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See the editorial comment for this article ‘Personalized clinical management of patients with atrial fibrillation: is a biomarker- 
based strategy for prediction of sinus rhythm persistence ready for prime time?’, by G. Boriani et al., https://doi.org/10.1093/ 
eurheartj/ehae720.

Abstract

Background and 
Aims

In patients with atrial fibrillation (AF), recurrent AF and sinus rhythm during follow-up are determined by interactions be
tween cardiovascular disease processes and rhythm control therapy. Predictors of attaining sinus rhythm at follow-up are 
not well known.

Methods To quantify the interaction between cardiovascular disease processes and rhythm outcomes, 14 biomarkers reflecting AF- 
related cardiovascular disease processes in 1586 patients in the EAST-AFNET 4 biomolecule study (71 years old, 45% 
women) were quantified at baseline. Mixed logistic regression models including clinical features were constructed for 
each biomarker. Biomarkers were interrogated for interaction with early rhythm control. Outcome was sinus rhythm at 
12 months. Results were validated at 24 months and in external datasets.
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Results Higher baseline concentrations of three biomarkers were independently associated with a lower chance of sinus rhythm at 
12 months: angiopoietin 2 (ANGPT2) (odds ratio [OR] .76 [95% confidence interval .65–.89], P < .001), bone morphogenetic 
protein 10 (BMP10) (OR .83 [.71–.97], P = .017), and N-terminal pro-B-type natriuretic peptide (NT-proBNP) (OR 
.73 [.60–.88], P < .001). Analysis of rhythm at 24 months confirmed the results. Early rhythm control interacted with the 
predictive potential of NT-proBNP (Pinteraction = .033). The predictive effect of NT-proBNP was reduced in patients rando
mized to early rhythm control (usual care: OR .64 [.51–.80], P < .001; early rhythm control: OR .90 [.69–1.18], P = .453). 
External validation confirmed that low concentrations of ANGPT2, BMP10, and NT-proBNP predict sinus rhythm during 
follow-up.

Conclusions Low concentrations of ANGPT2, BMP10, and NT-proBNP identify patients with AF who are likely to attain sinus rhythm 
during follow-up. The predictive ability of NT-proBNP is attenuated in patients receiving rhythm control.

Structured Graphical Abstract

Can clinical features or circulating biomarkers measured at baseline predict sinus rhythm during mid-term follow-up in patients with atrial 
fibrillation (AF)? Which biomarkers interact with early rhythm control therapy? 

Biomarkers like NT-proBNP, ANGPT2 and BMP10 can improve the prediction of sinus rhythm at follow-up in patients with a history of 
AF. Further studies are needed to establish their role in clinical practice.

Key Question

Key Finding
Low baseline concentrations of NT-proBNP (<1000 pg/ml), ANGPT2 (<3.5 ng/ml) and BMP10 (<2 ng/ml) predicted sinus rhythm at 
follow-up in the EAST-AFNET 4 trial and in two external validation data sets. The three biomarkers improved sinus rhythm prediction 
compared to a clinical risk score.

Take Home Message

Low concentrations of NT-proBNP, BMP10, and ANGPT2
predict future sinus rhythm in context with clinical features

Baseline features and concentrations of 14 biomarkers

NT-proBNP

AXAFA-AFNET 5 (validation dataset)

Atrial �brillation Sinus rhythm

ANGPT2
BMP10

Usual care
Usual care

NT-proBNP

Early rhythm control
(ERC)

ERC

Prediction of future sinus rhythm

Prediction of sinus rhythm  
Logistic regression Validation Machine learning Clinical utility

1586 participants in
EAST-AFNET 4 with
a recent AF diagnosis

randomized to
early rhythm control
(ERC) and usual care

Blood draw for
measuring

biomarkers, and
clinical examination

0.56 (0.37 to 0.85)

0.64 (0.51 to 0.80)
0.90 (0.69 to 1.18)

0.007

ANGPT2
BMP10

0.76 (0.65 to 0.89)
0.83 (0.71 to 0.97)

EAST-AFNET 4 (derivation dataset)

P-valueEst. (95% CI)

0.028
0.005

0.71 (0.52 to 0.96)
0.61 (0.43 to 0.86)

Odds ratio
(per increase in standard deviation)

0.0 0.5 1.0 1.5 2.0

< 0.001

0.033

<0.001
0.017

p interaction

0.73 (0.60 to 0.88)

In patients diagnosed with atrial fibrillation, low concentrations of NT-proBNP, BMP10, and ANGPT2 at baseline predict sinus rhythm at 12-month 
follow-up in context with clinical features. This was validated in additional datasets, of which AXAFA-AFNET 5 is depicted here. A treatment inter
action shows that NT-proBNP’s predictive value is impacted by early rhythm control treatment. AF, atrial fibrillation; ANGPT2, angiopoietin 2; 
BMP10, bone morphogenetic protein 10; NT-proBNP, N-terminal pro-B-type natriuretic peptide.

Keywords Atrial fibrillation • Blood biomarker • Sinus rhythm • Rhythm control • Natriuretic peptides • Bone morphogenetic 
protein 10 • Angiopoietin 2 • Risk prediction • Risk score
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Introduction
In addition to improving atrial fibrillation (AF)-related symptoms,1

rhythm control therapy2 can prevent AF-related cardiovascular events 
such as stroke, heart failure hospitalizations, and cardiovascular death.3

The cardiovascular complication-reducing effect of early rhythm con
trol therapy shown in the EAST-AFNET 4 study is mainly mediated 
by attaining sinus rhythm at 12-month follow-up.4 This potentially re
flects a reduced AF burden5 and lack of progression to non-paroxysmal 
patterns of AF.6,7 Predicting sinus rhythm at 12 months could therefore 
help to identify patients requiring intensive rhythm control, e.g. with AF 
ablation.3,8 Knowledge of treatable processes contributing to AF at 
12-month follow-up can help to develop adjunct therapies aimed at 
maintaining sinus rhythm and preventing AF progression. Several 
chronic, interdependent disease processes9,10 contribute to AF. Such 
processes can be aggravated by presence of AF, attenuated by rhythm 
control, or exist independent of AF.1,11 Circulating biomarkers provide 
quantitative proxies for cardiomyocyte death or injury [troponin 
(TnT)]; atrial metabolic dysfunction and stress [bone morphogenetic 
protein 10 (BMP10), fatty acid binding protein 3 (FABP3), and insulin- 
like growth factor binding protein 7 (IGFBP7)]12,13; thrombo-inflammation 
[D-dimer, C-reactive protein (CRP), interleukin-6 (IL-6)]14,15; vascular 
and endothelial dysfunction [angiopoietin 2 (ANGPT2), endothelial 
specific molecule 1 (ESM1)]14,15; frailty [growth differentiation factor 
15 (GDF-15)]; and cardiac load [natriuretic peptides like N-terminal 
pro-B-type natriuretic peptide (NT-proBNP)].16 Quantification of 
biomarkers selected to reflect these disease processes in a single blood 
draw identifies patient clusters with different risk of cardiovascular 
events.17 Whether the disease processes reflected by these biomar
kers modify future rhythm in patients with AF has not been 
investigated.

This analysis of the EAST-AFNET 4 biomolecule study embedded 
into the Early treatment of Atrial fibrillation for STroke prevention 
(EAST-AFNET 4) trial2 quantified 14 biomarkers reflecting different 
disease processes in AF that were defined a priori.9 The ability of 
each biomarker to predict sinus rhythm at 12-month follow-up in pa
tients with and without early rhythm control therapy was evaluated 
(Structured Graphical Abstract).

