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Abstract
Road traffic has become the leading source of air pollution in fast-growing sub-Saharan African
cities. Yet, there is a dearth of robust city-wide data for understanding space-time variations and
inequalities in combustion related emissions and exposures. We combined nitrogen dioxide (NO2)
and nitric oxide (NO) measurement data from 134 locations in the Greater Accra Metropolitan
Area (GAMA), with geographical, meteorological, and population factors in spatio-temporal
mixed effects models to predict NO2 and NO concentrations at fine spatial (50 m) and temporal
(weekly) resolution over the entire GAMA. Model performance was evaluated with 10-fold
cross-validation (CV), and predictions were summarized as annual and seasonal (dusty
[Harmattan] and rainy [non-Harmattan]) mean concentrations. The predictions were used to
examine population distributions of, and socioeconomic inequalities in, exposure at the census
enumeration area (EA) level. The models explained 88% and 79% of the spatiotemporal variability
in NO2 and NO concentrations, respectively. The mean predicted annual, non-Harmattan and
Harmattan NO2 levels were 37 (range: 1–189), 28 (range: 1–170) and 50 (range: 1–195) µg m−3,
respectively. Unlike NO2, NO concentrations were highest in the non-Harmattan season (41
[range: 31–521] µg m−3). Road traffic was the dominant factor for both pollutants, but NO2 had
higher spatial heterogeneity than NO. For both pollutants, the levels were substantially higher in
the city core, where the entire population (100%) was exposed to annual NO2 levels exceeding the
World Health Organization (WHO) guideline of 10 µg m−3. Significant disparities in NO2

concentrations existed across socioeconomic gradients, with residents in the poorest communities
exposed to levels about 15 µg m−3 higher compared with the wealthiest (p< 0.001). The results
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showed the important role of road traffic emissions in air pollution concentrations in the
GAMA, which has major implications for the health of the city’s poorest residents. These data
could support climate and health impact assessments as well as policy evaluations in the city.

1. Introduction

Cities in sub-Saharan Africa (SSA) are in an eco-
nomic transition and undergoing significant expan-
sion.With such rapid growth, SSA cities are experien-
cing high levels of air pollution from diverse sources
[1]. The growth is also changing the air pollution
mixture and the relative roles of the major emission
sources. Recent studies suggest that the dominant
emission source of urban air pollution in SSA may
be shifting from household biomass burning [2, 3] to
road traffic [4, 5]. Consequently, while the concen-
trations of fine particulate matter pollution (PM2.5)
are showing signs of plateauing [4], several studies are
reporting steady increases in oxides of nitrogen (NOx)
pollution [5–8], which are markers of traffic emis-
sions in cities. Increasing formal and informal indus-
trial activities as well as household and commercial
use of diesel generators are also common in SSA cities
and contribute substantially to ambient NOx levels.
The distribution of these sources in relation to land
use and socioeconomic factors influences the spatial
patterns of NOx pollution in local communities [4, 5,
9–14]. For cities across the West African sub-region,
seasonal changes in regionalmeteorological paramet-
ers (e.g. mixing layer depth, incident solar radiation
and water vapor mixing ratio) during the dry and
dusty Harmattan may also amplify NOx concentra-
tions from local emissions during this period [5, 11,
12]. Yet, there is a dearth of long-term monitoring
data for understanding trends, space-time variations
and inequalities in combustion related emissions and
exposures at city-scale in SSA, one of the world’s fast-
est urbanizing regions.

Nitrogen dioxide (NO2), the largest component
ofNOx, is associatedwith adverse health impacts such
as inflammation of the airways and impaired lung
function [15, 16]. Along with NOx, NO2 reacts with
other chemicals in the air to form PM and ozone
(O3). These photochemical reactions can also pro-
duce adverse impacts on the environment (e.g. form-
ation of haze, smog, and acid rain). As such, national
governments and international agencies have set
health-based guidelines to reduce NOx emissions.
Furthermore, NO2 is regularly monitored in cities
in high-income countries. This is not the case in
most sprawling cities in SSA, though the vehicle
fleets contain high volumes of older, more polluting
vehicles. Furthermore, because urban growth in SSA
is largely unplanned, places with quality and healthy
living environments are unequally distributed within

cities. Although there are global satellite data on NO2

pollution covering the region [17], they do not cap-
ture the high within-city variability that characterizes
localized emissions and sources in the context of SSA.
To create accountability towards equitable urban liv-
ing environments, local fine-scale data are needed for
regulatory purposes as well as to identify and support
deprived populations and communities. Such data
are equally essential for health and climate impact
assessments at the local community level in an expos-
ure setting that is quite different from those in high-
income country cities [18, 19]. In particular, NOx

data, when combined with increasing data on PM2.5

and black carbon (BC), will deepen our understand-
ing of the shifting emission sources that is happen-
ing in SSA cities that are in economic transition. The
data will also enable SSA cities to design and imple-
ment integrated air quality management schemes to
address growing urban air pollution problems in the
region. Additionally, NO2 emissions serve as a general
proxy for co-emitted pollutants (e.g. carbon monox-
ides and heavy metals) during fossil fuel combustion.
Hence, knowledge of the patterns and concentrations
of NO2 gives added information from the environ-
mental justice perspective.

