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ABSTRACT

Objective To develop a prediction model for
hypertensive disorders of pregnancy (HDP) and
gestational diabetes mellitus (GDM) in twin pregnancy
using characteristics obtained at the first prenatal
visit.

Methods This was a cross-sectional study using national
live-birth data in the USA between 2016 and 2021. The
association of all prenatal candidate variables with HDP
and GDM was tested on univariable and multivariable
logistic regression analyses. Prediction models were built
with generalized linear models using the logit link
function and classification and regression tree (XGboost)
machine learning algorithm. Performance was assessed
with repeated 2-fold cross-validation and the area under
the receiver-operating-characteristics curve (AUC) was
calculated. A P value < 0.001 was considered statistically
significant.

Results A total of 707 198 twin pregnancies were
included in the HDP analysis and 723 882 twin
pregnancies were included in the GDM analysis. The
incidence of HDP and GDM increased significantly
from 12.6% and 8.1%, respectively, in 2016 to 16.0%
and 10.7%, respectively, in 2021. Factors associated
with increased odds of HDP in twin pregnancy
were maternal age < 20 years or ≥ 35 years, infertility
treatment, prepregnancy diabetes mellitus, non-Hispanic
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Black race, overweight prepregnancy BMI, prepregnancy
obesity and Medicaid as the payment source for delivery
(P < 0.001 for all). Obesity Class II and III more
than doubled the odds of HDP. Factors associated
with increased odds of GDM in twin pregnancy
were maternal age ≤ 24 years or ≥ 30 years, infertility
treatment, prepregnancy hypertension, non-Hispanic
Asian race, maternal birthplace outside the USA and
prepregnancy obesity (P < 0.001 for all). Maternal age
≥ 30 years, non-Hispanic Asian race and obesity Class I,
II and III more than doubled the odds of GDM. For
both HDP and GDM, the performances of the machine
learning model and logistic regression model were mostly
similar, with negligible differences in the performance
domains tested. The mean ± SD AUCs of the final machine
learning models for HDP and GDM were 0.620 ± 0.001
and 0.671 ± 0.001, respectively.

Conclusions The incidence of HDP and GDM in twin
pregnancies in the USA is increasing. The predictive
accuracy of the machine learning models for HDP and
GDM in twin pregnancies was similar to that of the
logistic regression models. The models for HDP and GDM
had modest predictive performance, were well calibrated
and did not have poor fit. © 2024 The Author(s).
Ultrasound in Obstetrics & Gynecology published by
John Wiley & Sons Ltd on behalf of International Society
of Ultrasound in Obstetrics and Gynecology.
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INTRODUCTION

Hypertensive disorders of pregnancy (HDP) and gesta-
tional diabetes mellitus (GDM) complicate close to 10%
and 15%, respectively, of pregnancies worldwide and rep-
resent leading causes of maternal and perinatal mortality
and morbidity1,2. The three major categories of HDP are
chronic hypertension, gestational hypertension (GH) and
pre-eclampsia (PE)3,4. Although the exact pathophysiol-
ogy of GH and PE remains unclear, numerous risk factors
for these conditions have been identified, including
advanced maternal age, history of PE, pre-existing
diabetes mellitus (DM), nulliparity, obesity, renal disor-
ders, immunological disorders and multiple gestation5.
Known risk factors for GDM include GDM in a previous
pregnancy, impaired glucose tolerance, family history of
DM (especially in a first-degree relative), prepregnancy
body mass index (BMI) ≥ 30 kg/m2, excessive gestational
weight gain at 18–24 weeks’ gestation, maternal age
≥ 35 years, previous delivery of an infant with birth
weight ≥ 4000 g and belonging to a racial/ethnic group
with a higher prevalence of Type 2 DM6,7.

The incidence of PE and GH is increased in twin
compared with singleton pregnancies8–11. This difference
can be attributed to an increased maternal inflammatory
response, larger placental mass, maternal cardiovascular
maladaptation and/or higher levels of placental factors12.
However, whether multiple gestation constitutes a risk
factor for GDM is contested; data on the incidence of
GDM in twin compared with singleton pregnancies are
inconsistent between studies, possibly because of a lack
of adjustment for confounders or because twin pregnancy
is not the main exposure13,14.

Several studies have reported using machine learning to
predict PE in singleton pregnancy15–17. However, large
population-based studies quantifying the risk of PE in
twin pregnancy are scarce and there are no risk-prediction
models specific to twin pregnancy18. As twin gestations
have been excluded from most studies or, if included, twin
pregnancy was not the main exposure, there are limited
data on the factors that place a twin pregnancy at risk for
GDM and a paucity of prediction models.

This study aimed to assess the incidence and risk factors
for HDP and GDM in twin pregnancy, and to build
risk-prediction models using data obtained at the first
prenatal visit.

METHODS

Study design

This was a cross-sectional population-based study using
the natality dataset of the USA National Center for Health
Statistics and Centers for Disease Control and Prevention
(CDC). This dataset includes paternal, maternal, prenatal,
labor and obstetric characteristics. It is derived from
the national birth registry and uses the US Standard
Certificate for live birth. This certificate is completed for
every newborn at delivery. The natality dataset does not
include any names and the records are anonymous, so

the study was exempt from Institutional Review Board
appraisal and the need for informed consent was waived.

We included all birth records of twin pregnancies
delivered between January 2016 and December 2021.
We excluded singletons and higher-order pregnancies.
For HDP analysis, we excluded the records of women
with chronic hypertension, and records of women with
prepregnancy DM were excluded from GDM analysis.

Variables and outcomes

The following variables from the CDC dataset obtained at
the first prenatal visit were used to develop the prediction
models for HDP and GDM: year of delivery, maternal age,
maternal birthplace (inside vs outside the USA), maternal
race/ethnicity, education level, eligibility for the Special
Supplemental Nutrition Program for Women, Infants and
Children (WIC)19, prepregnancy BMI, prepregnancy DM,
prepregnancy hypertension, parity, infertility treatment
(including use of fertility-enhancing drugs and in-vitro
fertilization (IVF)), periconception cigarette smoking and
source of payment for delivery. Variables were selected
based on their known clinical relevance to HDP and
GDM. Other variables reported in the CDC database that
were not included in this study were paternal character-
istics, marital status, month of initiation of prenatal care,
number of prenatal visits and infection during pregnancy.
The CDC natality dataset does not document GH and
PE separately, but rather combines them into a single
variable (HDP), which we have reflected in our study.