Validation was performed internally at 24 months, by comparing 
biomarker-based clusters at baseline by association with sinus rhythm 
at 12- and 24-month follow-up and by machine learning integrating bio
markers and clinical parameters. Clinical utility was assessed by defining 
and testing threshold values and by comparison with a clinical score. 
External validation was performed in two independent datasets of pa
tients with AF.

Methods
Details of the prespecified analysis plan of the EAST-AFNET 4 biomolecule 
study can be found in a separate Supplementary material file (Supplementary 
file Statistical analysis plan SAP). Post hoc exploratory analyses were added to 
gain more insight into the main findings.

Derivation dataset (EAST-AFNET 4)
EAST-AFNET 4 randomized patients with recently diagnosed AF and 
stroke risk factors to systematic early rhythm control or usual care including 
symptom-based rhythm control.2 All patients were followed up for a me
dian of 5.1 years. The EAST-AFNET 4 biomolecule study collected a 
baseline blood sample in 1586 patients enrolled in the EAST-AFNET 4 
trial.17,18 In brief, all consenting patients provided a blood sample at baseline. 
Samples were shipped to the core biostorage facility at UKE Hamburg, 

spun, shock-frozen, and stored at −80°C. EAST-AFNET 4 and its biomol
ecule study were approved at all participating study sites. Written informed 
consent was obtained from all patients.

Validation datasets
AXAFA-AFNET 5
The Anticoagulation using the direct factor Xa inhibitor apixaban during Atrial 
Fibrillation catheter Ablation: Comparison to vitamin K antagonist therapy 
(AXAFA-AFNET 519) trial was a randomized, investigator-initiated trial com
paring continuous vitamin K antagonist therapy to apixaban in 633 patients 
undergoing a first AF ablation in 49 European and US American study sites. 
The same 14 biomarkers quantified in the derivation dataset were quantified 
in the AXAFA-AFNET 5 blood samples using the same assays.20 The outcome 
of interest was rhythm at the final follow-up visit, 120 days after enrolment.19

All patients provided written informed consent.

BBC-AF atrial fibrillation snapshot
Details of the BBC-AF cohort have been described before.21 In brief, consecu
tive patients eligible for recruitment had ECG-diagnosed AF or presented 
with at least two cardiovascular conditions (congestive heart failure, hyperten
sion, diabetes, prior stroke, or vascular disease) to a large teaching hospital 
(Sandwell and West Birmingham NHS Trust). Patients who did not have a 
diagnosis of AF underwent 7-day ambulatory ECG monitoring to rule out un
diagnosed ECG-documented AF. For this analysis, only patients with 
ECG-documented AF were included. Follow-up data were collected by asses
sing local hospital records corroborated against Hospital Episode Statistics 
data, general practitioner records, and mortality data from NHS Digital, up 
to 2.5 years after the final patient was recruited.22 This study complied 
with the Declaration of Helsinki, was approved by the National Research 
Ethics Service Committee (IRAS ID 97753), and was sponsored by the 
University of Birmingham. All patients provided written informed consent.

TRUST snapshot
A snapshot of patients enrolled in the Long-term Outcome and Predictors for 
Recurrence after Medical and Interventional Treatment of Arrhythmias study 
(TRUST; NCT05521451), with biomarker concentrations and 12-month 
rhythm status was created. All patients provided written informed consent. 
A snapshot of all patients with biomarker concentrations and ECG follow-up 
at 12–18 months was obtained in June 2024 for validation.

Selection of biomarkers and their quantification
Circulating biomarkers were selected by scientists from the EU-funded 
CATCH-ME consortium based on relevant disease processes and available 
high-precision high-throughput assays.9 Biomarkers were selected in four 
steps: (i) members of the consortium identified candidate biomarkers re
flecting disease processes known to contribute to AF and its complications, 
(ii) deep literature and patent searches for candidate biomarkers and add
itional novel biomarkers were performed, (iii) expert discussion and 
Delphi-like votes by the consortium defined most promising candidates, 
and (iv) availability and feasibility checks to perform measurements of thou
sands of samples with high precision.

Fourteen biomarkers were selected (Table 1 following clinical character
istics); ANGPT2, BMP10, cancer antigen 125 (CA125), CRP, D-dimer, 
ESM1, FABP3, fibroblast growth factor 23 (FGF23), GDF15, IGFBP7, IL-6, 
NT-proBNP, TnT, and serum creatinine (sCr).

Blood samples were collected at all participating sites and shipped to the 
core lab at University Heart and Vascular Center (UHZ) Hamburg by cour
ier at ambient temperatures (24–48 h transport time). Upon arrival at 
UHZ, samples were spun, shock-frozen, and stored at −80°C for analysis. 
Biomarkers were centrally quantified using pre-commercial and commercial 
high-throughput, high-precision platforms (Roche, Penzberg, Germany) in 
EDTA plasma. The biomarker quantification was provided as an in-kind 
contribution of Roche to the CATCH ME consortium. Blood samples 
were shipped to, and quantifications were conducted at the Roche bio
marker research facility in Penzberg, Germany.
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Table 1 Baseline characteristics and biomarkers in the EAST-AFNET 4 biomolecule study

Treatment group Early rhythm control Usual care P-value*

n 800 786

Sex: female 355 (44%) 358 (46%) .639

Age (years) 71 [66, 75] 71 [66, 76] .711

BMI 28.7 [25.6, 32.1] 29.0 [25.6, 32.5] .699

Blood pressure (systolic, mmHg) 135 [123, 150] 135 [125, 148] .730

Blood pressure (diastolic, mmHg) 80 [74, 90] 80 [74, 90] .716

LVEF (%) 60 [55, 65] 60 [55, 65] .873

AF type (first episode) 290 (36%) 270 (34%)

AF type (paroxysmal) 302 (38%) 288 (37%) .839

AF type (persistent) 208 (26%) 228 (29%) .202

Other clinical characteristics

Diabetes 207 (26%) 189 (24%) .400

Hypertension 494 (62%) 512 (65%) .170

Chronic kidney disease 98 (12%) 97 (12%) .956

Estimated glomerular filtration rate (mL/min 1.73 m²) 75 [63–87] 76 [64–87] .734

Previous stroke or transient ischaemic attack 114 (14%) 81 (10%) .017

Chronic obstructive pulmonary disease 63 (8%) 61 (8%) .991

Diastolic LA diameter (mm) 42 [38, 47] 43 [39, 47] .730

NYHA class

No heart failure 523 (65%) 509 (65%)

I 82 (10%) 88 (11%) .555

II 164 (21%) 160 (20%) .985

III 31 (4%) 29 (4%) .882

EHRA score

I 232 (29%) 236 (30%)

II 386 (48%) 374 (48%) .679

III 122 (15%) 122 (15%) .914

IV 8 (1%) 9 (1%) .839

Missing 52 (7%) 45 (6%)

Biomarker (unit) Coefficient of variation

NT-proBNP (pg/mL) 1.51 441 [175–966] 467 [187–1036] .537

ANGPT2 (ng/mL) .70 2.53 [1.87–3.65] 2.53 [1.87–3.75] .456

BMP10 (ng/mL) .24 2.10 [1.82–2.41] 2.11 [1.83–2.45] .507

FGF23 (pg/mL) 1.27 155 [115–218] 153 [115–211] .244

ESM1 (ng/mL) .76 2.04 [1.64–2.59] 2.05 [1.63–2.63] .818

GDF15 (pg/mL) .80 1333 [990–2000] 1359 [971–2005] .078

IGFBP7 (ng/mL) .26 102 [90.7–117] 102 [90.1–117] .457

IL-6 (pg/mL) 6.62 2.56 [1.64–4.04] 2.68 [1.67–4.18] .479

FABP3 (ng/mL) .50 32.0 [26.3–39.6] 31.9 [26.4–39.6] .837

D-dimer (µg/mL) 1.74 .17 [.09–.34] .16 [.08–.36] .506

Continued 
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Statistical methods
As rhythm is a secondary outcome analysis of the EAST-AFNET 4 trial, all 
results are exploratory. Biomarker concentrations were 1% winsorized23

from above and logarithmically transformed (log base e) to normalize 
skewed concentration ranges for all datasets. Concentrations below the de
tection limit for CA-125 and D-dimer were replaced with the lowest avail
able value. For the initial testing of prespecified hypotheses, all 14 
biomarkers were used. Validations were done with predictive biomarkers. 
This analysis does not take into account the probability of chance findings 
because of performance of multiple comparisons with 14 biomarkers. As 
a consequence, results should be interpreted as explorative/hypothesis gen
erating and call for further validation.

