using our definition. One predicted baby’s birthweight. This risk-
calculator performed well, but underpredicted the birthweight by up to 143 g.

We developed two new risk-calculators to predict growth-restricted babies (International Prediction of 
Pregnancy Complications-fetal growth restriction) and birthweight (International Prediction of 
Pregnancy Complications-birthweight). Both calculators accurately predicted the chances of the baby 
being born with growth restriction, and its birthweight. The birthweight was underpredicted by <9.7 g. 
The calculators performed well in both mothers predicted to be low and high risk.

Further research is needed to determine the impact of using these calculators in practice, and challenges 
to implementing them in practice. Both International Prediction of Pregnancy Complications-fetal 
growth restriction and International Prediction of Pregnancy Complications-birthweight risk calculators 
will inform healthcare professionals and empower parents make informed decisions on monitoring and 
timing of delivery.
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Scientific summary

Background

Fetal growth restriction (FGR) is associated with perinatal mortality and morbidity. Early and accurate 
identification and appropriate management of pregnant women with growth-restricted fetuses can 
reduce perinatal complications.

Objectives

Primary
Using individual personal data (IPD) meta-analysis

1. To externally validate the predictive accuracy of existing prediction models for FGR (birth-
weight < 10th centile adjusted for gestational age, with serious perinatal complications such as 
stillbirth, neonatal death or delivery before 32 weeks), and birthweight within cohorts in the Inter-
national Prediction of Pregnancy Complications (IPPIC) data repository.

2. To develop and validate [using internal-external cross-validation (IECV)] new multivariable predic-
tion models for (1) FGR and (2) birthweight at various potential gestational ages of delivery.

Secondary

1. To compare the predictive performance of models according to (1) population (selected – high/low 
risk; unselected); (2) trimester of testing (first <14 weeks; second ~20 weeks; third ~28 weeks); (3) 
choice of predictors (clinical only; clinical and ultrasound; clinical and biochemical; clinical, ultra-
sound and biochemical); and (4) onset of FGR (early <32 weeks; late >32 weeks).

2. To assess if the performance of the prediction models is generalisable for various definitions of FGR, 
and assess the association between various birthweight centiles calculated using customised and 
population-based standards and perinatal morbidity and mortality.

3. To estimate the net benefit (clinical utility) of the developed prediction models using decision curve 
analysis (DCA).

4. To assess the costs and outcomes and the potential impact of resource use of the prediction models.

Methods

We followed existing recommendations for prediction model development and validation and reported 
in line with guidelines for prognostic research and IPD meta-analysis.

Our meta-analysis utilised IPD within the IPPIC Network database. IPPIC is a living data repository of 
cleaned and harmonised data of pregnant women from large birth or population-based cohorts, study 
cohort data, registries or unpublished data from hospital records. The primary outcomes were (1) FGR 
defined as birthweight < 10th centile adjusted for gestational age, with serious complications such as 
stillbirth, neonatal death, or delivery before 32 weeks and (2) birthweight for deliveries at various 
potential gestational ages.

We updated our previous searches (inception to July 2012) for relevant prediction models published 
until August 2019 for external validation. Models were validated if at least one IPPIC IPD cohort 
contained all the predictors included in the model, and the model outcome occurred in some of the 
participants in the IPD cohort. Partially missing predictors and outcome variables missing for < 90% of 
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individuals in the cohorts were imputed using multiple imputation by chained equations, assuming that 
individual values were missing at random. Imputation was performed separately for each cohort to allow 
for the clustering of individuals within cohorts. The predictive performance of existing model was 
evaluated using measures of calibration (agreement between predicted and observed outcomes), and 
discrimination (how well model differentiates between those with and without the outcome, ideal value 
1) for each cohort separately and then pooled using a random-effects model estimated using restricted 
maximum likelihood.

Candidate predictors for development of FGR and birthweight models were identified following a 
prioritisation survey by clinical experts and from existing prediction models. Prediction models were 
developed using random intercept regression models with backward elimination for variable selection, 
and IECV was used for validation. Model predictive performance measures [calibration-in-the-large 
(CITL), the calibration slope, the c-statistic and Nagelkerke’s R2] were summarised using random-effects 
meta-analysis to give a pooled estimate of overall performance across cohorts.

We assessed the clinical utility of IPPIC-FGR model using DCA. By weighing up potential benefit and 
harm, the net benefit of the model was plotted at various clinically relevant threshold probabilities. 
Decision curves were compared against ‘treat-all’ and ‘treat-none’ strategies across the range of 
predicted threshold probabilities at which the model may be clinically useful. We also evaluated the 
costs and outcomes of IPPIC-FGR model using a decision analytical model constructed using Microsoft 
Excel®. The costs and outcomes of IPPIC-FGR model was compared against existing strategies in the 
National Institute for Health and Care Excellence (NICE) 2008 Antenatal Care guideline [no monitoring 
for FGR and monitoring FGR of all fetuses using ultrasound and symphysis-fundal height (SFH) 
measurement]. Costs were from the perspective of the National Health Service, and no discounting was 
required due to the short timeframe from entry into the model to outcome.

Results

External validation of existing prediction models
Overall, 119 published prediction models (55 articles) for FGR and birthweight were identified, with 
various definitions of FGR or birthweight outcome dichotomised. No study reported our predefined 
outcome of FGR. Of the eleven models that predicted birthweight on a continuous scale, only one (Poon 
2011; 33,602 pregnancies) reported variables available in the IPPIC cohorts and was externally validated 
in nine IPPIC cohorts involving 441,415 pregnancies. The Poon model included gestational age at 
delivery, maternal weight, height, age, parity, smoking status, ethnicity, history of chronic hypertension, 
diabetes and assisted conception. Calibration slopes of the model ranged from 0.91 to 1.05, with a 
pooled calibration slope across all cohorts of 0.974 [95% confidence interval (CI) 0.938 to 1.011, 
τ2 = 0.0018]. On average, the model systematically underpredicted birthweight by 90.4 g (37.9 g to 
142.9 g) across the validation cohorts and showed moderate heterogeneity in performance.

Development and validation of IPPIC-FGR and IPPIC-birthweight models
We developed the IPPIC-FGR model using data from four IPPIC cohorts (237,228 pregnancies). The 
model included gestational age at delivery, mother’s age, mother’s height, parity, smoking status, 
ethnicity, history of hypertension, and any history of pre-eclampsia, stillbirth or small for gestational age 
baby. The pooled apparent c-statistic was 0.96 (95% CI 0.51 to 1.0), and the pooled apparent calibration 
slope was 0.95 (95% CI 0.67 to 1.23).

The IPPIC-birthweight model additionally included maternal weight, a history of diabetes and mode of 
conception, and was developed in same four IPPIC cohorts as for the IPPIC-FGR model. The pooled 
calibration slope across cohorts in the IECV was 1.0 (95% CI 0.78 to 1.23), thus showing no evidence of 
overfitting. Underestimation of birthweight was by 9.7 g on average across cohorts in the IECV (95% CI 
−154.3 g to 173.8 g) as assessed by CITL.
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Decision curve analysis
The IPPIC-FGR model showed positive net benefit for predicted probability thresholds between 1% and 
90% across all cohorts compared to a strategy of managing all pregnant women as if they will have 
growth-restricted fetuses, or managing them as if none will have growth-restricted fetuses (i.e. treat-all 
or treat-none strategies). Net benefit was greatest when the model was used in pregnancies <32 weeks’ 
gestation. While there was no overall benefit in using the IPPIC-FGR model in pregnancies at or above 
32 weeks’ gestation compared to a strategy of treat-all, use of the model in pregnant women at this 
gestational age resulted in no additional harm in these group of women.

Health economics analysis
The health economics analysis based on NICE 2008 economic model for monitoring fetal growth 
showed the use of the IPPIC-FGR model was slightly more costly, and more perinatal deaths were saved 
for every 1000 FGR babies than the alternate strategy of no screening for FGR. When the IPPIC-FGR 
model was compared with screening using only SFH and ultrasound, the strategy was cheaper and again 
more perinatal deaths were prevented. Sensitivity analysis found that the results were robust and in line 
with the base-case analyses. The economic model did not take into account current pathways used to 
screen women at high risk of having FGR babies.

Recommendations for clinical practice and research
Incorporation of personalised predicted birthweight estimates (for various potential gestational ages) 
within existing growth charts, and risk stratification at booking for FGR can help plan intensity of fetal 
monitoring and timing of delivery. The impact of using IPPIC-FGR and IPPIC-birthweight models on 
changes in clinical practice and clinical outcomes needs further evaluation. Qualitative data are needed 
to determine the barriers and facilitators of their routine implementation in clinical practice. Our health 
economics analysis was based on the 2008 NICE model which is no longer reflective of current 
management strategies for risk assessing FGR. Therefore, in light of significant changes to current 
guidelines and care pregnant women at risk of FGRs receive, a detailed full economic evaluation is 
needed, which evaluates various strategies to risk assess FGR along current care pathways.

Conclusion

IPPIC-FGR and IPPIC-birthweight models accurately predict FGR and birthweight. The latter has better 
calibration than existing model. IPPIC-FGR model use is cost-effective. Both IPPIC models can help plan 
intensity of fetal monitoring in pregnancy and timing of delivery, to minimise adverse perinatal 
outcomes.

Study registration

This study is registered as PROSPERO CRD42019135045.

Funding

This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology 
Assessment programme (NIHR award ref: 17/148/07) and is published in full in Health Technology 
Assessment; Vol. 28, No. 47. See the NIHR Funding and Awards website for further award information.
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1

Chapter 1 Background

Fetal growth restriction (FGR) or intrauterine growth restriction (IUGR) is defined as the failure 
of a fetus to achieve its intrinsically determined growth potential.1 It is associated with perinatal 

morbidity and mortality, and long-term offspring complications such as neurodevelopmental delay, poor 
growth, adult-onset diseases in infancy and adolescence, including obesity, metabolic syndrome, type 2 
diabetes and cardiovascular diseases.2–4

Fetal growth restriction is often used interchangeably with ‘small for gestational age’ (SGA),5 where 
the estimated fetal weight (EFW) or birthweight of the fetus is <10th centile. However, of the 70,000 
babies born small each year in England and Wales, up to 70% are constitutionally small, without major 
complications.6 But one in three small babies is growth restricted, with arrest or shift in rates of growth 
trajectory, which increases their risk of immediate and long-term complications.7,8 The odds of stillbirth 
(OR 7.1–10.0) and neonatal death (OR 3.4–9.4) are significantly higher in growth-restricted compared 
to normal weight fetuses at every week beyond the expected date of delivery in these babies.2 Of the 
3000 babies who were stillborn each year in the United Kingdom (UK), half were considered to be 
growth restricted.8

In growth-restricted fetuses, the condition is diagnosed early (<32 weeks) and is usually associated 
with hypertensive disorders of pregnancy and severe placental pathology.9 These infants are often 
delivered early, with additional prematurity-related complications. Many cases of FGR are of late-
onset (>32 weeks). The diagnosis is missed in three-quarters of these babies.10 Early identification of 
women at risk of FGR can reduce perinatal mortality and morbidity, by identifying women who need 
close monitoring in pregnancy, and to plan the setting and timing of delivery to minimise adverse 
perinatal outcomes.

Considerable variation exists between international guidelines on how identify women at risk of 
having FGR. This ranges from arbitrarily chosen ‘major’ or ‘minor’ clinical risk factors in various 
combinations,11,12 to additional biochemical or ultrasound-based risk factors.13,14 Existing screening 
strategies for FGR are not effective. Many do not differentiate between early and late-onset FGR, or 
with SGA fetuses.15,16 A Cochrane review of randomised trials on universal screening with ultrasound in 
pregnant women compared with a strategy of selective screening in high-risk women for FGR did not 
show any reductions in perinatal mortality and morbidity.17 The latter strategy detects only 20% of small 
babies, while with the former strategy, two otherwise normal small babies are picked up for every SGA 
fetus with complications identified.18 Universal ultrasound screening of all women for detection of FGR 
can significantly strain finite resources. Implementation of such a strategy in low-risk women in France 
did not lower the rates of complications in SGA fetuses, but resulted in iatrogenic prematurity in screen-
positive pregnancies.19 Similarly, a cluster randomised trial comparing routine ultrasonography in third 
trimester to usual care of clinically indicated ultrasonography, showed only a moderate increase in the 
detection of SGA infants, but with increases in induction of labour, and no reduction in severe adverse 
perinatal outcomes in low-risk pregnancies.20 The National Institute for Health and Care Excellence’s 
(NICE) antenatal care guideline concluded that ‘the methods by which an SGA fetus can be identified 
antenatally are poorly developed or are not tested by rigorous methodology’.21

Numerous primary studies and aggregate meta-analyses have reported on the accuracy of individual 
clinical, biochemical and ultrasound markers or multivariable prediction models to predict either FGR 
or SGA fetus. Although more than 20 prediction models were developed, none were recommended 
for use in routine clinical practice.22–26 This is due to difficulties involving the design, population, tests 
and outcomes of existing research to predict, screen or detect FGR. Firstly, the terms ‘prediction’ and 
‘screening’, which have separate objectives, are often used interchangeably.27 In the former, the outcome 
of interest (FGR) has not yet occurred, while in the latter, the focus is on accurately detecting established 
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FGR. Some of the models to predict FGR use tests as late as 36 weeks of pregnancy, which are more 
relevant for diagnosis than prediction.26 Secondly, the population studied is often only limited to 
specific subgroups such as nulliparous women.18 Thirdly, the predictors have often been dichotomised, 
thereby reducing their power. Fourthly, before they can be recommended for use in clinical practice, 
the predictive performance of prediction models needs to be appropriately evaluated in populations 
in which it is intended for use, and external to that used to develop the model. Fifthly, studies often 
predict SGA rather than FGR infants. FGR is variously defined using either ultrasound characteristics 
[EFW, fetal abdominal circumference (AC), Doppler blood flows] or by using birthweight.28 Furthermore, 
both EFW and birthweight have been reported in centiles that were either adjusted for various maternal 
characteristics (customised) or for only gestational age (population based),29,30 additionally, the centile 
cut-offs to define growth restriction are varied (<10th, <5th, <3rd).

Meta-analysis of individual participant data (IPD), where the raw participant-level information is 
obtained and synthesised across multiple datasets can help overcome the above limitations.31–35 
Availability of the raw data from multiple datasets will substantially increase the sample size beyond 
what is achievable in a single study. It will allow the standardisation of the definition of FGR and 
predictors across datasets and enables assessment of differential accuracy of prediction models 
in different subgroups of women across a range of clinical settings. IPD meta-analysis enables the 
evaluation of multivariable models that contain multiple candidate predictor variables, it allows 
for methods that directly handle missing predictor and outcome data, allows the examination and 
accounting of heterogeneity (e.g. in baseline risks), and can develop, validate and tailor the use of the 
most accurate prediction models to the appropriate population.

We have previously established the International Prediction of Pregnancy Complications (IPPIC) network 
of global researchers,36 with access to IPD from over three million pregnancies and undertook an IPD 
meta-analysis to accurately identify fetuses at risk of growth restriction and perinatal complications, 
to predict the extent of smallness using prediction models, and also to assess the relative costs and 
outcomes of a strategy of predicting FGR using any newly developed prediction model.
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Chapter 2 Objectives

We aimed to identify and externally validate existing prediction models for FGR and birthweight, 
and then if necessary, update or develop and validate further prediction models in pregnant 

women to determine (1) the overall risk of delivering a growth-restricted fetus (birthweight <10th 
centile adjusted for gestational age, with serious perinatal complications of stillbirth, neonatal death or 
delivery before 32 weeks); and (2) the birthweight if delivered at various gestational ages (with flexibility 
to convert into centiles using existing fetal growth standards) to assess the extent of smallness, using 
data from the large IPPIC IPD repository.

Primary

1. To establish whether existing prediction models for FGR and birthweight are suitable for the target 
population or if new models are needed through external validation, and where possible, recalibra-
tion of existing prediction models.

2. Using IPD meta-analysis, to develop and validate [using internal-external cross-validation (IECV)] 
new multivariable prediction models for (i) FGR (SGA with serious perinatal complications)  
(IPPIC-FGR Model 1); and (ii) birthweight at various potential gestational ages at delivery  
(IPPIC-birthweight Model 2) based on:

–	 clinical characteristics only
–	 clinical and biochemical markers
–	 clinical and ultrasound markers
–	 clinical, biochemical and ultrasound markers.

Secondary

1. To compare the predictive performance of models according to (i) population (selected – high/low 
risk; unselected); (ii) trimester of testing (first <14 weeks; second ~20 weeks; third ~28 weeks); (iii) 
choice of predictors (clinical only; clinical and ultrasound; clinical and biochemical; clinical, ultra-
sound and biochemical; and (iv) onset of FGR (early <32 weeks; late ≥32 weeks).

2 To assess if the performance of the prediction models is generalisable for various definitions of 
FGR such as (i) ultrasound parameters determined by Delphi consensus;37 and (ii) birthweight <10th 
centile adjusted for gestational age with associated neonatal morbidity,38 and assess the association 
between various birthweight centiles (<10th, <5th, <3rd centiles) calculated using (i) customised 
and (ii) population-based standards, and perinatal mortality and morbidity.

3. To examine the clinical utility of the prediction models using decision curve analysis (DCA).
4. To assess the costs and outcomes and the potential impact of resource use of the prediction  

models.
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Chapter 3 Methods

Our IPD meta-analysis followed existing recommendations for prediction model development and 
validation,39–42 and used a prospective protocol registered with International prospective register 

of systematic reviews (CRD42019135045). Our reporting utilises the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or Diagnosis and Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses-IPD reporting guidelines for prediction models and IPD 
meta-analysis.27,43

The International Prediction of Pregnancy Complications Network

The IPPIC Network database is a living data repository of IPD from pregnant women. Methods on 
how cohorts within the IPPIC Network database were identified and harmonised have been described 
in detail in our earlier publications.36,44,45 Briefly, cohorts within the database were identified through 
a systematic search to identify primary studies reporting risk factors for pregnancy complications 
including pre-eclampsia (PE), stillbirth and FGR.46 Authors of relevant studies were invited to join the 
network and share their primary IPD in any format, along with data dictionaries or descriptions. The 
data were deposited in a custom-built database, formatted, cleaned and harmonised, and the quality of 
each cohort and its IPD was assessed using the following domains of the Prediction study Risk of Bias 
Assessment (PROBAST) Tool: participants (adequate description of data sources, details on recruitment), 
predictors (appropriately defined, assessed blinded to outcome, assessed in the same way for all 
participants) and outcome (appropriately defined and determined in a similar way for all participants, 
predictors excluded from the outcome definition, outcome determined without knowledge of predictor 
information and appropriate interval between assessment of predictor and outcome determination).47

The IPPIC-IPD included data from large birth or population-based cohorts, registry data, unpublished 
data from hospital records or study cohort data. Study population varied from low to high risk of 
development of complications. The predictor variables harmonised within the IPPIC Network repository 
are those that are easy to obtain in a clinical setting, as agreed by the collaborative group.44 The network 
currently includes more than 150 collaborators from 26 countries, contributing IPD from over 3 million 
pregnancies, reporting maternal characteristics, obstetric history, clinical assessment and tests, as well 
as various maternal and offspring outcomes. Cohorts that addressed the structured question in Table 1 
were considered for inclusion in the IPD meta-analysis.

Primary outcomes

The primary outcomes were (1) FGR (birthweight <10th centile adjusted for gestational age, with 
stillbirth, neonatal death or delivery before 32 weeks); and (2) birthweight for deliveries at various 
gestational ages to reflect the extent of the restricted growth.

Rationale for the choice of outcomes
Fetal growth restriction: FGR defined as birthweight <10th centile adjusted for gestational age, with 
severe complications was chosen for the following reasons: the definition excludes small but healthy 
babies; the components of the composite include severe complications of mortality or extreme 
prematurity (both iatrogenic and spontaneous preterm births before 32 weeks are reflective of the 
severity of the condition). Any prediction model will need to take into consideration the effects of 
treatment paradox, where delivery could have prevented stillbirth or neonatal death that may have 
otherwise occurred.48 This was addressed by including delivery before 32 weeks as a component of the 
outcome. Birthweight centiles were calculated based on published ranges of birthweights for live births 
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from King’s College Hospital, London, between March 2006 and October 2015.49 We applied the normal 
ranges of birthweights according to gestational age to determine the birthweight centile in the IPD.

Birthweight: Existing prediction models use arbitrary cut-offs to define FGR or SGA fetus using only 
birthweight <10th or <3rd centile. Dichotomisation of the outcome limits the power and usefulness 
of a prediction model. Besides, the prognosis for a fetus with a predicted birthweight on the 3rd 
centile at 26 weeks is far worse than that predicted to be on the 9th centile at 37 weeks, despite both 
being labelled as small with <10th centile birthweight. A baby diagnosed to be small using a particular 
fetal growth standard (e.g. GROW, INTERGROWTH 21st, WHO)50,51 may not be categorised as so 
with another standard, thereby limiting the generalisability of the model. To address this, we used 
birthweight as our outcome to be predicted at various potential gestational ages at delivery for the 
following reasons: (1) it is a continuous measure not limited by arbitrary cut-offs; (2) the predicted 
birthweight can be converted into predicted centiles using any fetal growth standard in use; and (3) it 
provides information on both severity of the restricted growth, and the expected timing of onset to 
plan appropriate management. For example, a baby with a predicted birthweight on the 5th centile at 
28 weeks’ gestation will require frequent monitoring starting from 26 weeks.

Updating literature search

Existing prediction models for fetal growth restriction
We updated our previous literature search (search to July 2012)26 to identify additional models for 
FGR or birthweight published up to August 2019. We searched MEDLINE and EMBASE databases 
without any language. We included studies reporting multivariable (at least three variables) models 
on the risk of FGR (birthweight <10th centile adjusted for gestational age, with severe complications 
of either stillbirth, delivery before 32 weeks or neonatal death at any time) for use in early pregnancy 
(≤28 weeks’ gestation) or birthweight. We excluded studies of models that predicted FGR as part of 

TABLE 1 Structured questions for IPD meta-analysis on prediction of birthweight and FGR with complications

Population Pregnant women 

Predictors Maternal clinical characteristics: Maternal characteristics: Age, BMI, smoking, alcohol or substance misuse, 
exercise, diet; Medical history: chronic hypertension, diabetes, renal disease, heritable thrombophilia, 
autoimmune disease, cardiac disease; Obstetric history: parity, previous SGA, previous stillbirth, previous 
PE, pregnancy interval; Current pregnancy: mode of conception, weight gain, early pregnancy bleeding

Biochemical markers: PlGF, PAPP-A, sFlt-1, AFP, HCG, urine dipstick, 24-hour urine protein

Ultrasound markers: Uterine artery Doppler (RI, PI, unilateral or bilateral notching), AC, fetal, CPR, EFW, 
fetal echogenic bowel, NT

Outcomes Primary outcomes:
FGR defined as birthweight <10th centile adjusted for gestational age at delivery, complicated by 
stillbirth or neonatal death or delivery before 32 weeks; birthweight at various gestational ages

Secondary outcomes:
Early onset (<32 weeks) and late-onset (≥32 weeks) FGR
Ultrasound-based diagnosis for early (EFW <3rd centile, AC <3rd centile, absent end diastolic flow in 
umbilical artery Doppler) and late FGR (EFW <3rd centile, AC <3rd centile)

Neonatal morbidity: cord blood pH < 7 at birth, hypoxic-ischemic encephalopathy, respiratory distress 
syndrome, septicaemia, admission to neonatal intensive care unit, Apgar score < 7 at 1’ and 5’

Study design IPD meta-analysis of observational studies and cohorts nested within randomised trials

AFP, alpha-fetoprotein; BMI, body mass index; CPR, cerebral-placental ratio; HCG, human chorionic gonadotropin; NT, 
nuchal translucency; PAPP-A, pregnancy-associated plasma protein A; PI, pulsatility index; PlGF, placental growth factor; 
RI, resistance index; sFlT-1, soluble fms-like tyrosine kinase-1.
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any other combinations of composite adverse outcomes, contained predictors that were not measured 
in any of the cohorts within the IPPIC IPD, or did not publish the reported model equation (including 
model intercept). Two independent researchers undertook study selection and data extraction, with 
disagreements resolved by discussion.

Strengthening the IPPIC Network
We augmented the existing live IPPIC data repository by including additional datasets from studies 
providing relevant data to predict FGR or birthweight, based on our previously conducted systematic 
reviews.46,52 The systematic review methods have been published elsewhere. Briefly, we searched 
MEDLINE, EMBASE, Cochrane (Wiley) CENTRAL, Science Citation Index (Web of Science), CINAHL 
(EBSCO), ISRCTN Registry, UK Clinical Trials Gateway, WHO International Clinical Trials Portal and 
ClinicalTrials.gov; specialist abstract and conference proceeding resources (British Library’s ZETOC and 
Web of Science Conference Proceedings Citation Index) to identify relevant studies. We adhered to 
PRISMA guidelines on reporting, and the reviews were based on prospective protocols. Two reviewers 
independently screened abstracts, extracted data and carried out quality assessment. We invited 
authors of all primary studies identified from the reviews to join the IPPIC Network and share their 
IPD, with at least two further email reminders if no response was received. We additionally invited 
investigators of primary studies or datasets not included in the reviews but identified through our links 
with other collaborative groups, if they contained relevant information needed (see Table 1).