Previously, we described the levels and patterns of
nitric oxide (NO) and NO2 pollution using year-long
measurement data on NOx (n= 428 weekly samples)
and NO2 (n = 472 weekly samples) from 134 monit-
oring sites in Accra, Ghana [5]. In this paper, we lever-
aged the measurement data to develop empirical (so
called ‘land use regression’) models to map ambient
NO and NO2 concentrations at fine spatiotemporal
scales (weekly at 50 m) over the entire city. Model
predictions were used to derive population expos-
ure distributions and as well to investigate socioeco-
nomic disparities in exposure across the metropolis.
We are aware of only two small studies that mapped
NO2/NO in SSA, but none in a large metropolis like
Accra [20, 21].

2. Methods

2.1. Study area
Accra is one of the largest and fastest-growing metro-
polises inWest Africa.Our studywas conducted in the
Greater Accra Metropolitan Area (GAMA), the cap-
ital of Ghana and home to an estimated six million
residents [22]. GAMAs 1500 km2 area contains mul-
tiple administrative districts, including the city core
and most populous Accra Metropolitan Area (AMA);
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Figure 1.Map of the Greater Accra Metropolitan Area (GAMA) with locations of ‘fixed’ and ‘rotating’ sites with annual
concentrations of (A) NO and (B) NO2. The colors of NO2 concentrations indicate comparison to the new World Health
Organization (WHO) annual air quality guideline of 10 µg m−3. The concentrations at the fixed sites represent annual mean
values, and the rotating sites represent season-adjusted mean values (i.e. an estimated annual means). Major and secondary road
network were from OpenStreetMap [27] (downloaded in 2019).

and the Tema Municipal Area (TMA), the indus-
trial hub and seaport situated east of AMA. Daily
commute in the GAMA is characterized by heavy
traffic congestions, with cars and ‘trotro’ (minibuses
for public transport) alongside pedestrians [23].
There is limited formal bus transit and train ser-
vices. Recently, there is a growing number of sub-
compact cars being used as ride-shares such as Uber
and Bolt, and the use of motorcycle-taxis (‘Okada’) is
on the rise. To fill the insufficient energy access gap
in this growing economy, household and commer-
cial use of diesel generators is commonplace. These
are all sources of NOx emissions in the city. Despite
the economic and technological advancement, there
still exists immense inequalities in income, housing,
infrastructure, and services, which also pattern dis-
parities in environmental pollution within the city.
The GAMA experiences two major seasons: the dry
and dustyHarmattan (November to February), where
north-easterly trade winds blows in mineral dusts
from the Sahara Desert during a stagnant local met-
eorology; and the wet/rainy season (May to October),
generally dominated by local air pollution sources
[4, 5, 11, 12].

2.2. Data sources
2.2.1. NO2 and NOx measurement
Detailed description of the measurement campaign
and site selection can be found elsewhere [5]. Between
April 2019 to June 2020, we collected weekly integ-
rated NO2 and NOx samples at 134 unique sampling
locations using Ogawa passive samplers. The 134 sites
were chosen to cover diverse land use and socioeco-
nomic status (SES) in the GAMA. As frequently used
markers for traffic-related emission, we expected a
high degree of inter- and intra-neighborhood vari-
ations in NOx pollution within GAMA. Thus, our
sampling sites were over-represented in the more

densely populated AMA relative to the rest of the
GAMA, as a reflection of the population, land use and
source features. Ten of the sites were sampled weekly
for one year to capture longer-trend (‘fixed sites’) and
124 sites were sampled for one week each to allow for
wider geographic coverage (‘rotating sites’) (figure 1).
There were some missing data between March and
April 2020, due toCovid-19 lockdownofAccra aswell
as mandatory quarantine for the field team through
contact tracing. While Covid-19 partial lockdown
affected emissions in the city briefly, but our ana-
lysis showed that the levels rapidly returned to pre-
lockdown concentrations in the post-lockdown era5.
Altogether, we collected a total of 428 and 472 weekly
NOx and NO2 samples, respectively, comprising 281
NO2 and 251 NOx samples in the pre-Covid-19 lock-
down, 19 pairs during Covid-19 lockdown, and 50
pairs in the post-Covid-19 lockdown periods.We col-
lected field blank and duplicate samples at 20% of the
rotating sites. All the raw data were blank-corrected,
and the duplicates had good agreement (R2 = 0.98
for NOx; and 0.95 for NO2) [5]. We did not colloc-
ate the Ogawa samplers against a reference NOx/NO2

