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Abstract 

Background  Randomised, cluster-based study designs in schools are commonly used to evaluate children’s physical 
activity interventions. Sample size estimation relies on accurate estimation of the intra-cluster correlation coefficient 
(ICC), but published estimates, especially using accelerometry-measured physical activity, are few and vary depend-
ing on physical activity outcome and participant age. Less commonly-used cluster-based designs, such as stepped 
wedge designs, also need to account for correlations over time, e.g. cluster autocorrelation (CAC) and individual 
autocorrelation (IAC), but no estimates are currently available. This paper estimates the school-level ICC, CAC and IAC 
for England children’s accelerometer-measured physical activity outcomes by age group and gender, to inform 
the design of future school-based cluster trials.

Methods  Data were pooled from seven large English datasets of accelerometer-measured physical activity data 
between 2002–18 (> 13,500 pupils, 540 primary and secondary schools). Linear mixed effect models estimated ICCs 
for weekday and whole week for minutes spent in moderate-to-vigorous physical activity (MVPA) and being seden-
tary for different age groups, stratified by gender. The CAC (1,252 schools) and IAC (34,923 pupils) were estimated 
by length of follow-up from pooled longitudinal data.

Results  School-level ICCs for weekday MVPA were higher in primary schools (from 0.07 (95% CI: 0.05, 0.10) to 0.08 
(95% CI: 0.06, 0.11)) compared to secondary (from 0.04 (95% CI: 0.03, 0.07) to (95% CI: 0.04, 0.10)). Girls’ ICCs were 
similar for primary and secondary schools, but boys’ were lower in secondary. For all ages, combined the CAC was 0.60 
(95% CI: 0.44–0.72), and the IAC was 0.46 (95% CI: 0.42–0.49), irrespective of follow-up time. Estimates were higher 
for MVPA vs sedentary time, and for weekdays vs the whole week.

Conclusions  Adequately powered studies are important to evidence effective physical activity strategies. Our esti-
mates of the ICC, CAC and IAC may be used to plan future school-based physical activity evaluations and were fairly 
consistent across a range of ages and settings, suggesting that results may be applied to other high income countries 
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Background
Evaluating the effectiveness of public health interventions 
is important to inform and develop policy recommenda-
tions. Randomised controlled trials (RCTs) are often used 
to evaluate public health interventions as they tend to be 
less susceptible to bias than other designs [1]. Often indi-
viduals fall naturally into groups (for example schools, 
workplaces, or geographical locations), or clusters, and 
it is important to take such clustering into account as 
individuals within the same cluster are often more simi-
lar to each other than to individuals in other clusters 
[2]. Cluster-based designs, such as cluster RCTs, cluster 
cross-over trials and stepped wedge designs, are studies 
in which clusters are randomised rather than the individ-
uals within these groups [2]. Such designs are common in 
public health settings, where the intervention itself may 
also be implemented at the cluster level, for example a 
school programme to increase children’s physical activ-
ity, and thus not allow for individual-level randomisation. 
However, the design and analysis of cluster-based stud-
ies is more complex, with larger sample sizes required 
than for an individual randomised study. The larger the 
intra-cluster correlation coefficient (ICC), the larger the 
sample size required, and ignoring the clustering in the 
design can result in an underpowered study [2].

There is a wide literature concerning sample size esti-
mation for cluster-based designs [2–6], although much 
is based in a clinical rather than public health setting. 
Approximate formulae are commonly provided in the 
form of an adjustment to the sample size required for 
an individually-randomised trial, and rely on the ICC, 
which captures the amount of variance explained at the 
group level [7, 8]. Depending on the study design, there 
may also be other correlations required for accurate sam-
ple size estimation. For example, studies with multiple 
measures over time in the same clusters, such as stepped 
wedge designs or cluster RCTs with baseline measure-
ments, may need to take into account cluster autocorrela-
tion (CAC) [9] which measures similarity in the outcome 
in the same cluster over time. In addition, cohort cluster 
designs with repeated measurements on the same indi-
viduals, should also account for individual autocorrela-
tion (IAC) [4, 5], which captures similarity in outcome 
measures for the same individual. Accounting for these 
correlations is important for the same reason as account-
ing for clustering, as they all capture different ways in 

which measurements are correlated and thus can affect 
the required sample size. Note that the ICC, CAC and 
IAC are features of the clusters or individuals themselves 
and the outcome measure, and not under the control of 
the researcher. Reviews that summarise data on ICCs 
drawn from multiple datasets show considerable variabil-
ity, with estimates between 0 and 0.2 depending on the  
outcome, type of cluster, country and population [10–16]. 
In particular, ICCs are typically larger for smaller cluster 
sizes, for example, varying between a median of 0.002 at 
district health level to 0.02 at postcode sector level [12]. 
Far less is known about the CAC, and the few estimates 
that have been published range between 0.3 and 0.9 with 
wide confidence intervals for a mix of clinical and risk 
factor outcomes, and so differences by outcome or clus-
ter type are not clear [15, 16]. Finally an estimate of the 
IAC is also needed whenever the same individuals are 
measured at multiple time points; as this is an individual 
rather than cluster-level correlation, estimates are gener-
ally easier to derive from other studies of both cluster and 
individual trials. Accurate and precise estimation of the 
ICC and CAC, and the IAC for cohort designs, is there-
fore important in planning a study to ensure the sample 
size is sufficient to detect an intervention effect. How-
ever, pilot studies are typically too small to provide robust 
estimates [17], with a recent review of school-based ICCs 
finding very little correlation between ICCs estimated 
from a pilot and the full trial [18]. Therefore, pilot studies 
are generally not suitable for estimating ICCs or CACs, 
although can provide other data needed for sample size 
estimation and study design, including the IAC.

