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Rifabutin central nervous system concentrations in a rabbit 
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ABSTRACT Tuberculous meningitis (TBM) has a high mortality, possibly due to 
suboptimal therapy. Drug exposure data of antituberculosis agents in the central 
nervous system (CNS) are required to develop more effective regimens. Rifabutin is 
a rifamycin equivalently potent to rifampin in human pulmonary tuberculosis. Here, 
we show that human-equivalent doses of rifabutin achieved potentially therapeutic 
exposure in relevant CNS tissues in a rabbit model of TBM, supporting further evaluation 
in clinical trials.
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T uberculous meningitis (TBM) affects an estimated 150,000 people annually and is 
the most lethal form of tuberculosis (1). Mortality is up to 40% and many survivors 

experience permanent disability, despite treatment with antituberculosis therapy (2). 
One reason for this poor treatment response is that standard chemotherapy for TBM 
(rifampin, isoniazid, pyrazinamide, and ethambutol) is the same as for pulmonary TB, 
where, unlike TBM, disease is located outside the central nervous system (CNS), mortality 
is low, and the treatment goal is to prevent relapse. TBM treatment is therefore not 
optimized for CNS infection and may not achieve therapeutic concentrations at the site 
of disease. In TBM patients, total (protein-bound plus unbound) cerebrospinal fluid (CSF) 
concentrations of the key drug, rifampin, are 10- to 20-fold lower than in plasma (3, 4), 
and brain exposures are variable and spatially heterogenous in animal models (5). Higher 
doses of rifampin provide CSF exposures (3, 6) and may improve clinical outcomes 
(7), which is currently being evaluated in definitive trials. However, new approaches 
for optimizing TBM regimens should also be explored, combining agents with potent 
antituberculosis activity and enhanced CNS penetration.

Rifabutin, a rifamycin agent, has several favorable characteristics supporting potential 
use as an alternative to rifampin for TBM therapy. It has a much lower minimum 
inhibitory concentration (MIC) against Mycobacterium tuberculosis, distributes widely in 
vivo, and concentrates within host cells (8, 9). Rifabutin is associated with more rapid 
mycobacterial clearance in both pulmonary tuberculosis preclinical models (10) and 
in patients (11), and it had similar efficacy to rifampin in clinical trials for pulmonary 
tuberculosis (12). The potential use of rifabutin for treatment of meningitis is supported 
by its efficacy in a rabbit model of pneumococcal meningitis (13). More importantly, 
rifabutin has a much weaker effect on cytochrome P450 metabolism than rifampin and 
can be co-administered with bedaquiline, offering an opportunity for combining them 
in novel TBM regimens. Data confirming rifabutin exposure at site of disease for TBM are 
required prior to evaluation in clinical trials. We performed a preclinical pharmacokinetic 
(PK) study to describe rifabutin CNS concentrations in an infected rabbit model of TBM.
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Our New Zealand white rabbit TBM model is optimized to recapitulate human TBM 
disease with features including variable duration of symptom onset, typical clinical 
manifestations, representative pathology, and compatible radiological features (14). 
Animal studies were approved by the Hackensack Meridian Health Institutional Animal 
Care and Use Committee. Rabbits were infected with 104 CFUs Mtb HN878 via the 
cisterna magna (14, 15) and treated with rifabutin once daily at 15 mg/kg (equivalent to 
human doses of 300 mg) for 3 days by oral gavage after reaching a predefined neuro
logical score. Rifabutin was formulated in 0.5% carboxymethyl cellulose/0.5% Tween 80/
sterile water (16). Blood was collected from the central ear artery pre-dose and at 0.5, 1, 
2, 3, 5, 6, 7, 10, and 24 h post-drug administration on day 1 and until the time of necropsy 
on day 3. Rabbits were necropsied, with a terminal CSF sample collected, at either 3, 6, 
10, or 24 h after the third dose. The brain, meninges, cervical and lumbar spinal cord, 
and lung were collected for total rifabutin (protein-bound plus unbound) quantification 
by liquid chromatography-mass spectrometry as previously described (17). Noncompart
mental analysis was performed to describe secondary PK parameters using PK Solver, a 
Microsoft Excel add-in (18), and figures were produced in R.