monitor as they had been well-characterized in field
settings with good agreements [24, 25], including in
similar settings as ours [26]. We estimated NO from
NOx as NO = NOx − NO2. The final weekly estim-
ates were converted using temperature and relative
humidity (RH) of that measurement week. We repor-
ted all results in µg m−3 (1ppb NO2 ≈ 1.88 µg m−3

and 1 ppb NO ≈ 1.23 µg m−3, all the conversion
factors between ppb and µg m−3 were calculated
based on weekly measured temperature and RH) for
easy comparison with other studies and international
health guidelines.

Full description of the NO and NO2 analysis
and concentrations at the monitoring sites is avail-
able elsewhere [5]. In summary, NO and NO2
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concentrations varied spatially (i.e. by land-use fea-
tures) and temporally (by season), with annual mean
for NO2 well above international health-based guid-
ance (figure 1). The measured data were strongly
associated with indicators of road traffic emissions
and meteorological variables.

2.2.2. Predictor variables
We gathered spatial and temporal predictor variables
that reflect emissions and factors related to sources in
the SSA urban environment (table 1).We first created
four buffer sizes (50 m, 100 m, 200 m and 500 m)
around each of the 134 sites. Within each buffer, we
extracted multiple spatial predictor variables related
to traffic (road network) emissions, land use, pop-
ulation, and human activities as described below in
model selection. We used a road network shapefile
from OpenStreetMap [27] (downloaded 2019) to
estimate total length of major and secondary roads;
distance from the monitor to the nearest major and
secondary roads; and counts of bus/trotro station-
s/terminals. Total length of waterways (river, stream,
canal and drain) were also estimated. We used Spot
five imagery (2014) to calculate total area of land
within each buffer that were characterized as com-
mercial/business/industrial; high-density residential;
low-density residential; and peri-urban background.
Normalized difference vegetation index (NDVI) from
Landsat-8 satellite imagery was used to characterize
vegetation within each buffer size. Additionally, we
used the 2010 national census data to compute popu-
lation density and the share of households using bio-
mass in each census EA, the smallest spatial admin-
istrative unit. Further, human activity data, including
restaurants, bars, shops, schools, hospitals, churches,
and mosques were retrieved from Google places in
2020. We could not find any reliable data on trash
burning, fish smoking, generator use, traffic volume,
and industrial emissions.

SSA’s unique periodic changes in meteorology
play an important role in worsening air quality, espe-
cially during the Harmattan season. Thus, we also
considered several temporal predictor variables to
investigate the role of meteorology on NO and NO2.
We measured weather parameters at several sites
using Kestrel 5500 (Nelsen-Kellerman, Pennsylvania,
USA) and computed the averaged mean temperat-
ure, RH, and wind speed for eachmeasurement week.
But the weekly averaged values showed minimal spa-
tial variations across sites, thus, we relied solely on
weather data from a fixed background site as a rep-
resentative site. Using the Global Data Assimilation
System from the National Oceanic and Atmospheric
Administration (NOAA) [32], we computed averaged
median mixing layer depth, median incident solar
radiation, and mean water vapor mixing ratio at the
fixed background site for each measurement week.
Daily rainfall data at the Kotoka international airport

were used to calculate the number of days it rained in
each measurement week.

2.3. Model development
Most previous land use regression models relied
solely on spatial predictors and could not capture
the temporality that is inherent in environmental
exposures [33–38]. In this study, we applied mixed
effects linear regression models to examine the asso-
ciations of weekly NO and NO2 concentrations with
both the spatial and temporal factors [39]. To capture
time-dependent variance, we added calendar-month
and calendar-week as fixed and random effects,
respectively. An indicator for measurement sites was
also included as random effects to account for both
repeated measurements at the fixed sites and site-
specific unmeasured factors.

Like previous studies [40, 41], the weekly ambient
NO andNO2 concentrations atmeasurement site i on
week j is assumed to be a linear function specified as:

NOxij = α0 +β1Xi +β2Metj +β3Mon+ bi + γj + εij

whereNOxij is the concentration ofNOorNO2meas-
ured at location i in week j; α0 is the fixed inter-
cepts, β1, β2, and β3 are the regression coefficients;
Xi is a vector of individual spatial predictor variables
assembled in table 1 at site i; Metj is the meteorology
data in week j; Mon is the calendar month for week j;
bi and γ j are the random intercepts of site and week;
and εij is the error term.

