Impact of Anatomical and Viability-guided Completeness of Revascularization on Clinical Outcomes in Ischemic Cardiomyopathy

Saad M. Ezad, MBBCh, Margaret McEntegart, PhD, Matthew Dodd, MSc, Matthaios Didagelos, MD, Novalia Sidik, PhD, Matthew Li Kam Wa, MBBS, Holly P. Morgan, MBBCh, Antonis Pavlidis, PhD, Roshan Weerackody, PhD, Simon J. Walsh, MD, James C. Spratt, MD, Julian Strange, MD, Peter Ludman, MD, Amedeo Chiribiri, PhD, Tim Clayton, MSc, Mark C. Petrie, MD, Peter O'Kane, MD, Divaka Perera, MD, on behalf of the REVIVED-BCIS2 investigators

DOI: https://doi.org/10.1016/j.jacc.2024.04.043

Reference: JAC 30949

To appear in: Journal of the American College of Cardiology

Received Date: 22 March 2024

Revised Date: 29 April 2024

Accepted Date: 30 April 2024

Please cite this article as: Ezad SM, McEntegart M, Dodd M, Didagelos M, Sidik N, Li Kam Wa M, Morgan HP, Pavlidis A, Weerackody R, Walsh SJ, Spratt JC, Strange J, Ludman P, Chiribiri A, Clayton T, Petrie MC, O'Kane P, Perera D, on behalf of the REVIVED-BCIS2 investigators, Impact of Anatomical and Viability-guided Completeness of Revascularization on Clinical Outcomes in Ischemic Cardiomyopathy, *Journal of the American College of Cardiology* (2024), doi: https://doi.org/10.1016/j.jacc.2024.04.043.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier on behalf of the American College of Cardiology Foundation.

Guest Associate Editor: James Januzzi, MD

Guest Editor-in-Chief: Harlan M. Krumholz, MD, SM

Impact of Anatomical and Viability-guided Completeness of Revascularization on Clinical Outcomes in Ischemic Cardiomyopathy

Brief Title: Impact of completeness of Revascularization in REVIVED-BCIS2

Saad M. Ezad MBBCh^{a*}, Margaret McEntegart PhD^{b,c*}, Matthew Dodd MSc^d, Matthaios Didagelos MD^b, Novalia Sidik PhD^b, Matthew Li Kam Wa MBBS^a, Holly P. Morgan MBBCh^a, Antonis Pavlidis PhD^e, Roshan Weerackody PhD^f, Simon J. Walsh MD^g, James C. Spratt MD^h, Julian Strange MDⁱ, Peter Ludman MD^j, Amedeo Chiribiri PhD^{e,k}, Tim Clayton MSc^d, Mark C. Petrie MD^l, Peter O'Kane MD^m and Divaka Perera MD^{a,e} on behalf of the REVIVED-BCIS2 investigators

*The first two authors contributed equally

a. British Heart Foundation Centre of Research Excellence at the School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UKb. West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK

c. Columbia University Medical Center, New York, USA

d. Clinical Trials Unit, London School of Hygiene & Tropical Medicine, London, UK

e. Guy's and St Thomas' NHS Foundation Trust, London, UK

f. Barts Health NHS Trust, London, UK

g. Belfast Health and Social Care NHS Trust, Belfast UK

h. St George's, University of London, London, UK

i. University Hospitals Bristol NHS Foundation Trust, Bristol, UK

j. Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK

k. Biomedical Engineering and Imaging Sciences, King's College London, London, UK

1. School of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow

Cardiovascular Research Centre, University of Glasgow, Glasgow, UK

m. University Hospitals Dorset NHS Foundation Trust, Bournemouth

Funding: The trial was funded by the National Institute for Health and Care Research (UK) Health Technology Assessment Program (NIHR 10/57/67) and the present work was supported by the British Heart Foundation (FS/CRTF/21/24118, RE/18/2/34213 and RE/18/6/34217)

Disclosures: The authors have no disclosures including with industry to declare

Address for correspondence: Professor Divaka Perera, St Thomas' Hospital, London, SE1 7EH, UK; divaka.perera@kcl.ac.uk, +442071887188

X Handles: @SaadEzad ; @divaka_perera ; @UKheartresearch ; @DrPeterOKane ; @mbmcentegart

Abstract

Background: Complete revascularization of coronary disease has been linked to improved outcomes in patients with preserved left ventricular (LV) function.