Patients in AF at the time of blood sampling showed higher concentra
tions in most biomarkers (see Supplementary data online, Table S1). 
Rhythm at time of blood sampling was therefore included as a confounder 
in all subsequent analyses in addition to the features predicting rhythm at 12 
months in the main EAST-AFNET 4 dataset.4

Mixed logistic regression models were used to assess the predictive value 
of the 14 biomarkers on rhythm at 12 months, with study centre as a ran
dom intercept. The lme4 R package24 was used. Each biomarker was as
sessed in a separate model adjusted for sex, age, rhythm at baseline, body 
mass index, diastolic blood pressure, AF pattern (first episode, paroxysmal, 
persistent), left ventricular ejection fraction, rhythm at baseline, and rando
mized group (usual care or early rhythm control).4 Nested models with 
additional interaction terms between treatment type and the biomarker 
of interest were constructed. To obtain P-values for the interaction, each 
nested model pair was compared by ANOVA for their goodness of fit. 
Odds ratios (ORs) and P-values for the biomarker effects under different 
treatment types were calculated by reference cell coding.25 Missing values 
in heart rhythm and left ventricular ejection fraction were imputed in a 
60-times multiple imputed dataset as described earlier,2 following the re
commendations of White, Royston, and Wood.26,27 A sensitivity analysis 
constructed prediction models for recurrent AF at 12- and 24-month 
follow-up without imputation.

To further explore the effect of rhythm on the biomarkers, mixed re
gression models were repeated in subgroups split by baseline rhythm (sinus 
rhythm or AF) and by rhythm control therapy (early rhythm control or 
usual care) and ORs for the outcome sinus rhythm at 12 months were cal
culated using the methods described above.

As internal validation, analysis was repeated for sinus rhythm at 
24-month follow-up. As sensitivity analysis, the analysis was repeated for re
current AF up to 24 months.

As additional internal validation, patient clusters formed using all 
biomarker concentrations agnostic to clinical features17 were tested for 

prediction of presence of sinus rhythm at 12- and 24-month follow-up. 
The lowest-risk cluster was used as a reference.

As another means of internal validation, we applied a random forest ma
chine learning model (ML) and made use of a mixed effect random forest 
(MERF) wrapper to account for the centre as a random effect. The ML 
model was fitted with the features used for confounding the generalized lin
ear model as well as of all 14 biomarkers at once. To assess the variable im
portance, we used the models’ inherent Gini-based feature importance as 
well as the model agnostic SHapley Additive exPlanations (SHAP) values.

Clinical utility
Cut-off values for clinically useful probabilities of sinus rhythm at 12 months 
(80%) and for AF at 12 months (40%) were determined for all biomarkers 
that predicted the main outcome. A clinical risk score was developed based 
on a recent meta-analysis28: three accepted clinical features predicting re
current AF, namely left atrial size, AF pattern, and age, were dichotomized 
with a point scored for persistent AF yes, anterior–posterior left atrial 
diameter > 50 mm, age > 75 years (see Supplementary data online, 
Table S2). As many patients with one of these three features attain sinus 
rhythm at 12 months, the score was considered as predictive of high risk 
of AF at 12 months if at least two of the three factors were present. 
Each of the biomarkers that were independently associated with sinus 
rhythm at 12 months was added to this clinical score separately, as well 
as in combination. If at least one biomarker was above the cut-off value, 
the patient was regarded as high risk of not attaining sinus rhythm. The con
fusion matrices for correctly and incorrectly classified patients at 
high-risk-classified of not attaining sinus rhythm were calculated for the ref
erence clinical score alone and all additional, biomarker-enriched scores.

Biomarkers’ predictive values were tested in the validation datasets using 
univariate and multivariate models restricted to the features that predicted 
sinus rhythm at 12 months in the derivation dataset.

Python version 3.8.13 was employed for data pre-processing and visual
ization, R version 4.2.2 for statistical computations.29 Relevant code will be 
made publicly available (https://github.com/UCCSHH).

Results
Derivation analysis dataset
The 1586 patients with a recent history of AF and stroke risk factors (age 
71 years, 45% women) with clinical features, biomarker concentrations, 
and cardiovascular outcomes were equally assigned to both randomized 
treatment groups (Table 1, Supplementary data online, Figure S1).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Continued