Cluster-based designs are particularly well-suited to 
evaluate children’s physical activity interventions, as 
schools form obvious clusters and make good targets for 
intervention. Estimates of ICCs for children’s physical 
activity vary, depending on the outcome used. Physical 
activity guidelines in the UK, and in many other coun-
tries, are for children to achieve an average of at least 60 
min of moderate to vigorous physical activity (MVPA) 
per day [19, 20], and so whole-day MVPA is a common 
primary outcome in such studies. ICCs for MVPA are 
between 0.01–0.06 for self-reported physical activity [13, 
21–24] and higher for accelerometer-measured physical 
activity at 0.06–0.13 [25–28]. Estimates of average seden-
tary time across the whole day are less often reported, but 
ICCs tend to be lower, at 0.02 for self-reported sedentary 

with similar school physical activity provision. It is important to use estimates appropriate to the study design, 
and that match the intended study population as closely as possible.
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time [13] and 0.06–0.09 for accelerometer-measured sed-
entary time [29, 30]. These ICC estimates for both MVPA 
and sedentary time are often calculated using relatively 
few schools (< 30) and usually reported without confi-
dence intervals. Unlike other health-related behavioural 
outcomes (such as smoking and alcohol), where much 
of the cluster dependence is due to demographic simi-
larities within schools, this is not the case for physical 
activity, where MVPA ICCs adjusted for individual covar-
iates remain similar to unadjusted estimates [13, 27]. As 
schools play a specific role in facilitating physical activity, 
with a requirement to provide a certain amount of activ-
ity within the school curriculum, there is a direct mecha-
nism for similarities between children in the same school. 
This is reflected in variation in ICCs of MVPA throughout 
the day, for example, 0.25 in school and 0.06 after school 
[28], and differences between weekdays (0.13) and week-
ends (0.05) [27]. As school size, facilities, curriculum and 
structure of the school day will all impact on the ICC, we 
might also expect ICCs to be country-specific, and differ 
by type of school, and especially by age. For example, in 
the UK, primary schools (ages 4–11) are typically smaller 
in terms of pupil numbers and physical size, have fewer 
specialist sports facilities and have a single class teacher 
rather than multiple subject teachers, compared to sec-
ondary schools (ages 11–18). While reported ICCs for 
children’s MVPA tend to be higher than for adolescents 
[26], the majority of published estimates are for adoles-
cents and so it is not clear if and how they differ. We are 
also not aware of any studies that compare ICCs between 
boys and girls in the same schools. As girls consistently 
engage in less physical activity than boys on average [31], 
this may be an important difference, for example if girls 
are more reliant on the school environment, especially 
as interventions are often specifically designed to target 
girls.

The aim of this paper is to estimate the ICC, CAC and 
IAC for UK children’s accelerometer-measured weekday 
and whole week MVPA and sedentary time by age group 
and where possible, gender, to help inform the design 
of future school-based cluster trials of physical activity 
interventions. We use secondary data from seven large 
observational studies of accelerometer physical activ-
ity data, where participants are clustered within schools 
and that include a sufficiently large number of schools 
for reliable estimates. We pool data to estimate ICCs for 
different age groups, stratified by gender, and compare 
these to ICCs for children’s self-report physical activity. 
We also estimate the CAC and IAC from those datasets 
that include longitudinal data. To the best of our knowl-
edge, there is no literature that has explored whether 
there are differences in ICC by accelerometer type or 
processing protocols e.g. cut-points, epochs or definition 

and number of valid days, and so a secondary aim is to 
explore the effect of different accelerometer processing 
criteria on the ICCs. Finally, we will illustrate how these 
findings affect estimates of the required sample size in a 
worked example.