Objectives: To identify the impact of complete revascularization in patients with severe LV dysfunction.

Methods: Patients enrolled in the REVIVED-BCIS2 trial were eligible if baseline/procedural angiograms and viability studies were available for analysis by independent core laboratories. Anatomical and viability-guided completeness of revascularization were measured by the coronary and myocardial revascularization indices (RI_{coro} and RI_{myo}) respectively, where RI_{coro}=[change in BCIS Jeopardy Score (BCIS-JS)] / [baseline BCIS-JS] and RI_{myo}=[number of revascularized viable segments] / [number of viable segments supplied by diseased vessels]. The PCI group was classified as having complete or incomplete revascularization by median RI_{coro} and RI_{myo}. The primary outcome was death or hospitalization for heart failure. **Results:** Of 700 randomized patients, 670 were included. The baseline BCIS-JS and SYNTAX scores were 8 (6 to 10) and 22 (15 to 29) respectively. In those assigned to PCI, median RI_{coro} and RI_{myo} values were 67% and 85%. Compared to the group assigned to optimal medical therapy alone, there was no difference in the likelihood of the primary outcome in those receiving complete anatomical or viability-guided revascularization (HR 0.90, 95% CI 0.62-1.32 and HR 0.95, 95% CI 0.66-1.35 respectively). A sensitivity analysis by residual SYNTAX score showed no association with outcome.

Conclusions: In patients with severe left ventricular dysfunction, neither complete anatomical nor viability-guided revascularization were associated with improved event-free survival compared to incomplete revascularization or treatment with medical therapy alone.

Condensed Abstract

Completeness of anatomical (RI_{coro}) and viability guided revascularization (RI_{myo}) in REVIVED-BCIS2 were assessed by core laboratory analysis. The median RI_{coro} and RI_{myo} achieved were 67% and 85% respectively. Complete revascularization with PCI, whether anatomical (HR 0.90, 95% CI 0.62-1.32) or viability guided (HR 0.95, 95%CI 0.66-1.35), were not associated with a reduction in the primary outcome of death or hospitalization for heart failure as compared with medical therapy. Our findings do not support pursuing complete revascularization in patients with ischemic cardiomyopathy and stable coronary disease.

Key words: Complete revascularization; heart failure; left ventricular dysfunction; percutaneous coronary intervention; stable coronary artery disease

Abbreviations:

BCIS-JS: British Cardiovascular Intervention Society Jeopardy Score CABG: Coronary artery bypass grafting CMR: Cardiovascular magnetic resonance imaging DSE: Dobutamine stress echocardiography PCI: Percutaneous coronary intervention OMT: Optimal medical therapy RI_{coro}: Coronary revascularization index RI_{myo}: Myocardial revascularization index

Introduction

Treating as many diseased major coronary arteries as possible is a cornerstone of contemporary revascularization and the perceived ability to achieve this goal often affects the choice of revascularization method, namely percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG)¹. Incomplete revascularization has been associated with an increased incidence of death, myocardial infarction and need for repeat revascularization has been derived from patients with good left ventricular function. Furthermore, whilst treatment of critical coronary disease can be directly translated to myocardial benefit in patients with preserved left ventricular function, a more nuanced approach needs to be used when evaluating completeness of revascularization in ischemic cardiomyopathy, one that integrates the viability of subtended myocardial territories as well as the severity of coronary disease.