Treatment group Early rhythm control Usual care P-value*

TnT (ng/L) 2.26 11.1 [8.02–16.6] 11.4 [8.21–16.7] .337

CRP (mg/L) 3.28 2.02 [.96–4.99] 2.38 [1.04–4.75] .392

sCr (µmol/L) .29 81.7 [70.7–95.5] 80.4 [70.0–94.5] .771

CA125 (U/mL) 1.51 11.5 [8.08–15.9] 11.1 [7.93–16.1] .433

Estimated glomerular filtration rate (eGFR) was calculated as CKD EPI, Chronic Kidney Disease Epidemiology Collaboration. 
AF, atrial fibrillation; SR, sinus rhythm; ERC, early rhythm control; UC, usual care; BMI, body mass index; LVEF, left ventricular ejection fraction; LA, left atrium; NYHA, New York Heart 
Association Functional Classification of heart failure; EHRA, European Heart Rhythm Association score; ANGPT2, angiopoietin 2; BMP10, bone morphogenetic protein 10; CA125, 
cancer antigen 125; CRP, C-reactive protein; ESM1, endothelial specific molecule 1; FABP3, fatty acid binding protein 3; FGF23, fibroblast growth factor 23; GDF15, growth 
differentiation factor 15; IGFBP7, insulin-like growth factor binding protein 7; IL-6, interleukin-6; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TnT, cardiac troponin; sCr, 
serum creatinine. 
*P-values were calculated on the unimputed dataset using mixed logistic regression model with site as random effect, for biomarkers additionally adjusted for sex, age, body mass index, 
diastolic blood pressure, left ventricular ejection fraction, and AF type. Distributions are shown as mean and SD for normally distributed values, as median and IQR for non-normally 
distributed values and biomarkers, and as frequency (percentage) for nominal features.
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Figure 1 Low concentrations of the biomarkers NT-proBNP, angiopoietin 2, and bone morphogenetic protein 10 predict sinus rhythm at 12-month 
follow-up in the derivation dataset (EAST-AFNET 4). Odds ratios for sinus rhythm at 12-month follow-up (A) and odds ratios by randomized treatment 
group (B). Forest plot showing odds ratios for each biomarker for the outcome sinus rhythm at 12-month follow-up and 95% confidence intervals. The 
odds ratio for NT-proBNP shows an interaction between NT-proBNP concentrations and randomized treatment group (early rhythm control or usual 
care). All odds ratios are corrected for clinical features, age, sex, EAST study centre, rhythm at baseline, atrial fibrillation type, randomized treatment 
group, body mass index, diastolic blood pressure, and left ventricular ejection fraction. Even after multiple confounding, high biomarker concentrations 
indicate lower odds of sinus rhythm at 12-month follow-up. Low concentrations of NT-proBNP predict sinus rhythm at 12-month follow-up in patients 
with usual care (only symptomatic rhythm control). High concentrations of NT-proBNP do not necessarily predict lack of sinus rhythm at 12 months if 
patients receive early rhythm control. ANGPT2, angiopoietin 2; BMP10, bone morphogenetic protein 10; CA125, cancer antigen 125; CRP, C-reactive 
protein; D-dimer, ESM1, endothelial specific molecule 1; FABP3, fatty acid binding protein 3; FGF23, fibroblast growth factor 23; GDF15, growth dif
ferentiation factor 15; IGFBP7, insulin-like growth factor binding protein 7; IL-6, interleukin-6; NT-proBNP, N-terminal pro-B-type natriuretic peptide; 
TnT, cardiac troponin; sCr, serum creatinine
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Association of biomarker concentrations 
with attaining sinus rhythm at 12 months
Three biomarkers (ANGPT2, BMP10, and NT-proBNP) showed lower 
concentrations at baseline in patients who were in sinus rhythm at the 
12-month follow-up (Figure 1A). These three biomarkers were inde
pendently associated with sinus rhythm at the 12-month follow-up 
after multiple corrections for clinical features, early rhythm control, 
and baseline rhythm (Figure 1A). NT-proBNP interacted with early 
rhythm control therapy at 12-month follow-up (P = .033) and low 
NT-proBNP concentrations only predicted sinus rhythm at 12 months 
in patients randomized to usual care (Figure 1B). Early rhythm control 
impacted on the rhythm-predicting effect of NT-proBNP and dam
pened its predictive value in this group. There was no significant inter
action detected between early rhythm control and any of the other 13 
biomarkers in this dataset (Figure 1B).

Biomarker concentrations distributions depicted in violin plots after 
log transformation (Figure 2) show lower concentrations in sinus 
rhythm vs. AF at 12 months. Numbers of mean biomarker concentra
tions by rhythm at 12-month follow-up and by randomized treatment 
group are given in Table 2.

Baseline biomarker concentrations depending on baseline rhythm in 
the derivation dataset and clinical features are shown in Table 3, ex
tended information shown in Supplementary data online, Table S1. 
Post hoc subgroup analyses by rhythm at the time of baseline assess
ment (sinus rhythm or AF) and by randomized group (early rhythm 
control or usual care) find NT-proBNP mainly associated with sinus 
rhythm at 12 months in patients under usual care. BMP10 and 
ANGPT2 retained their predictive ability shown in the joint group of 
all patients also if only the subgroup patients in AF at the time of blood 
sampling were analysed (Figure 3).

Figure 2 Biomarker concentration distributions at baseline in patients with sinus rhythm (teal right part of each plot) or atrial fibrillation (orange left 
part of each plot) at 12-month follow-up. Violin plot of the distribution of log-transformed biomarker concentrations for each of 14 biomarkers at 
baseline, split by the outcome of rhythm at 12-month follow-up. Log-transformed biomarker concentrations are shown on the y-axis and the kernel 
estimated frequency on the x-axis. Central thick horizontal lines are the median and the thinner lines represent interquartile range. N-terminal 
pro-B-type natriuretic peptide, angiopoietin 2, and bone morphogenetic protein 10 show an association with sinus rhythm at 12-month follow-up based 
on the acceptance of a Type 1 error of 5%. P-values were calculated using mixed logistic regression model with site as random effect, adjusted for age, 
sex, rhythm at baseline, randomized group (early rhythm control or usual care), body mass index, diastolic blood pressure, and left ventricular ejection 
fraction, those clinical features that were associated with outcomes including sinus rhythm in the main EAST-AFNET 4 trial. ANGPT2, angiopoietin 2; 
BMP10, bone morphogenetic protein 10; CA125, cancer antigen 125; CRP, C-reactive protein; D-dimer, ESM1, endothelial specific molecule 1; FABP3, 
fatty acid binding protein 3; FGF23, fibroblast growth factor 23; GDF15, growth differentiation factor 15; IGFBP7, insulin-like growth factor binding 
protein 7; IL-6, interleukin-6; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TnT, cardiac troponin; sCr, serum creatinine
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Internal validations
As a first internal validation, the same analysis was performed for the 
24-month follow-up. The same biomarkers, ANGPT2, BMP10, and 
NT-proBNP, were consistently associated with sinus rhythm at 
24-month follow-up (Figure 4).

Repeating the analysis for recurrent AF up to 24 months showed 
similar results (see Supplementary data online, Table S3). As further 
internal validation analysis, unsupervised biomarker-based cluster
ing of EAST patients previously performed was applied to sinus 
rhythm at 12-month follow-up. Clusters separated by risk of car
diovascular complications, with patients assigned to the high-risk 
cardiovascular outcome cluster showing a lower likelihood of sinus 

rhythm at 12 months, patients in the two intermediate cardiovas
cular risk biomarker clusters showing an intermediate likelihood of 
sinus rhythm, all tested against the low cardiovascular risk cluster, 
with the low-risk outcome patient cluster showing the highest like
lihood of sinus rhythm at 12 months (Figure 5A). These findings 
were consistent for the biomarker-based clusters at 24-month 
follow-up (Figure 5B).

As further internal validation, a random forest classifier was trained 
on the EAST-AFNET 4 dataset. Its feature performance evaluation con
firmed the importance of the three biomarkers alongside AF pattern, 
rhythm at baseline, and early rhythm control for the outcome of sinus 
rhythm (Figure 6).
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Table 2 Baseline biomarker concentrations are shown split by rhythm at 12-month follow-up (sinus rhythm or atrial 
fibrillation) and by randomized group (early rhythm control or usual care)

Randomization group Early rhythm control Usual care SR vs. AF  
12 months

Rhythm at 12-month  
follow-up

Sinus rhythm  
12-month FU

Atrial fibrillation 
12-month FU

Sinus rhythm  
12-month FU

Atrial fibrillation 
12-month FU

P-value*

NT-proBNP (pg/mL) 377 
[164–859]

750 
[376–1351]

294 
[127–700]

782 
[437–1454]

.001

ANGPT2 (ng/mL) 2.34 
[1.78–3.41]

3.45 
[2.43–5.62]

2.24 
[1.7–3.09]

3.31 
[2.15–4.62]

.001

BMP10 (ng/mL) 2.08 
[1.8–2.39]

2.21 
[1.96–2.58]

2.04 
[1.79–2.34]

2.24 
[1.94–2.66]

.010

FGF23 (pg/mL) 151 
[112–209]

179 
[125–238]

141 
[108–197]

168 
[129–226]

.429

ESM1 (ng/mL) 2.01 
[1.61–2.52]

2.17 
[1.75–2.88]

1.98 
[1.57–2.52]

2.09 
[1.73–2.66]

.218

GDF15 (pg/mL) 1304 
[958–1934]

1441 
[997–2008]

1254 
[911–1782]

1589 
[1071–2347]

.461

IGFBP7 (ng/mL) 100 
[89–114]

108 
[93–126]

98.8 
[88.5–110]

104 
[94.7–119]