Methods
Data
This paper uses secondary data from seven English stud-
ies of children’s accelerometer-measured physical activ-
ity. We began by selecting studies which included data 
on school membership from the International Children’s 
Accelerometry Database (ICAD) [32], which pooled and 
harmonised accelerometer physical activity data on chil-
dren and adolescents. We restricted to datasets from 
England as ICCs are likely to differ between countries 
due to differences in school structure, facilities and cur-
riculum requirements [33]. We then identified additional 
studies from within the University of Bristol and from the 
literature which also used Actigraph waist-worn accel-
erometers, were based in England and contained data 
from at least 20 schools. The seven included studies were 
the Avon Longitudinal Study of Parents and Children 
(ALSPAC) [34, 35]; Sport, Physical activity and Eating 
behaviour: Environmental Determinants in Young people 
(SPEEDY) [36] and Personal and Environmental Associa-
tions with Children’s Health (PEACH) [37] studies from 
ICAD, and the B-Proact1v study [38, 39], Action 3:30 fea-
sibility trial (A3:30) [40], Active for Life Year 5 (AFLY5) 
trial [41, 42] and the Child Heart And health Study 
in England (CHASE) [43]. All studies received ethical 
approval and informed consent [44] (see individual stud-
ies for further details). The included studies consisted of 
four cohort studies, one cross-sectional study and two 
cluster RCT trials (Table  1). For the cluster RCT trials, 
we used baseline data from both arms and follow-up 
data from the control arm only. Data covered ages 5 to 16 
years, comprising over 13,500 pupils from 540 schools, 
with 60% from primary schools and 40% from secondary 
schools.

All studies used hip-worn Actigraph accelerometers 
(Table S1). Data from the ICAD studies were harmo-
nised to use 60s epochs, Evenson cut-points (with MVPA 
defined as < 2295 counts per minute (cpm)), and a valid 
day defined as a minimum of 480 min of wear time. Data 
from the B-Proact1v study was re-processed to the same 
criteria for comparability, while the other studies used 
smaller epochs of 5-10s. All but one study used Evenson 
cut-points and similar wear time of 480–500 min, with 
the remaining study using a lower MVPA threshold of 
2000 cpm and a longer valid day of at least 600 min of 
wear time (Table S1). Note that the impact of different 
processing criteria is assessed in the Analysis section.
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From each study, we extracted accelerometer data 
(mean minutes of MVPA, sedentary time and wear time 
for weekdays and the whole week), and demographics 
(age and gender) for each time point for each child. Age 
was grouped into categories based on England school 
year: Year 1 & 4 (age 5–6 and age 8–9; note that no stud-
ies provided data on children between ages 6 and 8), Year 
5 (age 9–10), Year 6 (age 10–11), Year 7 (age 11–12), Year 
8 & 9 (age 12–14) and Year 10 & 11 (age 14–16). Primary 
schools in England comprise Years 1–6, and secondary 
schools cover Years 7–11.

To compare ICCs for accelerometer-measures and 
self-report physical activity, we also used data from the 
Active Lives Children and Young People survey 2018–19 
(ALCYP) [45, 46]. This is an annual cross-sectional sur-
vey commissioned by Sport England, which collects self-
report physical activity data for children aged 7–16 from 
a large representative sample (n = 107,922 across 1815 
schools) across the whole of England to inform UK gov-
ernment strategy. Children were asked detailed questions 
about participation and intensity in a range of activities 
both in and out of school on each day of the previous 
week. We excluded children aged 5–7 years where physi-
cal activity data were not comparable as the data were 
reported by parents rather than the children, and used 
the provided school year groups: Year 3 & 4 (age 7–9) 
Year 5 & 6 (age 9–11), Year 7 & 8 (age 11–13) and Year 9 
& 11 (age 13–16). Weekday and whole week MVPA was 
calculated from the provided derived variables of min-
utes of MVPA by day.

Analysis
The primary outcome was mean weekday MVPA, with 
secondary outcomes of mean MVPA across the whole 
week, sedentary time for weekdays and the whole week. 
We restricted analysis to those pupils who provided at 

least two days of valid data. Physical activity outcomes 
and gender were summarised by school year group. All 
analysis was run in Stata v17 [47], and sample size esti-
mates were calculated using the clusterpower package in 
R.

Intra‑cluster correlation coefficients
To produce model-based estimates of the ICC by school 
year group, we used linear mixed effect models to take 
into account variability across studies, with separate 
models for primary and secondary schools, due to dif-
ferences in total variability. Three-level mixed models 
included fixed terms for age and accelerometer wear 
time, and random effect terms for study, individual 
repeated measures and school-level random coeffi-
cients for each school year group. ICCs were calculated 
separately for each school year group from the total 
and between-school variance estimates, with approxi-
mate 95% confidence intervals obtained using the delta 
method [48] on the logit scale and back-transformed to 
give a 95% confidence interval for each ICC. We also ran 
subgroup analyses by gender. Models were run for week-
day and whole week MVPA, and for weekday and whole 
week sedentary time. For longitudinal data, we also esti-
mated ICCs for weekday MVPA adjusted for baseline 
(i.e. previous MVPA measurement), for primary and sec-
ondary schools. Due to smaller sample sizes we did not 
break down further by school year group, or stratify by 
gender. Finally, we ran models for weekday and whole 
week self-report MVPA using the ALCYP data (with no 
study random effect) using a linear model. We chose not 
to transform the data, despite being heavily right-skewed, 
as this is not often done in practice and so ICCs on the 
transformed scale would be less useful, and potentially 
misinterpreted.