We standardised the data that were shared by recoding and harmonising them in line with the clean 
formatted IPPIC datasets. We undertook rigorous range and consistency checks using methods detailed 
in The International Prediction of Pregnancy Complications Network above and previous publications.36,44,45 
We continued to contact authors to share their data until the July 2020 deadline for receiving new 
datasets. We set the deadline to allow time for cleaning and formatting of the data prior to analysis. Any 
IPD shared beyond this time period was not included in our analysis. All relevant data available in the 
IPPIC repository at the time of database-lock on 31 January 2020 were included for external validation 
of existing prediction models; we included data in the repository by 31 August 2020 to develop the 
IPPIC prediction models.

Prioritisation of predictors

We carried out a prospective two-round e-survey of IPPIC Network collaborators, to prioritise the 
most clinically relevant predictors of FGR, to be considered in the development of the prediction 
models. Predictors were identified from existing systematic reviews.22 The first round of the survey 
included explanation of the study and consent process, followed by a list of predictors identified from 
the systematic reviews. Collaborators were asked to rank the importance of each predictor variables 
identified on a scale from 1 (not important) to 5 (very important). The predictors were classified as 
‘consensus in’ if ≥70% of responders gave a score of 4 or 5 and <15% score 1 or 2, or ‘consensus out’ if 
≤50% of responders gave a score of 4 or 5 and ≤30% gave a score of 3. Anything else was classified as 
‘no consensus’.

In the second round of the prioritisation survey, collaborators were invited to a video Zoom 
conference on 28 July 2020 and asked to reassess predictors ranked as ‘consensus in’ or ‘no 
consensus’ from the first round of voting. An open discussion took place on each outcome and 
collaborators were encouraged to consider how important the measurement of each predictor was 
as a predictor of FGR. The Zoom polling function was used to vote on a scale from 1 (not important) 
to 5 (very important) for each predictor and analysed using the same method in the round one 
survey. Any variable still classed as ‘no consensus’ was discussed at the meeting and a final 
classification agreed upon.
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Sample size considerations

The effective sample size for the development and validation of prediction models is driven mainly by 
the total number of events (for logistic regression of a binary outcome) or the total number of subjects 
(for linear regression of a continuous outcome). To reduce the potential for overfitting and optimism 
during model development, the number of subjects/events must be large relative to the number of 
candidate predictor parameters to be considered for inclusion in the model.

For the external validation of published prediction models, sample size calculations aim for precise 
estimates of the predictive performance,53–55 and suggest at least 100 events and 100 non-events for 
binary outcomes, which we hoped to meet – though again our sample size was fixed, based on the IPD 
available that recorded the required predictors available for each model.54

The IPPIC-FGR model to be developed has the binary outcome of FGR (birthweight <10th centile 
adjusted for gestational age, with serious perinatal complications). For this, Riley et al. proposed 
sample size calculations to ensure small optimism in predictor effect estimates, a small difference in 
the apparent and adjusted estimates of Nagelkerke’s R2, and precise estimation of the overall risk in 
the population.56 For example, based on an estimated FGR prevalence of 0.73%, with a maximum 
possible Cox–Snell R2

CS
 of 0.08, and an assumed lower bound for the apparent Nagelkerke’s R2

N
 of 0.32 

based on previously published models,57 a minimum sample size of 34,906 women with 255 FGR 
events is required to meet the criteria when considering up to 50 predictor parameters. As our sample 
size was fixed (as it is dependent on the available IPD), for the models developed we restricted the 
number of candidate predictor parameters below 50 so that our sample size would easily meet the 
criteria of Riley et al.

The IPPIC-birthweight model has the continuous outcome of birthweight. Riley et al. further 
recommend that the sample size used to develop such a model should be sufficient to ensure small 
optimism in predictor effect estimates, a small difference between the apparent and adjusted R2, 
precise estimation of the mean predicted birthweight (the model intercept), and precise estimation of 
the model’s residual standard deviation (SD).58 For example, assuming a lower bound for the anticipated 
adjusted R2 of 0.5 in the new model, and an intercept value of −0.935 with standard error 0.043 (on 
the log10 scale) based on previous literature,59 a minimum sample of 618 women is required to consider 
up to 50 predictor parameters. Again, our sample size was fixed according to the IPD available, and we 
restricted the number of candidate predictor parameters to below 50, in order to meet the criteria by 
Riley et al.

Data synthesis

We used SPSS Version 27 (IBM SPSS Statistics for Windows) to analyse the Delphi survey findings that 
prioritised the predictors of FGR. All other analyses were carried out using Stata MP Version 16.

External validation of existing prediction models
Prediction models were validated if at least one IPPIC-IPD cohort contained all the predictors 
included in the model, and the model outcome occurred in some of the participants in the IPD cohort. 
We did not exclude women with multifetal pregnancies (i.e. twins/triplets) from our analysis. Women 
may have become pregnant multiple times during the course of data collection in an IPD cohort, 
and each pregnancy was considered as a distinct observation for validation. Although two or more 
pregnancy outcomes from the same women are likely to be correlated, the number of women with 
consecutive pregnancies is small relative to the total number of pregnancies contained in the IPD 
database. Furthermore, our external validation aims to confirm whether these prediction models 
are accurate for all potential applications, regardless of whether they have been applied to the same 
women previously.
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Missing data
Partially missing predictor and outcome variables were imputed using multiple imputation by chained 
equations, assuming that individual values were missing at random (MAR). Imputation was performed 
separately for each cohort to allow for the clustering of individuals within each cohort. The number of 
imputed datasets (m) was set equal to the largest percentage of incomplete observations in any of the 
individual studies, with the same m being used for imputation in all studies.60 Rubin’s rules were then 
applied to combine estimates across imputations.61

All predictors and outcomes were included in the imputation models, to help ensure the MAR 
assumption was more reliable. Linear regression was used to impute for approximately normally 
distributed continuous variables, and logistic regression was used for binary variables. Predictive 
Mean Matching was used for the imputation of categorical variables, due to convergence issues with 
multinomial logistic regression within Stata’s mi impute command. Where a study had participants with 
missing outcome values, these outcomes were imputed in the same way as missing predictor values 
(depending on data type). Observations with imputed outcomes were then deleted prior to analysis. 
Imputed values were then checked through visual inspection of histograms (continuous variables) and 
tables (categorical variables) to ensure values were realistic and consistent across imputed data sets. 
Complete case analyses were also performed for comparison.

Assessment of model performance
Within each cohort, the model equations were applied to each participant in the IPD to calculate the 
linear predictor (LP) value for that individual (LPi = α+ β1X1i + β2X2i + . . ., the value of the linear 
combination of predictors in the model equation for individual i). For models predicting the continuous 
outcome of birthweight, the final prediction was equal to LPi for each individual. For models predicting 
the binary outcome of FGR (meeting the requirements of our definition), the probability of FGR for a 
pregnancy was calculated as pi = e

LP
i

1+e
LP
i
. We then summarised the distribution of predictions by cohort 

using histograms and by determining the median and interquartile range (IQR).

The predictive performance of each model was evaluated using measures of calibration, referring to how 
well the predictions from the model agree with the observed outcomes,62,63 and discrimination, referring 
to how well the model differentiates between those who have the event and those who do not (only for 
binary outcome models).

Calibration was assessed across the entire population, as well as in subgroups according to gestational 
age at delivery (<28 weeks, 28–31 weeks, 32–36 weeks and ≥37 weeks) to assess differential model 
performance in these populations. Calibration was assessed using two measures:

1. The calibration slope, which is the slope of the regression line fitted between the observed and 
predicted outcomes on the original scale for continuous outcomes (YTRUEi = α + β(LPi), where β is the 
estimated calibration slope) and on the logit scale for binary outcomes (logit-p = α + β(LPi)). Ideally, 
the calibration slope should be equal or very close to 1.

2. Calibration-in-the-large (CITL), which indicates the extent to which model predictions are systemat-
ically too low or too high across the dataset and should ideally be equal to 0. The estimate of CITL 
was obtained from α when fitting the above calibration model with β = 1.

We also produced calibration plots plotting the observed (O) against the expected (E) birthweight 
value for each patient (continuous models), or observed versus expected FGR probabilities across 
risk groups (binary models). As calibration plots cannot be pooled across imputations, plots were 
assessed separately for each imputed dataset.64 Where performance looked similar across imputations, 
a calibration plot was presented using predicted outcome values that were pooled across imputed 
datasets for each individual outcome. A LOWESS smoother was applied to each plot to show the 
non-linear calibration slope, calculated using all participants (avoiding risk grouping), across the entire 
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range of risk predictions. Calibration plots are presented with a diagonal line to show perfect calibration 
(where observed exactly equals expected), and close proximity of points to this line can be interpreted 
as good calibration performance of the model. Points lying above the diagonal indicate predictions that 
are lower than observed outcomes (underprediction), while points lying below the diagonal show where 
predictions are higher than observed outcomes (overprediction).

Discriminative ability of a binary outcome model was assessed using the c-statistic, (equivalent 
to the area under the receiver operating characteristics curve, with a value of 1 indicating perfect 
discrimination and 0.5 indicating no discrimination beyond chance). For each model validation, 
predictive performance measures were summarised across the cohorts using a two-stage IPD 
meta-analysis approach.

Validation performance measures were first calculated for each cohort separately and then pooled65 
using a random-effects meta-analysis model estimated using restricted maximum likelihood estimation 
(DerSimonian–Laird estimates used for subgroup analysis). Random-effects meta-analysis was used 
as we assumed that the performance of a model would differ across populations, due to case-mix 
variation.31,66 Random-effects meta-analysis also allowed us to quantify heterogeneity in predictive 
performance across cohorts and to predict model performance in other similar settings using 
approximate 95% prediction intervals.67 The calibration slope and CITL were pooled on their original 
scale, while the c-statistic was pooled on the logit scale68 with the standard errors of logit-C calculated 
using the delta method.66 Model performance was summarised for each predictive performance statistic 
as the average and 95% confidence interval (CI) for the average performance statistic. CIs were derived 
using the Hartung–Knapp–Sidik–Jonkman variance correction, to account for uncertainty in the 
between-study variance (often due to few studies being present in the meta-analysis).69

We summarised the heterogeneity in model performance across cohorts τ2, with approximate 95% 
prediction intervals calculated using the approach of Higgins et al.70 We showed the model performance 
across cohorts graphically using forest plots for each predictive performance measure, and scatter plots 
to show both calibration measures in combination (CITL and calibration slope, to give an impression of 
the overall calibration performance of the model).

Decision curve analysis
We assessed the clinical utility of a model for predicting FGR (binary outcome) using DCA.71,72 The 
net benefit (NB) of the model, weighing up potential benefits and harms was plotted at various 
clinically relevant threshold probabilities. For a probability threshold (pt), the NB was calculated 
as TP

N − (FP
N × pt

1−pt
), where TP and FP represent the numbers of individuals with a predicted 

probability ≥ pt that do and do not have FGR, respectively, and N is the total sample size.71,72 The 
model with the greatest NB for a particular threshold is considered to have the most clinical value. 
Threshold probabilities refer to cut-off points, where in practice a prediction greater than the threshold 
would be treated as ‘high risk’, and a prediction below this threshold would be considered low risk. 
Decision curves were compared between models and against ‘treat-all’ and ‘treat-none’ strategies 
(where an intervention is for everyone and no one, respectively), focusing across the range of threshold 
probabilities at which the model may be clinically useful. Based on clinical discussion, the threshold 
range was agreed in advance to be 0.01 to 0.2, meaning predicted FGR risks in the range from 1% to 
20% were considered as potential cut-points for informing changes to treatment in practice, and so a 
NB in this range was desired.

To assess the clinical implications of using linear regression models for predicting birthweight to imply 
FGR risk, predicted probabilities were gained from the outcome of the linear regression model using 
the distribution of the predicted values across individuals i (YPREDi), where YPREDi was assumed to follow 
a student’s t distribution with n− p− 1 degrees of freedom (p denoting the number of predictor 
parameters in the prediction model and n the number of participants).
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Recalibration of existing fetal growth restriction prediction models
Where the existing models were miscalibrated, recalibration methods were considered. In particular, the 
intercept and slope of the LP were to be re-estimated to improve CITL and the calibration slope.

Development and validation of new or updated prediction models
To develop and validate new prediction models for (1) FGR (birthweight <10th centile adjusted for 
gestational age, with stillbirth or neonatal death or delivery before 32 weeks) and (2) birthweight at 
various gestational ages, we considered cohorts contained within the data repository at final database 
lock in August 2020.

Candidate predictors for model development were informed by predictors included in existing prediction 
models and by clinical experts in the collaborative group as detailed in Prioritisation of predictors. Our 
aim was to produce predictions conditional on assumed gestational ages at delivery, and therefore 
gestational age at delivery was included as a predictor in our models. Although the actual gestational 
age at delivery would not be available at the moment of prediction, producing the models in this way 
allows a range of assumed gestational ages at delivery to be entered for each woman, and a graph of 
predictions against gestational age to be made for them, to give a more complete picture over time. 
Example plots of such predictions are given later in the report.

To select datasets to use for development of a new prediction model, it was necessary to compromise 
between the number of datasets included and the potential predictors that could be considered for 
inclusion in the models (as not all predictors were available in all datasets). The aim was to do this in such 
a way to maximise both. We undertook the following process:

1. Summarised the number of datasets, total sample size and number of events available for each  
candidate predictor considered for inclusion.

2. Ranked the prioritised predictors based on the number of cohorts reporting the predictor in 
the IPD.

3. Started with the most commonly reported predictor and added prioritised predictors in a sequential 
manner to obtain the set of predictors which maximised the number of cohorts in the IPD, number 
of participants and number of events.

4. Stopped when adding any further predictors resulted in a sizeable loss of cohorts, participants or 
events and ensuring there was sufficient data to meet the sample size criteria set out in Sample size 
considerations.

Missing data
The number and proportion of missing values for each potential predictor and outcome were 
summarised by cohorts. Predictors were considered to be systematically missing for a cohort if they 
were not recorded for any or were recorded for very few individuals (<10%) in that cohort. Predictor 
values were not imputed for any cohort in which they were systematically missing.

Multiple imputation was implemented in each cohort separately to acknowledge the clustering of 
individuals within, and to retain heterogeneity between, cohorts.35 We generated 100 imputed datasets 
(to exceed the largest percentage of incomplete observations in any of the individual cohorts), using 
chained equations, for each IPD cohort with any partially missing candidate predictors or outcome 
variables. Continuous variables were imputed using linear regression, binary variables were imputed 
using logistic regression and categorical variables were imputed using predictive mean matching. 
Complete predictors were also included in the imputation models as auxiliary variables. The imputation 
model included all candidate predictors and both outcome variables (birthweight and FGR).

Due to the difficulties in handling non-linearity in model development, and accounting for different non-
linear functions in the imputation, a pragmatic decision was made to perform a preliminary complete 
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case analysis to look for potential non-linear relationships between continuous candidate predictors and 
each outcome variable using multivariable fractional polynomial (MFP) models. Visual comparison of FP1 
and FP2 functions was used to decide on the complexity of the functions to be included. If there was 
little difference between the shape of FP1 and FP2 functions, the simpler FP1 function was selected. 
Where a non-linear function was selected for a variable in the complete case analysis, rather than 
assuming that the FP1 function selected was correct, we included each of the possible (FP) functions in 
the imputation model, to enable this non-linearity to be considered during model development.

After imputation, the distributions of values for imputed variables were checked by plotting the 
mean ± SD for continuous variables against the imputation number (including the original unimputed 
data, imputation 0, for reference). For categorical variables, the proportions in each category were 
compared across imputations and to the original unimputed data.

Model development and variable selection
Prediction models were developed using random intercept regression models with backward elimination 
for variable selection. The random intercept was used to account for clustering of women within the 
individual cohorts.

Variable selection and consideration of the functional form for continuous variables took place within 
each cycle of the IECV (detailed below). An MFP approach was used, in which fractional polynomial 
functions were tested for each continuous variable (identified in the previous complete case analysis to 
potentially have a non-linear association with the outcome) to determine the ‘best’ functional form of 
that variable in the multivariable model (i.e. in the presence of all other variables).

At each stage of the variable selection process, the same model (i.e. including the same candidate 
predictors) was fitted to all imputations, and pooled Wald tests (using Rubin’s rules) were used for 
backward elimination, with p > 0.157 (proxy for AIC) for exclusion.73

Heuristic shrinkage was calculated following the method proposed by Van Houwelingen and le Cessie74 
for the final model in each imputation and pooled across imputations using Rubin’s rules to obtain the 
average shrinkage factor. This average shrinkage factor was then applied to each beta coefficient in the 
models, and subsequently average intercept values were re-estimated (holding fixed the shrunken beta 
coefficients) to ensure predictions in each dataset were correct on average.

Internal-external cross-validation
An IECV approach was used for validation, as IPD were available from multiple cohorts.31,32 Using this 
approach, a model is developed using all but one cohort which is reserved for ‘external’ validation. The 
model is then internally validated using the same data, using methods such as bootstrapping to calculate 
the optimism in the model performance and the shrinkage factor. Bootstrapping was not practical 
computationally given the need to incorporate both non-linear trend examinations, variable selection 
and multiple imputation. Therefore, an approximate heuristic shrinkage factor was calculated (not 
accounting for the variable selection process) following the method proposed by van Houwelingen and 
le Cessie74 and applied to the regression coefficients as described above.65

Following shrinkage, the model’s average intercepts were re-estimated to ensure predictions were 
correct on average. This then provided the ‘shrunken’ model equation. This ‘shrunken’ model was then 
applied to the omitted study to calculate the predicted birthweight at the observed gestational age at 
delivery, and then the predictive performance measures were calculated using CITL, the calibration 
slope, the c-statistic and Nagelkerke’s R2 (as described in Assessment of model performance). This 
completes one cycle of IECV, and the process was repeated multiple times, each time reserving a 
different study for ‘external’ validation (see Figure 1). Calibration plots were also produced for each cycle 
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of IECV, plotting average observed and expected values across imputations (where imputation-specific 
calibration plots were consistent with one another).

Following IECV, there were multiple values for each predictive performance measure (one from each 
cohort). These estimates were summarised using random-effects meta-analysis to give a pooled 
estimate of overall performance on IECV. Apparent performance of the model was also calculated 
for each cohort individually (and across the full dataset) using the average intercept term, to better 
approximate how the model would be applied in new individuals. Cohort-specific apparent predictive 
performance was also summarised across cohorts using random-effects meta-analysis to give a pooled 
estimate of overall apparent model performance.

For these random-effects meta-analyses, the calibration slope and CITL were pooled on their 
original scale, while the c-statistic was pooled on the logit scale68 with the standard errors of logit-C 
calculated using the delta method.66 CIs were derived using the Hartung–Knapp–Sidik–Jonkman 
variance correction.69

Decision curve analysis
For the binary outcome model, decision curves were produced (as described in Decision curve analysis) 
within each study cohort individually, as well as within the full dataset used for development. Expected 
numbers of true/false positives (T/FP) and true/false negatives (T/FN) per 1000 women based on using 
the model are also reported for a selection of potentially clinically relevant threshold probabilities, along 
with estimates of sensitivity and specificity for the model at each threshold, with the region between 
thresholds of 1% to 20% of most interest.
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FIGURE 1 Flow diagram showing processes involved in development and validation of the prediction model.
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Chapter 4 Characteristics of IPPIC cohorts and 
prioritisation of candidate predictors for model 
development

Characteristics of IPPIC cohorts

Overall, 94 cohorts were available in the IPPIC data repository (including 16 added cohorts), 
contributing data from 4,539,640 pregnancies.18,75–164 About half the studies in the repository were 
prospective cohort studies (57%, 54/94), 16% (15/94) were randomised trials and 14% (13/94) were 
prospective registry datasets or birth cohorts. One dataset was an IPD of 31 RCTs. Most of the datasets 
included pregnant women from Europe (61%, 57/94), 16% (15/94) from North America, 6% (6/94) from 
South America, 6% (6/94) from Asia and Australia and 1 from Africa. Five datasets provided included 
participants from multiple countries such as Argentina, Colombia, Kenya, India, Peru, Thailand, Vietnam, 
Lebanon, Mexico, Mongolia, Uganda, Nigeria and New Zealand. About a quarter of datasets received 
were on women with high-risk pregnancies only (26%, 24/94), 13% (12/94) on low-risk pregnancies and 
more than half (61%, 57/94) included women with any risk pregnancies. Detailed study characteristics 
of all IPPIC datasets are provided in Appendix 1.

Prioritisation of candidate predictors of fetal growth restriction: Delphi survey 
findings

Forty collaborators participated in the first round of the e-survey. Most of the participants were from 
Europe (65%, 26/40), five each from the American and Oceania continents, three from Asia and one 
from Africa. Twenty-three participants took part in the second round of the prioritisation survey which 
took place via a Zoom video conference. Thirteen participants were from Europe (57%, 13/23), five from 
America (22%, 5/23), three from Oceania (3/23) and one each from Asia and African continents.

We identified 33 predictor variables from existing systematic reviews (18 clinical characteristics, 7 
biochemical markers and 8 ultrasound markers). Additionally, between the first and second round of the 
survey, our external validation of existing prediction models for FGR identified a promising model with 
reasonable performance (see Chapter 5).59 It was decided to take forward all predictors in the model as 
candidate predictors in our model development. These predictors were therefore included as candidate 
factors regardless of the ranking obtained from the first round of voting, and they were not considered 
by collaborators during the second round of voting.

The predictors included from the Poon 2011 prediction model, as well as predictors voted in/out 
following the two-round survey are provided in Table 2. A comparison of possible sample sizes based on 
combinations of candidate predictors in addition to the predictor variables from the Poon 2011 model59 
was conducted and yielded the below (see Table 3). At each stage, the additional variable that maximised 
the number of cohorts, participants and FGR events was carried forward with the variables already 
selected. The process was then repeated considering the other candidate variables in the next iteration. 
In Table 3, bold text shows which variable was carried through to the next iteration, while red italics 
shows a variable was removed at that point, as only one study measured that combination of variables.

The final list of candidate predictors included those from the Poon 2011 model,59 along with previous 
PE, previous stillbirth and having had a previous SGA baby. This combination of predictors resulted in a 
restriction of analysis to 4 cohorts with 237,228 pregnancies and 1729 events (which met the sample 
size requirements discussed in Sample size considerations) for model development.
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TABLE 2 Predictors of FGR prioritised in Delphi survey

Potential candidate predictors Excluded as not prioritised by researchers 

Included from existing Poon 2011 model59

Gestational age Vaginal bleeding in this pregnancy

Mother’s weight Pregnancy interval

Mother’s height Alcohol intake

Mother’s age Drug misuse

Parous Chronic kidney disease

Smoking History of autoimmune disease

Ethnicity (white, black, Asian, Hispanic, mixed or other) History of heritable thrombophilia

Chronic hypertension History of cardiovascular disease

Diabetes BMI

Assisted conception Uterine artery Doppler notching

Uterine artery Doppler raised RI

From prioritisation by collaborators Suboptimal fetal growth by AC centile

Previous stillbirth Fetal CPR

Previous SGA baby Fetal echogenic bowel

Previous history of PE NT

PlGF HCG

Uterine artery Doppler raised PI AFP

EFW PAPP-A

sFlt-1

Proteinuria – urine dipstick > 2 + protein

Proteinuria – >300 mg/24 hour collection

AFP, alpha-fetoprotein; BMI, body mass index; CPR, cerebral-placental ratio; HCG, human chorionic gonadotropin; 
PAPP-A, pregnancy-associated plasma protein A; PI, pulsatility index; PlGF, placental growth factor; RI, resistance index; 
sFlT-1, soluble fms-like tyrosine kinase-1.

TABLE 3 Candidate predictors for IPPIC-FGR model finalised based on data availability, existing literature and 
clinical consensus

Root Addition 
Number of 
datasets 

Number of 
participants 

Number 
of events 

Poon 2011 predictors Previous stillbirth 10 674,529 6394

Previous SGA baby 5 238,428 1743

Previous PE 11 677,370 6433

PlGF 6 12,436 61

Uterine artery Doppler PI 6 12,436 61

Uterine artery Doppler PI (T1) 5 8224 49

Uterine artery Doppler PI (T2) 5 17,917 45
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Root Addition 
Number of 
datasets 

Number of 
participants 

Number 
of events 

Uterine artery Doppler PI (T3) 1 8824 12

EFW 4 247,342 1733

Poon 2011 predictors +  
previous PE

Previous stillbirth 8 670,254 6384

Previous SGA baby 5 238,428 1743

PlGF 5 16,985 63

Uterine artery Doppler PI 4 8161 51

Uterine artery Doppler PI (T1) 3 3949 39

Uterine artery Doppler PI (T2) 4 15,281 40

EFW 4 247,342 1733

Poon 2011 predictors +  
previous PE + previous  
stillbirth

Previous SGA baby 4 237,228 1729

PlGF 2 9869 14

Uterine artery Doppler PI 1 1045 2

Uterine artery Doppler PI (T1) 1 1045 2

Uterine artery Doppler PI (T2) 2 9869 14

EFW 3 243,130 1721

Poon 2011 predictors +  
previous PE + previous 
stillbirth + previous SGA 
baby

PlGF 1 1045 2

Uterine artery Doppler PI (T2) 1 1045 2

EFW 2 234,306 1709

Poon 2011 predictors +  
previous PE + previous 
stillbirth + EFW

PlGF 1 8824 12

Uterine artery Doppler PI (T2) 1 8824 12

Notes
PI, pulsatility index; PlGF, placental growth factor; T1, first trimester; T2, second trimester; T3, third trimester.
Poon 2011 predictors = gestational age, mother’s weight, mother’s height, mother’s age, parous, smoking, ethnicity (white, 
black, Asian, Hispanic, mixed or other), chronic hypertension, diabetes, assisted conception.
Bold text = variables carried through to the next iteration; red italics = variables excluded since only one study measured 
the combination with that variable.