.487

IL-6 (pg/mL) 2.47 
[1.57–3.88]

2.6 
[1.76–4.62]

2.37 
[1.56–3.6]

3.02 
[1.98–4.65]

.417

FABP3 (ng/mL) 31.4 
[25.6–39]

35.3 
[28.3–43.4]

30.4 
[25.7–37.8]

33.5 
[28.0–42.0]

.151

D-dimer (µg/mL) .17 
[.08–.33]

.19 
[.1–.36]

.16 
[.08–.32]

.16 
[.08–.32]

.638

TnT (ng/L) 10.6 
[7.81–15.7]

13.0 
[9–17.6]

10.3 
[7.53–15.5]

12.5 
[8.68–17.7]

.415

CRP (mg/L) 2 
[.95–4.65]

1.97 
[.9–4.63]

2.07 
[.93–4.37]

2.52 
[1.12–4.87]

.910

sCr (µmol/L) 81.3 
[70–95]

83 
[72.7–94.8]

79.5 
[68.0–91.9]

84.4 
[72–97.2]

.541

CA125 (U/mL) 11.4 
[8.0–15.8]

12.3 
[8.3–17.1]

10.8 
[7.8–15.7]

11.4 
[7.96–15.9]

.779

AF, atrial fibrillation; SR, sinus rhythm; FU, follow-up; ANGPT2, angiopoietin 2; BMP10, bone morphogenetic protein 10; CA125, cancer antigen 125; CRP, C-reactive protein; D-dimer, 
ESM1, endothelial specific molecule 1; FABP3, fatty acid binding protein 3; FGF23, fibroblast growth factor 23; GDF15, growth differentiation factor 15; IGFBP7, insulin-like growth factor 
binding protein 7; IL-6, interleukin-6; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TnT, cardiac troponin; sCr, serum creatinine. 
*P-values were calculated using mixed logistic regression model with site as random effect, adjusted for sex, age, body mass index, diastolic blood pressure, left ventricular ejection fraction. 
Values are shown as median [IQR].
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Table 3 Baseline clinical characteristics used as confounders and biomarker concentrations in the derivation dataset 
(EAST-AFNET 4 biomolecule study) at baseline by randomized group and by baseline rhythm

Group Early rhythm control Usual care P-value

Baseline rhythm Sinus rhythm Atrial fibrillation Sinus rhythm Atrial fibrillation Rhythm*

N 452 348 438 348

Women 220 (49%) 135 (39%) 221 (51%) 137 (39%) <.001

Age, years 70 
[65–75]

71 
[67–76]

71 
[66–75]

72 
[66–76]

.035

BMI 28.7 
[25.8–31.6]

28.4 
[25.5–32.9]

28.4 
[25.4–31.4]

29.4 
[25.9–33.3]

.022

Blood pressure (diastolic) (mmHg) 80 
[72, 87]

80 
[76, 90]

80 
[71, 89]

80 
[76, 90]

<.001

LVEF (%) 60 
[57, 65]

59 
[50, 64]

60 
[59, 65]

60 
[51, 64]

<.001

AF type: first episode 172 (38%) 118 (34%) 155 (35%) 115 (33%)

AF type: paroxysmal 235 (52%) 67 (19%) 223 (51%) 65 (19%) <.001

AF type: persistent or long-standing persistent 45 (10%) 163 (47%) 60 (14%) 168 (48%) <.001

Biomarker concentrations

NT-proBNP (pg/mL) 228 
[121–467]

890 
[506–1496]

253 
[124–504]

934 
[529–1603]

<.001

ANGPT2 (ng/mL) 2.20 
[1.65–2.76]

3.39 
[2.29–5.14]

2.12 
[1.63–3.00]

3.35 
[2.31–4.81]

<.001

BMP10 (ng/mL) 2.03 
[1.73–2.30]

2.22 
[1.96–2.58]

2.01 
[1.76–2.29]

2.25 
[1.96–2.69]

<.001

FGF23 (pg/mL) 139 
[106–194]

178 
[128–247]

140 
[110–192]

170 
[130–243]

.003

ESM1 (ng/mL) 1.97 
[1.58–2.44]

2.14 
[1.74–2.84]

1.96 
[1.57–2.56]

2.15 
[1.74–2.78]

.002

GDF15 (pg/mL) 1251 
[938–1847]

1478 
[1058–2188]

1259 
[914–1761]

1585 
[1065–2272]

<.001

IGFBP7 (ng/mL) 99.0 
[89.3–111.2]

106.8 
[93.6–125]

99.2 
[87.9–111]

105 
[93.8–123]

<.001

IL-6 (pg/mL) 2.22 
[1.50–3.58]

3.03 
[1.99–4.88]

2.42 
[1.58–3.89]

3.02 
[1.95–4.59]

.041

FABP3 (ng/mL) 30.2 
[25.1–38.1]

34.2 
[28.2–42.1]

30.9 
[25.6–37.9]

33.3 
[27.1–42.6]

.020

D-dimer (µg/mL) .17 
[.08–.32]

.18 
[.09–.36]

.15 
[.08–.32]

.18 
[.09–.4]

.267

TnT (ng/L) 10.1 
[7.39–14.5]

12.7 
[9–18.8]

10.7 
[7.6–15.7]

12.5 
[8.73–18.3]

.436

CRP (mg/L) 1.76 
[.87–4.29]

2.48 
[1.09–5.78]

2.08 
[.93–4.52]

2.58 
[1.26–5.03]

.130

sCr (µmol/L) 80.0 
[69.0–93.7]

84.0 
[71.0–97.0]

79.6 
[68.1–92.0]

83.9 
[71.0–97.2]

.296

Continued 

5010                                                                                                                                                                                              Fabritz et al.



Clinical utility
Thresholds to predict a high probability of attaining sinus rhythm 
(>80%, low risk of AF) or a high probability of recurrent AF at 
follow-up (>40%, high risk of AF) were determined for each biomarker 
(Table 4, Supplementary data online, Figures S2–S4). To compare them 
to clinical features predicting sinus rhythm, a score combining clinical 
features predicting recurrent AF was created integrating age, left atrial 
size, and AF pattern28 (see Supplementary data online, Table S2). 
Adding biomarkers using these thresholds improved identification 
of patients at risk of not attaining sinus rhythm at 12-month follow-up 
(Table 5, Supplementary data online, Table S4).

External validation
Several separate validation datasets (AXAFA-AFNET 5 trial, BBC-AF, 
and TRUST cohort snapshot Supplementary data online, Tables S5–S7) 
were used. The biomarkers NT-proBNP, BMP10, and ANGPT2 were 
confirmed as predictive of sinus rhythm in the final follow-up in 
AXAFA-AFNET 5 (Figure 7, Structured Graphical Abstract). The clinical 
utility of adding the biomarkers to clinical predictors was validated in 
both cohorts using the thresholds derived in EAST-AFNET 4 (see 
Supplementary data online, Tables S8 and S9).

Discussion
Main findings
Three out of 14 candidate biomarkers, BMP10, ANGPT2, and 
NT-proBNP, are associated with sinus rhythm at 12-month and 24-month 
follow-up after correcting for clinical features. Low NT-proBNP, low 
ANGPT2, and low BMP10 concentrations independently predict sinus 
rhythm in patients at follow-up. NT-proBNP is less predictive of rhythm 
in patients receiving rhythm control therapy. Adding these biomarkers 
to a clinical score identifying patients with a low probability of sinus rhythm 
at 12 months (positive with two out of three features: left atrial size  
> 50 mm, persistent AF, or age > 75 years) refined risk prediction 
(Structured Graphical Abstract).