The premise of PCI being beneficial in ischemic cardiomyopathy is based on two key underlying principles. Firstly, that hibernation is an (mal)adaptive state in response to repeated episodes of ischemia. This is designed to preserve myocyte integrity at the expense of contractile function, resulting in viable but dysfunctional myocardium. Secondly, that revascularization may reverse hibernation by relieving supply/demand mismatch, leading to angina relief, recovery in left ventricular function, and improved clinical outcomes ³. Whether the premise of complete revascularization holds true in this context, remains unknown. This pre-specified analysis of REVIVED-BCIS2 therefore seeks to explore the relationship between the extent of core laboratory-adjudicated anatomical- and viability-guided revascularization and outcomes in ischemic cardiomyopathy.

Methods

5

The design and primary results of the REVIVED-BCIS2 (Revascularization for Ischemic Ventricular Dysfunction) trial (NCT01920048) have been previously published ^{4,5}. Briefly, eligible participants with ischemic left ventricular dysfunction (ejection fraction $\leq 35\%$), extensive coronary disease denoted by a British Cardiovascular Interventional Society jeopardy score (BCIS-JS) ≥ 6 and demonstrable viability in ≥ 4 myocardial segments amenable to revascularization, were randomized 1:1 to a strategy of either PCI + OMT (PCI group) or OMT alone (OMT group) at 40 centers in the UK. Whilst complete anatomical revascularization was not mandated in REVIVED-BCIS2, the protocol recommended revascularization of all major proximal coronary vessels and side branches ≥ 2.5 mm subtending viable myocardium. This included vessels with chronic total occlusion (CTO), when specialist CTO operators anticipated a high likelihood of reopening these vessels successfully⁵. Clinical outcomes were adjudicated by a blinded clinical events committee and left ventricular ejection fraction was independently reported by a core laboratory with readers blinded to treatment assignment, outcome data and temporal sequence of the echocardiograms. The trial protocol was approved by the UK Health Research Authority and all participants provided written informed consent.

Pre-PCI BCIS-JS and SYNTAX scores were ascertained from all participants in whom an angiogram was available for analysis by an independent coronary angiography core laboratory (Golden Jubilee National Hospital, Glasgow). For participants assigned to the PCI group, post-PCI BCIS-JS and residual SYNTAX score (rSS) were also calculated following the final planned PCI procedure as reported by investigators. The core laboratory reported lesion severity by visual assessment, with significance defined at \geq 70% luminal stenosis for non-left mainstem stenoses and \geq 50% for left mainstem stenoses for calculation of the BCIS-JS ^{6,7}. Successful revascularization of a vessel was defined as a <30% diameter residual stenosis with normal (TIMI III) flow at the end of PCI. Anatomical completeness of

revascularization was described by the coronary revascularization index (RI_{coro}) calculated as [(Pre-PCI BCIS-JS) - (Post-PCI BCIS-JS)] / [Pre-PCI BCIS-JS] * 100. A sensitivity analysis was preformed using rSS to define anatomical completeness of revascularization, with rSS dichotomized as less than or equal to 8 or greater than 8 ⁸. RI_{coro} was 0 for all participants in the OMT group.

In patients who underwent viability assessment by cardiovascular magnetic resonance imaging (CMR) or dobutamine stress echocardiography (DSE), images were independently analyzed by dedicated core laboratories (CMR core laboratory at King's College London, UK and DSE core laboratory at King's Health Partners, UK) blinded to treatment assignment and outcome data. Myocardial viability was described using the American Heart Association 17 segment model ⁹. For the current analysis, a segment was classified as viable if wall motion was normal at rest, or if dysfunctional at rest, when there was <50% transmural late gadolinium scar on CMR or the presence of contractile reserve on DSE. Segments which did not meet these criteria were classified as non-viable.

AHA myocardial segments were co-registered to a coronary artery based on the highest percentage chance of that segment being subtended by the relevant coronary artery ¹⁰ (Supplemental Figure 1). The status of each AHA myocardial segment was then classified as being supplied by an artery with significant disease and revascularized (REVASC), supplied by an artery with significant disease but not revascularized (NO REVASC) or not supplied by an artery with significant disease (NO DISEASE). The myocardial revascularization index (RI_{myo}) was calculated as (REVASC/(REVASC+NO REVASC)) * 100, limited to the number of viable myocardial segments (Supplemental Figure 2). Participants assigned to OMT were assumed to have an RI_{myo} of 0. Participants in the PCI group who did not have pre and post PCI angiography and a CMR or DSE viability test of sufficient quality for core lab analysis were excluded from this analysis.