2.3.1. Model selection
Our model selection process was aimed at find-
ing parsimonious and generalizable set of predict-
ors with maximum predictive accuracy. We first con-
ducted univariate analysis for all the predictor vari-
ables (figures S1 and S2). For each spatial variable, we
selected the buffer size with the highest correlation
(Pearson r) with NO and NO2 (figures S3 and S4).
We then used a supervised stepwise forward regres-
sion selection approach to determine the optimal
models. The predictors with the highest adjusted R2

were added sequentially to the model and retained if
our a priori direction of association was confirmed
and there was at least 1% gain in the adjusted R2

(table S1) [35, 42]. Finally, we checked collinearity;
variables with variance inflation factor (VIF) > 3
were removed and the model was rerun. All ana-
lyses andmodel development were implementedwith
the open-source statistical package R version 4.1.2 (R
Project for Statistical Computing). R package ‘lme4’
was used to fit the mixed effects models.

2.3.2. Model validation
A commonly used technique in statistics (or machine
learning) to assess the performance and generaliz-
ability of a newly developed predictive models is to
examine how well the model will perform when pre-
dicting at unseen location [43, 44] (i.e. locations in
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Table 1. Candidate predictor variables available for model selection.

Variables and categories Unit Buffer size (m) Source

Traffic variables OpenStreetMap (2019) [27]
Total length of major roads m 50, 100, 200, 500
Total length of secondary roads m 50, 100, 200, 500
Distance to the nearest major road m —
Distance to the nearest secondary
road

m —

Land use variables World Bank [28] 20 m× 20 m
Commercial/business/industrial m2 50, 100, 200, 500
High-density residential m2 50, 100, 200, 500
Low/medium-density residential m2 50, 100, 200, 500
Peri-urban areas m2 50, 100, 200, 500
Normalized difference vegetation
index (NDVI)

— 50, 100, 200, 500 United States Geological Survey
[29]—Landsat 8 imagery
(30 m× 30 m)

Waterways (total length) m 50, 100, 200, 500 OpenStreetMap [27, 2019]
Counts of building N 50, 100, 200, 500 Maxar/Ecopia.ai [30, 2020]

Population Ghana census (2010) data [31]
Biomass use % 50, 100, 200, 500
Population density pop km−2 50, 100, 200, 500

Human activities Google Places (retrieved in 2020)
Number of restaurants N 50, 100, 200, 500
Number of schools N 50, 100, 200, 500
Presence of bars N 50, 100, 200, 500
Presence of shops N 50, 100, 200, 500

Meteorological variables
Temperature ˚C — Kestrel weather meters
Relative humidity % — Kestrel weather meters
Wind speed m s−1 — Kestrel weather meters
Mixing layer depth m — HYSPLITE model [32]
Solar radiation W km−2 — HYSPLITE model [32]
Water vapor mixing ratio kg kg−1 — HYSPLITE model [32]

N: number.

the GAMA other than the 134 measurement sites).
Thus, the fit and external predictive power of our
final models were evaluated using 10-fold CV [40–
42, 45–47]. First, all the samples were randomly alloc-
ated into 10 subsets, each containing 10% of the data.
Subsequently, by holding out a 10%, the remaining
90%was used to train the model and predict the 10%
hold-out data. The process was repeated so that every
group was used one time in the validation process.
For each iteration, we evaluated model performances
by computing the mean absolute error (MAE), root-
mean-square error (RMSE) as well as R-square (R2)
between the predicted and the measured values. Our
final NO and NO2 models are summarized in table 2,
and their performances in table 3.

Model R2s fixed effects (spatial-invariant) and
random effects (time-varying) variables in the mixed
effects regression. We estimated RMSE as RMSE=√∑n

i=1 (yi−xi)
2

n , where yi is the predicted value, xi is
the observed value; n is the total number of data
points; and MAE as MAE=

∑n
i=1|yi−xi|

n , where yi is
the predicted value, xi is the observed value; n is
the total number of data points. CV. We reported

information separately for the fixed only (‘Fixed’) and
the combined fixed and random ‘Mixed’ components
of the models.