Maternal age was classified as < 20, 20–24, 25–29,
30–34, 35–39 or ≥ 40 years. Women were also catego-
rized as Hispanic or non-Hispanic, and the latter group
was stratified into White, Black, Asian and other (Ameri-
can Indian or Alaska Native (AIAN) and Native Hawaiian
and other Pacific Islander (NHOPI)).

The CDC dataset records maternal weight at two
timepoints: once before pregnancy and once before
birth. Maternal height was also recorded before preg-
nancy. Hence, prepregnancy BMI was calculated for each
record. Individuals were classified into six categories
based on their BMI: underweight (< 18.5 kg/m2), nor-
mal (18.5–24.9 kg/m2), overweight (25.0–29.9kg/m2),
obesity Class I (30.0–34.9 kg/m2), obesity Class II
(35.0–39.9 kg/m2) and obesity Class III (≥ 40 kg/m2).

The main study outcomes were the development of
HDP and GDM.

Statistical analysis

The incidence of HDP and GDM in twin pregnancies was
calculated for each year from 2016 to 2021. Binomial
regression with a complementary log–log link was
employed to estimate incidence rate ratios with changing
year20. The association of all candidate variables in the
CDC dataset (maternal age, parity, infertility treatment,
education level, prepregnancy DM (for HDP) or hyper-
tension (for GDM), periconception cigarette smoking,

© 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2025; 65: 613–623.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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maternal race/ethnicity, maternal birthplace, prepreg-
nancy BMI, payment source for delivery and eligibility for
WIC) with HDP and GDM was tested on univariable and
adjusted multivariable logistic regression analyses. These
results are reported as odds ratios (OR) and adjusted
odds ratios (aOR), respectively, with 95% CI.

Prediction models were built with generalized linear
models using the logit link function and classification and
regression tree (XGboost) machine learning algorithm. To
identify the most parsimonious model that did not sacrifice
performance, all variables were included initially and
then eliminated in a stepwise manner. Shapley additive
explanation plots were generated for the full model to
observe the individual impact of all variables, which also
guided the elimination process. To prevent overfitting
and allow for realistic assessment of model performance,
repeated 2-fold cross-validation was employed. The
dataset was split in a 1:1 ratio for training and testing over
1000 iterations and training parameters were fine-tuned
to try to avoid the predictive performance shrinkage
exceeding 2% between the training and validation
sets. The performance metrics considered were area
under the receiver-operating-characteristics curve (AUC),
AUC shrinkage between training and validation sets,
calibration intercept, calibration slope and Brier score.
The most parsimonious model that did not sacrifice
overall performance was selected as the final model.
The performance of the final model was reported with
calibration curves, positive and negative predictive values
at specified cut-off points and decision curves21.

The dataset was checked for the presence of implausible
values and extreme outliers. If deemed erroneous, such
implausible values and outliers were treated as missing.
Missingness of data was minimal (< 3%) and was handled
with imputation. Missingness was assumed to occur at
random and values were imputed with multiple chained
equations. The predictor matrix was formed using all
variables (including the outcome) with a correlation
coefficient greater than 0.10 with the imputed variable.
Finally, the imputation convergence was checked and the

density of the imputed variables was cross-checked against
the observed values.

Statistical analysis was performed using RStudio
(RStudio Inc., Boston, MA, USA). A P-value < 0.001
was considered statistically significant due to the large
number of available observations. An online calculator
was designed and deployed using Shiny Applications
(Posit Software, Boston, MA, USA).

RESULTS

Incidence of hypertensive disorders of pregnancy
and gestational diabetes mellitus

Following exclusions, 707 198 twin pregnancies were
included in the HDP analysis and 723 882 twin
pregnancies were included in the GDM analysis. The
incidence of HDP and GDM increased significantly from
12.6% and 8.1%, respectively, in 2016 to 16.0% and
10.7%, respectively, in 2021 (Table 1).

Risk of hypertensive disorders of pregnancy in twin
pregnancy

Univariable and adjusted multivariable logistic regression
analyses for the odds of HDP in twin pregnancy are
summarized in Table 2. Factors associated with increased
odds of HDP were: maternal age < 20 years (aOR,
1.21 (95% CI, 1.15–1.26); P < 0.001) or ≥ 35 years
(35–39 years: (aOR, 1.11 (95% CI, 1.08–1.13);
P < 0.001); ≥ 40 years: (aOR, 1.35 (95% CI, 1.31–1.39);
P < 0.001)); infertility treatment with fertility-enhancing
drugs (aOR, 1.64 (95% CI, 1.60–1.68); P < 0.001)
or IVF (aOR, 1.34 (95% CI, 1.30–1.38); P < 0.001);
prepregnancy DM (aOR, 1.92 (95% CI, 1.81–2.04);
P < 0.001); non-Hispanic Black race (aOR, 1.05 (95% CI,
1.03–1.07); P < 0.001); maternal overweight prepreg-
nancy BMI (aOR, 1.36 (95% CI, 1.33–1.38); P < 0.001)
or prepregnancy obesity (Class I: (aOR, 1.73 (95% CI,
1.70–1.76); P < 0.001); Class II: (aOR, 2.09 (95% CI,

Table 1 Annual incidence of hypertensive disorders of pregnancy (HDP) (gestational hypertension or pre-eclampsia) and gestational
diabetes mellitus (GDM) in twin pregnancies delivering in USA between 2016 and 2021