Table 1  Summary of datasets and which parameters can be estimated

cRCT​ cluster randomized controlled trial, ICC intra-cluster correlation coefficient, CAC​ Cluster Autocorrelation, IAC Individual Autocorrelation, E East, SW southwest
a square brackets indicate quantities estimable from control arm only and thus with smaller sample size

Dataset Study type Region Age range No. schools No. pupils Estimatesa

Accelerometer-measured

  Action 3:30 cRCT Trial SW England 9–11 20 529 ICC, [CAC, IAC]

  AFLY5 cRCT Trial SW England 8–10 60 2028 ICC, [CAC, IAC]

  ALSPAC Cohort SW England 11–16 221 3766 ICC, CAC, IAC

  B-Proact1v Cohort SW England 5–11 57 2054 ICC, CAC, IAC

  CHASE Cross-sectional England 9–10 77 2040 ICC

  PEACH Cohort SW England 10–12 23 1255 ICC, IAC

  SPEEDY Cohort E England 9–14 92 2009 ICC, CAC, IAC

Self-report

  ALCYP Cross-sectional England 5–16 1815 107,922 ICC
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Effect of accelerometer processing
To explore whether ICCs differ depending on the accel-
erometer processing, we ran a series of additional anal-
yses. We used the B-Proact1v data from Year 6 only, 
where we had access to the raw accelerometer data and 
so could re-process in different ways, to look at dif-
ferences in the cut points to determine MVPA (2000, 
2295), resolution (5s 10s and 60s epochs), definition 
of a valid day (minimum wear time required for inclu-
sion: 400 min, 480 min and 600 min), and the minimum 
number of valid days for inclusion (one, two or three 
days).

Cluster and individual autocorrelations
As the autocorrelations CAC and IAC may depend on 
the follow-up time between measurements, we used 
empirical estimates from the Pearson correlation coeffi-
cients for each study/follow-up time combination. Where 
studies covered the transition between primary and sec-
ondary school, we included only data within the same 
school for estimating the CAC, but used all measure-
ments across multiple schools for the IAC. These were 
transformed using Fisher transformations for approxi-
mate normality, combined using meta-analysis and then 
back-transformed to produce joint estimates of the CAC 
and IAC by follow-up time. Due to the smaller numbers 
of pupils and schools available to calculate the autocor-
relations, we did not separate by school type or gender. 
We also excluded schools with fewer than five pupils in 
calculating the school-level correlations for the CAC.

Example sample size calculations
To illustrate how the estimates produced in earlier sec-
tions can be used to estimate sample sizes in future 
cluster-based evaluations of children’s physical activ-
ity interventions, we estimated the number of schools 
required to detect an effect size of a 5 min increase in 
weekday MVPA (a difference likely to have a meaning-
ful health impact [49]), with power 80% and significance 
level 5%, for six different study designs (cluster RCT, 
cluster RCT adjusted for baseline, cross-sectional and 
cohort stepped wedge designs with two and three steps). 
We calculated sample sizes for Year 5 (primary) and Year 
10/11 (secondary) separately, using estimates of the total 
variation, ICC, CAC and IAC from the analysis above. 
We used two values of the ICC, the point estimate and 
the upper bound of the 95% confidence interval, to inves-
tigate how sensitive the resulting sample sizes were to 
different values of ICC. We assumed an achieved sam-
ple size of 25 pupils per school for primary and 50 for 
secondary; these are smaller than typical year groups to 

allow for nonresponse. We also explored different values 
of ICC and varying the number of pupils per school.

Results
The sample comprised 13,650 children from 540 schools 
across seven studies, measured at a total of 19 time 
points (Table  2). Around half the pupils (53%) were 
female, with 60% of the measurements taken in primary 
schools and 40% in secondary schools. Missing acceler-
ometer data was around 4–10% for most studies (with 
a higher missingness rate of 20% for weekdays in the 
AFLY5 study) resulting in 21,076 valid weekday measure-
ments and 21,649 valid measurements across the whole 
week (Table S2).

Intra‑cluster correlation coefficients
Modelled ICCs for weekday accelerometer MPVA are 
shown in Fig. 1, with full estimates and 95% confidence 
intervals given in Table  3. ICCs were slightly higher for 
children in primary schools (between 0.07 (95% CI: 0.05, 
0.10) for Years 1 & 4, and 0.08 (95% CI: 0.06 – 0.11) in 
Year 6) compared to secondary (between 0.04 (95% CI: 
0.03, 0.07) for Year 7, and 0.07 (95% CI: 0.04 – 0.1) in 
Years 8 & 9). There were only small differences by school 
year group, with ICCs increasing slightly in primary 
school with age, and highest in secondary school at Year 
8/9. ICCs for boys and girls (Figure S1; Tables S3 & S4) 
were similar in primary schools, but in secondary schools 
ICCs were higher for girls than for boys (a maximum of 
0.10 (95% CI: 0.06, 0.15) for girls, and 0.04 (95% CI: 0.02 – 
0.08) for boys). ICCs for whole week MVPA were slightly 
lower than weekdays only. ICCs for sedentary time were 
lower than for MVPA, with estimates of between 0.03 
(Years 1 & 4; 95% CI: 0.01, 0.06) and 0.05 (Year 6; 95% CI: 
0.03 – 0.11) in primary schools and < 0.01 in secondary 
schools. ICCs for sedentary time did not differ notably by 
gender. However, total within-study variation was larger 
in secondary schools vs primary schools and in boys vs 
girls for all physical activity outcomes (Table S5).