TABLE 3 Candidate predictors for IPPIC-FGR model finalised based on data availability, existing literature and clinical 
consensus (continued)
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Chapter 5 External validation of existing 
models

Identification of existing prediction models

We identified 119 prediction models (55 articles) for fetal growth and birthweight (see Figure 2). No 
model reported FGR as pre-specified by us. Of the eleven models that predicted birthweight on a 
continuous scale, eight (73%) included predictors not reported in the IPPIC cohorts IPD,59,158,165–167 
and two (18%) included combinations of variables not available in the IPPIC IPD cohorts and could 
not be externally validated.1,168 One model (Poon 2011) was eligible for external validation using the 
IPPIC cohorts.59

Characteristics of the validated model

The Poon 2011 model predicted birthweight (with a log10 transformation) on a continuous scale and 
included only clinical characteristics as predictors. The model equation is given below in Table 4. The 
model included gestational age at delivery, mother’s weight, height, age, parity, smoking status, ethnicity 
(white, black, Asian, Hispanic, mixed or other), pre-existing chronic hypertension, diabetes and assisted 
conception. Gestational age at delivery had the largest impact on predicted birthweight, with an increase 
in expected birthweight for each week increase in gestational age.

Characteristics of the IPPIC validation cohorts

At database lock for external validation of existing models on 31 January 2020, the IPD of 87 cohorts 
had been harmonised and were available in the IPPIC data repository. IPD from 10% (9/87) of the 
cohorts [Allen, ALSPAC (Avon Longitudinal Study of Parents and Children), Baschat, Generation R, 
Odibo, Rumbold, JSOG (Japan Society of Obstetrics and Gynecology), STORKG, POP]18,75,77,80,87,106,107,120,128  
contained all predictor variables and outcomes allowing for external validation of the Poon 2011 
prognostic model. Two of the nine cohorts included only nulliparous women.18,128 The proportion of 
nulliparous women ranged from 46% to 62% across the remaining cohorts. Five of the included studies 
were prospective cohorts (Allen, Baschat, Odibo, STORKG, POP),18,80,87,107,120 three were from prospective 
registry datasets (ALSPAC, Generation R, JSOG),75,77,106 and one was a cohort from a randomised trial 
(Rumbold).128 All cohorts consisted of unselected pregnant women, except the Rumbold cohort which 
included only low-risk pregnant women. The median gestational age at delivery was similar across all 
the cohorts. Most cohorts that recorded ethnicity predominantly consisted of white women, apart from 
Allen, Baschat and JSOG (47% Asian, 47% black and 100% Eastern Asian included as ‘other ethnicity’, 
respectively).

Summary characteristics for the cohorts used in the external validation of the Poon 2011 model are 
shown in Table 5. The greatest proportion of observations with at least one missing value for the 
variables of interest was observed in ALSPAC (89% incomplete); where mother’s height and weight, or 
birthweight of baby (outcome) were most commonly missing. As the required number of imputations, m, 
was set to at least the proportion of incomplete observations,60 this informed a minimum requirement 
of 89 imputed data sets for each study. We chose to impute 100 times for each study, for completeness 
and to fulfil this requirement. Detailed study characteristics of included IPPIC cohorts used for external 
validation are provided in Appendix 1. Risk of bias assessment of the cohorts by the PROBAST tool 
considered all cohorts to be at low risk of bias in the domains of participant selection and outcome 
reporting. All cohorts except the JSOG cohort were considered to be at low risk of bias for the domain 
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All studies identified by an updated search
1 July 2012 to 1 August 2019

Previous systematic review of FGR prediction
models (Kleinrouwler et al., 2016. Up to

1 July 2012)

(14 articles / 18 models)

Excluded irrelevant articles after title and
abstract screening

n = 706

Full text articles assessed for eligibility

Excluded after screening full text screening
• Duplicates with Kleinrouwler et al., 2016
study, n = 2

n = 749

n = 43

Total number of articles (n = 55)
Number of models (n = 119) 

Models eligible for external validation
n = 1

Birthweight models excluded (n = 10)
• Models includes variables not available in the
 IPPIC IPD, n = 8 fetal length: n = 3, biparietal
 diameter: n = 2, referral status: n = 1, previous
 baby birth weight: n = 1, Delta nuchal
 translucency test:, n = 1
• Combination of variables in model not
 available in any of the IPPIC IPD, n = 2

Models with birthweight as the outcome
on a continuous scale

n = 11

Prediction models excluded due to different
outcome (n = 108)
• SGA / birthweight as binary outcomes, n = 93
• SGA + adverse obstetric / perinatal outcomes, n = 15

All studies identified by an updated search
1 July 2012 to 1 August 2019

Previous systematic review of FGR prediction
models (Kleinrouwler et al., 2016. Up to

1 July 2012)

(14 articles / 18 models)

Excluded irrelevant articles after title and
abstract screening

n = 706

Full text articles assessed for eligibility

Excluded after screening full text screening
• Duplicates with Kleinrouwler et al., 2016
study, n = 2

n = 749

n = 43

Total number of articles (n = 55)
Number of models (n = 119) 

Models eligible for external validation
n = 1

Birthweight models excluded (n = 10)
• Models includes variables not available in the
 IPPIC IPD, n = 8 fetal length: n = 3, biparietal
 diameter: n = 2, referral status: n = 1, previous
 baby birth weight: n = 1, Delta nuchal
 translucency test:, n = 1
• Combination of variables in model not
 available in any of the IPPIC IPD, n = 2

Models with birthweight as the outcome
on a continuous scale

n = 11

Prediction models excluded due to different
outcome (n = 108)
• SGA / birthweight as binary outcomes, n = 93
• SGA + adverse obstetric / perinatal outcomes, n = 15

FIGURE 2 Flow chart of identification of eligible FGR prediction models for external validation.

TABLE 4 Poon 2011 model equation59

log10 (birthweight) = −0.935219 + 0.186853 (gestational age at delivery, weeks) − 0.002078 (gestational age at 
delivery, weeks)2 + 0.003726 (weight, kg) − 0.000030 (weight, kg)2 + 8.820640e−08 (weight, kg)3 + 0.000965 (height, 
cm) + 0.001466 (age, years) − 0.000026 (age, years)2 + 0.016986 (if parous) − 0.024867 (if smoker) − 0.021769 (if African 
ethnicity) − 0.017824 (if South Asian ethnicity) − 0.005543 (if East Asian ethnicity) − 0.009063 (if mixed ethnicity) − 
0.020995 (if chronic hypertension) + 0.03143 (if diabetes) − 0.004015 (if assisted conception) 
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TABLE 5 Summary characteristics of cohorts used in the external validation of the Poon 2011 model

 Allen80 ALSPAC75 Baschat87 Generation R106 Odibo120 Rumbold128 JSOG77 STORKG107 POP18 

Number of pregnancies 1045 15,444 1704 8824 1200 1877 406,286 823 4212

Complete (%) 99 11 99 78 95 89 73 46 96

Gestational age at delivery 
weeks, median (IQR)

40 (39.3–40.6) 40 (39–41) 39.1 (37.9–39.9) 40.1 (39–41) 39.1 (38–39.6) 40 (39–41) 38 (37–40) 40 (38.9–40.9) 40.3 
(39.1–41.1)

Weight, kg, median (IQR) 62 (55–69) 55 (50–60) 71.8 (61.3–87.9) 67 (60.5–76) 68.9 (59.9–83.9) 66 (58.5–76) 52 (47–57) 64.55 
(56.9–72.9)

66 (59–75)

Height, cm, mean (SD) 161.5 (7.4) 164.3 (6.8) 164 (7) 167.2 (7.4) 164.6 (6.8) 165.3 (6.7) 158.3 (5.5) 163.6 (6.7) 165.2 (6.4)

Age, years, mean (SD) 29.9 (5.1) 27.8 (4.9) 30.2 (6.5) 29.7 (5.3) 31.5 (5.6) 26.4 (5.7) 32.2 (5.4) 29.9 (4.9) 29.9 (5.1)

Nulliparous 461 (44.11) 5828 (37.74) 736 (43.19) 4834 (54.78) 518 (43.17) 0 (0) 210,896 
(51.91)

381 (46.29) 0 (0)

Smokers 38 (3.64) 2645 (17.13) 162 (9.51) 1438 (16.3) 97 (8.08) 364 (19.39) 10,952 (2.7) 50 (6.08) 211 (5.01)

Ethnicity

 White 398 (38.09) 12,075 (78.19) 775 (45.48) 4933 (55.9) 735 (61.25) 1777 (94.67) – 379 (46.05) 3900 
(92.59)

 Black 108 (10.33) 131 (0.85) 803 (47.12) 2146 (24.32) 325 (27.08) 3 (0.16) – 62 (7.53) 25 (0.59)

 Asian 495 (47.37) 113 (0.73) 88 (5.16) 496 (5.62) 94 (7.83) 1 (0.05) – 200 (24.3) 91 (2.16)

 Hispanic – – 27 (1.58) – 23 (1.92) 1 (0.05) – 12 (1.46) –

 Mixed 12 (1.15) – – – 22 (1.83) 4 (0.21) – – 1 (0.02)

 Other 30 (2.87) 82 (0.53) 11 (0.65) 767 (8.69) 1 (0.08) 87 (4.64) 406,286 
(100)

170 (20.66) 195 (4.63)

Chronic hypertension 10 (0.96) 1822 (11.8) 162 (9.51) 147 (1.67) 109 (9.08) 9 (0.48) 3421 (0.84) 13 (1.58) 220 (5.22)

Diabetes 11 (1.05) 126 (0.82) 81 (4.75) 33 (0.37) 58 (4.83) 8 (0.43) 2926 (0.72) – 16 (0.38)

Assisted conception 23 (2.2) 365 (2.36) 35 (2.05) 140 (1.59) 59 (4.92) 49 (2.62) 57,082 
(14.05)

13 (1.58) 184 (4.37)

Birthweight, g, mean (SD) 3298.3 (524.5) 3347.7 (608.7) 3147.5 (674.6) 3391.1 (578.4) 3227.9 (676) 3382 (608.9) 2840.4 
(581.1)

3418.3 (570.1) 3401 
(534.5)

Values are number (%) unless otherwise stated.
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of predictor reporting, which had an unclear risk of bias because not enough information was available 
to make the assessment (see Appendix 2).

Performance of existing model in predicting birthweight: external validation and 
meta-analysis

Average calibration across imputations
Calibration plots (with calibration curves) of the Poon 2011 model were generated in each IPD cohort 
separately, for each imputation, to assess the similarity of observed and predicted birthweights across 
the full range of predicted values. A comparison of the observed birthweight distribution and the 
predicted birthweight distribution in each cohort is given in Appendix 3, Figures 21 and 22. As calibration 
plots were very similar on visual inspection across imputations, it was concluded that predictions 
were similar enough across imputations for pooling to be appropriate. We present in Figures 3 and 
4 calibration plots for the Poon 2011 model in each cohort, comparing the observed birthweight to 
the average predicted birthweight across imputations. These are presented on the more clinically 
interpretable birthweight (g) scale (see Figure 3), and on the original model scale of log10 (birthweight) 
(see Figure 4), which allows better focus on the birthweights at the lower end of the predicted scale, 
where pregnancies at higher risk of FGR are more likely to be seen.

On both outcome scales, the light blue LOWESS smoothed calibration curves can be seen to lie close 
to the diagonal (where expected equals observed outcome value) for all cohorts, suggesting impressive 
calibration performance on average across individuals from all populations included. We clearly see, 
though, from the individual points (green) in Figure 3, that for predictions at the higher end of the scale 
(where the bulk of the observations lie), there is a large variation in observed birthweights compared to 
a relatively narrow range of predictions for all datasets. For example, in the POP18 cohort predictions in 
the range of 2500 g to 4000 g correspond to observed birthweights in the range 2000 g to 5000 g. While 
the model predicts well on average within datasets, there is still some miscalibration in the higher range 
for some observations.

Calibration plots and curves on the original model scale (log10 birthweight) also show this wider spread 
of observed values at the upper end of the scale, but this is less pronounced due to the log scale. When 
focusing on the lower predicted birthweights, those at higher concern regarding FGR, we see more 
clearly on this scale that calibration in generally good in this clinically important range. Given the clinical 
requirement of identifying low-birthweight babies at risk of FGR for early intervention, good calibration 
on average and small variation in predicted birthweights in the lower ranges make the model promising 
with this use in mind.

Pooled calibration across external validation cohorts
The Poon 2011 model showed reasonable calibration overall in each of the validation cohorts. Individual 
calibration slopes ranged from 0.91 (95% CI 0.83 to 0.98) in the Allen cohort, to 1.05 (95% CI 1.01 to 
1.08) in the POP cohort, suggesting only a small and potentially unimportant miscalibration on average 
in terms of the slope (as seen visually within the calibration plots and smoothed calibration curves).

The pooled calibration slope across all cohorts of 0.97 (95% CI 0.94 to 1.01, τ2 = 0.0018) (see Figure 5, 
panel A) implies that the model is well calibrated across cohorts (given the summary calibration slope very 
close to the ideal value of 1, and its CI also crosses 1). There was also some heterogeneity evident across 
cohorts; for example, with a 95% prediction interval for the calibration slope in a new study of 0.87 to 
1.08, when considering predictions on the birthweight scale. However, this range is still very narrow, and 
generally miscalibration is predicted to be quite small as measured by the slope.

On the original log10 (grams) scale of the model (see Figure 5, panel B), a summary calibration slope 
of 0.93 (95% CI 0.90 to 0.96, τ2 = 0.0012) also suggests slight overfitting, with a small amount of 
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heterogeneity across cohorts. The 95% prediction interval suggests that the calibration slope in a new 
study would be between 0.84 and 1.02. In practice, predictions of interest are on the grams scale and so 
we suggest it is better to focus on the previous results.

In the individual cohorts, the smallest CITL value of −26.4 g (−27.5 to −25.3) suggests systematic over-
prediction of birthweight on average in the JSOG cohort of 26.4 g, while the largest value suggests an 
under-prediction of 220.3 g (206.5 to 234.0) on average in the ALSPAC cohort.

The pooled CITL of 90.4 g (37.9 g to 142.9 g, τ2 = 4578 g
2), when summarised across all gestational 

ages (Figure 6) showed systematic under-prediction of birthweight by around 90.4 g. This is reflected by 
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FIGURE 3 Average calibration plots across imputations for individual cohorts on external validation of the Poon 2011 
model, with the observed birthweight (g) plotted against predicted birthweight. The dashed line shows perfect calibration 
(where observed birthweight equals expected birthweight), while the blue line gives the smoothed calibration slope across 
all pregnancies.
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the calibration curves being slightly above the 45° line of perfect calibration in most cohorts. The Poon 
2011 model showed moderate between-study heterogeneity in CITL performance, with τ2 = 67.7 g,  
and a 95% prediction interval suggesting that we would expect a CITL for a new study to be between 
−78.4 g and 259.2 g.

Assessing CITL separately by gestational age at delivery (see Figure 7) showed that this average under-
prediction was consistent across gestational age groups, with the pooled CITL ranging from 94.2 g (95% 
CI 23.6 g to 164.8 g) in those born 32- and 36-weeks’ gestation, to 108.5 g (95% CI −18.5 g to 235.4 g) in 
those born before 28 weeks. Uncertainty was much higher (with wider CIs for pooled CITL) for estimates 
at earlier gestational ages for delivery, due to the lower number of observed births before 32 weeks in 
all cohorts.
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FIGURE 4 Average calibration plots across imputations for individual cohorts on external validation of the Poon 2011 
model, with the observed 1og10 birthweight plotted against predicted 1og10 birthweight. The dashed line shows perfect 
calibration (where observed value equals expected value), while the blue line gives the smoothed calibration slope across 
all pregnancies.
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There was moderate to high heterogeneity seen between cohorts in the meta-analysis in all gestational 
age groups, with relatively wide 95% prediction intervals for all groups. For example, the prediction 
interval for CITL in those with gestational age <28 weeks at delivery suggests the new study may under-
predict birthweight by up to 402.5 g or over-predict birthweight by up to 185.6 g in a new (but similar) 
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FIGURE 5 Forest plot for the calibration slope of the Poon 2011 model across external validation datasets for predictions 
made on the birthweight (g) scale (panel A) and the log10 birthweight (log10 grams) scale.
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cohort. Given the small average birthweights for babies born at this gestational age, such differences 
between predicted and observed birthweights are extremely large.

Summary of calibration of the Poon 2011 model
A summary of the meta-analysis results for the calibration slope and the CITL across different 
gestational age groups is given in Table 6. Both calibration measures are important to be considered 
in combination to assess the calibration performance of a prediction model, and thus a scatter plot 
including both measures on the individual dataset level is given in Figure 8. While no study shows 
perfect calibration by either measure, the cluster of points in Figure 8 demonstrates how the Poon 2011 
model consistently under-predicts birthweight across cohorts (with the exception of JSOG), regardless 
of whether the associated calibration slope implied under- or over-fitting. The JSOG dataset can be seen 
to be an outlier, with one of the lowest calibration slope estimates, and was the only cohort to suggest 
an over-prediction of birthweight on average when using the Poon 2011 model.

On average across external validation cohorts, the calibration slope of the Poon 2011 model was 
impressive when including all gestational age groups in the analysis, suggesting minimal overfitting of 
the model on average (pooled calibration slope: 0.97) across all age groups. Most overfitting was seen 
for those with gestational age 28–31 weeks, where a pooled calibration slope of 0.89 suggests that 
predictions were too extreme.

Calibration-in-the-large was also promising on average, with an average under-prediction of birthweight 
by 90.4 g (where under-prediction is clinically preferable in the determination of FGR risk). This average 
underprediction was consistent across gestational ages, which would have more of a relative impact on 
the usefulness of predictions for smaller babies born at earlier gestational ages.

Calibration curves for the Poon 2011 model reflect the similarity of observed and predicted birthweights 
suggested from the promising calibration slope and CITL values. The LOWESS smoothed calibration 
curves can be seen to lie close to the diagonal (where expected equals observed outcome value) 
for all cohorts, suggesting impressive calibration performance on average across individuals from all 
populations included.
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Summary

In summary, from 119 prediction models for fetal growth and birthweight identified in our literature 
search, no prediction models were found to predict the probability of our predefined definition of FGR. 
One birthweight model could be externally validated. The Poon 2011 model predicts log10 (birthweight) 
using 10 variables based on maternal characteristics only.

True GA at delivery
and Study name

CITL
(95% CI) Group N

–250

Over-estimation (g)

Note: Weight are from random-effects model

Under-estimation (g)

2500 500

1. <28 weeks 
ALSPAC 260.38 (147.68, 373.09)  3
Baschat 68.93 (10.16, 127.71)  32
Generation R 223.00 (-76.90, 522.91)  10
Odibo 137.59 (74.42, 200.77)  20
Rumbold 89.30 (19.91, 158.69)  16
JSOG 157.55 (150.98, 164.13)  5250
STORKG 151.31 (111.64, 190.99)  4
POP -246.08 (-460.61, -31.55)  38
Subgroup (I-squared = 76.3%) 126.61 (49.89, 203.33)
with estimated prediction interval              (-9.49, 262.72)

1. <28 weeks 
ALSPAC 260.38 (147.68, 373.09)  3
Baschat 68.93 (10.16, 127.71)  32
Generation R 223.00 (-76.90, 522.91)  10
Odibo 137.59 (74.42, 200.77)  20
Rumbold 89.30 (19.91, 158.69)  16
JSOG 157.55 (150.98, 164.13)  5250
STORKG 151.31 (111.64, 190.99)  4
POP -246.08 (-460.61, -31.55)  38
Subgroup (I-squared = 76.3%) 126.61 (49.89, 203.33)
with estimated prediction interval              (-9.49, 262.72)

1. <28 weeks 
ALSPAC 260.38 (147.68, 373.09)  3
Baschat 68.93 (10.16, 127.71)  32
Generation R 223.00 (-76.90, 522.91)  10
Odibo 137.59 (74.42, 200.77)  20
Rumbold 89.30 (19.91, 158.69)  16
JSOG 157.55 (150.98, 164.13)  5250
STORKG 151.31 (111.64, 190.99)  4
POP -246.08 (-460.61, -31.55)  38
Subgroup (I-squared = 76.3%) 126.61 (49.89, 203.33)
with estimated prediction interval              (-9.49, 262.72)

2. 28-31 weeks
Allen 37.51 (-346.58, 421.61)  3 
ALSPAC 318.23 (-99.87, 736.33)  16
Baschat -82.15 (-236.68, 72.38)  19
Generation R 126.68 (-28.76, 282.11)  34
Odibo 167.61 (-88.73, 423.95)  18
Rumbold 146.04 (82.25, 209.84)  11
JSOG 104.32 (96.99, 111.66)  7722
STORKG 140.51 (-450.47, 731.50)  3
POP 118.86 (11.73, 225.99)  24
Subgroup (I-squared = 8.6%) 107.54 (76.78,138.31)
with estimated prediction interval              (60.28, 154.81)

2. 28-31 weeks
Allen 37.51 (-346.58, 421.61)  3 
ALSPAC 318.23 (-99.87, 736.33)  16
Baschat -82.15 (-236.68, 72.38)  19
Generation R 126.68 (-28.76, 282.11)  34
Odibo 167.61 (-88.73, 423.95)  18
Rumbold 146.04 (82.25, 209.84)  11
JSOG 104.32 (96.99, 111.66)  7722
STORKG 140.51 (-450.47, 731.50)  3
POP 118.86 (11.73, 225.99)  24
Subgroup (I-squared = 8.6%) 107.54 (76.78,138.31)
with estimated prediction interval              (60.28, 154.81)

2. 28-31 weeks
Allen 37.51 (-346.58, 421.61)  3 
ALSPAC 318.23 (-99.87, 736.33)  16
Baschat -82.15 (-236.68, 72.38)  19
Generation R 126.68 (-28.76, 282.11)  34
Odibo 167.61 (-88.73, 423.95)  18
Rumbold 146.04 (82.25, 209.84)  11
JSOG 104.32 (96.99, 111.66)  7722
STORKG 140.51 (-450.47, 731.50)  3
POP 118.86 (11.73, 225.99)  24
Subgroup (I-squared = 8.6%) 107.54 (76.78,138.31)
with estimated prediction interval              (60.28, 154.81)

3. 32-36 weeks
Allen 176.26 (14.06, 338.46)  54 
ALSPAC 212.13 (160.12, 264.14)  277
Baschat 31.98 (-27.33, 91.28)  182
Generation R -17.51 (-61.88, 26.87)  375
Odibo 147.71 (76.80, 218.61)  106
Rumbold 82.92 (12.24, 153.59)  104
JSOG -18.40 (-21.69, -15.11)  48,040
STORKG 128.27 (-1.15, 257.69)  40
POP 50.32 (-3.32, 103.96)  154
Subgroup (I-squared = 93.5%) 80.33 (7.37,153.29)
with estimated prediction interval           (-137.94, 298.59)

3. 32-36 weeks
Allen 176.26 (14.06, 338.46)  54 
ALSPAC 212.13 (160.12, 264.14)  277
Baschat 31.98 (-27.33, 91.28)  182
Generation R -17.51 (-61.88, 26.87)  375
Odibo 147.71 (76.80, 218.61)  106
Rumbold 82.92 (12.24, 153.59)  104
JSOG -18.40 (-21.69, -15.11)  48,040
STORKG 128.27 (-1.15, 257.69)  40
POP 50.32 (-3.32, 103.96)  154
Subgroup (I-squared = 93.5%) 80.33 (7.37,153.29)
with estimated prediction interval           (-137.94, 298.59)

3. 32-36 weeks
Allen 176.26 (14.06, 338.46)  54 
ALSPAC 212.13 (160.12, 264.14)  277
Baschat 31.98 (-27.33, 91.28)  182
Generation R -17.51 (-61.88, 26.87)  375
Odibo 147.71 (76.80, 218.61)  106
Rumbold 82.92 (12.24, 153.59)  104
JSOG -18.40 (-21.69, -15.11)  48,040
STORKG 128.27 (-1.15, 257.69)  40
POP 50.32 (-3.32, 103.96)  154
Subgroup (I-squared = 93.5%) 80.33 (7.37,153.29)
with estimated prediction interval           (-137.94, 298.59)

4. >=37 weeks
Allen 57.93 (32.12, 83.75)  983 
ALSPAC 220.45(206.22, 234.69)  3635
Baschat 59.17 (38.30, 80.04)  1446
Generation R 74.84 (64.75, 84.92)  6539
Odibo 119.41 (94.80, 144.01)  1020
Rumbold 127.78 (107.14, 148.42)  1740
JSOG -33.18 (-34.37, -31.98)  345,051
STORKG 118.19 (88.37, 148.02)  776
POP 68.81 (56.61, 81.01)  3996
Subgroup (I-squared = 99.7%) 90.26 (10.43,170.08)
with estimated prediction interval           (-167.51, 348.02)