Year Cases (n) Pregnancies (n) Incidence (%) IRR (95% CI)* P*

HDP
2016 16 125 128 337 12.6 Reference —
2017 16 150 124 731 12.9 1.03 (1.01–1.05) 0.011
2018 16 789 119 933 14.0 1.11 (1.08–1.13) < 0.001
2019 17 113 116 321 14.7 1.16 (1.13–1.18) < 0.001
2020 16 583 108 329 15.3 1.20 (1.18–1.23) < 0.001
2021 17 532 109 547 16.0 1.25 (1.23–1.28) < 0.001

GDM
2016 10 568 130 700 8.1 Reference —
2017 10 834 127 198 8.5 1.05 (1.02–1.08) < 0.001
2018 11 251 122 540 9.2 1.13 (1.10–1.16) < 0.001
2019 10 874 119 351 9.1 1.12 (1.09–1.15) < 0.001
2020 10 987 111 254 9.9 1.21 (1.18–1.24) < 0.001
2021 12 108 112 839 10.7 1.31 (1.28–1.35) < 0.001

*Binomial regression with complementary log–log link. IRR, incidence rate ratio.

© 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2025; 65: 613–623.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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2.04–2.14); P < 0.001); Class III: (aOR, 2.80 (95% CI,
2.74–2.88); P < 0.001)); and Medicaid as the payment
source for delivery (aOR, 1.08 (95% CI, 1.06–1.11);
P < 0.001).

Factors associated with reduced odds of HDP in
twin pregnancy were: parity ≥ 1 (aOR, 0.66 (95% CI,
0.65–0.68); P < 0.001); non-Hispanic Asian race (aOR,
0.80 (95% CI, 0.77–0.83); P < 0.001) and Hispanic race
(aOR, 0.88 (95% CI, 0.86–0.90); P < 0.001); maternal
underweight prepregnancy BMI (aOR, 0.82 (95% CI,
0.78–0.87); P < 0.001); maternal birthplace outside

the USA (aOR, 0.80 (95% CI, 0.78–0.81); P < 0.001);
private insurance as the payment source for delivery
(aOR, 0.80 (95% CI, 0.77–0.85); P < 0.001); and
eligibility for the WIC program (aOR, 0.96 (95% CI,
0.94–0.97); P < 0.001).

Risk of gestational diabetes mellitus in twin pregnancy

Univariable and adjusted multivariable logistic regression
analyses for the odds of GDM in twin pregnancy are sum-
marized in Table 3. Factors associated with an increased

Table 2 Univariable and adjusted multivariable logistic models of population characteristics in twin pregnancies, according to presence or
absence of hypertensive disorders of pregnancy (HDP)

Variable No HDP HDP OR (95% CI) P aOR (95% CI) P

Maternal age
25–29 years 163 924 (86.3) 25 943 (13.7) Reference — Reference —
< 20 years 14 528 (85.1) 2540 (14.9) 1.10 (1.06–1.15) < 0.001 1.21 (1.15–1.26) < 0.001
20–24 years 84 822 (86.3) 13 452 (13.7) 1.00 (0.98–1.02) 0.856 1.02 (1.00–1.05) 0.046
30–34 years 198 687 (86.2) 31 756 (13.8) 1.01 (0.99–1.03) 0.274 1.01 (1.00–1.03) 0.136
35–39 years 116 155 (85.2) 20 242 (14.8) 1.10 (1.08–1.12) < 0.001 1.11 (1.08–1.13) < 0.001
≥ 40 years 28 790 (81.9) 6359 (18.1) 1.40 (1.35–1.44) < 0.001 1.35 (1.31–1.39) < 0.001

Parity
Nulliparous 137 184 (81.7) 30 754 (18.3) Reference — Reference —
Parous 469 722 (87.1) 69 538 (12.9) 0.66 (0.65–0.67) < 0.001 0.66 (0.65–0.68) < 0.001

Infertility treatment
None 540 162 (86.6) 83 474 (13.4) Reference — Reference —
Fertility-enhancing drugs 39 860 (78.9) 10 633 (21.1) 1.73 (1.69–1.77) < 0.001 1.64 (1.60–1.68) < 0.001
IVF 26 884 (81.3) 6185 (18.7) 1.49 (1.45–1.53) < 0.001 1.34 (1.30–1.38) < 0.001

Education level
≥ 12th grade 549 226 (85.5) 93 036 (14.5) Reference — Reference —
< 12th grade 57 680 (88.8) 7256 (11.2) 0.74 (0.72–0.76) < 0.001 0.90 (0.87–0.92) < 0.001

Prepregnancy DM
No 602 453 (85.9) 98 636 (14.1) Reference — Reference —
Yes 4453 (72.9) 1656 (27.1) 2.27 (2.15–2.40) < 0.001 1.92 (1.81–2.04) < 0.001

Periconception cigarette smoking
No 559 283 (85.7) 93 052 (14.3) Reference Reference
Yes 12 417 (85.3) 2146 (14.7) 1.04 (0.99–1.09) 0.108 1.07 (1.02–1.12) 0.005

Maternal race/ethnicity
NH White 331 629 (85.1) 58 257 (14.9) Reference — Reference —
NH Black 107 024 (84.7) 19 370 (15.3) 1.03 (1.01–1.05) 0.001 1.05 (1.03–1.07) < 0.001
NH Asian 34 708 (89.6) 4026 (10.4) 0.66 (0.64–0.68) < 0.001 0.80 (0.77–0.83) < 0.001
Hispanic 114 453 (88.1) 15 507 (11.9) 0.77 (0.76–0.79) < 0.001 0.88 (0.86–0.90) < 0.001
NH other 19 092 (85.9) 3132 (14.1) 0.93 (0.90–0.97) 0.001 0.95 (0.91–0.99) 0.009

Maternal birthplace
Inside USA 482 935 (85.0) 85 431 (15.0) Reference — Reference —
Outside USA 123 971 (89.3) 14 861 (10.7) 0.68 (0.67–0.69) < 0.001 0.80 (0.78–0.81) < 0.001