2.3.3. Model prediction, population exposure and
socioeconomic inequalities in exposure

The final models were used to predict weekly NO
and NO2 concentrations at 50 m × 50 m resolution
across the entire GAMA, using st_as_stars() function
in the ‘stars’ package in R. We then generated the
same variables in the final model within each grid.
The model was run for each grid for each calen-
dar week. The weekly predictions were then summar-
ized andmapped as annual and season-specific (non-
Harmattan vs Harmattan) mean concentrations. We
also used the predictions to estimate the share of pop-
ulation in the AMA that were exposed to NO2 con-
centration relative to the World Health Organization
(WHO) guidelines. This was done by spatially over-
laying the predicted NO2 concentration surfaces onto
2010 census EA map and summarizing the predicted
NO2 by the share of population in each EA. We relied
on the 2010 census because Ghana’s 2021 census
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Table 2. Associations of measured NO2 and NO concentrations with spatial and temporal predictor variables in the final linear mixed
models.

NO2 NO

Predictor variables
Buffer
size (m)

Coefficient
(Std. error) Predictor variables

Buffer
size (m)

Coefficient
(Std. error)

Intercept — 40.1 (5.9) Intercept — 61.8 (5.4)
Length of major roada 100 5.6 (2.8) Length of major roada 100 23.4 (3.5)
Length of secondary
roada

200 10.4 (2.4) Length of secondary
roada

50 15.8 (2.7)

NDVIa 50 –13.7 (1.6) Presence of bara 500 3.3 (1.8)
Mean wind speed in
calendar weeka

— –11.0 (1.7) Mean solar radiation in
calendar weeka

— −4.0 (2.1)

Mean RH in a calendar
weeka

— –4.1 (1.4)

Calendar month Calendar month
July 2019 — 28.9 (7.3) July 2019 0 0
August 2019 — 27.7 (7.7) August 2019 — –4.4 (6.0)
September 2019 — 22.2 (7.3) September 2019 — 9.3 (7.4)
October 2019 — 13.4 (6.9) October 2019 — –1.5 (6.4)
November 2019 — 17.7 (6.8) November 2019 — –9.1 (7.2)
December 2019 — 24.4 (8.5) December 2019 — –12.9 (8.9)
January 2020 — 20.1 (11.3) January 2020 — –26.7 (13.2)
February 2020 — 26.9 (7.0) February 2020 — –4.0 (7.7)
March 2020 — 14.5 (7.1) March 2020 — –12.9 (7.0)
April 2020 0 0 April 2020 — –35.3 (11.1)
May 2020 — 12.0 (7.6) May 2020 — –3.5 (7.1)
June 2020 — 17.9 (8.9) June 2020 — 0.3 (8.8)
a Standardized: Continuous variables were standardized by subtracting the mean and dividing by the standard deviation. A 1-point

change in a standardized variable corresponds to a 1 standard deviation increase on the original scale.

Table 3.Model fit and 10-fold cross validation between the predicted and the measured samples.

Model R2

Model Fixed Mixed RMSE (µg m−3) MAE (µg m−3) R2
CV (%)

NO 0.66 0.79 21.7 14.9 0.78
NO2 0.62 0.88 14.6 10.8 0.80

results were not available at the time of this analysis.
Here, we focused on AMA as it is the most urbanized
and densely populated and the commercialized hub
of the GAMA. We chose NO2 for this additional ana-
lysis because it is a key marker for traffic-related
air pollution in cities, and concerns over its adverse
health and environmental impacts have resulted in
national regulations and international guidelines to
minimize population exposures. Unlike NO2, NO
does not have regulatory guidance.

Similarly, we investigated whether NO2 distribu-
tion varies by EA level SES in the AMA. Our measure
of SES was median household consumption estim-
ated from the 2012 Ghana Living Standard survey
combined with the 2010 census, using small area
models. Detailed description of how the area-level
SES was calculated can be found elsewhere [48].
The EAs were divided into SES quintiles (i.e. 20%
of EAs in each group) to represent low-, medium-
low-, medium-, median-high-, and high-SES groups.
The median NO2 levels across the different SES
groups were then compared.We also conducted t-test

to assess the mean difference in the averaged NO2

concentrations between the highest vs lowest SES
groups, using a p-value cut-off of<0.05.

3. Results

3.1. Final models and their performance
Table 2 summarizes the final NO and NO2 mod-
els. The NO model included length of major (within
100 m) and secondary (within 50 m) roads, pres-
ence of bars (within 500 m), and mean solar radi-
ation in a calendar week, which explained 79% of
the variability in measured NO (R2 = 0.79). The
NO2 model included length of major (within 100 m)
and secondary (within 200 m) roads, NDVI (within
50 m), mean wind speed and RH in a calendar week,
explaining 88% of variability in NO2 (R2 = 0.88)
concentrations. CV results showed strong correla-
tion between the predicted and the measured NO
(R2

CV = 0.78) and NO2 (R2
CV = 0.80) concentra-

tions, respectively (figure 2). Both RMSE and MAE
for NO (21.7 and 14.9 µgm−3, respectively) andNO2
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Figure 2. Scatter plots of the measured vs. predicted (A) NO2 and (B) NO concentrations based on 10-fold cross-validation.