Relevance for clinical care and research
In view of the growing choice of medical,2,30 interventional,2,31 and sur
gical32 treatment options for patients with AF, selecting the best strat
egy and the patients most benefitting from rhythm control therapy 

gains importance. Biomarker-based risk estimators have so far mainly 
been developed to refine anticoagulation decisions in patients with 
AF.33–35 Actionable biomarkers to guide rhythm control therapy are 
lacking. Similar to stroke prevention estimators, rhythm estimators 
face the challenge of random factors determining a binary outcome 
(AF or sinus rhythm). The present results suggest that NT-proBNP, 
BMP10, and ANGPT2 can stratify patients at high and low risk of attain
ing sinus rhythm alone and in combination. These biomarkers reflect 
and identify diseases processes that promote future AF, pointing to po
tential therapeutic targets for adjunct therapy supporting rhythm con
trol. While a simple clinical score combining enlarged left atrial size, 
persistent AF, and older age predicted future sinus rhythm reasonably 
well, adding biomarkers reclassifies a clinically relevant number of pa
tients at high risk of not attaining sinus rhythm at the price of also clas
sifying more patients in sinus rhythm as high risk.

Effect of baseline rhythm on biomarker 
concentrations
This study shows that ANGPT2 and BMP10 provide additional infor
mation on future sinus rhythm when combined with NT-proBNP, es
pecially in patients who are in AF at the time of blood sampling. Most 
biomarkers studied were elevated when the blood sample was taken 
in AF. Furthermore, NT-proBNP lost its ability to predict sinus rhythm 
in patients on rhythm control therapy.20,36 The effects of baseline 
rhythm on the concentrations and predictive ability of biomarkers should 
be further investigated in patients with AF undergoing rhythm control 
therapy.

Interpretation of NT-proBNP
NT-proBNP is released by atrial cardiomyocytes in response to stretch 
and strain, thereby acutely regulating fluid balance in the body, resulting 
in high concentrations during AF.37 In heart failure, NT-proBNP is also 
released by ventricular cardiomyocytes, further enhancing its concen
trations. Atrial stretch has proarrhythmic effects including shortening 
of the atrial effective refractory period38 and conduction slowing,39 par
tially explaining its prediction of sinus rhythm in this study. NT-proBNP 
reflects short- and mid-term cardiac load in patients with AF, probably 
explaining its interaction with rhythm control. The possibility that ele
vated NT-proBNP concentrations predict rhythm during follow-up 
have been reported before.40–47 NT-proBNP is also associated with in
cident AF48–51 and with cardiovascular events in patients with and 
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Table 3 Continued

Group Early rhythm control Usual care P-value

Baseline rhythm Sinus rhythm Atrial fibrillation Sinus rhythm Atrial fibrillation Rhythm*

CA125 (U/mL) 11.1 
[8.01–14.9]

12.3 
[8.4–16.9]

10.8 
[8.02–15.7]

11.4 
[7.84–16.7]

.052

Rhythm at time of blood sampling was included as a fix factor in the analyses of outcome. Distributions are shown as mean and SD for normally distributed values, as median and IQR for 
non-normal distributed values and biomarkers, and as frequency (percentage) for nominal features. For biomarker concentrations, there were no differences between the randomized 
groups, but differences between sinus rhythm and AF during the baseline visit. 
AF, atrial fibrillation; ERC, early rhythm control; UC, usual care; BMI, body mass index; AF, atrial fibrillation; LVEF, left ventricular ejection fraction; ANGPT2, angiopoietin 2; BMP10, bone 
morphogenetic protein 10; CA125, cancer antigen 125; CRP, C-reactive protein; D-dimer, ESM1, endothelial specific molecule 1; FABP3, fatty acid binding protein 3; FGF23, fibroblast 
growth factor 23; GDF15, growth differentiation factor 15; IGFBP7, insulin-like growth factor binding protein 7; IL-6, interleukin-6; NT-proBNP, N-terminal pro-B-type natriuretic 
peptide; TnT, cardiac troponin; sCr, serum creatinine. 
*P-values were calculated in the unimputed, pooled dataset (ERC and UC combined) using mixed logistic regression model with site as random effect, for the biomarkers additionally 
adjusted for sex, age, body mass index, diastolic blood pressure, left ventricular ejection fraction, and AF type, the clinical features that were associated with outcomes including sinus 
rhythm in the main EAST-AFNET 4 dataset.4
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without AF and heart failure.22 This analysis demonstrates that the 
rhythm-predicting ability of NT-proBNP is reduced in patients treated 
with rhythm control therapy.

The NT-proBNP thresholds associated with a high risk of AF at 12 
months in this study (>1500 pg/mL) are comparable to the thresholds 
associated with cardiovascular events, but higher than currently used 
thresholds e.g. for AF screening52 or for diagnosing heart failure with 
AF and heart failure with preserved ejection fraction.53 Based on the 
present analysis, higher thresholds may have better clinical utility. 
This warrants further analysis.

Interpretation of BMP10 and ANGPT2
BMP10 and ANGPT2 are tightly regulated circulating biomarkers, 
illustrating their signalling roles in regulating disease processes con
tributing to AF.3 Mechanistic studies of their role in AF are needed 
to define more precise clinical use cases for these biomarkers in pa
tients with AF.

ANGPT2 is a vascular growth factor required for angiogenic remod
elling.54 Overexpression of ANGPT2 in murine models promotes 
perivascular cardiac inflammation and fibrosis.55 Pro-inflammatory 
molecules such as thrombin increase ANGPT2 expression in vitro56

and inhibition of thrombin in animals with persistent AF improves 
atrial cardiomyopathy.15 Thus, ANGPT2 mediates the inflammatory 
communication between endothelial cells and myocardium in AF. 

Low ANGPT2 might reflect preserved vascular integrity, reducing the 
inflammatory burden in atrial vascular beds and thereby slowing AF 
progression.

ANGPT2 is associated with recurrent AF in patients after AF abla
tion20 and with prevalent AF in unselected hospitalized patients.57

ANGPT2 is elevated in patients with kidney disease,58 acute lung in
jury,59 and sepsis,60 conditions associated with AF. ANGPT2 can also 
predict heart failure hospitalization in patients with AF,61 similar to 
NT-proBNP.22 This study is the first to suggest that ANGPT2 can pre
dict sinus rhythm in patients with AF with and without rhythm control 
therapy. Further research into treatable atrial disease processes regu
lated by ANGPT2 is warranted.

BMP10 is selectively expressed in and released by atrial cardiomyo
cytes.16,62 BMP10 is part of the TGFβ growth factor family and regu
lates vascular smooth muscle cell tone.63 Its function in the atria is 
not well known. BMP10 concentrations are reduced in hereditary 
forms of pulmonary arterial hypertension,64 possibly reflecting reduced 
atrial metabolism. Its inverse correlation and possible repression 
by PITX2 in atrial cardiomyocytes16,65 may suggest that elevated 
BMP10 concentrations could identify a reversible atrial metabolic de
fect13,17 that may be aggravated by the genomic basis of AF on chromo
some 4q25.13

High concentrations of BMP10 are associated with recurrent AF,57,66

and with cardiovascular events17,67 and stroke in patients with AF. 
BMP10 may also be associated with atrial fibrosis.68 Lower BMP10 

Figure 3 Biomarkers measured at baseline predicting sinus rhythm at 12-month follow-up in all participants of the biomarker study, separately ana
lysed by rhythm at baseline (atrial fibrillation at baseline or sinus rhythm at baseline) and randomized treatment group (early rhythm control or usual 
care), respectively, in a post hoc analysis. Of the three biomarkers identified to be predictive of sinus rhythm in the whole cohort, NT-proBNP, ANGPT2, 
and BMP10, all three biomarkers retained their predictive value in the subgroup of patients randomized to usual care. All three biomarkers also retained 
their predictive value in the subgroup of patients in atrial fibrillation during blood draw at baseline. ANGPT2, angiopoietin 2; BMP10, bone morpho
genetic protein 10; NT-proBNP, N-terminal pro-B-type natriuretic peptide
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concentrations in patients in sinus rhythm,20 combined with its predic
tion of future sinus rhythm (Figure 1) suggest that a possible 
BMP10-mediated metabolic defect could partially be secondary to 
the metabolic demands of AF. Taken together, these results suggest 
that BMP10 is a potentially actionable biomarker indicative of atrial my
opathy and atrial metabolic dysfunction. Further research into the atrial 
effects of BMP10 and its relation to AF burden5 are warranted.