Prepregnancy BMI
Normal 243 052 (89.2) 29 311 (10.8) Reference — Reference —
Underweight 15 237 (91.4) 1429 (8.6) 0.78 (0.74–0.82) < 0.001 0.82 (0.78–0.87) < 0.001
Overweight 164 239 (86.3) 26 072 (13.7) 1.32 (1.29–1.34) < 0.001 1.36 (1.33–1.38) < 0.001
Obesity Class I 97 549 (83.4) 19 457 (16.6) 1.65 (1.62–1.69) < 0.001 1.73 (1.70–1.76) < 0.001
Obesity Class II 50 530 (80.4) 12 305 (19.6) 2.02 (1.97–2.07) < 0.001 2.09 (2.04–2.14) < 0.001
Obesity Class III 36 299 (75.6) 11 718 (24.4) 2.68 (2.61–2.74) < 0.001 2.80 (2.74–2.88) < 0.001

Payment source for delivery
Self-pay 231 136 (86.9) 34 698 (13.1) Reference — Reference —
Medicaid 331 406 (84.7) 59 921 (15.3) 1.20 (1.19–1.22) < 0.001 1.08 (1.06–1.11) < 0.001
Private insurance 19 383 (90.8) 1969 (9.2) 0.68 (0.64–0.71) < 0.001 0.80 (0.77–0.85) < 0.001
Other 21 526 (87.0) 3205 (13.0) 0.99 (0.95–1.03) 0.678 0.98 (0.94–1.02) 0.392

WIC program
Ineligible 402 424 (85.4) 68 960 (14.6) Reference — Reference —
Eligible 204 482 (86.7) 31 332 (13.3) 0.89 (0.88–0.91) < 0.001 0.96 (0.94–0.97) < 0.001

Data are given as n (%), unless stated otherwise. aOR, adjusted odds ratio; BMI, body mass index; DM, diabetes mellitus; IVF, in-vitro
fertilization; NH, non-Hispanic; OR, odds ratio; WIC, Special Supplemental Nutrition Program for Women, Infants, and Children.

© 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2025; 65: 613–623.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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odds of GDM in twin pregnancy were: maternal age
≤ 24 years (< 20 years: (aOR, 1.33 (95% CI, 1.22–1.46);
P < 0.001); 20–24 years: (aOR, 2.01 (95% CI, 1.84–
2.20); P < 0.001)) or ≥ 30 years (30–34 years: (aOR,
2.69 (95% CI, 2.47–2.94); P < 0.001); 35–39 years:
(aOR, 3.39 (95% CI, 3.10–3.71); P < 0.001); ≥ 40 years:
(aOR, 4.00 (95% CI, 3.65–4.39); P < 0.001)); infer-
tility treatment with fertility-enhancing drugs (aOR,
1.29 (95% CI, 1.26–1.33); P < 0.001) or IVF (aOR,

1.33 (95% CI, 1.28–1.37); P < 0.001); prepregnancy
hypertension (aOR, 1.69 (95% CI, 1.63–1.75);
P < 0.001); non-Hispanic Asian race (aOR, 2.09
(95% CI, 2.03–2.16); P < 0.001); maternal birthplace
outside the USA (aOR, 1.39 (95% CI, 1.36–1.42);
P < 0.001); maternal underweight prepregnancy BMI
(aOR, 1.17 (95% CI, 1.09–1.25); P < 0.001), overweight
prepregnancy BMI (aOR, 1.79 (95% CI, 1.67–1.93);
P < 0.001) or prepregnancy obesity (Class I: (aOR, 2.56

Table 3 Univariable and adjusted multivariable logistic models of population characteristics in twin pregnancies, according to presence or
absence of gestational diabetes mellitus (GDM)

Variable No GDM GDM OR (95% CI) P aOR (95% CI) P

Maternal age
25–29 years 16 724 (96.8) 544 (3.2) Reference — Reference —
< 20 years 95 188 (95.2) 4766 (4.8) 1.54 (1.41–1.69) < 0.001 1.33 (1.22–1.46) < 0.001
20–24 years 179 469 (92.6) 14 442 (7.4) 2.47 (2.27–2.70) < 0.001 2.01 (1.84–2.20) < 0.001
30–34 years 212 439 (90.1) 23 443 (9.9) 3.39 (3.11–3.70) < 0.001 2.69 (2.47–2.94) < 0.001
35–39 years 122 584 (87.4) 17 715 (12.6) 4.44 (4.08–4.85) < 0.001 3.39 (3.10–3.71) < 0.001
≥ 40 years 30 856 (84.4) 5712 (15.6) 5.69 (5.21–6.23) < 0.001 4.00 (3.65–4.39) < 0.001

Parity
Nulliparous 156 017 (90.9) 15 624 (9.1) Reference — Reference —
Parous 501 243 (90.8) 50 998 (9.2) 1.02 (1.00–1.04) 0.098 0.97 (0.95–0.99) 0.009

Infertility treatment
None 583 126 (91.4) 54 895 (8.6) Reference — Reference —
Fertility-enhancing drugs 44 694 (86.0) 7278 (14.0) 1.73 (1.68–1.78) < 0.001 1.29 (1.26–1.33) < 0.001
IVF 29 440 (86.9) 4449 (13.1) 1.61 (1.55–1.66) < 0.001 1.33 (1.28–1.37) < 0.001

Education level
≥ 12th grade 596 473 (90.7) 61 155 (9.3) Reference — Reference —
< 12th grade 60 787 (91.7) 5467 (8.3) 0.88 (0.85–0.90) < 0.001 1.00 (0.97–1.03) 0.910

Prepregnancy hypertension
No 638 579 (91.1) 62 510 (8.9) Reference — Reference —
Yes 18 681 (82.0) 4112 (18.0) 2.25 (2.17–2.33) < 0.001 1.69 (1.63–1.75) < 0.001