4. >=37 weeks
Allen 57.93 (32.12, 83.75)  983 
ALSPAC 220.45(206.22, 234.69)  3635
Baschat 59.17 (38.30, 80.04)  1446
Generation R 74.84 (64.75, 84.92)  6539
Odibo 119.41 (94.80, 144.01)  1020
Rumbold 127.78 (107.14, 148.42)  1740
JSOG -33.18 (-34.37, -31.98)  345,051
STORKG 118.19 (88.37, 148.02)  776
POP 68.81 (56.61, 81.01)  3996
Subgroup (I-squared = 99.7%) 90.26 (10.43,170.08)
with estimated prediction interval           (-167.51, 348.02)

4. >=37 weeks
Allen 57.93 (32.12, 83.75)  983 
ALSPAC 220.45(206.22, 234.69)  3635
Baschat 59.17 (38.30, 80.04)  1446
Generation R 74.84 (64.75, 84.92)  6539
Odibo 119.41 (94.80, 144.01)  1020
Rumbold 127.78 (107.14, 148.42)  1740
JSOG -33.18 (-34.37, -31.98)  345,051
STORKG 118.19 (88.37, 148.02)  776
POP 68.81 (56.61, 81.01)  3996
Subgroup (I-squared = 99.7%) 90.26 (10.43,170.08)
with estimated prediction interval           (-167.51, 348.02)

True GA at delivery
and Study name

CITL
(95% CI) Group N

–250

Over-estimation (g)

Note: Weight are from random-effects model

Under-estimation (g)

2500 500

1. <28 weeks 
ALSPAC 260.38 (147.68, 373.09)  3
Baschat 68.93 (10.16, 127.71)  32
Generation R 223.00 (-76.90, 522.91)  10
Odibo 137.59 (74.42, 200.77)  20
Rumbold 89.30 (19.91, 158.69)  16
JSOG 157.55 (150.98, 164.13)  5250
STORKG 151.31 (111.64, 190.99)  4
POP -246.08 (-460.61, -31.55)  38
Subgroup (I-squared = 76.3%) 126.61 (49.89, 203.33)
with estimated prediction interval              (-9.49, 262.72)

2. 28-31 weeks
Allen 37.51 (-346.58, 421.61)  3 
ALSPAC 318.23 (-99.87, 736.33)  16
Baschat -82.15 (-236.68, 72.38)  19
Generation R 126.68 (-28.76, 282.11)  34
Odibo 167.61 (-88.73, 423.95)  18
Rumbold 146.04 (82.25, 209.84)  11
JSOG 104.32 (96.99, 111.66)  7722
STORKG 140.51 (-450.47, 731.50)  3
POP 118.86 (11.73, 225.99)  24
Subgroup (I-squared = 8.6%) 107.54 (76.78,138.31)
with estimated prediction interval              (60.28, 154.81)

3. 32-36 weeks
Allen 176.26 (14.06, 338.46)  54 
ALSPAC 212.13 (160.12, 264.14)  277
Baschat 31.98 (-27.33, 91.28)  182
Generation R -17.51 (-61.88, 26.87)  375
Odibo 147.71 (76.80, 218.61)  106
Rumbold 82.92 (12.24, 153.59)  104
JSOG -18.40 (-21.69, -15.11)  48,040
STORKG 128.27 (-1.15, 257.69)  40
POP 50.32 (-3.32, 103.96)  154
Subgroup (I-squared = 93.5%) 80.33 (7.37,153.29)
with estimated prediction interval           (-137.94, 298.59)

4. >=37 weeks
Allen 57.93 (32.12, 83.75)  983 
ALSPAC 220.45(206.22, 234.69)  3635
Baschat 59.17 (38.30, 80.04)  1446
Generation R 74.84 (64.75, 84.92)  6539
Odibo 119.41 (94.80, 144.01)  1020
Rumbold 127.78 (107.14, 148.42)  1740
JSOG -33.18 (-34.37, -31.98)  345,051
STORKG 118.19 (88.37, 148.02)  776
POP 68.81 (56.61, 81.01)  3996
Subgroup (I-squared = 99.7%) 90.26 (10.43,170.08)
with estimated prediction interval           (-167.51, 348.02)

FIGURE 7 Forest plot for CITL across cohorts, grouped by gestational age at delivery. GA, gestational age.
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External validation of the Poon 2011 model was possible in 9 cohorts from the IPPIC repository, 
containing data on 441,415 pregnancies. Calibration of the Poon 2011 model was promising, with 
the pooled calibration slope only slightly lower than one on average across cohorts. However, there 
was some heterogeneity in the calibration performance across cohorts, with the calibration slope in 
individual cohorts lying slightly above or below the ideal value of one (implying predictions are slightly 
too extreme in some cohorts, and not quite extreme enough in others).

The model predictions could also be systematically too low or too high depending on the cohorts 
used to validate the model, although the Poon 2011 model was most seen to slightly under-predict 
birthweight. Under-prediction was by around 100 g on average across datasets, regardless of gestational 

TABLE 6 Pooled calibration measures by gestational age at delivery

Gestational age  
at delivery 

Number of  
datasets in  
meta-analysis 

Performance  
measure 

Pooled  
estimate CI Prediction interval τ2 

Any 9 Calibration slope 0.974 0.938 to 1.011 0.868 to 1.081 0.0018

CITL 90.39 g 37.9 to 142.9 −78.4 to 259.2 4578

<28 weeks 8 Calibration slope 1.163 0.893 to 1.432 0.53 to 1.79 0.0531

CITL 126.61 g 49.9 to 203.3 −9.5 to 262.7 2041

28–31 weeks 9 Calibration slope 0.894 0.850 to 0.937 0.85 to 0.94 0.0000

CITL 107.54 g 76.8 to 138.3 60.3 to 154.8 222

32–36 weeks 9 Calibration slope 1.043 0.887 to 1.199 0.62 to 1.47 0.0276

CITL 80.33 g 7.4 to 153.3 −137.9 to 298.6 7519

≥37 weeks 9 Calibration slope 0.907 0.838 to 0.976 0.70 to 1.11 0.0067

CITL 90.26 g 10.4 to 170.1 −167.5 to 348.0 10,685

Calibration slope

C
IT

L

210

170

130

90

50

10

0.8 0.9 1 1.1

–30

Estimate

95% CI

ALSPAC

Rumbold Odiba

POP

Baschat

Allen

JSOG

Generation R

STORKG

Calibration slope

C
IT

L

210

170

130

90

50

10

0.8 0.9 1 1.1

–30

Estimate

95% CI

ALSPAC

Rumbold Odiba

POP

Baschat

Allen

JSOG

Generation R

STORKG

FIGURE 8 Scatterplot comparing CITL and the calibration slope of the Poon 2011 model, as estimated in each cohort. The 
dotted lines indicate perfect calibration by each measure.
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age at delivery. The relative effect of this under-prediction would be greater in babies born at younger 
gestational ages, where expected birthweight is lower.

However, calibration was very good in general. Hence, due to the reasonably good performance of the 
Poon 2011 model on average across cohorts, we concluded that it would be illogical to begin building 
a new prediction model from scratch. Therefore, in the next chapter, we update the Poon 2011 model 
for predicting birthweight by using their included predictor variables as a basis for an updated model 
predicting the probability of FGR in pregnant women. By considering additional variables, agreed by 
clinical consensus, we further develop a model for predicting birthweight to ascertain whether the 
inclusion of new variables might improve the consistency of calibration across populations.
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Chapter 6 Development and validation of fetal 
growth restriction and birthweight models

In this chapter we discuss the results of the development and validation of two new models to predict 
(1) FGR; and (2) birthweight, using the IPPIC datasets. The full methods for the development and 

validation of these models are included in Chapter 3, Recalibration of existing fetal growth restriction 
prediction models.

Characteristics of IPPIC cohorts included in the IPD meta-analysis

At database lock for the development of the FGR and birthweight models on 31 August 2020, 94 cohorts 
were available in the IPPIC data repository. After prioritisation of predictors from existing literature 
and clinical consensus (see Prioritisation of candidate predictors of fetal growth restriction: Delphi survey 
findings), IPD from four cohorts were selected as giving the best combination of predictor variables while 
maximising the numbers of cohorts, participants, and events for model development (see Prioritisation of 
candidate predictors of fetal growth restriction: Delphi survey findings). Three of the included cohorts were 
from prospective observational studies [Allen, STORKG, NICHD CSL (National Institute of Child Health 
and Human Development Consortium on Safe Labour)]80,107,164 and included unselected pregnant women. 
The Rumbold cohort was from a randomised trial and included low-risk women.128

One cohort included only nulliparous women,128 while the remaining three had proportions of nulliparous 
women ranging from 40% to 56%. Across cohorts, the most common ethnicity was white (50%), followed 
by black (22%). Hispanic mothers were also well represented (17%) due to the high proportion of this 
ethnicity in the NICHD CSL cohort. The median gestational age of delivery was similar across all the 
cohorts (39–40 weeks), as well as the mean birthweight. The mean birthweight for all cohorts lay within 
a range of around 200 g, from 3199.8 g in NICHD CSL, up to 3418.3 g in STORKG. The composite FGR 
outcome was rare in all cohorts: notably only two pregnancies (0.2%) in the Allen cohorts and no women 
in the STORKG cohort met our criteria for FGR with complications. Across all four cohorts, 1729 (0.7%) 
pregnancies reported the outcome of FGR with complications, of these 1389 (80.3%) delivered before 
32 weeks, 505 (29.2%) were stillbirths and 420 (26.7%) resulted in a neonatal death.

Detailed study characteristics of IPPIC cohorts used in model development are provided in Appendix 1, 
risk of bias assessment of the cohorts using the PROBAST tool is provided in Appendix 2 and plots of 
predictor distributions across the model development cohorts are provided in Appendix 4, Figures 23–28.

Missingness and multiple imputation

The birthweight outcome was rarely missing across cohorts, with the maximum proportion missing seen 
in the STORKG cohort at just 4.6%.107 The composite FGR outcome was based upon the gestational age 
at delivery and birthweight (both of which were mostly complete in all cohorts), and complications of 
preterm birth (defined by gestational age at delivery, mostly complete), stillbirth (complete in all cohorts), 
or neonatal death. Neonatal death was well recorded in two of the cohorts (Rumbold, NICHD CSL),128,164 
but was entirely missing in the remaining two (Allen, STORKG).80,107 Given the rarity of neonatal death 
in the underlying populations (0.4%) and the small size of these datasets, we chose to assume neonatal 
death was not observed for all pregnancies included in these two datasets. Due to the rarity of neonatal 
death in combination with birthweight <10th centile, we would not expect this assumption to greatly 
influence the model estimates.

Summary characteristics for the cohorts used in development of the FGR and birthweight models, 
including proportions missing for each predictor, are shown in Table 7. The greatest proportion 
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TABLE 7 Characteristics of cohorts included in prediction model development

 

Allen80 Rumbold128 STORKG107 NICHD CSL164 Total

 Missing  Missing  Missing  Missing Missing 

N 1045 13 (1.2) 1877 196 (10.4) 823 442 (53.7) 233,483 222,845 (95.4) 237,228 223,496 (94.2)

Gestational age at delivery 
(weeks), median (IQR)

40 (39.3–40.6) 1 (0.1) 40 (39–41) – 40 
(38.9–40.9)

22 (2.7) 39 (38–40) 7929 (3.4) 39 
(38–40)

7952 (3.4)

Mother’s weight, kg, 
median (IQR)

62 (55–69) 5 (0.5) 66 (58.5–76) 103 (5.5) 64.6 
(56.9–72.9)

421 (51.2) 66.7 
(57.6–80.3)

31,314 (13.4) 66.7 
(57.6–80)

31,843 (13.4)

Mother’s height, cm, mean 
(SD)

161.5 (13.3) – 165.3 (15.7) 138 (7.4) 163.6 
(13.3)

– 163.3 (6.6) 37,567 (16.1) 163.3 (8) 37,705 (15.9)

Mother’s age, years, mean 
(SD)

29.9 (7.4) 1 (0.1) 26.4 (6.7) – 29.9 (6.7) – 27.7 (7.4) 339 (0.1) 27.7 
(7.4)

340 (0.1)

Nulliparous 584 (55.9) – 1877 (100) – 381 (46.3) – 93,545 
(40.1)

0 (0) 96,387 
(40.6)

0 (0)

Smoked during pregnancy 38 (3.6) – 364 (19.4) 39 (2.1) 50 (6.1) – 15,547 
(6.7)

0 (0) 15,999 
(6.7)

39 (0)

Ethnicity 2 (0.2) 4 (0.2) – 9557 (4.1) 9563 (4.0)

 White 398 (38.1) 1777 (94.7) 379 (46.1) 116,000 
(49.7)

118,554 
(50)

 Black 108 (10.3) 3 (0.2) 62 (7.5) 52,518 
(22.5)

52,691 
(22.2)

 Asian 495 (47.4) 1 (0.1) 200 (24.3) 9487 (4.1) 10,183 
(4.3)

 Hispanic – 1 (0.1) 12 (1.5) 40,409 
(17.3)

40,422 
(17)

 Mixed 12 (1.1) 4 (0.2) – 347 (0.1) 363 (0.2)

 Other 30 (2.9) 87 (4.6) 170 (20.7) 5165 (2.2) 5452 
(2.3)

History of hypertension 10 (1) – 9 (0.5) – 13 (1.6) – 4589 (2) 0 (0) 4621 
(1.9)

0 (0)
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Allen80 Rumbold128 STORKG107 NICHD CSL164 Total

 Missing  Missing  Missing  Missing Missing 

History of diabetes 11 (1.1) – 8 (0.4) – – – 4946 (2.1) 7878 (3.4) 4965 
(2.1)

7878 (3.3)

Assisted conception 23 (2.2) – 50 (2.7) 39 (2.1) 13 (1.58) – 1472 (0.6) 109,799 (47) 3354 
(1.4)

109,838 (46.3)

Any previous PE 17 (1.6) – – – – – 10,131 
(4.3)

31,545 (13.5) 10,148 
(4.3)

31,545 (13.3)

Any previous stillbirth 12 (1.1) – – – 8 (1) – 2029 (0.9) 96,159 (41.2) 2049 
(0.9)

96,159 (40.5)

Any previous SGA baby 67 (6.4) – – – 31 (3.8) – 2857 (1.2) 9640 (4.1) 2955 
(1.2)

9640 (4.1)

Birthweight (g), mean (SD) 3298.3 (524.5) 4 (0.4) 3382 (608.9) 6 (0.3) 3418.3 
(570.1)

38 (4.6) 3199.8 
(644.1)

2674 (1.1) 3202 
(643.4)

2722 (1.1)

FGR outcomea 2 (0.2) 18 (1) 0 (0.0) 1709 (0.7) 1729 
(0.7)

 Preterm birth (<32 
weeks)

1 (50.0) – 11 (61.1) – 0 (0.0) – 1377 
(80.6)

– 1389 
(80.3)

–

 Stillbirth 1 (50.0) – 9 (50.0) – 0 (0.0) – 495 (29.0) – 505 
(29.2)

–

 Neonatal death – 1045 (100) 4 (23.5) 1 (0.1) – 823 (100) 416 (26.7) 23,873 (10.3) 420 
(26.7)

25,700 (11.0)

a Totals exceed 100% as the components of the FGR outcome are not mutually exclusive.

Note
Values are number (%), unless otherwise stated.

TABLE 7 Characteristics of cohorts included in prediction model development (continued)
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of observations with at least one item of missing information was observed in NICHD CSL (95% 
incomplete), where conception mode or previous stillbirth were most commonly missing. As the required 
number of imputations, m, was set to at least the proportion of incomplete observations,60 this informed 
a minimum requirement of 95 imputed data sets for each study. We again chose to impute 100 times 
for each study to fulfil this requirement. Details of imputation checks are included in Appendix 5, Figures 
29–33.

Identification of non-linear associations in complete case data
As discussed in Missing data, we performed a complete-case analysis to identify potential non-linear 
associations between continuous predictors and the outcomes. Best-fitting fractional polynomial 
transformations were assessed in the presence of all other model predictors.

Upon visual inspection of the selected non-linear functions selected for mother’s height and mother’s 
weight, there was no improvement in functional fit with FP2 compared to FP1. Therefore, FP1 
transformations of height3 and weight−1 were taken forward to imputation.

While the best fit for gestational age at delivery (GA) was linear at FP1, FP2 analysis suggested a 
transformation, in the presence of other predictors, with powers of GA−2 and GA–2 ln GA. The selected 
FP2 function included a flattening of the curve at the extremes, as can be seen in Figure 9, avoiding the 
negative expected birthweights at lower gestational ages that would arise if assuming a linear association. 
Instead, the selected FP2 function suggests that birthweights decrease with increasing gestational ages 
up to about 23 weeks, which is also illogical. However, gestational ages affected by this would be outside 
the range of the expected model use, and so predictions were unlikely to be affected in practice. While 
a FP1 transformation (linear fit in this case) might be preferable for the sake of parsimony, we elected 
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FIGURE 9 Best-fitting fractional polynomial transformations for continuous predictors in complete case data: 
mother’s height (cm), mother’s weight (kg) and gestational age at delivery (weeks). Note: Given the shape of selected 
FP2 transformation, predictions are not clinically relevant when based on assumed gestational ages below 23 weeks 
(dotted line).
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to take forward the possibility of non-linear transformation into the final analysis, to align with the FP2 
transformation of gestational age at delivery in the Poon model, which we aimed to update.

Linear functions were selected as the best fit for mother’s age compared to both FP1 and FP2 functions, 
therefore, only the linear term was taken forward. Although the ‘best-fitting’ functional form was 
selected for each continuous predictor, it is evident from visual inspection that individual values for each 
predictor can vary a great deal from the line showing the selected function.

Identification of non-linear associations in multiply imputed data
Imputed datasets were generated including both the linear and the selected non-linear transformation 
terms for the above continuous variables (mother’s height, weight and gestational age at delivery) in the 
imputation model. Backwards stepwise variable selection procedures were run, comparing models with 
and without variable transformations at each iteration.

Following variable selection procedures, the imputation was rerun with only the final included 
transformation terms, to reduce any noise in the imputation model arising from spuriously identified 
variable transformations. Excluded variables were included in the imputation model on their original 
scale rather than using any transformation.

The number in brackets shows the best-fitting transformation, where (3) is FP1 with a power of x3, (−1) 
is FP1 with the reciprocal (power x−1) and (−2 −2) is FP2 with the powers of x−2 and x−2 ln x.

Predicting fetal growth restriction IPPIC-FGR prediction model

We developed the IPPIC-FGR model to predict FGR (a binary outcome) using data from all four IPPIC 
cohorts used to develop the IPPIC-birthweight model. A summary of the predictors retained in the FGR 
model after variable selection is given in Table 8. Spontaneous conception, a history of diabetes and 
mother’s weight were not retained in the model to predict FGR. The weight variable was excluded, with 
neither the linear nor the transformed terms being below the significance threshold for retention in the 
model, when considered along with the other model variables.

Gestational age at delivery was retained in the model, allowing predicted FGR risk to be generated 
conditional on any assumed (clinically relevant) value for gestational age at delivery, or indeed across a 
range of assumed values, as desired. Conditional on the other model variables, increased gestational age 
at delivery was associated with a reduced risk of FGR, as were increased mother’s height and being of 
‘other’ ethnicity. Being nulliparous, smoking during pregnancy, an increase in mother’s age, a history of 
hypertension, previous PE, previous stillbirth or having had a previous SGA baby all increased FGR risk. All 
ethnicities other than white or ‘other’ were also associated with an increased risk of an FGR pregnancy.

An estimate of heuristic shrinkage was calculated in each imputation, and when averaged across 
imputations was 0.9985, implying very little overfitting in the development data due to the large 
effective sample size. Given this, it was concluded that application of shrinkage was unnecessary, and so 
no shrinkage (or associated re-estimation of the intercept term) was applied to the model.

Apparent overall performance and by cohorts
The apparent performance of the model was calculated by applying the FGR model directly back into 
each dataset using the average intercept term, using the observed gestational age at delivery for each 
participant (which would be unknown at the time of prediction in practice). On visual inspection, 
separation of the LP between events and non-events (discrimination) looked promising across datasets 
(see Figure 10). In particular, separation was good between the two LP distribution curves in the NICHD 
CSL dataset, where the bulk of the model development data originates. Note that no FGR events 
occurred in the STORKG dataset, hence the absence of the red FGR distribution, and there were only 
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two FGR events in the Allen dataset. In both cases, the distribution of the LPs for pregnancies without 
FGR is similar to the corresponding distributions from the other two datasets.

Study-specific model performance was not assessed for STORKG, as no FGR events were observed in 
the dataset: indeed, this study will have had very little weight towards the predictor effect estimates. 
The apparent predictive performance was pooled across datasets and is reported in Table 9 along with 
performance measures calculated in the full dataset, where predictions were calculated using study-
specific intercepts. IECV was not used as planned for this binary model due to the low number of FGR 
outcomes in some of the smaller datasets.

TABLE 8 Prediction model for FGR with study specific and average intercept terms: model coefficients and odds ratios 
(OR) with 95% CIs

 Coefficient OR (95% CI) 

Gestational age at delivery (weeks)

  wks–2 −56,010.23 –

  wks–2 * ln wks 21,652.92 –
Mother’s age (years) 0.0104503 1.011 (1.002 to 1.020)

Mother’s height (cm)

  cm3 −1.08 × 10–07 –

Nulliparous 0.3584681 1.431 (1.265 to 1.619)

Smoker 0.2928371 1.340 (1.116 to 1.609)

Ethnicity

  White ref ref

  Black 0.4317056 1.540 (1.341 to 1.768)

  Asian 0.1813291 1.199 (0.842 to 1.707)

  Hispanic 0.2961263 1.345 (1.132 to 1.597)

  Mixed 0.9533642 2.594 (0.716 to 9.397)

  Other 0.0034091 1.003 (0.713 to 1.412)

History of hypertension 0.3133796 1.368 (1.036 to 1.807)

Any previous PE 0.8867762 2.427 (2.065 to 2.854)

Any previous stillbirth 0.4355474 1.546 (1.066 to 2.241)

Any previous SGA baby 2.16594 8.723 (7.188 to 10.585)

Intercept

 Average −22.8107 –

 NICHR-CSL −22.8165 –

 Allen −23.4148 –

 Rumbold −21.5836 –

 STORKG −22.8107 –

Heuristic shrinkage 0.9985
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When including all participants (and thus any gestational age at delivery), the pooled c-statistic across 
datasets suggests excellent discrimination, at 0.962 (95% CI 0.508 to 0.998). The low number of events 
in the Allen dataset gives a misleadingly high estimate of the c-statistic, with narrow CIs (given the CI 
width is dependent on the c-statistic value). Apparent discrimination performance was impressive in 
both Rumbold and NICHD CSL datasets, with c-statistic estimates of 0.874 (95% CI 0.737 to 0.945) and 
0.962 (95% CI 0.956 to 0.968), respectively.

The calibration slope was also promising, with a pooled apparent performance across datasets of 0.945 
(95% CI 0.665 to 1.230) although again with wide CIs, given the small number of studies included in the 
meta-analysis.

Being the largest of the model development datasets, so contributing most to the number of events in 
the pooled data, we expect model performance to be at its best for NICHD CSL. Indeed, the model was 
calibrated best in this dataset by all performance measures, for example with an Observed to Expected 
ratio of 0.996 (95% CI 0.996 to 0.996) suggesting that the model is well calibrated for predicting FGR in 
this population, as anticipated.

Calibration plots in Figure 11 show the apparent calibration performance of the FGR model when 
applied to all participants in each dataset. Observed and expected FGR proportions are for risk groups 
by predicted FGR risk. On visual inspection of the smoothed calibration curve over all observations 
within a dataset, the model appears to overpredict FGR over the full range of predicted probabilities for 
both the Allen and Rumbold datasets, however, there were only 2 and 18 FGR outcomes, respectively in 
these datasets.
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FIGURE 10 Distributions of LP values in the four model development datasets, separated by observed outcome status.
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The model appears to be well calibrated in the NICHD CSL cohort for predicted probabilities of FGR below 
0.5. This is in line with the O/E ratio and calibration slope estimates in this study. A similar calibration 
pattern is seen in the full data, as expected as the NICHD CSL study dominates the total dataset.

Model performance by assumed gestational age at delivery
Given gestational age at delivery is unknown at the time of prediction, clinically relevant timepoints 
must be chosen prior to prediction generation. This allows predictions of FGR to be produced 
conditional on various possible delivery times, and thus allows for calculation of distinct probabilities of 
FGR for a pregnancy at every possible gestational age at delivery.