Figure 3. Estimated (A) and (B) annual, non-Harmattan (C) and (D), and Harmattan (E) and (F) NO2 and NO concentrations in
the GAMA.

(14.6 and 10.8 µg m−3, respectively) were relatively
small if compared with the range of measured con-
centrations. The VIF values for both models were
<2, suggesting little collinearity among variables in
the final models. Nevertheless, the NO model per-
formed better at concentrations<150µgm−3 than at
higher (>150 µg m−3) concentrations (figure 2(B)).
This could be due to the fewer number of observa-
tions with extremely high concentrations in our data-
set (figure 2(B)).

3.2. Spatial and temporal patterns of NO2 and NO
concentrations

Predicted annual, non-Harmattan, and Harmattan
mean NO2 and NO concentrations are represen-
ted in figure 3, with summary statistics in table 4.
The predicted mean (standard deviation, SD) annual

NO2 concentration for the entire GAMA was 37 (19)
µg m−3 and ranged from less than 10 µg m−3 in
the vegetated peri-urban areas to over 180 µg m−3 in
high traffic areas. The highest NO2 levels were con-
centrated within the city core and along and around
major roads in the AMA and TMA (figures 3(A)–
(E) and 4(A)–(C)). The mean annual NO2 concen-
tration (60 µg m−3) in the more congested AMA was
nearly doubled that of the entire GAMA. Similarly,
the port city district of TMA showed relatively higher
NO2 concentration compared to the entire GAMA
(figure 4(C)). Both AMA and TMA have the highest
vehicular traffic congestions in Ghana.

Predicted NO concentration across the GAMA
showed less spatial heterogeneity but steeper gradi-
ent compared with NO2. The highest concentra-
tions appeared along road networks, with clusters
of relatively high levels in locations with bars

7
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Figure 4. Estimated (A) annual NO2 in the GAMA with zoom in for (B) AMA and (C) TMA.

Table 4. Predicted NO2 and NO concentrations (µg m−3) in the GAMA, AMA and TMA.

Annual Harmattan non-Harmattan

Area Pollutant Mean (SD) Range Mean (SD) Range Mean (SD) Range

GAMA
NO2 37 (19) 1–189 50 (22) 1–195 28 (18) 1–170
NO 34 (23) 24–514 23 (23) 13–503 41 (23) 31–521

AMA
NO2 60 (20) 1.2–179 75 (21) 1.24–195 51 (20) 1–170
NO 55 (42) 24–514 44 (42) 13–503 62 (42) 31–521

TMA
NO2 53 (18) 1–131 68 (20) 1–147 44 (18) 1–122
NO 43 (30) 24–319 32 (30) 13–308 49 (30) 31–325

(figure 3(B)). These results point to traffic as themost
important source of NO emissions in Accra, with
additional contributions from commercial biomass
and/or generator use. NO is known to oxidize to NO2

very quickly, which could explain the steep gradient
in NO concentrations away from the major roads.
At the same time, this reaction could be respons-
ible for the higher NO2 levels in the more urbanized
and industrialized areas of the GAMA. Like NO2, the
annualNO concentrations across the city variedmore
than one order of magnitude, with overall mean of
34 µg m−3 (table 4).

By season, mean NO2 concentrations were higher
in the Harmattan period than the non-Harmattan,
increasing overall by about 80% across GAMA and
between 50%–60% in AMA and TMA (table 4). The
opposite was true for NO, where the levels during the
Harmattan were about 50% lower than in the non-
Harmattan.

3.3. Population exposure to NO2 concentration in
the AMA
The predicted NO2 levels for all residents of AMA
exceeded the WHO health-based guideline of
10 µg m−3, regardless of the season (figure 5). Most
of the population in the AMA (80%) lived in areas
with annual NO2 concentration 5–8 times the recom-
mended guideline (table S2). In the dusty Harmattan
season when pollution was highest, over half (56%)
of the population lived in areas where NO2 con-
centrations were above 80 µg m−3. Though pollu-
tion levels improved during the wet non-Harmattan
period, still almost 80% of the residents experienced
NO2 concentrations 4–7 times the recommended
guideline.