Periconception cigarette smoking
Non-smoker 605 113 (90.7) 62 062 (9.3) Reference — Reference —
1–5 per day 13 931 (92.2) 1185 (7.8) 0.83 (0.78–0.88) < 0.001 1.01 (0.95–1.07) 0.722
6–10 per day 17 380 (91.8) 1553 (8.2) 0.87 (0.83–0.92) < 0.001 1.03 (0.97–1.08) 0.359
11–20 per day 17 609 (92.0) 1540 (8.0) 0.85 (0.81–0.90) < 0.001 1.00 (0.95–1.06) 0.976
21–40 per day 3227 (92.0) 282 (8.0) 0.85 (0.75–0.96) 0.010 1.01 (0.89–1.15) 0.824

Maternal race/ethnicity
NH White 362 493 (91.0) 35 791 (9.0) Reference — Reference —
NH Black 123 906 (93.5) 8657 (6.5) 0.71 (0.69–0.73) < 0.001 0.63 (0.62–0.65) < 0.001
NH Asian 31 679 (81.2) 7313 (18.8) 2.34 (2.27–2.40) < 0.001 2.09 (2.03–2.16) < 0.001
Hispanic 118 487 (90.3) 12 795 (9.7) 1.09 (1.07–1.12) < 0.001 1.00 (0.97–1.02) 0.799
NH other 20 695 (90.9) 2066 (9.1) 1.01 (0.96–1.06) 0.642 1.01 (0.96–1.06) 0.647

Maternal birthplace
Inside USA 534 677 (91.6) 48 962 (8.4) Reference — Reference —
Outside USA 122 583 (87.4) 17 660 (12.6) 1.57 (1.54–1.60) < 0.001 1.39 (1.36–1.42) < 0.001

Prepregnancy BMI
Normal 15 868 (94.7) 883 (5.3) Reference — Reference —
Underweight 257 014 (93.7) 17 314 (6.3) 1.21 (1.13–1.30) < 0.001 1.17 (1.09–1.25) < 0.001
Overweight 176 734 (91.2) 17 036 (8.8) 1.73 (1.62–1.86) < 0.001 1.79 (1.67–1.93) < 0.001
Obesity Class I 107 012 (88.7) 13 689 (11.3) 2.30 (2.14–2.47) < 0.001 2.56 (2.38–2.75) < 0.001
Obesity Class II 56 633 (86.1) 9145 (13.9) 2.90 (2.70–3.12) < 0.001 3.46 (3.21–3.72) < 0.001
Obesity Class III 43 999 (83.7) 8555 (16.3) 3.49 (3.25–3.76) < 0.001 4.35 (4.05–4.69) < 0.001

Payment source for delivery
Medicaid 250 826 (91.8) 22 269 (8.2) Reference — Reference —
Private insurance 359 424 (89.9) 40 466 (10.1) 1.27 (1.25–1.29) < 0.001 1.07 (1.04–1.09) < 0.001
Self-pay 20 147 (93.4) 1416 (6.6) 0.79 (0.75–0.84) < 0.001 0.65 (0.61–0.69) < 0.001

WIC program
Ineligible 436 171 (90.5) 45 627 (9.5) Reference — Reference —
Eligible 221 089 (91.3) 20 995 (8.7) 0.91 (0.89–0.92) < 0.001 1.10 (1.08–1.13) < 0.001

Data are given as n (%), unless stated otherwise. aOR, adjusted odds ratio; BMI, body mass index; IVF, in-vitro fertilization; NH, non-
Hispanic; OR, odds ratio; WIC, Special Supplemental Nutrition Program for Woman, Infants, and Children.

© 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2025; 65: 613–623.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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618 Mustafa et al.

(95% CI, 2.38–2.75); P < 0.001); Class II: (aOR, 3.46
(95% CI, 3.21–3.72); P < 0.001); Class III: (aOR, 4.35
(95% CI, 4.05–4.69); P < 0.001)); private insurance as
the payment source for delivery (aOR, 1.07 (95% CI,
1.04–1.09); P < 0.001) and eligibility for the WIC
program (aOR, 1.10 (95% CI, 1.08–1.13); P < 0.001).

Factors associated with reduced odds of GDM in
twin pregnancy were non-Hispanic Black race (aOR,
0.63 (95% CI, 0.62–0.65); P < 0.001) and self-pay as
the payment source for delivery (aOR, 0.65 (95% CI,
0.61–0.69); P < 0.001).

Risk-prediction models for hypertensive disorders
of pregnancy in twin pregnancy

Initially, all variables in the candidate pool were used to
train the largest model for HDP and rank the importance
of each feature. The five most important variables
for the prediction of HDP in twin pregnancy were
prepregnancy BMI, parity, infertility treatment, maternal
birthplace and maternal race/ethnicity (Figure 1a). Among
the tested models, the most parsimonious one that
did not sacrifice performance included maternal age,
parity, IVF, prepregnancy DM and prepregnancy BMI
(Table 4). The mean ± SD AUC, calibration intercept and
slope of the final machine learning model for HDP
were 0.620 ± 0.001, 0.061 ± 0.027 and 1.074 ± 0.015,
respectively. The corresponding values for the logistic
regression model incorporating the same variables were
0.617 ± 0.001, 0.002 ± 0.028 and 1.001 ± 0.015.

The performance of the machine learning and logis-
tic regression models was mostly similar, with neg-
ligible differences in the performance domains tested
(Table 4). Both models were well calibrated and had no

predicted probability regions over which they under- or
overestimated the risk of HDP for the majority of the
population (Table 4, Figure 2a,b). The risk deciles and
predictive accuracy of different probability cut-offs were
assessed (Table 5). Estimated risk corresponded to actual
observed rate of HDP in all categories. Decision curve
analysis showed that the final machine learning model had
higher Net Benefit compared with the treat-all approach
for predicted risks over 10%, with a positive predictive
value of 14.3% and a negative predictive value of 93.0%
(Table 5, Figure 3a).

An online calculator was developed for external
use and validation (https://epsilonkappa.shinyapps.io
/HYPERTIP/).