ICCs adjusted for baseline (that is, the previous avail-
able measurement; Table  S6) were slightly smaller (0.06 
for primary; 0.04 for secondary) than unadjusted ICCs 
but showed similar patterns, with higher ICCs for pri-
mary schools compared to secondary, for weekdays com-
pared to the whole week and for MVPA compared to 
sedentary time. The total variation was lower in models 
adjusted for baseline (Table  S5). Self-report MVPA was 
highly skewed, with ICCs similar to those for acceler-
ometer-measured MVPA, but no substantial differences 
between girls and boys or between weekday and whole 
week estimates (Table S7).
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Table 2  Sample characteristics summarised across all datasets

Child characteristics are summarised by child; year group, primary and secondary are summarised for all measurements at that time point, and may include multiple 
measures per child

MVPA moderate-to-vigorous physical activity, sd standard deviation

Accelerometer Self-report

% or mean N or (sd) % or mean N or (sd)

Child characteristics N = 13,650 N = 107,922
  % female 53% 7211 52% 52,719

Year group N = 23,749 N = 107,922
  Year 1 & 4 (Age 5–9) 18% 4211 20% 23,012

  Year 5 (Age 9–10) 23% 5364 24% 26,989

  Year 6 (Age 10–11) 19% 4622

  Year 7 (Age 11–12) 14% 3297 24% 27,227

  Year 8 & 9 (Age 12–14) 17% 3919

  Year 10 & 11 (age 15–16) 10% 2336 28% 32,020

Primary N = 14,197 N = 107,922
  Weekday MVPA (min): Mean (sd) 55.8 (24.8) 86.3 (89.4)

  Overall MVPA (min): Mean (sd) 54.3 (24.0) 78.4 (81.9)

  Weekday sedentary (min): Mean (sd) 418.3 (117.6)

  Overall sedentary (min): Mean (sd) 406.4 (116.0)

Secondary N = 9552 N = 107,922
  Weekday MVPA (min): Mean (sd) 54.7 (28.1) 84.7 (86.2)

  Overall MVPA (min): Mean (sd) 50.9 (26.1) 75.1 (75.7)

  Weekday sedentary (min): Mean (sd) 425.0 (96.0)

  Overall sedentary (min): Mean (sd) 412.3 (91.0)

Fig. 1  Estimated intra-cluster correlation coefficient (ICC) and 95% confidence intervals by age group
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Effect of accelerometer processing
Looking at the BProact1v Year 6 data only, the choice of 
MVPA cut-point, resolution, definition of a valid day and 
minimum number of valid days made only minor differ-
ences to the ICCs (Table  S8). All ICCs were estimated 
between 0.127 and 0.147, compared to 0.137 for data pro-
cessed to the criteria used in the main analysis. The larg-
est differences were for a lower MVPA threshold of 2000 

(slightly higher ICC of 0.147) and for a longer valid day of 
10h (slightly lower ICC of 0.127).

Cluster and individual autocorrelations
The CAC (Fig. 2; Table S9) ranged between 0.24 and 0.70 
with no consistent pattern over time, and wide confidence 
intervals, due to relatively small numbers of schools. The 
estimated CAC for weekday MVPA follow-up times of 
1–5 years was 0.60 (95% CI: 0.44—0.72). The CAC for fol-
low-up of less than a year was around half the size, but is 
based on only one study comprising 10 schools. CACs for 
sedentary time were slightly lower. The individual auto-
correlations for MVPA (Fig. 3; Table S10) showed a pos-
sible slow decrease over time, from 0.52 after one year, 
to 0.34 after 5 years, but confidence intervals were wide. 
IACs for sedentary time were slightly lower, but showed 
a similar decreasing pattern with length of follow-up. 
There were no differences in IAC between weekday and 
the whole week.

Example sample size calculations
Table  4 and Tables S11 & S12 estimate the number 
of schools required to detect an effect size of a 5 min 
increase in weekday MVPA for a future cluster-based 
evaluation of children’s physical activity interventions, 
with power 80% and significance level 5%, and using esti-
mates of the total variation, ICC, CAC and IAC from 
the results presented above. We considered six differ-
ent study designs: cluster RCT, cluster RCT adjusted 
for baseline, cross-sectional and cohort stepped wedge 

Table 3  Intra-cluster Correlation Coefficients (ICCs) for MVPA 
and sedentary time by school year group

CI confidence interval, MVPA moderate to vigorous physical activity

Weekday Whole week

ICC 95% CI ICC 95% CI

MVPA

  Year 1 & 4 0.069 (0.048, 0.100) 0.065 (0.044, 0.093)

  Year 5 0.076 (0.057, 0.102) 0.056 (0.040, 0.077)

  Year 6 0.082 (0.060, 0.110) 0.071 (0.052, 0.097)

  Year 7 0.044 (0.027, 0.070) 0.028 (0.016, 0.049)