Discrimination measures presented in Apparent overall performance and by cohorts are likely to be 
optimistic (e.g. c-statistic too high), as validation was conducted using predictions generated for a 

TABLE 9 Apparent predictive performance measures for the FGR model (applying predictions using the average intercept) 
for each dataset including all participants regardless of gestational age at delivery) and with pooled effect estimates 
across datasets

 Pooled estimate Allen Rumbold NICHD CSL Full data 

N (events) 236,405 (1729) 1045 (2) 1877 (18) 233,483 (1709) 237,228 (1729)

Calibration

Calibration slope

 Point estimate 0.947 0.829 0.850 1.003 1.000

 CI 0.665 to 1.230 0.361 to 1.298 0.669 to 1.031 0.979 to 1.027 0.976 to 1.024

 τ2, 95% CI 0.007 (0.000 to 0.263) – – – –

CITL

 Point estimate 0.323 −0.604 1.227 −0.006 −0.0001

 CI −1.881 to 2.527 −2.173 to 0.965 0.616 to 1.838 −0.062 to 0.050 −0.056 to 0.056

 τ2, 95% CI 0.612 (0.055 to 14.468) – – – –

Observed/expected

 Point estimate 0.323 0.634 2.190 0.996 1.000

 CI −1.881 to 2.527 0.633 to 0.636 2.181 to 2.199 0.996 to 0.996 1.000 to 1.000

 τ2, 95% CI 0.393 (0.089 to 6.889) – – – –

Discrimination

c-statistic

 Point estimate 0.962 0.990 0.874 0.962 0.961

 CI 0.508 to 0.998 0.969 to 0.997 0.737 to 0.945 0.956 to 0.968 0.955 to 0.967

 τ2 (95% CI) 1.373 (0.095 to 28.795) – – – –

Nagelkerke pseudo R2

 Median (%) 40.1 30.4 40.1 50.2 50.1

 Range 30.4–50.2 30.4–30.5 39.9–40.3 49.9–50.6 49.7–50.4

 IQR 30.4–50.2 30.4–30.5 40.0–40.1 50.2–50.3 50.0–50.1

Notes
Prediction intervals not calculated due to small number of cohorts.
Note the full data calculations also include non-event pregnancies from the STORKG cohort.
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participant’s known delivery time. To give a more complete picture, we further examined the FGR 
model’s predictive performance for scenarios where all predictions in the data were generated 
conditional on the same assumed gestational age at delivery. Apparent calibration curves are 
presented in Figure 12 for the model’s calibration performance where all predictions were generated 
using the same assumed gestational age at delivery of (1) 34 weeks; (2) 36 weeks; (3) 38 weeks; and 
(4) 40 weeks, for everyone in the data, and then validated against (1) all women (regardless of their 
gestational age of delivery); and (2) the subset of individuals that actually had those gestational ages 
of delivery.

Predictions at particular gestational ages and compared to observed FGR status 
regardless of gestational age at delivery
Predicted probabilities of FGR show greater spread when predictions are made conditional on a 
gestational age at delivery of 34 weeks, compared to later times. Calibration of the FGR model was 
best on average when assessed using an assumed gestational age at delivery of 34 weeks for all 
participants. When generating predictions conditional on the same fixed gestational age for all, the 
ordering of predicted probabilities did not vary when the assumed gestational age was changed, thus 
the discriminative ability of the model was consistent across all gestational age values when including 
validation in all women. When analysed in the largest of the datasets (NICHD CSL), a c-statistic 
of 0.742 (95% CI: 0.729 to 0.754) suggests good discrimination, even in the absence of a known 
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FIGURE 11 Calibration plots of FGR prediction model, in all cohorts combined and in each of the model development 
datasets individually (apparent calibration performance), based on all participants (regardless of gestational age at delivery). 
The dashed line shows perfect calibration (where observed proportion equals expected proportion), while the blue line 
gives the smoothed calibration slope across all pregnancies. Number of pregnancies (events) is given for each. Average 
predicted risk is shown in 10 groups by predicted risk (green) and smoothed over all individuals (blue).
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gestational age at delivery, when evaluated across all women regardless of their gestational age at 
delivery. The pooled c-statistic across all datasets further suggests good discrimination, at 0.658 (95% 
CI: 0.262 to 0.913).

Predictions at particular gestational ages and compared to observed FGR status 
in the subset of participants who actually had that gestational age at delivery
Predictions conditional on an assumed gestational age at delivery were further assessed for calibration 
performance in the subgroup of participants who truly gave birth at (or close to) that assumed 
gestational age. The FGR model (generating predictions at a fixed gestational age) was best calibrated 
in pregnancies with a true gestational age <32 weeks, with calibration curves very close to the diagonal 
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(d) predictions conditional on GA = 40 weeks,
compared to observed risks at all GAs
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FIGURE 12 Calibration plots of FGR prediction model in all cohorts combined, with predictions generated at the same 
assumed GA at delivery for every participant, but compared to observed risks at all Gas. Plots are given for assumed GA 
at delivery of 34 weeks (panel A), 36 weeks (panel B), 38 weeks (panel C), and 40 weeks (panel D), and evaluated against 
observed FGR status (regardless of gestational age of delivery). The dashed line shows perfect calibration (where observed 
proportion equals expected proportion), while the blue line gives the smoothed calibration slope across all pregnancies. 
Average predicted risk is shown in 10 groups by predicted risk (green) and smoothed over all individuals (blue).
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line of perfect calibration (see Figure 13, panels A and B). There was only very slight underprediction 
of FGR risk in pregnancies of gestational ages below 27 weeks, where the model was used to predict 
FGR risk at this time. Overprediction of FGR risk was evident in those with gestational ages >32 weeks, 
as seen in panels C and D of Figure 13, where the observed prevalence of FGR was much lower than 
predicted when using the model to predict FGR risk at 32 weeks (for those who truly gave birth 
between 32 and 36 weeks), or to predict FGR risk at 37 weeks (for those who gave birth at 37 weeks 
or later).

(a) predictions conditional on GA = 27 weeks,
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FIGURE 13 Calibration plots of FGR prediction model in subgroups by gestational age at delivery, with predictions 
generated at the same assumed GA at delivery for every participant and evaluated against observed FGR status in 
subgroups defined by those with similar (but not identical) actual gestational ages. Plots are given for assumed GA 
at delivery of 27 weeks in those with a true GA ≤ 27 weeks (panel A), 28 weeks in those with a true GA between 28 
and 31 weeks (panel B), 32 weeks in those with a true GA between 32 and 36 weeks (panel C) and 37 weeks in those 
with a true GA ≥ 37 weeks (panel D). The dashed line shows perfect calibration (where observed proportion equals 
expected proportion), while the blue line gives the smoothed calibration slope across all pregnancies in that GA group. 
Average predicted risk is shown in 10 groups by predicted risk (green) and smoothed over all individuals (blue).
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FIGURE 14 Net benefit of using the binary outcome model to predict FGR (blue) in each cohort and in the combined 
model development data, in comparison to treat-all (green) and treat-none (orange) strategies, as evaluated in all women 
(regardless of their gestational age at delivery). Decision curves are shown for threshold probabilities between 0 and 0.5, 
with values greater than zero implying a NB from using the model to inform decisions and those less than zero implying a 
net harm.

Decision curve analysis

Net benefit
A comparison of using the model to inform treatment versus treat-all and treat-none strategies was 
done using DCA in all participants. Calculations were conducted separately in each of the cohorts with 
events used for model development (Allen, Rumbold and NICHD CSL) and in the combined data from 
all four cohorts. NB values were multiplied at each threshold by 1000, to give the extra number of 
women that would be correctly treated per 1000 women for whom the model is used, with none treated 
incorrectly, and are presented in Figure 14.

A positive NB (with the curve lying above the zero line) was indicated when the model was used in 
the largest cohort, NICHD CSL, which was echoed in the analysis in the combined data, suggesting 
that a positive number of women per 1000 would benefit from being correctly identified as high risk 
based on the model’s use than would be harmed by incorrect identification. This is true in the range 
of threshold probabilities from 0 up to 0.5, with the decision curve lying entirely above zero over this 
range. There was therefore NB from using the FGR prediction model with ‘high risk’ defined by cut-offs 
anywhere in the predefined range of probabilities from 0.01 to 0.2 considered of key interest for clinical 
decision-making.

The FGR prediction model also showed a positive NB in this same clinically important range in the 
Rumbold cohort, with a higher expected NB than was seen in the NICHD CSL cohort in the 0 to 0.5 
range. The range of threshold probabilities for defining ‘high risk’ with a positive NB was considerably 
narrower for Allen, possibly a reflection of how few events there were in this cohort, with the model 
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becoming less favourable than a treat-none approach for threshold probabilities above 0.1, suggesting 
net harm when using the model in the Allen population for threshold probabilities above this range.

When considering NB separately by gestational age at delivery, decision curves show a NB in those with 
gestational ages before 28 weeks across the full range of threshold probabilities. A NB is further seen 
in those with a gestational age between 28 and 32 weeks (over and above the treat-all strategy) for all 
threshold probabilities >0.09 (see Figure 15). While no overall benefit is seen in those with gestational 
ages above 32 weeks, due to the extremely low prevalence of FGR in this group, NB analysis shows 
that using the FGR model results in no harm in these patients, while allowing substantial benefit in 
those who go on to deliver early. Given predictions must be generated conditional on some assumed 
gestational age at delivery (and true gestational age will be unknown until the time of delivery) it is 
important to confirm that no harm is expected in pregnancies where delivery is at later weeks.

Accuracy at specified probability thresholds
The expected number of TP, FP, TN and FN per 1000 women using the binary outcome model at 
different thresholds for predicted probability of FGR with complications are presented in Table 10. 
Threshold probabilities presented increase by 0.01 up to 0.2, in the range where predicted probabilities 
are likely to be of more interest clinically (as defined a priori by the IPPIC collaborative group), and then 
by increases of 0.1 afterwards.

For example, if the model was used with a threshold probability of 0.1 (10%), we would expect to identify 
17 in every 1000 pregnancies as being at high risk of FGR, five of which would be expected to be truly 
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FIGURE 15 Net benefit of using the binary outcome model to predict FGR (blue) in the combined model development data 
(with predictions conditional on observed gestational age at delivery), in comparison to treat-all (green) and treat-none 
(orange) strategies, evaluated in subgroups by gestational age at delivery. Decision curves are shown for decision threshold 
probabilities between 0 and 0.5, with values greater than zero implying a NB from using the model to inform decisions and 
those less than zero implying a net harm.
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FGR. Of the 983 rated as low risk of FGR, we would expect to miss three who would truly be FGR babies. 
The corresponding sensitivity of the model used with this threshold to identify those at risk of FGR would 
be 65.2%, with a specificity of 98.8%. This corresponds to a NB of three in every 1000 pregnancies where 
model risk predictions over 10% were used to determine a pregnancy as being high risk.

There is a positive NB expected per 1000 pregnancies for all threshold probabilities below 0.9. When 
rounding to whole numbers, we see a NB of at least one pregnancy per 1000 for threshold probabilities 
below 0.53 (with predicted FGR risk below 53% from the model).

TABLE 10 Expected net benefit and number of TP, FP, TN and FN per 1000 women using the model at different predicted 
probability thresholds, based on FGR model’s apparent performance in full development data

Threshold 
probability 

TP per 
1000 

FP per 
1000 

TN per 
1000 

FN per 
1000 

Sensitivity 
(%) 

Specificity 
(%) 

NB per 
1000 

0 7 993 0 0 100 0 7

0.01 6 47 946 1 88.3 95.3 6

0.02 6 30 963 1 85.7 97 6

0.03 6 23 969 1 81.9 97.7 5

0.04 6 20 973 2 78.6 98 5

0.05 5 17 975 2 75 98.3 5

0.06 5 16 977 2 72.7 98.4 4

0.07 5 14 978 2 70.1 98.5 4

0.08 5 13 979 2 67.8 98.7 4

0.09 5 12 980 2 66.5 98.8 4

0.10 5 12 981 3 65.2 98.8 3

0.11 5 11 982 3 63.9 98.9 3

0.12 5 10 982 3 62.6 99 3

0.13 4 10 983 3 61.6 99 3

0.14 4 9 983 3 60.6 99.1 3

0.15 4 9 984 3 59.5 99.1 3

0.16 4 9 984 3 58.7 99.1 3

0.17 4 8 985 3 58 99.2 3

0.18 4 8 985 3 57.1 99.2 2

0.19 4 7 985 3 56.4 99.2 2

0.20 4 7 986 3 55.4 99.3 2

0.30 3 4 988 4 46.4 99.6 2

0.40 3 2 991 5 34.8 99.8 1

0.50 1 1 992 6 19.1 99.9 1

0.60 1 0 992 7 9.5 100 0

0.70 0 0 993 7 5.8 100 0

0.80 0 0 993 7 3.2 100 0

0.90 0 0 993 7 0.8 100 0
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TABLE 11 Model coefficients for the final IPPIC-birthweight model, and coefficients from the models from each IECV 
cycle, with study-specific intercepts

 

Continuous outcome model, coefficient

Full data Excluding Allen Excluding Rumbold Excluding STORKG 

Gestational age at delivery (weeks)

  wks–2 24,200,000 24,300,000 24,600,000 24,200,000

  wks–2 * ln wks −9,274,661 −9,278,365 −9,383,827 −9,256,070

Mother’s weight, kg 2.708811 2.706337 2.702486 2.712717

Mother’s height, cm

  cm3 0.0000752 0.0000750 0.0000747 0.0000749

Mother’s age, years 3.138301 3.142642 3.160154 3.160331

Nulliparous −92.03335 −91.72014 −91.86725 −91.48258

Smoker −118.0368 −118.025 −119.9714 −118.4065

Ethnicity

 White ref ref ref ref

 Black −174.2521 −174.4343 −174.5623 −174.2543

 Asian −73.23465 −71.06526 −73.76615 −72.71608

 Hispanic −9.562515 −9.582163 −10.10826 −9.50801

 Mixed −64.73106 −62.95441 −65.91944 −64.19719

 Other −60.38814 −59.96023 −60.27113 −62.70106

History of hypertension −36.27748 −36.01454 −36.19573 −36.47012

History of diabetes 149.9896 150.6165 150.6321 150.0034

Assisted conception −78.7545 −81.1364 −79.92499 −93.85787

Any previous PE −84.16068 −84.04261 −83.93942 −84.10901

Any previous stillbirth −13.59535 −13.11023 −13.67015 −13.1444

Any previous SGA baby −481.7414 −486.7372 −481.4254 −485.4757

Intercept

 Average 9210.304 9212.973 9259.176 9200.492

 NICHR-CSL 9210.304 9212.973 9259.176 9200.492

 Allen 9243.410 – 9247.552 9214.733

 Rumbold 9223.706 9168.198 – 9180.025

 STORKG 9314.989 9262.523 9319.024 –

Heuristic shrinkage factor 0.9997 0.9997 0.9998 0.9997

Predicting birthweight

IPPIC-birthweight model
All candidate predictors included in the variable selection process were retained in the prediction model 
for birthweight, and regression coefficients for each are included in Table 11. Study-specific intercept 
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values were reasonably consistent across the four cohorts, implying the average birthweight was similar 
in each of the populations.

Conditional on other variables, increased mother’s height, weight and age increased the predicted 
birthweight at a given gestational age of delivery, as did a history of diabetes. The presence of all the 
other predictors in the model reduced the expected birthweight. The biggest reduction of predicted 
birthweight from any single predictor was seen for ‘previous SGA baby’, with predicted birthweight 
reducing by 482 g for mothers who had a SGA baby in a previous pregnancy, even after adjustment for 
gestational age at delivery.

Mother’s weight was selected as having a linear relationship with birthweight with an increase in 
predicted birthweight of 3 g/kg of mother’s weight. This linear relationship is not consistent with the 
modelling of weight included in the Poon 2011 model (where linear, squared and cubed weight terms 
were included) but is unsurprising given the near-linear shape of the best-fit line in this data, as seen in 
Figure 9.

An estimate of heuristic shrinkage was calculated in each imputation for each cycle of the IECV, giving 
an estimate of 0.9997 across imputed datasets. This implies very little overfitting in the development 
data in any IECV cycle, and thus application of shrinkage to the model coefficients was not required.

Apparent model performance
Predictive performance measures were calculated separately by cohorts, with predictions calculated 
using study-specific intercepts. For a fair comparison to the observed birthweights, predictions were 
generated for the true gestational age at delivery. Study-specific predictive performance measures are 
presented in Table 12, along with pooled performance measures across cohorts.

Apparent calibration performance of the birthweight model (when applied using the average intercept) 
was good on average as expected, although it varied across datasets. Calibration slopes ranged from 
0.884 (95% CI 0.809 to 0.960) in the Allen dataset, up to 1.043 (95% CI 0.994 to 1.092) in Rumbold, 
showing some heterogeneity across datasets. In two of the four datasets, the range of predictions was 
slightly too wide compared to observed values (too extreme for both low and high birthweights) as 
evident by an estimated calibration slope below 1. Overall, there was little miscalibration on average 
across all four datasets, with the pooled calibration slope of 0.989 (95% CI 0.881 to 1.098).

Calibration-in-the-large was close to zero in all datasets, with an average underprediction of 
birthweights between 13.4 g (Rumbold) and 104.7 g (STORKG). On average across datasets, CITL was 
only 44.4 g (95% CI −18.4 g to 107.3 g). This is reiterated by a pooled ratio of mean observed to mean 
expected birthweight of 1.017 (95% CI 0.967 to 1.066). Across datasets, the proportion of variation in 
birthweight explained by the birthweight model (R2) ranged from 32.3% to 56.3%, which is moderate to 
large (see Table 12).

Model performance on internal-external cross-validation
To give a better representation of how the model might perform in new data, predictive performance 
measures were calculated on IECV. Given its large number of patients relative to the other cohorts, 
NICHD CSL164 was forced to remain throughout all cycles of the IECV approach. Therefore, we did not 
include a cycle where a model was built without NICHD CSL. Thus, although there were four cohorts 
available, there were only three cycles of the IECV approach reported in the validation below.

Model coefficients for each cycle of the IECV process are reported in Table 13. These coefficient 
estimates were reasonably consistent when estimated in subgroups of just three out of the four 
available cohorts, likely due to being highly influenced by the NICHD CSL cohort, which contributed the 
majority of the observations to every cycle of the IECV.
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TABLE 12 Apparent model performance by dataset for the birthweight model with average intercept, summarised across imputations

 Pooled estimate Allen (n = 1045) Rumbold (n = 1877) STORKG (n = 823) NICHD CSL (n = 233,483) Full data (n = 237,228) 

Calibration slope

 Point estimate 0.989 0.884 1.043 1.029 0.991 0.991

 CI 0.881 to 1.098 0.809 to 0.960 0.994 to 1.092 0.952 to 1.105 0.987 to 0.994 0.987 to 0.994

 Prediction interval 0.70 to 1.28 – – – – –

 τ2 (95% CI) 0.003 (0.000 to 0.040) – – – – –

CITL

 Point estimate 44.445 33.106 13.402 104.685 31.425 31.534

 CI −18.444 to 107.333 7.070 to 59.141 −6.451 to 33.255 75.616 to 133.76 29.685 to 33.166 29.807 to 33.261

 Prediction interval −136.62 to 225.51 – – – – –

 τ2 (95% CI) 1400 (257 to 13,000) – – – – –

Observed/expected

 Point estimate 1.017 1.012 1.005 1.036 1.011 1.011

 CI 0.967 to 1.066 0.962 to 1.062 0.944 to 1.067 0.978 to 1.094 0.915 to 1.106 0.916 to 1.106

 Prediction interval 0.95 to 1.08 – – – – –

 τ2 (95% CI) 0.000 (0.000 to 0.004) – – – – –

R2a

 Median (%) 46.9 32.7 47.8 45.7 56.1 56.0

 Range 32.3–56.3 32.3–32.9 47.5–48.1 45.1–46.3 56.0–56.3 55.9–56.1

 IQR 39.0–52.1 32.6–32.8 47.8–47.9 45.6–45.9 56.1–56.2 56.0–56.1

a Reported as median, range and IQR across imputations as R2 cannot be summarised across imputations using Rubin’s rules.
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Calibration measures are reported separately by cohorts in Table 13, giving the performance of the model 
developed in all but one cohort when validated ‘externally’ in that reserved cohort. Pooled performance 
estimates give the average performance across IECV cycles. Predictions were generated for the true 
gestational age at delivery, using the study-specific intercept for the NICHD CSL study population, 
because the majority of the development data in each cycle came from this cohort and so average 
intercepts across cohorts would be heavily influenced by the mean birthweight from the NICHD CSL data.

The calibration slope estimates across IECV cycles suggest some slight overfitting to the development 
data in each cycle; specifically, the largest study dominates the model estimation, and as a result, 
the remaining studies were slightly miscalibrated. The largest miscalibration was seen in the model 
developed in the cohorts excluding Allen, with the calibration slope upon ‘external’ validation of 0.895 
(95% CI 0.819 to 0.972) – however, this is still only very slight when shown visually (see Figure 16). 
The pooled calibration slope across IECV cycles was 1.002 (95% CI 0.776 to 1.227), with negligible 
miscalibration on average when models were applied in the cohorts held out from model development.

The model developed in the cycle excluding the STORKG cohort was the best calibrated in terms of the 
calibration slope, at 1.038 (95% CI 0.960 to 1.115), although this model performed worst by CITL, a 

TABLE 13 Predictive performance of the developed birthweight model with average intercept in each IECV cycle: the 
external validation performance in each dataset, for the cycle in which it was excluded from model development

 Pooled estimate Allen Rumbold STORKG 

N for model development – 236,183 235,351 236,405

N for external validation – 1045 1877 823

Calibration slope

 Point estimate 1.002 0.895 1.065 1.038

 CI 0.776 to 1.227 0.819 to 0.972 1.015 to 1.115 0.960 to 1.115

 Prediction interval −0.25 to 2.26 – – –

 τ2 (95% CI) 0.007 (0.001 to 0.144) – – –

CITL

 Point estimate 9.720 −22.324 −33.419 86.406

 CI −154.317 to 173.756 −48.356 to 3.707 −53.363 to −13.474 57.308 to 115.504

 Prediction interval −943.23 to 962.67 – – –

 τ2 (95% CI) 4200 (801 to 76,000) – – –

Observed/expected

 Point estimate 1.004 0.995 0.991 1.030

 CI 0.938 to 1.070 0.949 to 1.041 0.935 to 1.047 0.974 to 1.086

 Prediction interval 0.81 to 1.20 – – –

 τ2 (95% CI) 0.000 (0.000 to 0.008) – – –

R2a

 Median (%) 45.7 32.6 47.4 45.7

 Range 32.2–47.8 32.2–32.8 47.1–47.8 45.0–46.2

 IQR 32.7–47.4 32.5–32.7 47.4–47.5 45.5–45.8

a  Reported as median, range and IQR across imputations as R2 cannot be summarised across imputations using 
Rubin’s rules.
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FIGURE 16 Calibration plots for the birthweight model in each IECV cycle, on external validation in the dataset excluded 
from the model development stage of that cycle, and apparent calibration of the birthweight model with average 
intercept when applied in the full dataset. Observed birthweight is plotted against predicted birthweight, with the dashed 
line showing perfect calibration (where observed value equals expected value), while the blue line gives the smoothed 
calibration slope across all pregnancies.

systematic underestimation of birthweight by 86.4 g on average (95% CI 57.3 to 115.5) in this cycle. The 
pooled CITL suggests an underestimation of birthweight by 9.7 g on average across IECV cycles (95% CI 
−154.3 to 173.8).

Predicted birthweights from the models developed in each IECV cycle (generated using the true 
gestational age at delivery and the study-specific intercept from the NICHD CSL study) were compared 
to the observed birthweights in the excluded study from that cycle. On visual inspection of the 
calibration plots, the smoothed calibration curves (shown in light blue) lie close to the diagonal line of 
perfect calibration for all cycles of IECV. Hence calibration is generally excellent, and the miscalibration 
noted above (in terms of calibration slope) appears to be minor.

While model calibration was good on average, miscalibration can be seen for individual observations 
at the higher end of the range of predicted birthweights, resulting in a wide spread of observed 
birthweights for a particular predicted birthweight in all cycles of the IECV. This spread is far narrower in 
the clinically important range of lower predicted birthweights, where pregnancies would be at higher risk 
of FGR.
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Comparison of model performance to existing models
The Poon 2011 model performed well on average on external validation, although showed some 
heterogeneity in calibration across datasets, and slight miscalibration in the large. By including additional 
variables, on top of those from the Poon 2011 model, we hoped to reduce the heterogeneity in 
calibration performance across different populations. Our newly developed model is therefore referred 
to here as the ‘updated model’, as we updated the Poon 2011 model to include additional predictors.

Three of the model development cohorts were also used to externally validate the Poon 2011 model, 
and so predictive performance measures for the Poon 2011 and updated models were compared in 
these cohorts. We used the IECV performance for the newly developed model, that is, when that cohort 
was reserved for external validation for this comparison (see Table 13). Note that the final model built on 
all data was not represented in Table 13, as including the apparent performance of the newly developed 
model with the external validation performance of the Poon 2011 model would be an unfair comparison.

Calibration plots showing the predicted birthweight by each model (Poon 2011 and the updated 
model) compared to the observed birthweights in the Allen, Rumbold and STORKG datasets are given 
in Figure 17. On visual comparison, the calibration performances of both models are similar. Observed 
birthweights are similarly spread out for each predicted birthweight at the higher end of the range, with 
a narrower spread of observed values for the more clinically relevant predictions of lower birthweights. 
Both models appear to perform well on average, with the smoothed prediction curve (blue line) for each 
lying very close to the diagonal for all three cohorts.

Visual consistency in calibration plots is supported by the predictive performance statistics presented 
in Table 14, where the calibration slope, CITL and R2 values of the two models are very similar for each 
of the cohorts. In particular, the R2 values suggest that a similar amount of the variation in the observed 
birthweight for these three cohorts is explained by each model, despite the inclusion of new predictors 
(previous PE, previous stillbirth and previous FGR baby) in our updated model.