Risk-prediction models for gestational diabetes mellitus
in twin pregnancy

Initially, all variables in the candidate pool were used to
train the largest model for GDM and rank the importance
of each feature. The five variables with the highest
impact on the predicted probabilities of GDM were
prepregnancy BMI, maternal age, maternal race/ethnicity,
maternal birthplace and infertility treatment (Figure 1b).
Among the tested models, the most parsimonious one
that did not sacrifice performance included maternal
age, maternal race/ethnicity and prepregnancy BMI
(Table 6). The mean ± SD AUC, calibration intercept and
slope of the final machine learning model for GDM
were 0.671 ± 0.001, − 0.011 ± 0.026 and 1.003 ± 0.013,
respectively. The corresponding values for the logistic
regression model incorporating the same variables were
0.650 ± 0.001, 0.003 ± 0.032 and 1.001 ± 0.014.
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Figure 1 Shapley additive explanation (SHAP) plots showing importance of each variable to model output for prediction of hypertensive
disorders of pregnancy (a) and gestational diabetes mellitus (b) in twin pregnancy. BMI, body mass index; DM, diabetes mellitus; WIC,
Special Supplemental Nutrition Program for Women, Infants, and Children.
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Table 4 Internal validation performance metrics for models trained with classification and regression tree (XGboost) and logistic regression
for development of hypertensive disorders of pregnancy in twin pregnancy

Model AUC
AUC

shrinkage* (%)
Calibration

intercept
Calibration

slope Brier score

Classification and regression tree (XGboost)
Maternal age, parity, IVF,

education level, prepregnancy
DM, periconception cigarette
smoking, maternal
race/ethnicity, maternal
birthplace, prepregnancy BMI,
payment source for delivery,
WIC eligibility

0.629 ± 0.001 0.42 ± 0.29 0.176 ± 0.029 1.143 ± 0.018 0.11844 ± 0.00027

Maternal age, parity, IVF,
prepregnancy DM,
prepregnancy BMI†

0.620 ± 0.001 0.23 ± 0.28 0.061 ± 0.027 1.074 ± 0.015 0.11884 ± 0.00028

Maternal age, parity, IVF,
prepregnancy BMI

0.618 ± 0.001 0.16 ± 0.29 0.055 ± 0.026 1.069 ± 0.015 0.11896 ± 0.00028

Parity, IVF, prepregnancy BMI 0.616 ± 0.001 0.12 ± 0.32 0.034 ± 0.033 1.058 ± 0.018 0.11899 ± 0.00024
Random selection 0.501 ± 0.001 7.05 ± 0.51 −1.71 ± 0.192 0.052 ± 0.111 0.12171 ± 0.00025

Logistic regression
Maternal age, parity, IVF,

education level, prepregnancy
DM, periconception cigarette
smoking, maternal
race/ethnicity, maternal
birthplace, prepregnancy BMI,
payment source for delivery,
WIC eligibility

0.623 ± 0.001 −0.01 ± 0.33 0.001 ± 0.031 1.000 ± 0.017 0.11871 ± 0.00030

Maternal age, parity, IVF,
prepregnancy DM,
prepregnancy BMI†

0.617 ± 0.001 −0.02 ± 0.30 0.002 ± 0.028 1.001 ± 0.015 0.11899 ± 0.00027

Maternal age, parity, IVF,
prepregnancy BMI

0.615 ± 0.001 −0.07 ± 0.32 0.006 ± 0.030 1.004 ± 0.018 0.11905 ± 0.00031

Parity, IVF, prepregnancy BMI 0.614 ± 0.001 0.06 ± 0.35 −0.007 ± 0.033 0.997 ± 0.019 0.11913 ± 0.00027
Random selection 0.499 ± 0.001 0.54 ± 0.27 −3.226 ± 1.002 −0.792 ± 0.557 0.12167 ± 0.00031

Data are given as mean ± SD. *Between training and validation sets. †Final model. AUC, area under receiver-operating-characteristics curve;
BMI, body mass index; DM, diabetes mellitus; IVF, in-vitro fertilization; WIC, Special Supplemental Nutrition Program for Woman, Infants,
and Children.

The performance of the machine learning and logistic
regression models was mostly similar, with negligible
differences in the performance domains tested (Table 6).
Both models were well calibrated and had no predicted
probability regions over which they under- or overesti-
mated the risk of GDM for the majority of the population
(Table 6, Figure 2c,d). Predictive accuracy was assessed
for different categories of estimated risk, from ≤ 5%
to > 25% (Table 7). Estimated risk corresponded to
actual observed rate of GDM in all categories. Decision
curve analysis showed that the final machine learning
model had higher Net Benefit compared with the treat-all
approach for predicted risks over 10%, with a positive
predictive value of 15.4% and a negative predictive value
of 94.0% (Table 7, Figure 3b).

An online calculator was developed for external use
and validation (https://epsilonkappa.shinyapps.io/BRAD
-GDT/).

DISCUSSION

Summary of key findings

In this large cross-sectional population-based study using
live-birth data from the USA between 2016 and 2021,

we report that the incidence of HDP and GDM in
twin pregnancies increased from 2016 to 2021. Factors
that more than doubled the risk of HDP and were at
the top of the Shapley additive explanation graph were
prepregnancy obesity Class II and III, whereas, for the
development of GDM, prepregnancy obesity Class I, II
and III, maternal age ≥ 30 years and non-Hispanic Asian
race were the strongest risk factors. The predictive accu-
racy of the machine learning models for HDP and GDM
in twin gestations was similar to that of the logistic regres-
sion models, based on data from the first prenatal visit.
The models for HDP and GDM had modest predictive per-
formance, were well calibrated and did not have poor fit.

Comparison with literature

The American College of Obstetricians and Gynecologists
(ACOG) and the Society for Maternal–Fetal Medicine
support the US Preventive Services Task Force risk assess-
ment and guideline criteria for the prevention of PE1,22,23.
As per ACOG, all twin pregnancies are classified as being
at high risk of developing GH/PE and should receive
aspirin prophylaxis. Similarly, in the UK, the National
Institute for Health and Care Excellence (NICE) classifies

© 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2025; 65: 613–623.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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twin pregnancy as a moderate risk factor for PE and
recommends aspirin prophylaxis if there is more than one
moderate risk factor or one high risk factor24. Studies of
singleton pregnancies have highlighted poor compliance
with treatment and suboptimal performance of screening
for PE when following NICE guidelines (detection
rates of 30.4% and 40.8% for all PE and PE before
37 weeks’ gestation, respectively, at a screen-positive rate
of 10.3%)25 and ACOG guidelines (detection rates of
5% and 2% for PE before 37 weeks’ gestation and term
PE, respectively, at a 0.2% false-positive rate)26.