  Year 8 & 9 0.065 (0.042, 0.099) 0.048 (0.030, 0.076)

  Year 10 & 11 0.051 (0.030, 0.083) 0.041 (0.024, 0.069)

Sedentary time

  Year 1 & 4 0.025 (0.011, 0.055) 0.021 (0.009, 0.046)

  Year 5 0.033 (0.015, 0.068) 0.025 (0.011, 0.052)

  Year 6 0.053 (0.025, 0.106) 0.041 (0.019, 0.084)

  Year 7 0.007 (0.003, 0.021) 0.007 (0.002, 0.019)

  Year 8 & 9 0.008 (0.003, 0.022) 0.004 (0.001, 0.015)

  Year 10 & 11 0.007 (0.002, 0.025) 0.005 (0.001, 0.022)

Fig. 2  Cluster autocorrelation (CAC) by length of follow-up
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designs with two and three steps. Table 4 shows that the 
achieved number of schools required would range sub-
stantially from 33–94 for primary and 24–96 for sec-
ondary schools, depending on the cluster design used, 
and assumptions about the ICC and autocorrelations. 
Although the ICC in secondary schools is lower, more 
secondary schools are needed than primary for the same 
effect size and power, due to the higher total variability. 
The number of schools required increased notably if the 

upper bound of the ICC 95% confidence interval was 
used rather than the point estimate, with 6 extra schools 
required for the cluster RCT in primary schools, and 
14 additional secondary schools required for the same 
power. The simplest design, the two-arm cluster RCT, 
required the most schools (68–96 depending on para-
metrisation). Repeated measures, either in schools or 
pupils, increased the power and reduced the required 
sample size. For example, the cross-sectional two-step 

Fig. 3  Individual autocorrelation (IAC) by length of follow-up

Table 4  Number of schools required to detect an increase of 5min weekday MVPA for different designs

MVPA moderate-to-vigorous physical activity, RCT​ randomised controlled trial, ICC intra-cluster correlation coefficient, CAC​ cluster autocorrelation, IAC individual 
autocorrelation

Assuming 80% power; 5% significance level; total standard deviation: primary = 23.2 min, secondary = 27.5 min
a ICC point estimate (upper bound): primary 0.08 (0.10) secondary 0.05 (0.08)
b ICC point estimate (upper bound): primary 0.06 (0.09), secondary 0.04 (0.06)

Primary (Y5)
25 pupils per school

Secondary (Y10/11)
50 pupils per school

Point estimate Upper bound Point estimate Upper bound

Cluster RCT​
  Two-arma 82 94 68 96

  adjusted for baselineb 54 70 46 60

Stepped wedge (same schools): 2 steps
  cross-sectionala: CAC = 0.6 62 68 50 64

  Cohorta: CAC = 0.6, IAC = 0.5 48 54 40 54

Stepped wedge (same schools): 3 steps
  cross-sectionala: CAC = 0.6 39 42 30 39

  Cohorta: CAC = 0.6, IAC = 0.5 30 33 24 33
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stepped wedge and cluster RCT adjusted for baseline 
both reduced the number of schools required by around 
30% (from 82 to 54–62 schools in primary and from 68 
to 46–50 schools in secondary). The cohort two-step 
stepped wedge and cross-sectional three-step stepped 
wedge reduced by around half (to 39–48 primary schools 
and 30–40 secondary schools) and the largest reductions 
were for the cohort three-step stepped wedge by nearly 
two thirds (30 primary schools, 24 secondary schools). 
Increasing the number of pupils per school reduced the 
sample size to a lesser degree with up to 20–30% reduc-
tion for an increase of 25 in number of pupils (Table S11 
& S12), but this had less effect for larger ICCs and as 
pupils numbers increased beyond 50. The larger reduc-
tions were in the stepped wedge designs, which exploit 
correlation between pupils at different time points.

Discussion
In this paper we have combined data from over 13,500 
pupils from 540 schools to provide a comprehensive set 
of estimates of school-level ICCs and autocorrelations 
for accelerometer-measured physical activity in children 
and adolescents which can be used to plan new school-
based cluster trials of physical activity interventions 
in schools. The ICC estimates for weekday MVPA are 
broadly consistent with other accelerometer-measured 
estimates reported in the literature, which range between 
0.07 to 0.13 [25–27], although these studies all involved 
fewer schools and estimates were presented without 
measures of precision. ICCs were slightly higher in pri-
mary schools, compared to secondary schools, as seen 
elsewhere [26], with only small differences by age within 
school type. Due to using secondary data sources, we 
looked at physical activity summaries across the whole 
day only, although other studies suggest that ICC esti-
mates for activity during school hours only are likely to 
be much higher [28]. The specific criteria used in accel-
erometer processing had very little effect on the ICC, 
and we saw no differences by MVPA cut-points, resolu-
tion, definition of a valid day or number of days included. 
While these factors can affect estimates of minutes of 
MVPA themselves, the ICC is a relative measure that 
captures similarity between measurements and is thus 
less influenced by these choices as all individual meas-
urements within a school are higher or lower in the same 
way. We were unable to explore the impact of wear and 
non-wear definitions, which tend to affect sedentary time 
in particular, but it seems reasonable to assume that such 
definitions will similarly have less impact on ICC esti-
mates than on physical activity estimates themselves. All 
estimates of ICCs were between 0.04–0.08 with overlap-
ping confidence intervals, suggesting that accelerometer-
measured ICCs are fairly consistency across a range of 