7

The primary outcome was a composite of death from any cause or hospitalization for heart failure over all follow-up (minimum follow-up was 24 months). Secondary outcomes were all-cause death, cardiovascular death, hospitalization for heart failure and improvement in left ventricular function at six months (defined as a greater than the median absolute change in left ventricular ejection fraction on echocardiography).

Statistical Analysis

The statistical analysis plan was finalized prior to the lock and unblinding of angiographic core laboratory data. A formal power calculation was not performed for this secondary analysis. A Cox proportional hazards model was constructed to assess the relationship between each of RI_{coro}, RI_{myo} and the primary outcome, adjusted for age, sex, previous heart failure hospitalization, presence of diabetes, chronic renal failure, left ventricular ejection fraction, extent of coronary disease and presence of at least one chronic total occlusion; for RIcoro the model was also adjusted for the extent of non-viable myocardium. The proportionality assumption of Cox models was assessed by visual examination and, for the primary analyses, using Schoenfeld residuals. Results are reported as estimates with corresponding 95% confidence intervals, the widths of which have not been adjusted for multiplicity. Participants in the OMT group without baseline angiography available for core lab analysis were included in the Cox models for RIcoro and RImyo as the RI in these cases was assumed to be 0. Missing values of left ventricular ejection fraction and the adjustment variables (Table S1) were imputed using a multiple imputation model with chained equations that included randomized treatment, age, sex, history of heart failure hospitalization, diabetes, estimated glomerular filtration rate, death during follow-up, hospitalization for heart failure during follow-up, and baseline, 6-month, and 12-month left ventricular ejection fractions. Twenty imputations were performed and effect estimates combined using Rubin's rules

8

RI_{coro} and RI_{myo} were considered as continuous variables and the median values of each also used to dichotomously define complete versus incomplete anatomical and viability-guided revascularization respectively; Kaplan Meier curves were created for each of the latter comparisons.

Logistic regression models were created and adjusted for the same baseline covariates as above to explore the relationship between RI_{coro}, RI_{myo} and improvement in left ventricular function. These analyses were restricted to participants who were alive at six months, with missing ejection fraction values imputed as previously described. Results are presented as mean (standard deviation (SD)) or median (inter-quartile range (IQR)). All analyses were conducted using Stata software, version 17.0 (StataCorp).

Results

Of the 700 participants in REVIVED, 670 were included were included in the anatomical completeness of revascularization analysis (317 assigned to PCI and 353 assigned to OMT), and 619 were included in the viability guided completeness of revascularization analysis (266 PCI group and 353 OMT group) (Figure 1). Baseline clinical, demographic, anatomical and viability characteristics were well matched between the groups (Table 1). Prescription rates of guideline directed medical therapy were similar at baseline and follow up (Table S2).

Anatomical completeness of revascularization

658 participants had baseline coronary angiography available for core lab analysis. The median baseline BCIS-JS and SYNTAX scores were 8 (6-10) and 22 (15-29) respectively. 351 (53%) patients had at least one chronic total occlusion and 340 (52%) had at least one lesion with moderate-severe angiographic calcification. Of the 317 patients assigned to PCI (and included in this analysis), 62 (20%) had at least one CTO successfully treated. In the PCI group, the median post-PCI BCIS-JS was 2 (0-4) representing a median reduction of 6 (2-8) (Table S3) resulting in a RIcoro of 67% (IQR 50-100%) (Table S4). Core lab reported

RI_{coro} showed good agreement with site reported RI_{coro}, with only 6.7% of measurements lying outside the limits of agreement (Figure S4). Patients achieving complete anatomical revascularization tended to be younger, were less likely to have a history of myocardial infarction and had lower baseline BCIS-JS and SYNTAX scores as compared to those who received incomplete revascularization (Table S5).