In the Allen, Rumbold and STORKG cohorts, the Poon 2011 model had a calibration slope slightly 
closer to one than in the updated model, but conversely CITL was improved by the updated model. 
Systematic underestimation of weight was seen with the Poon 2011 model for both the Allen and 
Rumbold cohorts, while the updated model overestimated birthweight by 22.3 g and 33.4 g on average 
(compared to underestimation by 64.2 g and 125.1 g) for the Allen and Rumbold cohorts, respectively. 
In STORKG, the updated model underestimated birthweight by 86.4 g compared to underestimation 
by 118.9 g when using the Poon 2011 model. The calibration slopes of the updated model and 
the Poon 2011 model were 1.038 (95% CI 0.960 to 1.115) and 1.009 (95% CI 0.936 to 1.083), 
respectively.

Model equations and summary performance measures of the developed prediction model are shown in 
Table 15. The Poon 2011 model has some miscalibration-in-the-large, the magnitude (underestimation 
by 64.2 g to 125.1 g, dataset dependant) of which will be more pronounced in newborns born at earlier 
gestations. In the updated model, the miscalibration-in-the-large (which is closer to zero than that of the 
Poon 2011 model) was negligible. On the whole, both models perform similarly.

Summary and example predictions

In this chapter we used IPD from the IPPIC data repository to develop two models: the first to 
predict the probability of FGR, defined by a birthweight below the tenth centile by gestational age 
with serious complications (preterm birth <32 weeks, stillbirth or neonatal death); and the second to 
predict birthweight at various gestational ages. Both models extend the Poon 2011 prediction model,59 
by incorporating predictors from the Poon 2011 model as a base, along with additional important 
predictors identified through a Delphi survey of the IPPIC Collaborative Network.
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TABLE 14 External validation performance of the updated birthweight model in each IECV cycle (performance in each dataset, for the cycle in which it was excluded for model develop-
ment), and the Poon 2011 model in Allen, Rumbold and STORKG

 

Allen (n = 1045)  Rumbold (n = 1877)  STORKG (n = 823)  

Updated model Poon 2011 Updated model Poon 2011 Updated model Poon 2011

Calibration slope

 Point estimate 0.895 0.906 1.065 0.963 1.038 1.009

 95% CI 0.819 to 0.972 0.830 to 0.981 1.015 to 1.115 0.919 to 1.007 0.960 to 1.115 0.936 to 1.083

CITL

 Point estimate (g) −22.32 64.23 −33.42 125.06 86.41 118.92

 95% CI −48.36 to 3.71 38.39 to 90.07 −53.36 to −13.47 105.45 to 144.67 57.31 to 115.50 90.00 to 147.84

R2a

 Median (%) 32.6 34.7 47.4 50.1 45.7 51.2

 IQR 32.5–32.7 – 47.447.5 – 45.5–45.8 –

a Reported as median across imputations as R2 cannot be summarised across imputations using Rubin’s rules.
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Both models can be used to generate predictions conditional on some assumed (clinically relevant) 
gestational age for delivery (or ideally a range of assumed values), as the true delivery time would be 
unknown at the moment of prediction. When used in combination, these models can give unique 
estimates of predicted birthweight and risk of FGR across the whole range of possible gestational ages 
at delivery. This is illustrated for two hypothetical babies in Figure 18, one which is clearly high risk 
and one that is low risk. Such plots of predictions allowing clinicians and patients to assess risks over 
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FIGURE 17 Calibration plots for the updated birthweight model in each IECV cycle (performance in each dataset, for 
the cycle in which it was excluded for model development), and the Poon 2011 model in Allen, Rumbold and STORKG. 
Plots are from a single representative imputation. Observed birthweight is plotted against predicted birthweight, with 
the dashed line showing perfect calibration (where observed value equals expected value), while the blue line gives the 
smoothed calibration slope across all pregnancies.
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TABLE 15 Model equations (with average intercept) and performance summary

Outcome Model equation 

Average statistic (95% CI) [95% prediction interval]

c-statistic Calibration slope CITL 

FGR (SGA 
with serious 
complications)

Logit(p) = −22.811 + 0.01 × (age) + 0.358 × (nulliparous) + 0.293 × (smoked) + 0.432 × (black) +  
0.181 × (Asian) + 0.296 × (Hispanic) + 0.953 × (mixed) + 0.003 × (other) + 0.313 × (hypertension) +  
0.887 × (previous PE) + 0.436 × (previous stillbirth) + 2.166 × (previous SGA baby) – 0.000000108 ×  
(height3) + −56,010.23 × (GA−2) + 21652.92 × [GA−2 × ln(GA)]

0.962 (0.508 to 0.998) 0.947 (0.665 to 1.230) 0.323 (−1.881 to 2.527)

Birthweight Birthweight = 9210.3 + 3.1 × (age) – 92 × (nulliparous) – 118 × (smoked) – 174.3 × (black) – 73.2 ×  
(Asian) – 9.6 × (Hispanic) – 64.7 × (mixed) – 60.4 × (other) – 36.3 × (hypertension) + 150 × (diabetes) 
– 78.8 × (assisted conception) – 84.2 × (previous PE) – 13.6 × (previous stillbirth) – 481.7 × (previous 
SGA baby) + 2.7 × (weight) + 0.0000752 × (height3) + 24200000 × (GA−2) – 9274661 × [GA−2 × ln(GA)]

– 1.002 (0.776 to 1.227) 9.72 g (−154.3 to 173.8)

Birthweight 
(Poon 2011 
model59)

log10 (birthweight) = −0.935219 + 0.186853(gestational age) – 0.002078 × gestational age2 +  
0.003726 × weight −0.000030 × weight + 8.820640e−08 × weight3 + 0.000965 × height +  
0.001466 × age) – 0.000026 × age2 + 0.016986 × parous – 0.024867 × age – 0.021769 ×  
African – 0.017824 × South Asian – 0.005543 × East Asian – 0.009063 × mixed – 0.020995 ×  
hypertension + 0.03143 × diabetes – 0.004015 × assisted conception

– 0.974 (0.938 to 1.011) 
[0.868 to 1.081]

90.39 g (37.9 to 142.9) 
[−78.4 to 259.2]
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the entire range of gestational ages at delivery, and give a complete picture to enable shared decision-
making around the frequency of monitoring during a pregnancy.

When these models were validated using study-specific intercepts across included IPD cohorts, the 
predictive performance of both models was best in the cohort contributing most to the development 
data (NICHD CSL).164 For both models (with continuous and binary outcomes) the coefficients were 
informed mainly by this one study. Performance from IECV (for the birthweight model), and apparent 
performance in individual cohorts (for the FGR model) for the other three cohorts was promising, as was 
the performance of the Poon 2011 model for predicting birthweight when externally validated in these 
same cohorts.

Prediction of birthweight
Pooled performance across development cohorts was good for both continuous outcome models (the 
Poon 2011 model and our updated model). While the calibration slope of the updated birthweight 
model did not show improvement over the Poon 2011 prediction model, CITL was much improved. 
Miscalibration-in-the-large of the Poon 2011 ranged from 64.2 g to 125.1 g, which will be more 
pronounced in newborns born at earlier gestations. Therefore, there is little to choose between the 
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FIGURE 18 Predicted birthweight (red) and predicted FGR risk (blue) at different assumed gestational ages at delivery, 
using our models for two hypothetical babies (one high risk and one low risk). Shaded regions indicate birthweights below 
the 10th (lightest), 5th (middle) and 3rd (darkest) percentiles.



DOI: 10.3310/DABW4814 Health Technology Assessment 2024 Vol. 28 No. 47

Copyright © 2024 Allotey et al. This work was produced by Allotey et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is 
an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction 
and adaptation in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original 
author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

55

Poon 2011 model59 and our updated model when predicting birthweight on a continuous scale. Both 
perform well and explain a reasonable amount of variability, especially in the lower birthweight range.

Prediction of FGR with complications
Decision curve analysis showed potential for NB of the FGR prediction model across a wide range of 
threshold probabilities especially in the larger included datasets, although this range was narrower in 
the smaller datasets. By incorporating the risk of serious perinatal complications along with birthweight 
centile by gestational age at delivery, the FGR prediction model offers more scope for identification 
of pregnancies that are at risk of adverse outcomes (over-and-above prediction of birthweight alone) 
which would benefit from increased monitoring. This FGR model complements the above birthweight 
prediction models (Poon 2011 and our updated model) and could be used in combination with these 
to give a full picture of the predicted extent of smallness along with the risk of FGR, conditional on 
different assumed gestational ages of delivery.

In summary, there is the potential for these prediction models to be useful in combination in predicting 
the risk of FGR and birthweight in selected populations. However, the models may need to be tailored 
to improve the predictive performance across settings and populations different to those included here, 
for example those with a different baseline risk of perinatal complications. In particular, our new FGR 
model would benefit from external validation to assess predictive performance in new populations, 
especially as our opportunity to assess ‘external’ performance in IECV was limited by datasets with only 
a few outcome events. Also, a complementary model would be useful to predict the overall risk of FGR 
(averaged across all potential gestational ages), to go alongside our predictions which are conditional on 
particular gestational ages at delivery.
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Chapter 7 Costs and outcomes of IPPIC-FGR 
model

Objective

The main objective of this model-based health economics analysis was to compare the costs and 
outcomes of the IPPIC prediction models for FGR, with existing strategies in the NICE 2008 Antenatal 
Care guideline for monitoring FGR.169 We employed the same strategy used by NICE by using a 
decision analytical model framework, due to the lack of suitable evidence and data available for use in 
other economic model frameworks. The previous chapter developed two prediction models (one for 
FGR and another to predict birthweight), with the IPPIC prediction model for FGR, being suitable for 
evaluation using decision analytical model framework. Any strategy for predicting FGR needs to be 
balanced against the resources required to deliver this strategy, within the context of finite resources 
of the National Health Service (NHS) and to allow for redistribution of resources more efficiently across 
healthcare services. We set out to provide economic evidence to help decision-makers in different 
healthcare settings determine which strategy provides the greatest effectiveness (perinatal death 
avoided) at the most reduced cost in detecting FGR.

Method

For the health economics analysis, we developed a decision tree model based on NICE 2008 model, 
which was the most suitable model in this case, as the individuals in the model are independent of 
each other, and there are no recurring events. The time horizon for the economic model is less than a 
year: time from earliest entry into the model to delivery of fetus is <9 months; hence no discounting is 
required. The model was constructed using Microsoft Excel® and compared to Strategy 1 and Strategy 3 
of the NICE decision tree model as shown in Figures 19 and 20. The perspective adopted was that of the 
NHS and personal social services (PSS) as recommended by NICE;170 and private out-of-pocket costs to 
women or productivity losses have not been considered for the analysis.

National Institute for Health and Care Excellence economic model strategy
There are three main branches on the decision tree of the NICE 2008 economic model, which 
represents three different strategies for measuring and monitoring fetal growth (with SGA being used as 
the proxy). The study population consists of nulliparous women with singleton or multiple pregnancies, 
and the outcomes are caesarean section (CS) and no caesarean section (no-CS).

Strategy 1 (no measurement of fetal growth): In this strategy, fetal growth is not measured and there is 
no monitoring. There are two main outcomes, the pregnant woman either goes on to deliver a baby via 
CS or vaginally.

In Strategy 2, the measurement of FGR is by ultrasound, and all women are offered this. It is assumed 
all women accept this offer. There are four possible pathways: the fetus is correctly identified as growth 
restricted following the ultrasound scan (TP), the fetus is correctly identified as not being growth 
restricted following the ultrasound scan (TN), the fetus is incorrectly identified as growth restricted 
following the ultrasound scan when it is within the normal size range (FP), or the fetus is incorrectly 
identified as not being growth restricted following the ultrasound scan when it is in fact growth 
restricted (FN).

In Strategy 3, the measurement of FGR is conducted using symphysis-fundal height (SFH) measurement 
and ultrasound. First, an SFH measurement is performed for all women. Following this, two pathways 
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are possible: the baby either has FGR or no FGR. However, for each pathway, the baby could be 
given a correct or an incorrect diagnosis. Thus, we can have babies correctly identified as FGR (TP), 
incorrectly identified as not FGR (FN), incorrectly identified as FGR (FP) or correctly identified as not 
FGR (TN). If there is a positive identification using SFH measurement (TP and FP) an ultrasound test 
is performed. Once again, the ultrasound test results in four distinct possibilities (TP, FN, FP and TN). 
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[+]

[+]
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FIGURE 19 NICE decision tree for measuring and monitoring fetal growth. Strategy 1 and Strategy 3 of decision tree were 
compared to IPPIC prediction model strategy.
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Following each of these identifications, the pregnant woman will follow the same pathway for each 
branch, as in Strategy 1, that is, CS or non-CS. If women test negative for SFH (TN and FN), they are not 
offered an ultrasound. Their pathway is similar to Strategy 1. In the health economics analysis, we will 
compare a strategy using the IPPIC prediction model with Strategy 1 and Strategy 3 of the NICE 2008 
economic model.

IPPIC prediction model strategy for monitoring fetal growth restriction
We compared Strategy 1 and Strategy 3 (referred to in this report as Strategy 2) of the NICE economic 
model with the prediction model developed to detect FGR in the earlier sections of this report. We only 
consider the prediction model developed for predicting FGR (Model 1), where the outcome variable is 
binary (FGR or no FGR). We have not considered the prediction model developed to predict birthweight 
where the outcome is a continuous variable (birthweight of baby) as we would have to dichotomise this 
variable into a binary variable (FGR or no FGR), which would be redundant, as this is captured in the binary 
IPPIC-FGR model. The pathway followed in this strategy starts with a baby detected with FGR or no FGR 
and ends with the same outcomes as the strategies in the NICE 2008 economic model (CS and no-CS).

Inputs to model
The parameters for the model were populated from multiple sources using existing literature (see 
Table 16). If parameters were unavailable, expert opinion was sought. The quality of the data source 
was assessed using the following criteria: data obtained from published articles, systematic reviews, 
meta-analyses, other economic evaluations and national registers, were considered as ‘high quality’; if 
data were unavailable, expert opinion was sought for plausible values, or proxy data was used, and this 
was considered as ‘low quality’. Whenever possible, all the data were from the latest available estimates. 
All input parameters and their quality are presented in Tables 16–18. The calculations for probabilities or 
cost values are shown in Appendix 6, Table 21.

Probabilities
Most baseline probabilities were populated using the Hospital Episode Statistics 2018–9171 published by 
the NHS. Other sources of baseline probabilities include published literature as shown in Table 16. When 

TABLE 16 Model inputs for probabilities and diagnostic test performances

Parameter Proxy variable Value Source Quality 

CS 0.2951 Hospital Episode Statistics 2018–9171 High

Non-CS 0.7049 Hospital Episode Statistics 2018–9171 High

CS (FGR) 0.9000 Assumption Low

FGR (SFH + ultrasound) FGR 0.0300 Vieira,174 NICE guidelines169 Low

FGR (prediction model) FGR 0.0300 Vieira,174 NICE guidelines169 Low

Sensitivity of SFH measurement 0.59 Pay175 High

Specificity of SFH measurement 0.9700 Pay175 High

Sensitivity of ultrasound scan 0.5556 Haragan176 High

Specificity of ultrasound scan 0.9598 Haragan176 High

Sensitivity of prediction model 0.678 Low

Specificity of prediction model 0.987 Low

Notes
Refer to Appendix 6, Table 21 for indirect calculations.
High quality: Published articles, systematic reviews, meta-analyses, economic evaluations and national registers. Low 
quality: Data unavailable, expert opinion was sought for plausible values, or proxy data.
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no statistics were available, we used proxy variables in our assumptions, which were considered as low 
quality. Expert clinical input was obtained to verify these assumptions, so that they were as reasonable 
as possible, and had clinical validity. The sensitivity and specificity of the prediction model for FGR 
with severe complication is obtained at the threshold probability of 0.08 from section 6.3.4.2 above 
(see Table 10). This threshold probability was deemed to be the most plausible value to explain model 
performance. The choice for the threshold probability was guided by the desire to obtain a high enough 
specificity without losing out on the sensitivity.

Costs
Costs were presented in Great British pounds in 2019–20 prices. The majority of the unit costs were 
obtained from the National Schedule of Reference Costs: main schedule.172 If the data was unavailable 
for the mentioned year, it was inflated using the NHS Cost Inflation Index pay and prices indices 
from the previous available years.173 If direct cost values were unavailable, they were calculated using 
weighted averages, as shown in Appendix 6, Table 21. The cost of the prediction model was assumed to 
be £0, as there is no additional associated cost that needs to be employed by the healthcare provider for 
its use. However, additional cost for ultrasound scan was assigned to those predicted to have FGR using 
the prediction model (TP and FP), as this would reflect what would happen in clinical practice if the 
prediction model was introduced.

Outcomes
Assumptions have been made regarding how many perinatal deaths can be prevented for every known 
1000 FGR fetuses using each strategy. About 60,000 SGA babies are born every year, of which just 
under a third (approximately 18,050) are expected to have FGR.169 Half of these babies will not survive, 
regardless of intervention provided. Of the remaining, we can expect about 10% (903) babies to 
survive when using Strategy 1 (no testing), around 25% (2256) babies survive when using Strategy 2 
(SFH + ultrasound) and around 50% (4513) babies survive when using Strategy 3 (prediction model). In 
other words, for every 1000 known FGR fetuses, approximately 50 perinatal deaths can be prevented 

TABLE 17 Model inputs for costs

Parameter Value Source Quality 

Prediction model £0.00 Assumption Low

CS £3976.91 National schedule of reference costs172 High

Non-CS £2099.34 National schedule of reference costs172 High

SFH measurement £4.87 PSSRU 2006177 High

Ultrasound fetal growth scan £57.07 National schedule of reference costs172 High

Refer to Appendix 6, Table 21 for indirect calculations.

TABLE 18 Model inputs for perinatal deaths averted (outcomes)

Perinatal deaths saved for every 1000 
FGR babies Value Source Quality 

NICE Strategy 1: No measurement or 
monitoring of FGR

50 NICE assumption Low

NICE Strategy 2: Measurement of FGR 
using SFH measurement and ultrasound

125 NICE assumption Low

Strategy 3: Measurement of FGR using 
prediction model

250 IPPIC study group 
assumption

Low
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using Strategy 1, 125 perinatal deaths can be prevented using Strategy 2 and 250 perinatal deaths can 
be prevented using Strategy 3.

Analysis

Costs and outcomes analysis
For the base-case analysis, we used a decision analytical model using a deterministic approach to 
compare the costs and outcomes from an NHS and PSS perspective. Costs are in 2019–20 prices and 
outcomes are presented as the number of the perinatal deaths avoided.

Sensitivity analyses on cost for model performance
A sensitivity analysis was conducted by varying the performance of the prediction model. In our base-
case scenario, we considered the model sensitivity to be 67.8% and the model specificity to be 98.7%. 
However, we wanted to know how the results would change, if the prediction model gave perfect 
information (i.e. 100% sensitivity and 100% specificity) and if it performed only as good as a coin toss 
(i.e. 50% sensitivity and 50% specificity).

Resource impact assessment
We also sought to conduct a resource impact assessment. This formal assessment helps to inform and 
quantify the costs or savings expected from implementing that guideline.178 This cost and savings may be 
in the form of cash or non-cash impact for both providers and commissioners. An example of a non-cash 
impact is improving capacity building that does not result directly in saving money. Impact assessment 
also incorporates the changes in costs and savings related to changes in number of staff being employed, 
necessary staff training, changes in facilities required, changes in patient flows and changes in demand 
of the service. In our study, we wanted to assess what the resource impact would be to implement a 
national guideline of using a prediction model to identify FGR. However, before conducting the formal 
resource impact assessment, it was imperative to conduct an Evaluability Assessment.179 This would 
address whether an impact assessment is required in the first place, whether it is expected to provide 
additional information, and if required, what would be the most appropriate methodology to do so.

Results

Base-case analysis
For the base-case analysis, we have ordered the different pathways in terms of increasing cost. 
Compared to a strategy of no testing for FGR, Strategy 3 of using a prediction model costs £1880.61 
more per 1000 babies. On average, this slight increase in cost is associated with the largest number 
of perinatal deaths avoided (see Table 19). When the prediction model was compared with screening 

TABLE 19 Base-case costs and outcomes results

 
Expected cost per 
1000 FGR babies 

Perinatal deaths saved for 
every 1000 FGR babies 

Incremental 
cost 

Incremental 
effect 

NICE Strategy 1: No measure-
ment or monitoring of FGR

£3,032,433.03 50

Measurement of FGR using 
prediction model

£3,034,313.64 250 £1880.61 200

NICE Strategy 2: Measurement 
of FGR using SFH measure-
ment and ultrasound

£10,106,986.75 125 £7,072,673.11 −125
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using only SFH and ultrasound (NICE Strategy 2), the model was cheaper and again more perinatal 
deaths were prevented.

Sensitivity analysis
The results of the sensitivity analysis are shown in Table 20 and are in line with the base-case results. 
At all different levels of model performance (100% sensitivity and 100% specificity; 50% sensitivity and 
50% specificity), Strategy 3 of using a prediction model to predict FGR prevented more deaths than the 
two NICE strategies.

Results of resource impact assessment
At the Evaluability Assessment stage, we found that we do not expect additional resource impact in 
addition to the impact associated with what has been described in the health economics analysis. This 
is because, we do not expect there to be any further costs associated with either hiring more staff or 
training staff to use the prediction model. Staff at hospitals are already trained to use risk assessment 
tools as part of their antenatal care practice. No additional facilities are required, nor do we expect 
changes in patient flows in the next 5 years. Thus, it was decided that a specific resource impact 
assessment was not needed for the prediction model.

Limitations of the economic analysis
Since development of the economic model by NICE in 2008, clinical care and guidelines have changed 
significantly. In addition to the 2013 Royal College of Obstetrics and Gynaecology (RCOG) green top 
guideline, there is also the Saving Babies Lives Care Bundle for assessment of FGR risk and the American 
College of Obstetricians and Gynecologists (ACOG) guidelines, which proposes alternate strategies for 
screening for FGR. In addition, the RCOG have a draft update to their 2022 guideline, which is expected 
to result in further changes in screening for FGR. The definition of FGR also varies, with some guidelines 
defining as small babies <10th centile (with or without customisation of centiles). A full economic 
evaluation is needed that takes these into account, which utilises trial or observational study data, 
considers quality-adjusted life-years (QALYs) to inform the cost-effectiveness of monitoring of FGR in 
both high and low-risk pregnancies. Hence, our economic evaluation using NICE 2008 model and care 
pathways may not be generalisable to current clinical practice.

TABLE 20 Sensitivity analysis of the costs and outcomes

 
Expected cost per 
1000 FGR babies 

Perinatal deaths 
saved for every 
1000 FGR babies 

Incremental 
cost 

Incremental 
effect 

When sensitivity = specificity = 100%

NICE Strategy 1: No measurement or 
monitoring of FGR

£3,032,433.03 50

Measurement of FGR using Prediction 
model

£3,034,145.27 250 £1712.24 200

NICE Strategy 2: Measurement of 
FGR using SFH measurement and 
ultrasound

£10,106,986.75 125 £7,072,841.48 −125

When sensitivity = specificity = 50%

NICE Strategy 1: No measurement or 
monitoring of FGR

£3,032,433.03 50

Measurement of FGR using Prediction 
model

£3,060,970.40 250 £28,537.37 200

NICE Strategy 2: Measurement of 
FGR using SFH measurement and 
ultrasound

£10,106,986.75 125 £7,046,016.35 −125
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We did not define the time point of entry into the model in terms of gestation in weeks. This may mean 
that resource use such as antenatal clinic visits, ultrasound scans or further tests and investigations may 
not have been included and there may be an under-representation of the true cost of the pathways. 
Assumptions on the mortality rate of FGR fetuses were based on estimations from the 2008 NICE 
economic model which may have resulted in exaggerated numbers of avoidable perinatal deaths across 
all strategies. The impact of this is more likely on the outcomes, rather than which strategy is the most 
cost-effective. The main outcome was in terms of the number of perinatal deaths avoided and was 
based on assumptions due to the lack of data. Decision-makers such as NICE prefer the final outcome 
to be in the form of a QALY, so then an incremental cost-effectiveness ratio (ICER), namely the cost per 
QALY gained can be estimated. This ICER can then be used to compare across different diseases and 
different interventions and allow decision-makers to make efficient choices when resources are scarce.

We conducted a simple deterministic model using point estimates as we did not have the necessary 
information such as Cis required for probabilistic modelling and to capture the true uncertainty around 
the model. The model utilises a short-term horizon only. Data were not available to populate the 
model, for example on the increased risk of complications such as neurodevelopmental delay at two 
years and the increase in risk of adult-onset diseases in infancy such as obesity, type 2 diabetes and 
cardiovascular disease.