ages and settings. This therefore suggests that the results 
presented here may be useful more widely, for example in 
other UK nations and other high income countries that 
have similar physical activity provision within schools. 
In such cases, we suggest that in the absence of more 
specific estimates, an ICC of 0.10 for weekday MVPA 
could be used for sample size calculations, based on the 
upper 95% CI bounds to reduce the risk of underpow-
ering a study. Corresponding estimates for sedentary 
time are thus 0.05 -0.06 for ages 6–11 (English primary 
schools) and 0.02–0.03 for ages 11–16 (English second-
ary schools).

When considering boys and girls separately, in pri-
mary schools, both genders had similar ICCs for week-
day MVPA of 0.08–0.12. Note that these ICCs are a little 
higher than the estimate of 0.07–0.08 for boys and girls 
combined. This apparently counter-intuitive result is 
because ICCs are relative measures that depend on the 
total variation denominator, which differs between gen-
ders, with higher individual variability for boys than for 
girls. In secondary schools, ICCs were lower for boys, 
but for girls they remained at similar levels to primary 
school. Girls typically engage in less physical activity than 
boys especially in adolescence [31], and so the ICC will 
be higher as the total variation is lower in a less active 
population. These results highlight the importance of 
using ICCs that are closest to the intended population in 
planning a study, especially when considering subgroups, 
where ICCs for combined groups may differ due to dif-
ferences in total variation. For example, a study involving 
Year 7 girls only using the ICC for girls would require 60 
schools for 80% power. However, if an ICC of 0.04 based 
on boys and girls together is used, the required number 
of schools is estimated at only 42, which would result in 
an underpowered study at 65% power.

It is always important that studies are adequately pow-
ered, but in public health underpowered studies may risk 
missing interventions that have relatively small individual 
effects, but have the potential for much greater impact 
at population level. Our examples of sample size calcu-
lation suggest that relatively small differences of 0.02 in 
the ICC can increase the number of schools required 
by around 20% (corresponding to an increase of 14–18 
for a two-arm cluster RCT for an effect size of 5 min of 
MVPA). This is particularly an issue for school-based 
trials of physical activity interventions, as recruiting the 
additional schools this requires is resource-intensive. 
Developing interventions in this area is very important 
as we know that children’s physical activity patterns have 
changed since the COVID-19 pandemic [50–53], but it 
is equally important that such interventions are properly 
evaluated. The sensitivity of school sample sizes to rela-
tively small differences in the ICC means that considering 
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a plausible range of ICCs can lead to much larger studies 
than in other settings, which may have funding implica-
tions for the amount and availability of sufficient fund-
ing to test interventions at the necessary scale. While an 
increase in ICC can be offset to some extent by increas-
ing the number of pupils recruited per school, the eligi-
ble population is restricted, especially in primary schools, 
and increases in power are limited after around 50 pupils 
per school. However, using ICCs based on the wrong 
age group, population or from non-physical activity out-
comes can also potentially result in an under-powered 
study. For example, from our estimates, a primary school 
study of Y5 pupils should use an ICC of 0.08 for weekday 
MVPA, with 82 schools required for a two-arm cluster 
RCT with 80% power. If, instead, an ICC of 0.04 is used, 
based on secondary schools MVPA across the whole 
week, the calculated sample size is 56 schools, with true 
power 64%. Using ICC estimates of self-reported physi-
cal activity outcomes from the literature [13, 21, 22] of 
around 0.02 will reduce this even further to 44 schools 
and 53% power. The adequate powering of studies is 
important in terms of moving the evidence for effective 
physical activity strategies in children and adolescences 
forward [33], and so we recommend that a range of plau-
sible ICC values should be explored, to assess the sensi-
tivity of the estimated sample sizes to different values, 
such as using the upper 95% bound as well as the point 
estimate, as in our example.

There are a number of observations that we can make 
with respect to the efficient design of cluster-based tri-
als of physical activity outcomes in children and adoles-
cence. Designs which involve repeated measurements 
increase the power of the study, or reduce the number 
of schools required. Note that when designing a cluster 
RCT adjusted for baseline, it is important to use both ICC 
and total variation estimates that have also been adjusted 
for baseline, and studies that report ICCs should be clear 
about whether any adjustment has been made. While the 
ICCs adjusted for baseline are only slightly smaller than 
unadjusted ICCs in our results, repeated measurements 
on the same children reduce the total variation and 
so fewer schools are needed for a study with the same 
power. This study design implicitly takes account of the 
autocorrelation between successive measurements, and 
is related to including the CAC and IAC in the stepped 
wedge design [5]. An advantage of the stepped wedge 
design is that it can be used for both cross-sectional and 
cohort samples as it does not require the same pupils to 
be measured [4]. However, it is more complex to design, 
run and analyse, and while the cohort design has sub-
stantial benefits in terms of required sample sizes, the 
numbers presented in Table  4 assume that repeated 
measurements at baseline and each step are achieved for 