Seven rabbits were included with median weight of 3.27 kg, providing 58 rifabutin 
plasma concentrations from full sampling up to 24 h post-dose on days 1 and 7 paired 
plasma, CSF and tissue concentrations from terminal sampling on day 3. Summary 
statistics are provided in Table 1. Plasma observations sampled on days 1 and 3 are 
depicted in Fig. 1. For day 1 plasma profiles, the median (first to third quartiles) 
concentration was 281 (110–532) ng/mL, plasma rifabutin AUC0–24 was 5,766 (5,017–
9,320) h·ng/mL, and AUC0–infinity was 7,227 (6,540–11,148) in line with published plasma 
AUC from TB patients dosed at the standard 300 mg daily (19–21). After one CSF sample 
was excluded because of blood contamination, the median (first to third quartiles) 
concentration observed in CSF was 140 (64.2–251) ng/mL. When comparing these values 
with the terminal plasma sample, the CSF/plasma ratio was 0.227 (0.205–0.285). Median 
(first to third quartiles) brain rifabutin concentration was 536 (321–961) ng/mL, with 
a brain/plasma ratio of 0.856 (0.790–1.16). Concentrations across CNS compartments, 
plasma, and lung are shown in Fig. 2, demonstrating higher concentrations in the 
meninges and spinal cord relative to plasma, CSF, and other CNS tissues. Rifabutin 
concentrations exceeded the in vitro MIC for M. tuberculosis of 0.06 mg/L (22) in all CNS 
compartments and throughout the dosing interval, except for the two CSF concentra
tions at 24 h necropsy time.

These data show that, at human-equivalent doses, rifabutin achieves potentially 
therapeutic exposures in the CNS of rabbits with TBM. The relative penetration of 
rifabutin from plasma into CSF and brain tissue exceeds that of rifampin from preclinical 
TBM studies (5). Our observations are corroborated by other evidence. In a healthy non-
human primate study, rifabutin achieved relatively high CSF concentrations with a total 

TABLE 1 Pharmacokinetic parameters and tissue drug concentrations of rifabutin in TBM rabbits

Parameter Value median (first to third 
quartiles)

Plasma AUC0-24h on day 1, h·ng/mL 5,766 (5,017–9,320)
Plasma AUC0-inf on day 1, h·ng/mL 7,227 (6,540–11,148)a

Plasma Cmax on day 1, ng/mL 526 (383–621)
Plasma C24h day 1, ng/mL 113 (87.7–166)
Terminal plasma concentration on day 3, ng/mL 607 (318–1,038)
CSF concentration, ng/mL 140 (64.2–251)
Brain concentration, ng/g 536 (321–961)
Lumbar spine concentration, ng/g 673 (452–728)
Cervical spine concentration, ng/g 1,140 (463–1,590)
Meningeal concentration, ng/g 3,770 (1,395–4,700)
Lung concentration, ng/g 8,410 (4,405–19,750)
aFor one rabbit, the elimination rate constant could not be reliably estimated, so the median of the other six 
rabbits (0.0709 h−1) was used to calculate AUC0-inf of that rabbit.
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CSF/plasma ratio ranging between 0.29 and 0.42; when free drug was measured, this 
increased to 2.4–3.4 (23). Similar observations were made in a rifabutin dose ranging 
study among people with advanced HIV, where a daily dose of 450 mg led to mean 
serum and CSF concentrations of 92.5 ng/mL (range 65.5–135.6) and 46.9 ng/mL (26.5–
69.9), respectively, with a penetration ratio of 0.50 (range 0.36–0.70) (24).

A fundamental limitation of preclinical studies is imperfect translation to patients. 
However, this approach is essential for drug evaluation in TBM because concentrations 
in CSF, the only CNS compartment accessible from patients, correlate poorly with brain 
exposure where most pathology occurs. Our rabbit TBM model is optimized to replicate 
human TBM disease, providing information that can support drug selection for clinical 
trials. We did not evaluate the efficacy of rifabutin because of rapid disease progression 
after symptom onset in rabbits, plus lack of predictive biomarkers for treatment response 

FIG 1 Plasma concentrations of rifabutin in TBM rabbits at 1 and 3 days of dosing. Plasma was isolated from 0.5 mL of 

whole blood collected from the ear artery at designated time points. Rifabutin was quantified by liquid chromatography-mass 

spectrometry. At all terminal time points blood from each animal was sampled two times, at 3, 6, 10, or 24 h post dosing on 

day 3 and ~10 min thereafter immediately prior tp tissue collection. Color-coded graphs of individual animals are shown.

FIG 2 Rifabutin in most target tissues remains above the critical concentration over the dosing interval. Rabbits having TBM 

with a neurological score of 3 received three daily doses of rifabutin at 15 mg/kg (human-equivalent dose) by oral gavage. 

After the third and final dose, animals were euthanized at 3, 6, 10, and 24 h for drug quantification in tissues and body fluids. 

Connected data points represent individual rabbits.
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in TBM. Furthermore, we did not include a control group of rabbits with rifampin dosing, 
precluding direct comparison in this model.

In summary, human-equivalent doses of rifabutin achieved relatively high concentra
tions at the site of disease in a preclinical model of TBM. Given the potent antituber
culosis activity of rifabutin and equivalent clinical efficacy to rifampin for pulmonary 
tuberculosis, these findings strongly support the evaluation of rifabutin in clinical trials 
for TBM.
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