Summary

Our economic analysis suggests that compared to strategies of no screening for FGR and measurement 
of FGR using SFH and ultrasound, based on the NICE 2008 model, there is potential for a strategy 
of using IPPIC-FGR model followed by ultrasound to prevent perinatal deaths. Sensitivity analyses 
conducted changing the model performance were in line with base-case results. The costs and outcomes 
analysis carried out using the NICE model is not reflective of the complex variation in current practice. 
The findings presented here will benefit from verification in well designed and conducted research 
studies with a full economic evaluation.
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Chapter 8 Discussion

Summary of the findings

The newly developed and validated IPPIC-FGR model (FGR probability of FGR at various assumed 
gestational ages at delivery), and the updated and validated IPPIC-birthweight model accurately predict 
the probability of FGR (birthweight < 10th centile and preterm birth < 32 weeks, stillbirth or neonatal 
death) and birthweight, respectively, for various assumed gestational ages at birth. The IPPIC models 
have minimal miscalibration and excellent discrimination. Of the previously published models, the Poon 
2011 birthweight model, which was used to update the IPPIC-birthweight model, has good calibration 
when validated in IPPIC cohorts. The IPPIC-FGR model shows net clinical benefit over a wide range 
of predicted probability thresholds. Its use is more cost-effective than alternate screening strategies 
for FGR.

Strengths and limitations

Our work complements the ongoing national efforts to reduce stillbirth and adverse perinatal outcomes, 
for which undiagnosed FGR is a major risk factor. Our IPD meta-analysis is the first to simultaneously 
develop and validate the performance of prediction models for FGR and birthweight. We used an 
unambiguous definition for FGR as our main outcome. By including both SGA, with severe complications 
such as stillbirths and neonatal deaths, we aimed to identify those babies at maximum risk of adverse 
outcomes, and not small but healthy babies. We accounted for treatment paradox of early delivery of a 
FGR baby preventing stillbirth or neonatal death,48 by including preterm delivery before 32 weeks as a 
component of the outcome. By keeping our predictions on the continuous scale in our IPPIC-birthweight 
model for various gestational ages at delivery, we were not limited by arbitrary cut-offs used to define 
FGR or SGA. Such an approach also allows clinicians to calculate predicted centiles using any fetal 
growth standard of choice (e.g. GROW, INTERGROWTH 21st, WHO).50,51

Both IPPIC models can be used to generate predictions conditional on any assumed (clinically relevant) 
gestational age for delivery (or ideally a range of assumed values), as the true delivery time would be 
unknown at the moment of prediction. When used in combination, these models can give unique 
estimates of predicted birthweight and risk of FGR across the whole range of possible gestational 
ages at delivery, allowing patients to contribute to shared decision-making with clinicians around the 
frequency of monitoring during a pregnancy.

The IPPIC Network is collaborative in nature and was established with data provided by leading 
researchers with shared interest in the prediction and prevention of pregnancy complications.44 By 
sharing their study data, these individuals have displayed buy-in to the research objective, which will 
help promote application of the developed prediction models in clinical practice. Use of this repository 
of cleaned, standardised and quality-assessed data from multiple cohorts increased the power of the 
study beyond what is achievable in a single primary study, minimised the potential for model overfitting 
and enabled the development and validation of robust prediction models.

We carried out a systematic approach to prediction of FGR, by first identifying existing prediction 
models, followed by external validation within individual IPPIC cohorts to assess transportability of 
identified prediction model to different populations and settings. Our model development work built 
on existing prediction models that showed promising performance, by informing candidate predictor 
selection. Clinical input was also used to prioritise predictors considered for model development. 
Multiple imputations were used to handle missing data for both predictors and outcome to avoid 
the loss of useful information.60,180 We used rigorous statistical methods to develop the prediction 
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models and assess their accuracy, including undertaking a formal internal and external validation 
within the IPD cohorts. Predictors included in the final models are those that are clinically relevant 
and routinely available in both low and high-resource settings. We based our economic modelling 
on the NICE economic model for monitoring fetal growth published as part of NICE Antenatal care 
guideline 2008.21

There are some limitations to our study. Most of the published models identified to predict fetal 
growth or birthweight could not be externally validated due to differences in outcome definition 
reported by study authors, or because they included predictors measured late in pregnancy, and 
as such were more relevant for diagnosis than prediction of fetal growth.26 We were also unable to 
validate eight prediction models that included predictors not available in any of the IPPIC cohorts. The 
use of data from existing studies for external validation of prediction models using IPD meta-analysis, 
is limited by variation across studies in whether and how relevant participant characteristics (as 
potential predictors) are recorded in these studies. However, IPD meta-analysis still provides the best 
opportunity to validate existing prediction models across multiple studies. Primary studies will require 
significant resources in order to accomplish what can be done using IPD meta-analysis from existing 
studies, especially with regards to generalisability, where multiple primary studies will be needed to 
validate prediction models. Some studies reported the development of various prediction models using 
data from the same cohort of women, with each subsequent publication assessing the addition of a 
new candidate predictor. This hinders the identification of published prediction models for external 
validation, and artificially increases the number of developed prediction models for fetal growth. 
Internal external validation of our model for FGR was limited by too few outcome events in some of the 
individual IPPIC cohorts. Our IPPIC-FGR prediction model was better calibrated in pregnancies with 
gestational age <32 weeks, however this is expected considering delivery at <32 weeks is part of our 
composite definition of FGR.

Our health economics analysis relied on data and structural assumptions for the decision tree model, 
which come with uncertainties. We however utilised high-quality data sources as much as possible 
such as from published meta-analysis and other economic models to inform our input and assessed the 
quality of all input parameters in a transparent way. This analysis was based on the NICE 2008 economic 
model and is not reflective of the complex variations in current practice. A detailed full-scale economic 
evaluation is needed, which evaluates the various strategies for risk assessment of FGR currently in use 
in management of pregnancies at risk of FGR. Ideally, with health economics models we can compare 
different interventions using outcomes based on robust clinical and health-related quality of life 
(HRQoL) data such as the QALY. However, due to the lack of reliable clinical and HRQoL data, the IPPIC 
IPD not being a primary study and consisting of studies none of which reported QALYs, our model does 
not follow the same structure. Instead, we take a similar approach to the NICE model,169 and consider 
the number of preventable perinatal deaths attributable to FGR for the strategy to be more effective for 
the measurement and monitoring of fetal growth.

Our models also require the user to enter the assumed gestational age at delivery. While the expected 
date of delivery is not known when making a prediction, entering various possible gestational ages for 
delivery allows the user to produce a plot of birthweight predictions across various time points. This 
was illustrated at the end of Chapter 6. In further research, a complementary model would be useful 
to predict the overall risk of FGR (averaged across all potential gestational ages), to go alongside our 
predictions which are conditional on gestational ages at delivery.

Although planned, we were unable to assess the performance of the models by population and trimester 
of use due to heterogeneity in reporting of population characteristics and paucity of data on onset 
of FGR. Our final model only included clinical predictors, so we did not compare performance based 
on choice of predictors (ultrasound and biochemical markers) for predicting FGR or birthweight. It 
is possible that addition of further predictive markers could have improved the performance of the 
IPPIC models.
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Comparison to existing evidence

Until now, no individual test is satisfactorily predictive of FGR to warrant recommendation in routine 
clinical use.22 There is considerable variation between guidelines on screening for FGR. The UK RCOG 
guideline provides a list of arbitrarily categorised ‘major’ and ‘minor’ risk factors based on clinical 
history, and recommends regular ultrasound for women with one ‘major’ or three or more ‘minor’ risk 
factors.11 The ACOG recommends screening for unspecified medical and obstetric risk factors, but 
does not recommend use of uterine artery Doppler or biochemical markers, citing lack of evidence 
on improvement of outcomes.12 The Society of Obstetricians and Gynaecologists of Canada calls 
for clinical risk factors-based screening, without specifications on what these are,13 while the Royal 
Australian and New Zealand College of Obstetricians and Gynaecologist suggests risk assessment 
through a combination of biomarkers, Doppler ultrasound and ‘major’ maternal clinical risk factors.14 
The choice of risk factors and their combination to predict FGR in any of the above guidelines is not 
based on formal predictive modelling. Their accuracy in predicting FGR is also not known.

Existing prediction models have predicted risk of SGA fetus as a surrogate measure for infants at 
risk of FGR,181 with variously defined cut-offs for FGR, limiting the power and usefulness of the 
prediction model, by not linking these birthweight cut-offs to serious perinatal complications such 
as stillbirth, neonatal death, extreme preterm birth or birth trauma.38 These SGA prediction models 
have mostly never been externally validated, and those that have been independently validated report 
limited predictive performance.16,159 As such none are recommended for routine clinical use. None 
of the models identified in our search predicted our predefined outcome for FGR (SGA with serious 
complications of stillbirth, neonatal death or preterm birth before 32 weeks’ gestation), and we were 
only able to independently validate one birthweight model59 which showed slight overfitting in the 
validation cohorts. Individual calibration of the model across the different IPPIC cohorts was good, 
with moderate heterogeneity in calibration performance between the cohorts. Underprediction of 
birthweight by the model was consistent across different gestational ages of delivery, and this would 
have more of a relative impact on predictions for babies born at earlier gestational ages where expected 
birthweight is lower. Heterogeneity was also high across the different gestational age groups with wide 
prediction intervals.

The IPPIC-FGR and IPPIC-birthweight models extended the Poon 2011 birthweight prediction model59 
by building on predictors included in the original model. The IPPIC-birthweight model had good 
summary predictive performance, with only slight evidence of miscalibration in calibration performance, 
and minimal overprediction of birthweight. It underestimated the birthweight by less (12.9 g to 17.2 g) 
in the validation cohorts, compared to underestimation of birthweight of 64.2 g to 125.1 g by the 
Poon 2011 birthweight model. The IPPIC-FGR model had good summary predictive performance, with 
discrimination and calibration slope near 1. The model was also clinically useful across a wide range 
of predicted threshold probabilities, covering the identified range of 0.01 to 0.2 considered to be of 
interest for clinical decision-making.

There is scarce empirical evidence on the cost-effectiveness of screening for FGR. A recent study 
estimating the cost-effectiveness of universal routine screening by ultrasound for fetal growth 
reported that this was unlikely to be cost-effective.182,183 Our health economics analysis of the 
IPPIC model to predict FGR, built upon the previously published economic model structure and 
care pathways for monitoring fetal growth by NICE 2008.21 The NICE economic evaluation showed 
that although there was poor evidence on clinical effectiveness of monitoring of fetal growth by 
ultrasound or using SFH and ultrasound, these strategies were cost-effective compared to no 
screening.21 Although our economic analysis of the IPPIC model showed that the model prevented 
more perinatal deaths than strategies of no screening for FGR or measurement of FGR in all fetuses 
using SFH and ultrasound scan, the screening strategies used in NICE 2008 are not reflective of 
current practice.
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Relevance to clinical practice

Prediction of FGR allows for early identification of women at increased risk of FGR, who may benefit 
from closer monitoring in pregnancy or preventative interventions such as early administration of 
aspirin. Any effort to prevent adverse perinatal outcome will need to identify pregnancies that are 
at risk of delivering a growth-restricted baby with severe complications to assess the severity of 
smallness, determine the timing and frequency of surveillance and plan timing and mode of delivery. 
Current approach to screening differs by country and is mostly based on use of individual clinical risk 
factors to assess risk of FGR, which has been shown to have minimal predictive performance.16 Our 
study combined clinical characteristic predictors in mathematical models to provide accurate FGR risk 
prediction, which have good performance when externally validated in different cohorts, looking across 
all observed gestational ages at delivery. Only clinical characteristic predictors are included in both IPPIC 
models, which make them applicable to both low and high-resource settings. The predictors included 
are easy to measure and routinely available in clinical practice. The prediction models will be particularly 
useful when used in combination to predict the risk of FGR and birthweight, as together they provide 
more scope to identify pregnancies that are at high risk of adverse outcome in addition to the 
birthweight at various gestational ages, which can inform decision for closer monitoring or intervention. 
Incorporating the IPPIC-FGR prediction models in practice will be straightforward as no additional 
measures are required to calculate the risk of FGR. However, we need to make sure that resources 
such as staff time and any training needs associated with using the prediction model have been costed 
appropriately. By working closely with clinical academics involved in the development of the RCOG 
Green Top national guideline on SGA fetus, and the RCOG fetal medicine clinical study group, we aim to 
facilitate their incorporation within national and international recommendations.

Relevance to research

FGR continues to be a research priority area. Our work is in direct response to the call of NICE 
guidelines and RCOG for predictive tests or strategies to identify women at risk of small baby, 
particularly for growth-restricted infant with complications,11,21 and the priorities of the Department 
of Health to reduce stillbirths and neonatal deaths. By developing models that predict the risk of 
developing a growth-restricted baby with serious complication, as well as the extent of its smallness, 
our models provide comprehensive information to help plan management. Also, a complementary model 
would be useful to predict the overall risk of FGR (averaged across all potential gestational ages), to 
go alongside our predictions which are conditional on particular gestational ages at delivery. Further 
research is needed on the implementability of the IPPIC models in routine clinical practice and to 
determine any barriers and facilitators to its use. This should include assessment of the acceptability of 
the prediction models as screening tools for pregnant women and their families, as well as healthcare 
providers. Research is also needed to identify the acceptable care pathways for various predicted risk 
thresholds, and this should involve relevant stakeholders, such as healthcare providers, pregnant women 
and their families. The impact of using the IPPIC-FGR prediction models in clinical practice may require 
evaluation through cluster-randomised trials to assess whether use of the models improves perinatal 
outcomes. Such a trial could evaluate use of the models to inform interventions (close monitoring or 
planned delivery) compared to routine care on perinatal mortality and morbidity. Although feasibility of 
such a trial is questioned due to the sample size required to show effect on perinatal mortality, such a 
study might look at proxies of perinatal mortality such as morbidity to achieve sufficient power.183

Using IPD meta-analysis for the development and validation of the IPPIC prediction models has provided 
us with an increased sample size beyond any individual study, and more diverse populations for inclusion 
in our research. Using data from across the IPPIC data repository allowed us the opportunity for broader 
validation of models across different settings, populations and subgroups of interest, although this 
was limited due to the availability of predictor variables across the different cohorts. Primary studies 
on outcomes in pregnancy should collect information on fundamental predictors to minimise the 
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impact of systematically missing data in their study when considered for use in IPD-based projects.184 
Despite there being more than 4.5 million pregnancies from 94 cohorts contained within the IPPIC data 
repository, the absence of fundamental predictors restricted the number of cohorts that could be used 
for model development and limited the number of existing models that could be externally validated.

A key problem in the prognostic field is that many prediction models are being developed, with far 
fewer externally validated.185,186 While we attempted validation of all existing prediction models for FGR 
and birthweight, our ability to do so was limited by the lack of consistent predictor variables reported 
across the IPPIC cohorts, as well as the inclusion of model predictors that are rarely recorded in practice. 
While novel methods for multiple imputation can be used to account for systematically missing data 
(accounting for both the clustering of participants within studies and heterogeneity between studies), 
such methods can substantially complicate analyses and increase required computation time. The 
best approach to handle such data is often context specific, and in our study, there were issues of 
convergence of imputation models when we tried to impute for systematically missing predictors. We 
therefore decided it was better to impute within each study separately, which naturally retains the 
clustering of participants within studies and any heterogeneity between studies, though at the expense 
of not allowing systematically missing predictors to be imputed. The methods and software available for 
systematically missing data are constantly evolving, and while improved recording of core predictors at 
the primary study level would vastly reduce the need for such approaches, future IPD projects should 
also stay abreast of advances in methodology in this area, to ensure they maximise the use of the 
available data.

Our IPD meta-analyses allowed us to explore predictive performance more extensively than a single 
validation study. This is important, as calibration and discrimination performance of prediction models 
are known to vary across populations, which can clearly be seen in our external validation of the Poon 
2011 model and the IECV of the IPPIC-birthweight model. This leaves a challenge for those wanting 
a single model for use everywhere, especially given models in this context appear to underpredict 
birthweight in some populations while overpredicting in others. It may be that locally recalibrated 
models may be a better way forward, where IPD gives us the ability to update and tailor these models 
to improve performance in specific settings and allow the same base model to be accurately fitted to 
multiple populations.187

Researchers should adhere to recommended practice guidelines during economic evaluation of 
prediction models and follow approved methods for data collection, analysis and modelling. When 
including a prediction model in an economic model, key steps should be included, such as structure of 
the tree or model (to define possible pathways), estimate probabilities of the different pathways, assign 
values to costs and outcomes including any assumptions, analyse or roll back the tree, and explore 
any uncertainty in the model. Tools such as the CHEERS (Consolidated Health Economic Evaluation 
Reporting Standards)188 or Philips’s checklist189 should be followed to ensure that the health economic 
evaluation being carried out is consistently and transparently reported, and that good practices are 
followed when developing economic models to better inform health decisions.

Conclusion

The IPPIC-FGR and IPPIC-birthweight models accurately predict the risk of FGR and birthweight for 
various assumed gestational ages of delivery. The latter has better calibration performance than existing 
model. IPPIC-FGR model has clinical utility across wide probability thresholds and is more effective 
compared to alternate strategies of screening for FGR using SFH and ultrasound. Use of the IPPIC 
models in combination has the potential to identify women at high risk of FGR and assess the severity 
of smallness of fetuses across the range of potential gestational ages at delivery to plan appropriate 
management and minimise adverse perinatal outcomes.
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Appendix 1 Detailed study characteristics of 
IPPIC cohorts
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high risk 
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complications), 
low risk] Inclusion criteria Exclusion criteria 

IPPIC UK

SCOPE119 Observational Prospective 
cohort

Multicountry 
(UK, New 
Zealand, 
Australia and 
Republic of 
Ireland)

2004–8 Low risk Healthy nulliparous women with 
singleton pregnancies

Recognised as high risk of PE, SGA 
baby or spontaneous preterm birth 
due to underlying medical condition 
such as chronic hypertension 
requiring antihypertensive drugs, 
diabetes, renal disease, systemic 
lupus erythematosus, antiphospho-
lipid syndrome, sickle cell disease 
or HIV. Previous cervical knife cone 
biopsy, three or more abortions 
or miscarriages, current ruptured 
membranes, known major fetal 
anomaly or abnormal karyotype 
and interventions that can alter the 
course of pregnancy such as aspirin 
or cervical suture

Allen80 Observational Prospective 
cohort

UK 2010–4 Any pregnancy All pregnant women attending an 
inner London hospital between 
11 and 14 weeks’ gestation

Women with multiple pregnancies 
and fetal anomalies

ALSPAC75 Observational Prospective 
birth cohort

UK 1991–2 Any pregnancy All pregnant women resident in 
Avon, UK

None

Chappell93 Randomised Trial UK NI High risk Pregnant women with an 
abnormal Doppler waveform in 
either uterine artery at 18–22 
weeks’ gestation or a history 
of preeclampsia in a previous 
pregnancy which led to preterm 
delivery, eclampsia or HELLP 
syndrome

Heparin or warfarin treatment, 
abnormal fetal-anomaly scan or 
multiple pregnancy
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Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

EMPOWAR94 Randomised Trial UK 2011–4 High risk Women at least 16 years of age at 
recruitment, between 12 and 16 
weeks’ gestation and with a BMI 
of 30 kg/m²

Non-white women and those 
with: history of diabetes, systemic 
disease at the time of enrolment 
(requiring either regular drugs or 
systemic corticosteroids treatment 
in the past 3 months), previous 
delivery of a baby smaller than the 
3rd centile for weight, history of 
PE with delivery before 32 weeks’ 
gestation, known hypersensitivity 
to metformin hydrochloride or 
any of the excipients. Known liver 
or renal failure, acute disorders 
at the time of trial entry with the 
potential to change renal function, 
such as dehydration sufficient to 
require intravenous infusion, severe 
infection, shock, intravascular 
administration of iodinated contrast 
agents or acute or chronic diseases 
that might cause tissue hypoxia 
(e.g. cardiac or respiratory failure, 
recent myocardial infarction, 
hepatic insufficiency, acute alcohol 
intoxication or alcoholism); lactating 
women; and women with multiple 
pregnancy

POPPY78 Observational Prospective 
cohort

UK 2011–3 Any pregnancy Pregnant asymptomatic women 
with a high risk of spontaneous 
preterm birth, such as previous 
history of spontaneous preterm 
delivery, late miscarriage, invasive 
cervical surgery or a short cervix

NI

continued



92

N
IH

R Journals Library w
w

w
.journalslibrary.nihr.ac.uk

A
PPEN

D
IX 1 

Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
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complications), 
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Poston 
2006123

Randomised Trial UK 2003–5 High risk Gestational age 14–21 weeks 
plus one or more of the 
following risk factors: history 
of preeclampsia in preceding 
requiring preterm delivery, history 
of HELLP syndrome, eclampsia, 
essential hypertension requiring 
medication, maternal diastolic 
blood pressure of 90 mm Hg or 
more before 20 weeks’ gestation 
in the current pregnancy, history 
of diabetes, antiphospholipid 
syndrome; 8 chronic renal 
disease, multiple pregnancy; 
abnormal uterine artery doppler 
waveform, primiparity with (BMI 
at first antenatal appointment of 
30 kg/m² or more

Women taking vitamin supplements 
containing doses of vitamin C of 
200 mg or more or of vitamin E of 
40 IU or more daily. Women treated 
with warfarin

Poston 
2015122

Randomised Trial UK 2009–
14

High risk Women older than 16 years with 
a BMI of 30 kg/m² or higher and a 
singleton pregnancy

Any underlying disorders, including 
a pre-pregnancy diagnosis of essen-
tial hypertension, diabetes, renal 
disease, systemic lupus erythema-
tosus, antiphospholipid syndrome, 
sickle cell disease, thalassaemia, 
coeliac disease, thyroid disease 
and current psychosis; or if on 
metformin

Macleod109 Randomised Trial UK NI High risk Women identified to be at 
high risk of adverse pregnancy 
outcome by uterine arterial 
waveform analysis

Women with underlying conditions 
thought likely to compromise renal 
function such as diabetes or renal 
disease

St George135 Observational Prospective 
registry

UK 2000–
15

Any pregnancy All pregnant women attending an 
inner London hospital

None

PARIS84 IPD MA of 31 
randomised 
trials

Trial 33 countries 1985–
2005

Varied Varied (dependent on individual 
study)

Varied (dependent on individual 
study)
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Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

AMND86 Observational Prospective 
registry

UK 1986–
2015

Any pregnancy Data from every pregnancy event 
occurring in Aberdeen Maternity 
Hospital

None

BIB149 Observational Prospective 
birth cohort

UK 2007–
11

Any pregnancy All pregnant women attending 
Bradford Royal Infirmary

None

PROMISE151 Randomised Trial UK 2010–3 Any pregnancy Women with history of 
unexplained miscarriage who 
conceived within study period

Any thrombophilic condition, uter-
ine cavity abnormalities, diabetes, 
thyroid disease, SLE, on heparin 
treatment or contraindicated to 
progesterone

PRISM152 Randomised Trial UK 2015–7 Any pregnancy Women < 12 weeks pregnant 
with vaginal bleeding no older 
than 39 years

CRL ≥ 7mm with no heartbeat, 
ectopic pregnancy, life-threatening 
bleeding and contraindication to 
progesterone use

Velauthar190 Observational Prospective 
cohort

UK NI Any pregnancy All pregnant women attending an 
inner London hospital

None

TABLET156 Randomised Trial UK 2011–6 Any pregnancy Pregnant women 16–40 years 
with previous miscarriage or on 
treatment for infertility

Women receiving treatment for 
thyroid disease, had cardiac disease 
or were on lithium or amiodarone

ESTEEM161 Observational Prospective 
cohort

UK 2014–6 Any pregnancy Singleton pregnancies <18 weeks 
gestation with proficient English 
language ability

Pre-existing diabetes, gestational 
diabetes, chronic renal disease, 
autoimmune disease, on statins or 
similar drugs

POP18 Observational Prospective 
cohort

UK 2008–
12

Any pregnancy Nulliparous women with singleton 
pregnancies

None

continued
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IPPIC International

Baschat87 Observational Prospective 
cohort

USA 2007–
10

Any pregnancy All pregnant women attending 
any of 4 Baltimore (USA) hospitals 
for first trimester screening

None

Audibert85 Observational Prospective 
cohort

Canada 2006–8 Low risk Nulliparous women with 
singleton pregnancies presenting 
for Down syndrome screening at 
11–13 weeks

Pregnancies with a major fetal 
chromosomal or structural anomaly

Caradeux90 Observational Prospective 
cohort

Chile NI Any pregnancy All pregnant women attending 
for an 11–14 week ultrasound 
evaluation

None

Giguere98 Observational Prospective 
cohort

Canada 2005–
10

Any pregnancy Women at least 18 years old and 
with a gestational age of at least 
10 weeks at their first prenatal 
visit with no chronic hepatic or 
renal diseases

Pregnancies with major fetal 
abnormalities and those ending in 
termination, miscarriage or fetal 
death before 24 weeks of gestation

Goetzinger100 Observational Retrospective 
cohort

USA 2003–8 Any pregnancy Women seen for aneuploidy 
screening

None

Antsaklis82 Observational Prospective 
cohort

Greece 1997–8 Low risk All nulliparous women Women with multiple pregnancies, 
renal disease, cardiovascular 
diseases and fetal anomalies

Llurba112 Observational Prospective 
cohort

Spain 2002–6 Any pregnancy Singleton women attending 
routine second trimester anomaly 
scans

None

WHO147 Observational Prospective 
cohort

Multicountry 
(Argentina, 
Colombia, 
India, Italy, 
Kenya, Peru, 
Switzerland 
and Thailand)

2006–9 High risk Women with risk factors for PE Women with known renal disease 
or proteinuria
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Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Andersen81 Observational Prospective 
cohort