Modeling approaches that have been used in the
prediction of HDP and GDM include logistic regression,
competing risks and machine learning, using a combi-
nation of maternal characteristics and medical history,
and biophysical and biochemical markers. Existing
models based on logistic regression or a competing-risks
approach have not been validated for the prediction of
HDP in twin pregnancy, because of poor calibration and
overall poor fit27–29. It has also been suggested that these
existing models may not apply to twin pregnancy because
of modified biomarker profiles relative to singletons, as
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Figure 2 Calibration plots for classification and regression tree prediction models (a,c) and logistic regression prediction models (b,d) for
prediction of hypertensive disorders of pregnancy (a,b) and gestational diabetes mellitus (c,d) in twin pregnancy from a single validation set.

, ideal; , logistic calibration; , non-parametric; , grouped observation.

Table 5 Size of risk groups, observed outcome rate within risk groups and positive (PPV) and negative (NPV) predictive values, according to
final machine learning model for prediction of hypertensive disorders of pregnancy (HDP) in twin pregnancy

Risk group
Patients

(n = 707 198)* HDP (n)
Observed

HDP rate (%) PPV (% (95% CI)) NPV (% (95% CI)) Cut-off used

≤ 10% 10 260 (1.5) 720 7.0 — — —
> 10% to ≤ 20% 586 183 (82.9) 72 940 12.4 14.3 (14.2–14.4) 93.0 (92.5–93.5) > 10%
> 20% to ≤ 30% 108 158 (15.3) 25 700 23.8 24.1 (23.8–24.3) 87.7 (87.6–87.7) > 20%
> 30% 2597 (0.4) 932 35.9 35.9 (34.0–37.8) 85.9 (85.8–86.0) > 30%

*Data are given as n (%).

© 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2025; 65: 613–623.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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Figure 3 Decision curves for final models ( ) for prediction of hypertensive disorders of pregnancy (a) and gestational diabetes mellitus
(b) in twin pregnancy. , Treat all; , treat none.

Table 6 Internal validation performance metrics for models trained with classification and regression tree (XGboost) and logistic regression
for development of gestational diabetes mellitus in twin pregnancy

Model AUC
AUC

shrinkage* (%)
Calibration

intercept
Calibration

slope Brier score

Classification and regression tree (XGboost)
Maternal age, parity, IVF,

education level, prepregnancy
hypertension, periconception
cigarette smoking, maternal
race/ethnicity, maternal
birthplace, prepregnancy BMI,
payment source for delivery,
WIC eligibility

0.682 ± 0.001 2.75 ± 0.30 −0.037 ± 0.027 0.993 ± 0.013 0.08015 ± 0.00026

Maternal age, IVF, prepregnancy
hypertension, maternal
race/ethnicity, maternal
birthplace, prepregnancy BMI

0.677 ± 0.001 0.93 ± 0.28 −0.053 ± 0.027 0.984 ± 0.011 0.08041 ± 0.00029

Maternal age, maternal
race/ethnicity, maternal
birthplace, prepregnancy BMI

0.674 ± 0.001 0.41 ± 0.40 −0.015 ± 0.035 1.002 ± 0.016 0.08057 ± 0.00027

Maternal age, maternal
race/ethnicity, prepregnancy BMI†

0.671 ± 0.001 0.37 ± 0.27 −0.011 ± 0.026 1.003 ± 0.013 0.08067 ± 0.00024

Maternal age, prepregnancy BMI 0.648 ± 0.001 0.02 ± 0.31 0.020 ± 0.036 1.016 ± 0.015 0.08153 ± 0.00027
Random selection 0.500 ± 0.002 22.86 ± 1.11 −2.302 ± 0.123 −0.005 ± 0.054 0.08366 ± 0.00031

Logistic regression
Maternal age, parity, IVF,

education level, prepregnancy
hypertension, periconception
cigarette smoking, maternal
race/ethnicity, maternal
birthplace, prepregnancy BMI,
payment source for delivery,
WIC eligibility

0.664 ± 0.001 0.02 ± 0.33 0.000 ± 0.034 0.999 ± 0.015 0.08108 ± 0.00024

Maternal age, IVF, prepregnancy
hypertension, maternal
race/ethnicity, maternal
birthplace, prepregnancy BMI

0.663 ± 0.001 0.01 ± 0.35 0.000 ± 0.036 1.000 ± 0.016 0.08110 ± 0.00024

Maternal age, maternal
race/ethnicity, maternal
birthplace, prepregnancy BMI

0.656 ± 0.001 0.02 ± 0.31 0.002 ± 0.031 1.001 ± 0.014 0.08126 ± 0.00027

Maternal age, maternal
race/ethnicity, prepregnancy BMI†

0.650 ± 0.001 −0.01 ± 0.31 0.003 ± 0.032 1.001 ± 0.014 0.08149 ± 0.00024

Maternal age, prepregnancy BMI 0.648 ± 0.001 −0.07 ± 0.35 0.007 ± 0.035 1.003 ± 0.015 0.08157 ± 0.00029
Random selection 0.502 ± 0.001 0.36 ± 0.29 −1.058 ± 0.856 0.538 ± 0.375 0.08354 ± 0.00034

Data are given as mean ± SD. *Between training and validation sets. †Final model. AUC, area under receiver-operating-characteristics curve,
BMI, body mass index; IVF, in-vitro fertilization; WIC, Special Supplemental Nutrition Program for Woman, Infants, and Children.

© 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2025; 65: 613–623.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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622 Mustafa et al.