In terms of SES, while exposure in both rich and
poor communities were above the WHO guideline,
there still was a clear gradient in the median NO2

concentrations across the EA SES quintiles in the
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Figure 5. Cumulative densities of the proportion of AMA population living in enumeration areas (EAs) with varying NO2

concentration relative to the WHO guideline, by annual, Harmattan, and non-Harmattan averages. The population data used was
from the 2010 Ghana Census. The vertical black dash/dotted-lines show the previous (40 µg m−3) and the recently revised
(10 µg m−3) World Health Organization (WHO) annual air quality guideline (AQG) for NO2.

Figure 6. Distribution of enumeration area (EA) annual mean NO2 concentrations within quintiles (20% increments) of EA
socioeconomic status (SES) in the Accra Metropolitan Area (AMA). SES: EA median log equivalized household consumption.
The upper and lower limits of the black box represent the interquartile range of the distribution and the horizontal line within the
box represents the median. Each colored point represents an EA average NO2 level (µg m−3).

AMA (figure 6 and table S3). The poorest neigh-
borhoods had statistically significantly higher expos-
ure compared the wealthiest (73 vs 60 µg m−3;
p< 0.001).

4. Discussion

As SSA rapidly urbanizes, air quality in cities will have
major health implications for urban residents. We
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leverage large-scalemeasurement data tomapoutNO
and NO2 concentrations at 50 m spatial and weekly
time resolution over the entire GAMA, one of SSA’s
fastest urbanizingmetropolises. The final models had
high predictive performance and explained much of
the variability in the measured NO and NO2 concen-
trations. Road traffic variables were the most import-
ant spatial predictors in both models, especially for
NO, signifying the role of fresh traffic emissions in
the GAMA. This resulted in relatively higher con-
centrations in the more congested AMA and TMA.
We also found a strong negative correlation between
greenness NDVI and NO2 concentrations in the city,
indicating the potential mitigative effect of vegeta-
tion in reducing NO2 pollution [49]. NDVI in Accra
could be closely linked with SES as wealthier com-
munities tend to have more trees than poorer ones.
Also, trees/green spaces are known to regulate micro-
climate by moderating air temperature and humid-
ity, both of which have significant influence on NO2

formation and retention. Our finding of the negating
role of NDVI points to the need for planting more
trees in this sprawling city. Increasing urban green
spaces in general can contribute to localized improve-
ments in overall air quality, particularly in areas with
high traffic or industrial emissions. For a typical SSA
city, residential biomass fuel use could be an import-
ant emission source for NO and NO2. However,
using the 2010 national census data, neither of our
final models included household biomass use as an
important predictor variable. Interestingly, location
of bars (including restaurants) was predictive of NO
levels in Accra. This could indicate either commercial
biomass use for cooking for sale, the use of disease
generators power generation or the presence of cars
from customers. Time-varying meteorological vari-
ables, including solar radiation (for NO) and wind
speed and RH (for NO2) were also important pre-
dictors. Seasonal changes in these variables produced
opposite effects on NO2 and NO concentrations in
the GAMA. NO2 concentrations were higher in the
hot, dry and dusty Harmattan period than in the
wet/rainy non-Harmattan season. This could poten-
tially be due to more active photochemical and/or
aqueous oxidation favored by themeteorological con-
ditions such as stronger solar radiation, and relatively
high RH [5], thereby enhancing secondary forma-
tion of NO2 from NO. Nonetheless, the entire resid-
ents of the AMA were exposed to NO2 levels exceed-
ing the WHO guideline of 10 µg m−3, regardless of
the season, with the poorest neighborhoods at much
higher risk of exposure than the wealthiest. As Accra
expands, there is a need to understand and intervene
on factors which drive socioeconomic inequalities in
emissions and exposures.

Two studies that empirically mapped NO2 levels
in SSA were conducted in small urban areas in
Ethiopia [20] and Mauritania [21], where the annual
mean concentrations were between 5–10 times lower

than seen in Accra. To our knowledge, this is the first
temporally resolved NO and NO2 models developed
for a major SSA city, thus we could only compare
our models broadly with studies from high-income
regions while noting that both the physical and policy
environments between the two are completely differ-
ent. Further, there are limited space-timeNOxmodels
with which to compare our results. Previous studies
in high-income country cities have identified traffic
as the most important sources of NOx emissions,
just as we found in Accra [34, 50, 51]. While other
combustion sources unique to SSA, such as house-
hold biomass use and trash burning, could repres-
ent non-negligible sources of NOx emissions, our
final models did not include household biomass fuel
use as an important predictor. Similar to our results,
other studies have also demonstrated a strong influ-
ence of climate and photochemistry (e.g. solar radi-
ation, temperature and RH) on NOx emissions [52].
Our model R2s increased by 12% and 5% for NO2

and NO, respectively, following the inclusion of met-
eorological and seasonal variables [40]. Compared
to spatial-only models, our space-time models per-
formed similar to some studies in China [36], Europe
[34, 53], and South Africa, but better than others [37,
38, 54–56].