Denmark 2010–2 Any pregnancy Newly pregnant women Twin pregnancies and early 
pregnancy fetal losses

Arenas83 Observational Prospective 
cohort

Spain 2000–1 Any pregnancy Women attending routine 
ultrasound scan at 20 weeks

Multiple pregnancies or congenital 
defects

FINNPEC105 Observational Prospective/
retrospective 
case-control 
cohort

Finland 2008–
11

Any pregnancy Nulliparous or multiparous 
women with a singleton 
pregnancy with or without PE on 
admission to hospital

Multiple pregnancy, maternal 
age < 18 years

Galindo143 Observational Prospective 
case-control 
cohort

Spain NI Any pregnancy Singleton pregnancies Multigestation, antiphospholipid 
antibody syndrome, systemic lupus 
erythematosus or any other auto-
immune disease as well as chronic 
corticosteroid or non-steroidal 
anti-inflammatory drug use except 
low-dosage aspirin < 150 mg/day

Generation 
R106

Observational Prospective 
birth cohort

The 
Netherlands

2002–6 Any pregnancy Resident mothers delivering in 
the study period

None

NICHD HR191 Randomised Trial USA 1991–5 High risk Women with pregestational, 
insulin-treated diabetes mellitus, 
women with chronic hyperten-
sion, women with multifetal 
gestations and women who had 
had preeclampsia in a previous 
pregnancy

Women with multifetal gestation if 
they also had chronic hypertension, 
renal disease, diabetes, history of 
PE and current proteinuria

NICHD LR132 Randomised Trial USA NI 
(early 
1990s)

Low risk Healthy nulliparous women Women with chronic hypertension, 
renal disease, diabetes and other 
illnesses

continued



96

N
IH

R Journals Library w
w

w
.journalslibrary.nihr.ac.uk

A
PPEN

D
IX 1 

Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Placental 
Health 
Study148

Observational Prospective 
cohort

Canada 2012–3 Low risk Healthy nulliparous women with 
singleton pregnancies

Chronic hypertension, use of 
unfractionated or low-molecular- 
weight heparin, pregestational 
diabetes mellitus, major fetal 
abnormalities, ruptured membranes, 
vaginal bleeding from 13 0/7 weeks 
of gestation for >1 day or a short 
cervical length on ultrasonography 
before 20 weeks of gestation 
(<2 cm long)

POUCH103 Observational Prospective 
cohort

USA 1998–
2004

Any pregnancy Women with a singleton pregnancy 
at 16–27 weeks’ gestation, no 
known chromosomal abnormality, 
maternal age of at least 15 years, no 
pre-pregnancy diabetes mellitus

None

Van kuijk 
2011139

Observational Prospective 
cohort

The 
Netherlands

1993–
2008

High risk Women with preceding singleton 
pregnancy complicated by PE or 
HELLP syndrome

NI

Van kuijk 
2014138

Observational Prospective 
and 
retrospective 
cohort

The 
Netherlands

2008–
12

High risk Women with preceding singleton 
pregnancy complicated by PE or 
HELLP syndrome

Women who had diabetes, 
autoimmune disease, heart or 
kidney disease

Odibo120 Observational Prospective 
cohort

USA 2009–
11

Any pregnancy Women attending first trimester 
screening

None

PREDO99 Observational Prospective 
case-control 
cohort

Finland 2005–9 Any pregnancy Pregnant women with known risk 
factor for preeclampsia and IUGR 
and those without, attending 
clinics for their first ultrasound 
screening between 12 and 14 
weeks gestation

Asthma diagnosed by a physician, 
allergy to ASA, tobacco smoking 
during pregnancy, previous peptic 
ulcer, previous placental ablation, 
inflammatory bowel diseases 
(Crohn’s disease, ulcerative colitis), 
rheumatoid arthritis, haemophilia or 
thrombophilia (previous venous or 
pulmonary thrombosis and/or coag-
ulation abnormality), gestational 
weeks + days <12 + 0 or more than 
14 + 0 or multiple pregnancy



D
O

I: 10.3310/D
A

BW
4814 

H
ealth Technology A

ssessm
ent 2024 Vol. 28 N

o. 47

Copyright ©
 2024 A

llotey et al. This w
ork w

as produced by A
llotey et al. under the term

s of a com
m

issioning contract issued by the Secretary of State for H
ealth and Social Care. This is 

an O
pen Access publication distributed under the term

s of the Creative Com
m

ons Att
ribution CC BY 4.0 licence, w

hich perm
its unrestricted use, distribution, reproduction 

and adaptation in any m
edium

 and for any purpose provided that it is properly att
ributed. See: htt

ps://creativecom
m

ons.org/licenses/by/4.0/. For att
ribution the title, original 

author(s), the publication source – N
IH

R Journals Library, and the D
O

I of the publication m
ust be cited.

97

Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Prefumo124 Observational Prospective 
cohort

Italy 2001–5 Any pregnancy Women attending routine 
antenatal care

Known medical condition (e.g. 
diabetes mellitus, connective tissue 
disease, essential hypertension) or a 
history of recurrent miscarriage

Skrastad133 Observational Prospective 
cohort

Norway 2010–2 High risk Nulliparous and high-risk parous 
women with one or more 
previous PE pregnancies

Use of any anticoagulant med-
ication or acetylsalicylic acid in 
pregnancy

Verlohren144 Observational Prospective 
case-control 
cohort

Germany NI Any pregnancy Singleton pregnancies Multigestation, antiphospholipid 
antibody syndrome, systemic lupus 
erythematosus or any other auto-
immune disease as well as chronic 
corticosteroid or non-steroidal 
anti-inflammatory drug use except 
low-dosage aspirin < 150 mg/day

Rumbold128 Randomised Trial Australia 2001–5 Low risk Nulliparous women with a 
singleton pregnancy between 14 
and 22 weeks of gestation and 
normal blood pressure

Known multiple pregnancy, known 
potentially lethal fetal anomaly, 
known thrombophilia, chronic renal 
failure, antihypertensive therapy or 
specific contraindications to vitamin 
C or E therapy such as haemochro-
matosis or anticoagulant therapy

Vollebregt146 Observational Prospective 
cohort

The 
Netherlands

2004–6 High risk Healthy nulliparous women at low 
risk and women with elevated 
risk for preeclampsia or FGR with 
singleton pregnancies

NI

JSOG77 Observational Prospective 
registry

Japan 2013–4 Any pregnancy All women giving birth at 
participating institutions in Japan

None
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Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

DOMINO115 Randomised Trial Australia 2005–8 Any pregnancy Singleton pregnancies at <21 
weeks’ gestation

Already taking a prenatal supple-
ment with DHA, their fetus had 
a known major abnormality, they 
had a bleeding disorder in which 
tuna oil was contraindicated, were 
taking anticoagulant therapy, had 
a documented history of drug or 
alcohol abuse, were anticipating in 
another fatty acid trial

Danish Birth 
Cohort108

Observational Prospective 
registry

Denmark 1996–
2002

Any pregnancy All women in Denmark None

Indonesian 
cohort130

Observational Prospective 
cohort

Indonesia 2012–5 Any pregnancy All women attending antenatal 
care

None

Ohkuchi121 Observational Prospective 
cohort

Japan NI Any pregnancy Women with singleton pregnan-
cies attending antenatal care

None

Lecarpentier111 Observational Retrospective 
cohort

France 2004–7 High risk Women with chronic 
hypertension

Multiple pregnancies, women with 
secondary hypertension, women 
with proteinuria at <20 weeks’ 
gestation, women considered as 
having a chronic hypertension 
but without any treatment at first 
prenatal visit, women transferred 
from other maternities, pregnancies 
complicated by fetal malformations

TEST118 Randomised Trial Ireland 2014–6 Low risk Nulliparous women between 11 
and 14 weeks gestation and not 
already on aspirin

Fetal abnormality or contraindica-
tion to aspirin

Masse116 Observational Prospective 
cohort

Canada 1989–
91

Low risk Nulliparous women attending 
hospital for routine blood 
sampling at the start of pregnancy

Diabetes mellitus, cardiovascular 
disease (including chronic hyper-
tension) or renal disease or women 
seen after 20 weeks
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Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Staff134 Observational Prospective 
case-control 
cohort

Norway NI Low risk Women with singleton 
pregnancies

NI

STORK G107 Observational Prospective 
cohort

Norway 2008–
10

Any pregnancy Healthy pregnant women Women with diabetes or diseases
require intensive hospital follow-up 
in pregnancy

Vatten142 Observational Prospective 
case-control 
cohort

Norway 1992–4 Any pregnancy Women attending antenatal care None

Vinter145 Randomised Trial Denmark 2007–
10

High risk Women aged between 18 and 40 
with a pre-pregnancy weight of 
between 30 and 45 kg/m²

Women with chronic medical 
disorders (hypertension, diabetes, 
alcohol or drug use) and serious 
obstetric complication (multiple 
pregnancy, congenital malforma-
tion, miscarriage)

BORN 
Ontorio76

Observational Prospective 
registry

Canada 2012–4 Any pregnancy Women giving birth during the 
data period in the Ontario region

None

Ghana 
Cohort137

Observational Prospective 
cohort

Ghana 2012–4 Any pregnancy Women < 17 weeks pregnant, 
at least 18 years old with no 
established hypertension at 
booking

None

MoBA114 Observational Prospective 
registry

Norway 1999–
2005

Any pregnancy All women giving birth in Norway None

Huang104 Observational Retrospective 
cohort

Canada 2000–3 Any pregnancy All women screened in early 
pregnancy for Down syndrome

None

Carbillion91 Observational Prospective 
registry

France 1996–
2005

Any pregnancy Women giving birth in the data 
period in that region

None
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high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Goffinet101 Randomised Trial France 1994–7 Low risk All women attending routine 
antenatal visit before 24 weeks

Any indications for UAD such as 
chronic hypertension, diabetes, 
previous fetal death, IUGR, hyper-
tensive disorders of pregnancy or 
contraindication for aspirin

Rang125 Observational Prospective 
cohort

The 
Netherlands

NI High risk Women with a history of 
early-onset preeclampsia in a 
previous pregnancy or women 
who had never been pregnant

None

Cameroni 
201189

Observational Retrospective 
cohort

Italy NI High risk Singleton pregnancies at risk of 
PE or IUGR

NI

Conserva 
201295

Observational Prospective 
cohort

Italy 2001–8 High risk Women with previous adverse 
pregnancy outcomes

Multiple gestation; a previous 
uneventful pregnancy; a previous 
pregnancy treated with LMWH or 
unfractionated heparin; patients 
with clinical immune disease and 
acquired thrombophilia − lupus-like 
anticoagulant or APL syndrome; 
patients with positive antinuclear, 
antimitochondria, antismooth 
muscle antibodies; postnatal or 
post-mortem diagnosis of congen-
ital fetal anomaly or fetal infection; 
women of non-Caucasian ethnicity; 
alcohol or illicit drug use; early 
pregnancy loss was not considered 
an APO

Facchinetti96 Observational Prospective 
cohort

Italy 2001–6 High risk Previous singleton pregnancies 
complicated by PE and received 
evaluation for thrombophilia

History of thromboembolic 
diseases, renal and/or cardiovas-
cular disorder, systemic lupus 
erythematosus, diabetes and any 
ethnic group other than white
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Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Ferrazzani131 Observational Prospective 
cohort

Italy 1990–
2001

High risk Previous severe preterm PE Previous HELLP syndrome

Figueiro-Filho97 Observational Prospective 
case-control 
cohort

Brazil 2007–
10

High risk Women with severe PE in 
previous pregnancies

Antiphospholipid antibodies and 
thrombophilia

Langenveld110 Observational Retrospective 
cohort

The 
Netherlands

1996–
2004

High risk Women with hypertension 
(including patients with chronic 
hypertension), PE or HELLP syn-
drome, and delivered before 34 
weeks of gestation in the study 
period and primiparous with 
singleton pregnancy without fetal 
abnormalities in first pregnancy

NI

Lykke113 Observational Prospective 
registry

Denmark 1978–
2007

Any pregnancy Singleton deliveries of women 
with first delivery > 15 years and 
second delivery < 50 years

Cardiovascular diagnosis and type 1 
or 2 diabetes

Mbah117 Observational Prospective 
registry

USA 1989–
2005

Any pregnancy Women with first and second 
singleton pregnancies within the 
gestational age range of 20–44 
weeks

None

Trogstad136 Observational Prospective 
registry

Norway 1967–
98

Any pregnancy Women with a first and a second 
delivery

None

Salim129 Observational Prospective 
cohort

Israel 2000–6 High risk Previous pregnancy with 
antepartum complications at ≥23 
weeks gestation

Women who had a previous 
pregnancy with antepartum compli-
cations that could be attributed to 
multiple gestations, having fetuses 
with major congenital anomalies or 
chromosomal abnormalities, fetal 
infection, chorioamnionitis, hydrops 
fetalis and diabetes mellitus

continued



102

N
IH

R Journals Library w
w

w
.journalslibrary.nihr.ac.uk

A
PPEN

D
IX 1 

Study/dataset 
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pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Van 
Oostwaard 
2012140

Observational Prospective 
cohort

The 
Netherlands

2000–2 High risk Women with a hypertensive 
disorder in the index pregnancy 
and delivery at 34–37 weeks of 
gestation

Fetal abnormalities

Van 
Oostwaard 
2014141

Observational Retrospective 
cohort

The 
Netherlands

2000–2 High risk Women with a hypertensive 
disorder in the index pregnancy 
and delivery at 34–37 weeks of 
gestation

Fetal abnormalities

Zhang150 Observational Prospective 
cohort

USA 1959–
65

Any pregnancy Women attending prenatal care None

Brown 200788 Observational Retrospective 
cohort

Australia 1988–
98

Any pregnancy Women referred for management 
of hypertensive disorders of 
pregnancy

None

Costa 2014102 Observational Prospective 
cohort

Brazil 2009–
11

Any pregnancy Women attending for first trimes-
ter Down syndrome screening

None

Costa 
2016_1126

Observational Prospective 
cohort

Brazil 2009–
14

Any pregnancy Women with singleton pregnan-
cies attending for first trimester 
ultrasound scans

Prior maternal renal disease, major 
fetal malformations or chromosomal 
abnormalities, miscarriage

Costa 
2017_179

Observational Prospective 
cohort

Australia 2012–5 Any pregnancy Women attending for their 
second trimester morphology 
ultrasound between 19 and 22 
weeks

None

Costa 
2017_2127

Observational Prospective 
cohort

Brazil 2009–
14

Any pregnancy Singleton pregnancies of women 
attending routine ultrasound 
screening

Kidney disease diagnosis in their 
previous history or on ultrasound 
examination, major fetal malforma-
tions or chromosomal abnormalities 
and fetuses with crown-rump 
length longer than 84 mm
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Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Van 
Oostwaard 
2012140

Observational Prospective 
cohort

The 
Netherlands

2000–2 High risk Women with a hypertensive 
disorder in the index pregnancy 
and delivery at 34–37 weeks of 
gestation

Fetal abnormalities

Van 
Oostwaard 
2014141

Observational Retrospective 
cohort

The 
Netherlands

2000–2 High risk Women with a hypertensive 
disorder in the index pregnancy 
and delivery at 34–37 weeks of 
gestation

Fetal abnormalities

Zhang150 Observational Prospective 
cohort

USA 1959–
65

Any pregnancy Women attending prenatal care None

Brown 200788 Observational Retrospective 
cohort

Australia 1988–
98

Any pregnancy Women referred for management 
of hypertensive disorders of 
pregnancy

None

Costa 2014102 Observational Prospective 
cohort

Brazil 2009–
11

Any pregnancy Women attending for first trimes-
ter Down syndrome screening

None

Costa 
2016_1126

Observational Prospective 
cohort

Brazil 2009–
14

Any pregnancy Women with singleton pregnan-
cies attending for first trimester 
ultrasound scans

Prior maternal renal disease, major 
fetal malformations or chromosomal 
abnormalities, miscarriage

Costa 
2017_179

Observational Prospective 
cohort

Australia 2012–5 Any pregnancy Women attending for their 
second trimester morphology 
ultrasound between 19 and 22 
weeks

None

Costa 
2017_2127

Observational Prospective 
cohort

Brazil 2009–
14

Any pregnancy Singleton pregnancies of women 
attending routine ultrasound 
screening

Kidney disease diagnosis in their 
previous history or on ultrasound 
examination, major fetal malforma-
tions or chromosomal abnormalities 
and fetuses with crown-rump 
length longer than 84 mm

Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

WHO GS192 Observational Prospective 
cohort

Multicountry 
(Afghanistan, 
Angola, 
Argentina, 
Brazil, 
Cambodia, 
China, 
Democratic 
Republic of 
the Congo, 
Ecuador, 
India, Japan, 
Jordan, Kenya, 
Lebanon, 
Mexico, 
Mongolia, 
Nepal, 
Nicaragua, 
Niger, Nigeria, 
occupied 
Palestinian 
territory, 
Pakistan, 
Paraguay, 
Peru, 
Philippines, 
Qatar, Sri 
Lanka, 
Thailand, 
Uganda, 
Vietnam)

2004–8 Any pregnancy Pregnant women attending 
hospitals from Americas, Africa, 
Southeast Asia and Western 
Pacific WHO regions

None
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Study design 
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(trial, cohort, 
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Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

WHO MCS193 Observational Prospective 
cohort

Multicountry 
(Algeria, 
Angola, 
Democratic 
Republic of 
the Congo, 
Kenya, Niger, 
Nigeria, 
Uganda, 
Argentina, 
Brazil, Cuba, 
Ecuador, 
Mexico, 
Nicaragua, 
Paraguay, 
Peru, 
Cambodia, 
China, India, 
Japan, Nepal, 
Philippines, 
Sri Lanka, 
Thailand, 
Vietnam)

2004–8 Any pregnancy Pregnant women attending 
hospitals from Americas, Africa, 
Southeast Asia and Western 
Pacific WHO regions

None

Crovetto160 Observational Prospective 
cohort

Spain 2007–
12

Any pregnancy Singleton pregnancies attending 
routine first trimester screening

Major fetal defects, miscarriage and 
termination of pregnancies without 
medical indication

NICHD CSL194 Observational Retrospective 
cohort

USA 2002–8 Any pregnancy All deliveries ≥ 23 weeks 
gestation from 19 hospitals 
across the USA

None

Expect159 Observational Prospective 
cohort

The 
Netherlands

2013–5 Any pregnancy Adult pregnant women < 16 
weeks

Miscarriage and termination < 24 
weeks

Anggraini158 Observational Retrospective 
cohort

Indonesia 2013–5 Any pregnancy Pregnant women who received 
antenatal care

NI
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Study/dataset 

Study design 
(randomised, 
observational) 

Data source 
(trial, cohort, 
registry) Country 

Data 
period 

Population 
type [any 
pregnancy, 
high risk 
(women with 
complications), 
low risk] Inclusion criteria Exclusion criteria 

Gabby-
Benziv157

Observational Retrospective 
cohort

Israel 2007–
14

Any pregnancy All singleton pregnant women 
attending for ultrasound scan

None

Pilalis155 Observational Prospective 
cohort

Greece NI Any pregnancy Women with singleton preg-
nancies attending ultrasound 
examination at 11–14 weeks

NI

Souka Observational Prospective 
registry

Greece NI Any pregnancy All pregnant women attending a 
private fetal medical centre

None

Souka 2 Observational Prospective 
registry

Greece NI Any pregnancy All pregnant women attending a 
private fetal medical centre

None

Hawkins154 Observational Prospective 
registry

Australia 2000–8 High risk Hypertensive pregnancies 
referred for renal consultation

Non-hypertensive pregnancies and 
women with type 1 diabetes 

SAMBA195 Observational Prospective 
cohort

Brazil 2015–8 Low risk Nulliparous singleton pregnant 
women < 21 weeks gestation

≥3 abortions, chronic hyper-
tension requiring treatment, 
diabetes or renal disease, 
arterial BP > 160/100, autoimmune 
disease, sickle cell disease, HIV, 
fetal malformation, cervical suture 
or knife cone biopsy, Mullerian 
anomalies, use of corticosteroids, 
aspirin, calcium, fish oil, vitamin C/E 
or heparin

APL, anti phospholipid; BMI, body mass index; DHA, docosahexaenoic acid; IUGR, intra uterine growth restriction; LMWH, low molecular weight heparin; UAD, uterine artery doppler.
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Appendix 2 Prediction study Risk of bias 
assessment (RoB)a of cohorts on the IPPIC 
Network database used for external validation 
and model development
Study Participants Predictors Outcome Overall RoB 

Allen + + + +

ALSPAC + + + +

Baschat + + + +

Generation R + + + +

Odibo + + + +

Rumbold + + + +

JSOG + ? + ?

STORKG + + + +

POP + + + +

NICHD CSL + + + +

a + indicates low RoB; − indicates high RoB; ? indicates unclear RoB.





DOI: 10.3310/DABW4814 Health Technology Assessment 2024 Vol. 28 No. 47

Copyright © 2024 Allotey et al. This work was produced by Allotey et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is 
an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction 
and adaptation in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original 
author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

109

Appendix 3 Predicted birthweight distribution

Predicted birthweight was slightly skewed, with a long left tail, in all included datasets. While all 
datasets recorded observed birthweights in this left tail, almost down to zero, very few babies were 

born with actual birthweight over 5000 g (5 kg). The largest babies were seen in JSOG, where 27 babies 
were born larger than 5 kg (potentially a reflection of the larger size of this dataset, allowing more 
extreme observations to be seen). While the left tail of the observed distribution was well modelled 
by Poon 2011, the more extreme right observations were poorly identified, with very few predicted 
birthweights exceeding 4000 g (4 kg) in any data set.

Overall distributions of predictions were similar across datasets, as was the distribution of observed 
birthweights. The model reasonably mimics the distribution of the observed outcome, where the 
majority of babies were born at a larger, healthier weight with gradually fewer small babies.
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FIGURE 21 Distributions of expected (green) and observed (purple) birthweights (g), by study.
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FIGURE 22 Distributions of expected (blue) and observed (red) log10 birthweight, by study.
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Appendix 4 Summary of predictors across 
model development cohorts
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FIGURE 23 Gestational age at delivery.
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FIGURE 24 Mother’s weight.
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FIGURE 25 Mother’s height.
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DOI: 10.3310/DABW4814 Health Technology Assessment 2024 Vol. 28 No. 47

Copyright © 2024 Allotey et al. This work was produced by Allotey et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This is 
an Open Access publication distributed under the terms of the Creative Commons Attribution CC BY 4.0 licence, which permits unrestricted use, distribution, reproduction 
and adaptation in any medium and for any purpose provided that it is properly attributed. See: https://creativecommons.org/licenses/by/4.0/. For attribution the title, original 
author(s), the publication source – NIHR Journals Library, and the DOI of the publication must be cited.

117

Lower quartile

Upper quartile

Median value

Mean value

imp

Allen

STORKG NICHD CSL

Rumbold

0

35

30

25

20

35

30

25

20

50 100 0 50 100

Lower quartile

Upper quartile

Median value

Mean value

imp

Allen

STORKG NICHD CSL

Rumbold

0

35

30

25

20

35

30

25

20

50 100 0 50 100

FIGURE 29 Mother’s age.
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FIGURE 30 Birthweight.
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FIGURE 31 Gestational age at delivery.
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FIGURE 32 Mother’s height.
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FIGURE 33 Mother’s weight.
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Appendix 6 Calculation of probabilities and 
cost values

TABLE 21 Calculation of probabilities and cost values

Parameter Source Description 

CS Hospital Episode Statistics 2018–9, Method of 
Delivery, table 3a

Divided # CS by # births excluding 
unknowns

Non-CS Hospital Episode Statistics 2018–9, Method of 
Delivery, table 3a

1-P (CS)

CS (FGR) Assumption

FGR Vieira 2019, NICE guidelines 10% of all babies are SGA, and 1/3 of them 
are FGR

Sensitivity of 
ultrasound scan

Haragan 2015 USAC < 5th percentile to predict BW < 10 
percentile

Sensitivity of SFH 
measurement

Pay 2015 Accuracy of SF height for the prediction of 
SGA defined as BW ≥ 2 SDs below the mean

Sensitivity of 
(SFH + ultrasound)

Derived Average of sensitivity of ultrasound and SFH 
measurement

Specificity of 
ultrasound scan

Haragan 2015 USAC < 5th percentile to predict BW < 10 
percentile

Specificity of SFH 
measurement

Pay 2015 Accuracy of SF height for the prediction of 
SGA defined as BW ≥ 2 SDs below the mean

Specificity of 
(SFH + Ultrasound)

Derived Average of specificity of ultrasound and SFH 
measurement

Sensitivity of 
prediction model

Prediction model, Section 6.3.3.2 Probability threshold 0.08

Specificity of 
prediction model

Prediction model, Section 6.3.3.2 Probability threshold 0.08

CS NHS reference cost: national schedule of 
reference costs: the main schedule, total HRG’s

Weighted average of planned (NZ50C) and 
emergency section (NZ51C)

Non-CS NHS reference cost: national schedule of 
reference costs: the main schedule, total HRG’s

Weighted average of NZ30C, NZ31C, 
NZ40C, NZ41C

SFH measurement PSSRU 2006

Ultrasound fetal 
growth scan

NHS reference cost: national schedule of 
reference costs: the main schedule, DADS

NZ73Z
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