Table 7 Size of risk groups, observed outcome rate within risk groups and positive (PPV) and negative (NPV) predictive values, according to
final machine learning model for prediction of gestational diabetes mellitus (GDM) in twin pregnancy

Risk group
Patients

(n = 723 882)* GDM (n)
Observed

GDM rate (%) PPV (% (95% CI)) NPV (% (95% CI)) Cut-off used

≤ 5% 157 172 (21.7) 5778 3.7 — — —
> 5% to ≤ 10% 323 136 (44.6) 23 240 7.2 10.7 (10.7–10.8) 96.3 (96.2–96.4) > 5%
> 10% to ≤ 15% 124 164 (17.2) 14 890 12.0 15.4 (15.3–15.6) 94.0 (93.9–94.0) > 10%
> 15% to ≤ 20% 76 874 (10.6) 12 878 16.8 19.0 (18.8–19.3) 92.7 (92.7–92.8) > 15%
> 20% to ≤ 25% 35 950 (5.0) 7919 22.0 23.1 (22.7–23.5) 91.7 (91.6–91.7) > 20%
> 25% 6586 (0.9) 1917 29.1 29.1 (28.0–30.2) 91.0 (90.9–91.1) > 25%

*Data are given as n (%).

well as the need to use new distributions of biophysical
and biochemical markers according to gestational age at
delivery with PE27,28.

In 2021, Benkő et al. investigated the prediction
of PE in twin pregnancy at 11–13 weeks’ gestation
using a competing-risks model incorporating maternal
factors and serum biomarkers from two prospective
multicenter datasets including 3938 pregnancies, of
which 339 (8.6%) developed PE27. They found that the
best performance of screening for PE was achieved by a
combination of maternal factors, mean arterial pressure,
uterine artery Doppler and placental growth factor. The
detection rate for screening using maternal factors alone,
at a 10% false-positive rate, was 30.6% for delivery with
PE < 32 weeks’ gestation, with a corresponding AUC of
0.702 (95% CI, 0.622–0.782), which is close to that of
our model. For the prediction of PE < 37 weeks’ gestation,
the detection rate, at a 10% false-positive rate, was
24.9%, with an AUC of 0.742 (95% CI, 0.710–0.773).

Of the risk factors assessed in the present study, obesity
had the highest importance on the Shapley additive
explanation graph and, in the case of prepregnancy
obesity Class II and III, was associated with more than
double the risk of HDP and GDM. The pathophysiological
changes underpinning obesity-related cardiovascular risk,
such as insulin resistance, hyperlipidemia, heightened
state of systemic inflammation and oxidative stress, may
be responsible for the increased incidence of HDP and
GDM in pregnant women with obesity, as these factors
can also affect placental development and function30–33.
In the prospective study of Solomon et al. of 14 613
singleton pregnancies, high maternal BMI (≥ 30 kg/m2)
and maternal age were identified as significant risk
factors for GDM7, which is consistent with our findings.
However, unlike their study, which reported higher risks
for GDM across various non-White ethnicities, we found
no effect and reduced odds of GDM in Hispanic and
non-Hispanic Black populations, respectively, potentially
due to our larger sample size and more comprehensive
adjustments for confounding variables.

Our study showed a protective effect of a lower
education level (< 12th grade) on HDP (aOR, 0.90
(95% CI, 0.87–0.92); P < 0.001). This contrasts with
other studies showing that lower education level increases
the risk of gestational hypertension34–37. Our finding
may reflect the influence of other factors related to lower

education level, such as maternal birthplace outside the
USA, which is associated with a lower risk of HDP; this
so-called ‘healthy immigrant’ effect typically results in
health advantages for foreign-born women38.

Clinical and research implications

The findings of this study support using maternal risk fac-
tors for HDP and GDM to guide stratification and coun-
seling in twin pregnancy, highlighting the potential for
preconception changes in modifiable factors, particularly
BMI. Lifestyle interventions, such as prepregnancy weight
management, aimed at high-risk groups can significantly
lower the risk of HDP and GDM. The external perfor-
mance of these prediction models is important, and future
studies should seek to validate our findings. The advan-
tage of machine learning algorithms is that the resulting
calculators can be introduced easily and rapidly in an
automated way, using cloud-based or other online tools.

Strengths and limitations

To the best of our knowledge, this is the largest national
study to evaluate the association of HDP and GDM in
twin pregnancy with simple and universally accessible
maternal characteristics. Large sample sizes for the
development of machine learning and logistic regression
models and a low number of missing records are the main
strengths of our study. Using both logistic regression and
machine learning allowed us to construct a calculator to
predict these conditions in twin pregnancy and to compare
the performance of the two modeling approaches.

Our study has several limitations that should be
acknowledged. We could not ascertain the impact of
aspirin intake on the predictive performance of our
models, which may have led to a spurious decrease in their
predictive performance. A number of risk factors that are
known to be associated strongly with the development of
HDP, such as history of GH or PE in a previous pregnancy,
chronic hypertension, chronic renal disease and systemic
lupus erythematosus, were not available in the CDC
dataset and, therefore, could not be incorporated into the
models. Similarly, some risk factors that are known to be
associated with the development of GDM, such as GDM
in a previous pregnancy, type of treatment (diet or insulin),
previous delivery of an infant with birth weight ≥ 4000 g,

© 2024 The Author(s). Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd Ultrasound Obstet Gynecol 2025; 65: 613–623.
on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
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family history of diabetes and history of polycystic ovary
syndrome, were lacking from the CDC dataset and could
not be included in the analysis. Similarly, we could not
analyze the association of chorionicity in our models,
as relevant data were not available. Another limitation
is the lack of testing of the prediction algorithm in
other populations; we anticipate that adjustments would
need to be made to the algorithm when applied to other
populations.

Conclusions

Our study demonstrates the utility of a novel automated
machine learning approach using low-cost predictors to
estimate the risk of HDP and GDM in women with twin
pregnancy. The predictive performance of the machine
learning model is comparable to that of the logistic
regression model. Clinical risk-scoring approaches are
used currently for risk assessment, but our findings suggest
that machine learning could improve predictive accuracy
and personalize care.
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