Biomolecule-based clustering of patients agnostic to clinical features 
previously identified four subgroups of patients with AF with a gradual 
increase in cardiovascular events.17 The three biomarkers associated 
with sinus rhythm at 12 months in this study are among the six domin
ant biomarkers defining these patient clusters.17 The biomarker-based 
clusters show a risk gradient for sinus rhythm at 12 months (Figure 5). 
At difference to the prior study that defined patient clusters based on 
biomarker concentrations agnostic to clinical information, this analysis 
shows that the three biomarkers NT-proBNP, ANGPT2, and BMP10 
predict sinus rhythm in context with clinical parameters. Of note, a sim
ple clinical score (see Supplementary data online, Table S2) was already 
quite useful in identifying patients who will attain sinus rhythm. This in
formation can help clinicians to select different intensities of rhythm 

control therapy depending on the likelihood of attaining sinus rhythm. 
NT-proBNP, ANGPT2, and BMP10 can refine that selection (Table 5). 
The present result and the biomarker-clustering also identify potentially 
treatable drivers of recurrent AF and or cardiovascular events in pa
tients with AF. Based on the known atrial effects of BMP10 and 
ANGPT2, antihypertensive therapy and metabolic interventions such 
as SGLT2 inhibitor therapy12 could have beneficial effects in patients 
with elevated BMP10 and ANGPT2 concentrations.16,67,69 The under
lying disease processes suggest that the same biomarkers could also be 
useful to identify patients at risk of AF. The present analysis identifies 
potentially actionable biomarkers suitable to select the intensity of 
rhythm control therapy. Further research into the mechanistic links be
tween these biomarkers with baseline and future rhythm, and further 
evaluations of their clinical utility in different scenarios are warranted.

Strengths and limitations
Central quantification of the biomarkers using high-precision assays 
combined with the rigorous, near-complete follow-up at 12 and 24 
months in a controlled clinical trial is a strength of this analysis. The 

Figure 4 Internal validation: angiopoietin 2, bone morphogenetic protein 10, and NT-proBNP biomarkers at baseline predict sinus rhythm at 
24-month follow-up even after correction for multiple confounders. Odds ratios are shown for sinus rhythm at 24-month follow-up. This analysis pro
vides an internal validation of the biomarkers predicting sinus rhythm at 12-month follow-up (Figure 1). All odds ratios are corrected for clinical age, sex, 
study site, rhythm at baseline, randomized treatment group (early rhythm control or usual care), body mass index, diastolic blood pressure, and left 
ventricular ejection fraction, those clinical features that were associated with outcomes including sinus rhythm in the main EAST-AFNET 4 trial.4 Low 
concentrations of NT-proBNP, ANGPT2, and BMP10 predict sinus rhythm at 24-month follow-up in patients. Accordingly, high concentrations predict 
lack of sinus rhythm at 24-month follow-up. ANGPT2, angiopoietin 2; BMP10, bone morphogenetic protein 10; CA125, cancer antigen 125; CRP, 
C-reactive protein; D-dimer, ESM1, endothelial specific molecule 1; FABP3, fatty acid binding protein 3; FGF23, fibroblast growth factor 23; 
GDF15, growth differentiation factor 15; IGFBP7, insulin-like growth factor binding protein 7; IL-6, interleukin-6; NT-proBNP, N-terminal 
pro-B-type natriuretic peptide; TnT, cardiac troponin; sCr, serum creatinine
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consistent findings at both time points may suggest that the effects can 
be extrapolated to even longer follow-up, but this would require valid
ation. Another strength of the analysis is the collection of samples in a 
broad range of care settings in adequately treated patients with AF, and 
external validation both in a controlled clinical trial and in cohorts of pa
tients with AF enrolled in routine care settings. Validation of the findings 
using the same assays in different clinical datasets is a strength, but also 
limits the findings to the assays used in this study.

The study has important limitations. Although the statistical analysis 
plan was prespecified and validation was possible in different datasets, 
all results are explorative. This study is limited to 14 preselected bio
markers. Selected biomarkers intentionally reflect overlapping disease 
processes, creating redundancy that enables robust definition of disease 

pathways. Collinearity of biomarkers was more deeply investigated in a 
previous study defining biomarker-based patient clusters agnostic to 
clinical features.17

Additional biomarkers in AF may emerge from hypothesis-free quan
tification of many molecules at once e.g. by RNA-sequencing of cardiac 
tissue,70 quantification of circulating RNAs, and by proteomics.71,72

Repeat blood samples were not obtained and no information on 
changes over time is available. Some data on the changes of BMP10 
and NT-proBNP over time have been published.20,36

While NT-proBNP can be measured in clinical routine as in vitro diag
nostic devices with regulatory approval, the assays for ANGPT2 and 
BMP10 are not approved for clinical use, restricting them to research 
settings. Only the consenting portion of the total EAST-AFNET study 

B

A

Figure 5 Validation applying biomarker-based clusters indicating cardiovascular outcome risk: patients at high risk of cardiovascular complications as 
estimated by biomarker-based clusters have reduced odds of sinus rhythm at 12-month and 24-month follow-up. Odds ratio for the high cardiovascular 
outcome risk (red) and intermediate cardiovascular outcome risk biomarker clusters (orange and green) for sinus rhythm at 12-month follow-up 
(A, above) and at 24-month follow-up (B, bottom) tested against the low cardiovascular risk cluster (not depicted as used as reference). All odds ratios 
are corrected for age, sex, study centre, rhythm at baseline, atrial fibrillation type (depicted in grey odds ratios below the cluster odds ratios), rando
mized treatment group (early rhythm control or usual care), as well as body mass index, diastolic blood pressure, and left ventricular ejection fraction, 
the clinical features that were associated with outcomes including sinus rhythm in the main EAST-FNET 4 trial.4 AF, atrial fibrillation
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participants was included in the biomarker study (two-thirds), hence 
there could be a considerable selection bias. Due to time required to 
setup the biobank, the first 400 patients were not invited to participate 
in the biomarker study.

The present study used serum creatinine rather than estimated glom
erular filtration rate in the analyses as the formulas used to estimate kid
ney function rely on clinical parameters that are used in the regression 
model, including age, sex, and body mass index. Serum creatinine was 

not a major predictor of sinus rhythm. Whether estimated kidney func
tion is a better predictor of sinus rhythm was not studied.

Validation datasets were smaller than the derivation dataset and 
therefore did not allow for multiple confounding. Post hoc subgroup 
analysis by baseline rhythm in EAST-AFNET 4 may have underesti
mated effects due to smaller group sizes. Almost all patients received 
guideline-recommended anticoagulation, rate and rhythm control, 
and often effective treatment of concomitant conditions. Twenty- 
four hour blood pressure may provide more granular prognostic 
information than office-based blood pressure, but 24 h blood pressure 
readings were not available for this analysis.