Compared to OMT alone, complete anatomical revascularization did not reduce the primary outcome (adjusted HR 0.90, 95% CI 0.62 to 1.32, p=0.59) (Figure 2). A sensitivity analysis categorizing patients by rSS also found no difference in primary outcome between those who had a rSS \leq 8 compared to those assigned to OMT alone (HR 1.00, 95% CI 0.69 to 1.44, p>0.99) (Table S6). Similarly, there was no association between achieving complete anatomical revascularization and improvement in left ventricular function (OR 0.94, 95% CI 0.54 to 1.64, p=0.82) or occurrence of any of the other secondary outcomes (Central Illustration, Table S7). When treating Rl_{coro} as a continuous variable in the PCI group only, there appeared to be a reduction in the incidence of the primary outcome with increasing degrees of revascularization (HR 0.92 per 10% increase in Rl_{coro}, 95% CI 0.87 to 0.97, p=0.003) but this association was no longer apparent after adjustment for baseline risk (HR 0.94 per 10% increase in Rl_{coro}, 95% CI 0.88 to 1.01, p=0.10) (Table S8).

Viability guided completeness of revascularization

Amongst the cohort included in this analysis, the median number of segments which were viable and subtended by significant coronary disease was 5 (IQR 3 to 7). In the PCI group 3 (IQR 1 to 6) segments were revascularized per participant yielding a median RI_{myo} of 85% (IQR 60-100%) (Table S4). Complete viability guided revascularization by PCI was not associated with a reduction in the occurrence of the primary outcome (HR 0.95, 95% CI 0.66 to 1.35, p=0.76) (Figure 3) or any of the secondary outcomes (Table S9). No difference was found in the rate of left ventricular improvement in those who achieved complete viability

guided revascularization (OR 1.00, 95% CI 0.58 to 1.73, p >0.99). Similarly to anatomically incomplete revascularization, those who received incomplete viability guided revascularization were older and had more extensive and complex baseline disease, including a higher incidence of left main stem disease (Table S10).

A sensitivity analysis using a late gadolinium transmurality cut-off of 25% to define viability similarly found no interaction with the primary outcome in the group whom achieved complete viability guided revascularization (HR 1.02, 95%CI 0.72 to 1.44, p=0.93) or with any of the secondary outcomes (Table S11). When considered as a continuous variable there was no evidence for an association with the primary outcome per 10% increase in RI_{myo} (unadjusted HR 0.98, 95% CI 0.91 to 1.04, p=0.47; adjusted HR 1.00, 95% CI 0.93 to 1.08, p=0.97) (Table S8).

Quality of life and completeness of revascularization

Baseline summary Kansas City Cardiomyopathy Questionnaire (KCCQ) was lowest amongst those achieving incomplete revascularization (Table S12). As compared with OMT alone, achieving complete anatomical revascularization was associated with a non-significant improvement (adjusted mean difference 4.6, 95% CI -0.2 to 9.5, p=0.06) in KCCQ score at 2 years (Table S12). A similar trend towards improvement was observed with those achieving complete viability-guided revascularization (adjusted mean difference 3.9, 95% CI -0.9 to 8.6, p=0.11).

Discussion

In this pre-specified analysis of REVIVED-BCIS2 utilizing core laboratory analyses of baseline and post-procedural angiograms as well as viability studies, we did not find an association between the extent of anatomical or viability-guided completeness of revascularization and the treatment effect of PCI with respect to the occurrence of death or hospitalization for heart failure, nor the likelihood of left ventricular recovery. Core

11

laboratory-adjudicated RI_{coro} was comparable to previously published site-reported RI_{coro}⁴ and was lower than RI_{myo}, reflecting the large burden of non-viable myocardium, which is a key determinant of which diseased vessels are chosen as targets for revascularization. This also explains why increasing degrees of anatomical revascularization initially appeared to be associated with increased benefit, but this association was no longer evident when the extent of non-viable myocardium was taken into consideration.