Based on the newly revised WHO annual air
quality guideline, all residents of AMA were estim-
ated to live in areas where NO2 concentrations were
far above the recommended health-based annual
guideline. Even with the old guideline of 40 µg m−3,
still the exposure of almost the entire AMA’s popu-
lation (98%) did not meet the guideline (table S2).
Other previous studies have also demonstrated a dis-
proportionate share of poor air quality in low-income
neighborhoods when compared to high-income areas
[13, 57–60]. We found a similar trend in NO2 expos-
ure in Accra as well, with much lower concentrations
in the more affluent neighborhoods. This is prob-
ably attributed to the higher traffic congestions and
emissions in poorer communities and among those
who live closer to main roads. Additionally, there
could be a higher share of household and commer-
cial biomass fuel use among low-income neighbor-
hoods but our NO2 model did not show signific-
ant contributions from this source. We acknowledge
that the 2010 census biomass data might be outdated,
but the overall trend in biomass usage in Ghana has
been in decline [61]. Further, substantial disparit-
ies in greenspaces between sparsely populated afflu-
ent neighborhoods and densely populated poor com-
munities could explain the relatively higher pollu-
tion in poorer neighborhoods. Yet, even with such
significant disparity in exposure by SES, the median
NO2 levels in the wealthiest neighborhoods was more
than six times higher than the current WHO annual
guideline. This calls for a broader policy approach
aimed at reducing air pollution emissions across
board.
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In Accra, concentrations of other pollutants like
fine PM2.5 and BC also remain detrimentally high
[4, 62]. When our results are considered in the con-
text of these other pollutants as well as the increas-
ing urban population growth and economic expan-
sion in the city [4, 62], the data call for an urgent need
for equity-focused policy intervention to safeguard
the health of Accra residents. These findings further
highlight the need to address overall air quality in
Accra using an integrated approach with emphasis on
equity to reduce the existing within- and between-
neighborhood exposure disparities. This will require
systematic multisectoral framework that involves
aspects related to road traffic emission reduction,
environmental management, increasing urban green
spaces, improvements to road infrastructure, support
for green transportation and cleaner cooking fuels,
and enforcement of existing air quality regulations.
Our estimates for the non-Harmattan season provide
clearer guide for key emission sources that need to be
included in any air quality management or policy ini-
tiatives for reducing air pollution exposure in Accra
and could serve as a roadmap for other cities in the
West African region.

4.1. Strength and limitations
This is the first fine-scale space-time NO and NO2

models developed for a major SSA city, a place
where economic growth is making road traffic the
dominant source of urban air pollution. We lever-
aged a large city-wide measurement campaign and
provided weekly data over 50 m spatial resolu-
tion collected across a calendar year. The data laid
the foundation for long-term mapping of inequal-
ities in urban air pollution in a major and grow-
ing SSA city and could form the basis for climate
and health impact assessments in the SSA context.
Further, the data could help track policy interven-
tions designed to improve air quality at the city-scale.
Our approach and data sources can be readily replic-
ated in other SSA cities where there is limited long-
term city-wide data, especially on combustion related
pollutants.

Our study has some limitations. We had no
quantitative information on important traffic and
other combustion related variables such as road sur-
face material, traffic volume, diesel generator use,
informal industries, community biomass use, and
trash burning. Some of these data sources are unique
to SSA and might improve the model performance
if available and may have influenced the variable
selection and model performance. Also, the timing
of some predictor variables like land-use classifica-
tion and census population did not align precisely
with the timing of themeasurement campaign, which
may have affectedmodel prediction. Nonetheless, our
models performed as well as those conducted in other
global studies.

5. Conclusion

In addition to PM2.5 pollution, gaseous pollutants
from combustion sources are rising in growing SSA
cities and altering the air pollution mixture. We
used large-scale measurement data to map NO and
NO2 concentrations at fine spatial and temporal
resolution in the Accra metropolis. Model predic-
tions show that NO and NO2 concentrations are
at unhealthy levels in city, with major contribu-
tions from road traffic. We also show that while
the entire city is severely impacted, residents living
in the inner core city, commercial areas, and those
in poorer neighborhoods are at the greatest risk of
exposure. These results, when combined with the
emerging data on fine PM2.5, BC, and noise pollu-
tion in Accra [4, 5, 48, 62–64] have provided com-
prehensive information for broader policy interven-
tion and for evaluating the effectiveness of those
actions to improve air quality in Accra and elsewhere
in SSA.
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