all pupils. In practice, repeated measures may result in 
lower pupil numbers, especially as the number of steps 
increases. Accurate estimates of power for the stepped 
wedge design should also account for the CAC and IAC, 
with the former particularly important, as some simpli-
fied models for sample size estimation assume a CAC of 
1 [54], which will result in under-powering of the study 
[4]. While we were able to produce reasonable estimates 
for the IAC, the estimate of the CAC was still not pre-
cise even when pooling schools from multiple studies. 
Models and sample size formulae have been developed 
to consider CAC correlation structures that decay over 
time [55]. Unfortunately, our analysis was unable to pro-
vide accurate or precise estimates of the CAC under a 
year, due to limited data and seasonality in physical activ-
ity outcomes. Our results indicate that after one year, any 
further decay is weak, with the CAC levelling at around 
0.5–0.6, reflecting that schools are more consistent over 
time than individuals. While we are unable to provide 
reliable estimates for shorter-term CACs, we suggest that 
a range of plausible values are considered at the design 
stage. However, care should be taken in using complex 
correlation structures in sample size calculations for 
evaluating children’s physical activity (although such 
models may be useful in analysis) as this might artificially 
increase power due to overconfidence in estimates.

The primary focus of this paper is on estimating ICCs 
for use in sample size estimation. However, unlike clini-
cal or primary care settings, where clustering is often a 
nuisance factor related to the data collection process, in 
physical activity and many other public health contexts, 
the clustering is a direct feature of physical activity and 
even the intervention itself. As a measure of clustering, 
the ICC tells us about the extent to which schools (and/
or classes), and school-related factors, explain between-
child variation in physical activity. Thus school factors, 
such as playground equipment, active travel, PE provi-
sion and active after-school clubs [56, 57], play more of 
a role in primary schools than in secondary schools. Sim-
ilarly, the higher ICC for girls in secondary school may 
reflect that girls do comparatively little physical activity 
outside the school context and so the influence of schools 
is greater, even though they typically engage in less physi-
cal activity than boys. This makes schools potentially 
good targets for developing interventions, although it is 
worth noting that the largest source of variation between 
children is still due to individual factors [57]. Unfortu-
nately we were unable to separate school-level and class-
level variability, and so the reported ICCs combine both 
sources of variation; it is likely that a substantial propor-
tion of the observed school-level clustering is at the class 
level. Understanding different levels of variation can help 
determine whether interventions should be focused on 
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group or individual level, similar to applications in occu-
pational health [58]. However, it also makes interventions 
and their evaluation more complex, and instead of just 
estimating ICCs we need to properly understand when 
and how clustering affects physical activity outcomes, 
especially when dealing with a complex intervention that 
may affect the ICC itself.

Strengths and limitations
This paper has a number of strengths. We have combined 
data on over 500 schools, which has allowed more precise 
estimates of ICCs and autocorrelations than have been 
previously reported. Combining data from seven differ-
ent studies covering a wide age range of ages 6–16 years, 
and has enabled us to explore patterns by age and gen-
der. The mixed effects model used to estimate the ICCs 
is consistent with that used for sample size formulae and 
analysis of the various cluster-based designs considered. 
We were also able to produce estimates of the autocor-
relations, CAC and IAC. However, estimates of autocor-
relation were limited in their ability to explore short-term 
follow-ups of less than a year, and in particular esti-
mates of the CAC were still imprecise despite the large 
sample sizes. Although the studies covered a wide age 
range, each age group was often dominated by a single 
study, which means that observed patterns by age may be 
related to differences in studies rather than school year 
group. As this was a secondary analysis, we do not have 
any information on missing data beyond no value being 
provided in the dataset. Accelerometer processing crite-
ria differed between studies, in terms of wear time defini-
tions, criteria for valid days and number of days included 
in the study, which may affect results, although our lim-
ited sensitivity analysis suggests that unlike physical 
activity estimates themselves, ICC estimates are reason-
ably robust to these differences. We were also unable to 
look at ICCs for during school hours only, or to explore 
class-level variability. Finally, we intentionally restricted 
to England-based studies as differences in school sys-
tems may affect clustering. While estimates appear to 
be consistent across the different ages considered here 
and with values reported elsewhere, the extent to which 
these ICCs are generalisable to other countries should be 
explored further.

Conclusions
Adequately powered studies are important to move 
forward the evidence for effective physical activity 
strategies. We have provided a comprehensive set of 
estimates of school-level ICCs and autocorrelations 
for accelerometer-measured physical activity in chil-
dren and adolescents in England which can be used to 
plan new school-based cluster trials of physical activity 

interventions in schools. Estimates of the ICC were fairly 
consistent across a range of ages and settings, with esti-
mates for weekday MVPA between 0.04 and 0.07 depend-
ing on age. It is important to use estimates appropriate 
to the study design, and that match the intended study 
population as closely as possible.
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