The strongest evidence in support of complete revascularization comes from randomized studies of patients with multi-vessel disease presenting with acute coronary syndromes ¹¹⁻¹³. In the COMPLETE trial, the benefit was primarily driven by a reduction in subsequent myocardial infarction as opposed to cardiovascular death, suggesting that the risk relates to the likelihood of atherosclerotic plaque rupture which can in turn be modulated by revascularization ¹³. On the other hand, in the CULPRIT-Shock trial which enrolled patients with acute left ventricular dysfunction following myocardial infarction, multi-vessel PCI was associated with worse outcomes as compared with culprit lesion only PCI, which may reflect the need to balance acute procedural risks against potential long-term benefits ¹⁴. No prospective randomized studies of complete versus incomplete revascularization have been conducted to date in stable coronary artery disease. A post-hoc secondary analysis of the ISCHEMIA trial, reported an apparent reduction in the rate of cardiovascular death and myocardial infarction in those with complete anatomical revascularization, however these differences were no longer significant after adjustment for baseline characteristics ¹⁵. In this sub-study, completeness of revascularization was not randomized but at the discretion of the attending clinicians; patients who received incomplete revascularization were found to be more co-morbid with more extensive and complex coronary disease. Similarly a post-hoc analysis of the patients assigned to the PCI arm of the SYNTAX trial found that patients with a rSS >8 (representing incomplete anatomical revascularization) was associated with an

increased risk of all cause death (35.3% vs 8.5% at 5 years, p<0.001) with a more pronounced effect in the subgroup with impaired LV function ¹⁶, although patients who had a rSS>8 were older, had higher rates of diabetes, peripheral vascular disease and chronic total occlusions resulting in higher baseline SYNTAX and EuroSCOREs. As the patient's baseline risk strongly influences (and is usually inversely related to) the degree of revascularization achieved, such non-randomized comparisons of complete versus incomplete revascularization are heavily confounded and are not fully accounted for by techniques such as propensity matching or modelling. We also found that patients receiving incomplete revascularization had lower baseline KCCQ scores, more comorbidities and more extensive and complex coronary disease. The finding of similar event rates in this cohort, despite having higher baseline risk, provides further indirect evidence that incomplete (anatomical or viabilityguided) revascularization does not confer a prognostic penalty in patients with severe ischemic left ventricular dysfunction.

The distinction between anatomical and functional completeness of revascularization also merits further consideration. In stable coronary syndromes, in patients with preserved left ventricular function, these metrics may be discordant because it is well recognized that there is an imperfect correlation between the anatomical severity of a coronary lesion (most commonly visualized by angiography) and its ability to cause ischemia ¹⁷. There is a growing body of evidence that better clinical outcomes can be achieved with a functional (ischemiaguided) revascularization strategy than one which is based on anatomical (angiographically apparent) coronary artery disease, even though the former usually results in fewer vessels and lesions being revascularized ¹⁸. When treating patients with stable ischemic cardiomyopathy, the viability of subtended myocardium is a unique consideration. Only critically diseased vessels that subtend viable myocardium are usually considered for revascularization, as this is believed to be the primary substrate for regional ischemic ventricular dysfunction, whilst

13

there is no evidence that revascularization of scarred and non-viable regions is of benefit. In order to capture these specific goals, we have used a novel measure of viability-guided revascularization, the myocardial revascularization index (RI_{myo}), which expresses completeness of revascularization in relation to the extent of viable myocardium that is supplied by diseased coronary arteries. By this measure, the degree of viability-guided revascularization achieved in the PCI arm of REVIVED was high (approximately 85%) but, we found no evidence that complete viability-guided revascularization provided benefit above incomplete revascularization or OMT alone. These findings suggest that, in established ischemic cardiomyopathy, the risk of subsequent adverse events arises from the state of the myocardium rather than plaque rupture and also that reversal of advanced hibernation cannot be achieved by revascularization alone. These data corroborate the REVIVED viability analysis which demonstrated that the key determinant of clinical outcomes and ventricular recovery was the extent of non-viable myocardium ¹⁹.