Left atrial size was used in the clinical score rather than left atrial vol
ume. Indexed left atrial volume can provide more detailed information 
on left atrial size compared to left atrial diameter, but the predictive va
lue of left atrial volume for recurrent AF is less well established than left 
atrial size.28 Indexed left atrial volume was not available in a sufficient 
number of patients to be assessed in this study. The predictive ability 
of the different biomarker-based models is only valid for the specific 
AF prevalences in the cohorts studied. Further research into the clinical 
utility of the biomarkers identified here is warranted.

The blood samples studied here stem from patients with predominant
ly Caucasian ethnicity, which may limit the generalizability of the findings 
to other ethnic groups. Validation in other ethnicities is therefore needed.

Testing the relationship between specific blood biomarker levels and 
a remote outcome observed 12 months later is challenging. In order to 
limit acute effects of the specific biomarker levels at baseline, we cor
rected for the acute rhythm at baseline, among other clinical para
meters. Prediction of future rhythm by biomarkers depends on 
several factors, including the underlying biology of each biomarker, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Threshold concentrations for NT-proBNP, 
BMP10, and ANGPT2 determined in the derivation 
dataset (EAST-AFNET 4 biomolecule study)

Biomarker Low threshold  
(>80% sinus rhythm  

at 12 months)

High threshold  
(>40% AF at  
12 months)

NT-proBNP 
(pg/mL)

<1000 >1500

BMP10 
(ng/mL)

<2 >3

ANGPT2 
(ng/mL)

<3.5 >3.5

The lower threshold was defined as the nearest round concentration below which 80% 
of patients attained sinus rhythm at 12 months. The higher threshold was defined as the 
nearest rounded concentration above which 40% of patients were in AF at 12 months. 
AF, atrial fibrillation; ANGPT2, angiopoietin 2; BMP10, bone morphogenetic protein 10; 
NT-proBNP, N-terminal pro-B-type natriuretic peptide.

Early rhythm control

MERF
Follow-up

BA

Early rhythm control

Figure 6 Validation by random forest analyses identified highest importance for similar biomarkers, alongside rhythm at baseline and AF pattern, as 
predictors of sinus rhythm at 12-month follow-up (A—importance, B—SHAP value). AF, atrial fibrillation; ANGPT2, angiopoietin 2; BL, baseline; BMI, 
body mass index; BMP10, bone morphogenetic protein 10; CA125, cancer antigen 125; CRP, C-reactive protein; D-dimer, ESM1, endothelial specific 
molecule 1; FABP3, fatty acid binding protein 3; FGF23, fibroblast growth factor 23; GDF15, growth differentiation factor 15; IGFBP7, insulin-like growth 
factor binding protein 7; IL-6, interleukin-6; MERF, mixed effect random forest; NT-proBNP, N-terminal pro-B-type natriuretic peptide; TnT, cardiac 
troponin; sCr, serum creatinine; SHAP, SHapley Additive exPlanations
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spontaneous variations in concentrations, and assay quality. Lack of pre
dictive ability in this study does not rule out relevant biological function 
of a given molecule. The proposed interventions countering the disease 
processes associated with biomarkers require further testing.

Conclusion
In conclusion, these findings suggest that NT-proBNP, ANGPT2, and 
BMP10 can be combined to identify patients with AF at high risk of 
not attaining sinus rhythm. The disease processes related to 
ANGPT2 and BMP10 emerge as likely contributors to future rhythm 

in patients with and without rhythm control therapy. NT-proBNP ele
vations interact with early rhythm control, potentially suggesting repeat 
assessment of NT-proBNP to monitor the effectiveness of rhythm 
control.

Acknowledgements
We thank AFNET staff. We would like to thank all participants, study 
centers and investigators of the studies contributing to the datasets 
analysed. We would like to thank all members of CATCH ME and 
MAESTRIA consortia and their scientific advisory board members.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Estimated clinical utility of adding NT-proBNP, BMP10, and ANGPT2 alone or in combination to a clinical risk 
score to predict sinus rhythm at 12 months

Patients reclassified as high 
risk of not attaining sinus 

rhythm at 12 M (N)

Confusion matrix

Predicted sinus rhythm (actual 
patients in SR:  

N = 1081)

Predicted: AF (actual  
patients in AF: N = 365)

Patients in 
sinus rhythm at 

12 M

Patients in 
AF at 12 M

Patients in 
AF at 12 M

Patients in 
sinus rhythm at 

12 M

Clinical model (LA size > 50 mm, 
persistent AF, age > 75 years)

Reference 813 (77%) 245 (23%) 75 (40%) 112 (60%)

+NT-proBNP 135 743 (79%) 201 (21%) 129 (40%) 191 (60%)

+BMP10 240 670 (79%) 175 (21%) 161 (37%) 279 (63%)

+ANGPT2 301 650 (82%) 145 (18%) 198 (40%) 303 (60%)

+NT-proBNP and BMP10 298 638 (80%) 158 (20%) 183 (37%) 315 (63%)

+NT-proBNP and ANGPT2 345 625 (83%) 130 (17%) 215 (39%) 332 (61%)

+ANGPT2 and BMP10 410 570 (82%) 125 (18%) 223 (36%) 394 (64%)

+NT-proBNP and BMP10 and ANGPT2 441 551 (83%) 115 (17%) 234 (36%) 416 (64%)

Sinus rhythm at 12 months was initially predicted by a clinical risk score based on three validated clinical features (LA size > 50 mm, persistent AF, age > 75 years) alone. This reference 
score was then combined with one, a combination of two, or all three binarized predictive biomarkers (biomarker thresholds: NT-proBNP < 1000 pg/mL or >1500 pg/mL, ANGPT2 <  
3.5 ng/mL or >3.5 ng/mL, BMP10 < 2 ng/mL or >3 ng/mL, Table 4). If either the clinical risk score is ≥2 or any of the biomarkers added to the model surpasses its threshold, the model 
predicts failure to attain sinus rhythm at 12-month follow-up and predicts AF instead. All numbers indicate number of patients with percentages of the predicted class in brackets. There 
were 140 missing values in outcomes and 225 missing values in LA size. The additional use of biomarkers for prediction can lead to differing missing values in predictions made for 
participants with available outcome data. 
AF, atrial fibrillation; ANGPT2, angiopoietin 2; BMP10, bone morphogenetic protein 10; NT-proBNP, N-terminal pro-B-type natriuretic peptide; SR, sinus rhythm; 12 M, 12-month 
follow-up.

Figure 7 External validation of the prediction of sinus rhythm at the end of follow-up by baseline biomarkers in AXAFA-AFNET 5. AXAFA-AFNET 5 
enrolled 674 patients undergoing a first AF ablation with at least one stroke risk factor. Patients were randomized to apixaban or vitamin K antagonist 
therapy without affecting rhythm. Individual models with rhythm at baseline, age, and sex were constructed to determine whether each biomarker 
predicts sinus rhythm at the end of follow-up 120 days after randomization, 549 patients with sinus rhythm, 71 patients with atrial fibrillation, 620 
patients with baseline biomarkers completed follow-up. *P-values were calculated using logistic regression, adjusted for sex, age, rhythm at baseline, 
and treatment group. ANGPT2, angiopoietin 2; BMP10, bone morphogenetic protein 10; NT-proBNP, N-terminal pro-B-type natriuretic peptide
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