Study limitations

The present analysis does have some limitations to consider. Firstly, we did not randomize to a strategy of complete versus incomplete revascularization and hence our results are prone to selection bias, that has affected other observational studies in this arena. However, the finding of similar event rates in those who had complete versus incomplete revascularization, despite a more adverse risk profile in the latter, adds further weight to our conclusion, that completeness of revascularization does not affect outcomes in this population. Secondly, coregistration of AHA segments to a coronary vessel territory was standardized based on coronary dominance. An approach customized to individual coronary anatomy may have allowed improved accuracy of co-registration, but would be prone to subjectivity and hence be less reproducible. Third, for simplicity of analysis and presentation, we used a binary classification of complete vs incomplete even though a spectrum of revascularization exists.

14

However, our findings were congruent even when RI_{coro} and RI_{myo} were analyzed as continuous variables. Fourth, we did not systematically capture intracoronary physiology and imaging data and hence the core laboratory analysis is purely based on visual assessment of angiograms, whereas these data will have been used by clinicians to inform the BCIS-JS calculation and to guide management of patients assigned to PCI, as recommended by the trial protocol. Finally, we only assessed revascularization with PCI. CABG represents a fundamentally different method of achieving revascularization which might be associated with different outcomes.

Conclusion

This study does not show a difference in event-free survival or frequency of improved left ventricular function in patients with stable coronary disease and severe impairment of left ventricular function, who were assigned to PCI and subsequently received complete revascularization, compared to those assigned to PCI but received incomplete revascularization or those assigned to OMT alone. This finding is consistent whether completeness of revascularization was classified by the overall angiographic burden of coronary disease, or the extent of revascularization of viable myocardium.

Perspectives

Competency in Medical Knowledge: In patients with severe ischemic left ventricular dysfunction, complete revascularization by PCI, compared to incomplete revascularization, did not reduce the incidence of death or heart failure hospitalization.

Translational Outlook: Randomized trials are needed to clarify the impact of complete revascularization compared to incomplete revascularization by PCI in patients with stable coronary artery disease.

...ou by PCI in patie

References

- Neumann FJ, Sousa-Uva M, Ahlsson A et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019;40:87-165.
- Garcia S, Sandoval Y, Roukoz H et al. Outcomes after complete versus incomplete revascularization of patients with multivessel coronary artery disease: a meta-analysis of 89,883 patients enrolled in randomized clinical trials and observational studies. J Am Coll Cardiol 2013;62:1421-31.
- 3. Ryan M, Morgan H, Chiribiri A, Nagel E, Cleland J, Perera D. Myocardial viability testing: all STICHed up, or about to be REVIVED? Eur Heart J 2022;43:118-126.
- Perera D, Clayton T, O'Kane PD et al. Percutaneous Revascularization for Ischemic Left Ventricular Dysfunction. N Engl J Med 2022;387:1351-1360.
- Perera D, Clayton T, Petrie MC et al. Percutaneous Revascularization for Ischemic Ventricular Dysfunction: Rationale and Design of the REVIVED-BCIS2 Trial: Percutaneous Coronary Intervention for Ischemic Cardiomyopathy. JACC Heart Fail 2018;6:517-526.
- De Silva K, Morton G, Sicard P et al. Prognostic utility of BCIS myocardial jeopardy score for classification of coronary disease burden and completeness of revascularization. Am J Cardiol 2013;111:172-7.
- Perera D, Stables R, Booth J, Thomas M, Redwood S, Investigators B-. The balloon pump-assisted coronary intervention study (BCIS-1): rationale and design. Am Heart J 2009;158:910-916 e2.
- Genereux P, Palmerini T, Caixeta A et al. Quantification and impact of untreated coronary artery disease after percutaneous coronary intervention: the residual SYNTAX (Synergy Between PCI with Taxus and Cardiac Surgery) score. J Am Coll Cardiol 2012;59:2165-74.

- 9. Cerqueira MD, Weissman NJ, Dilsizian V et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002;105:539-42.
- Ortiz-Perez JT, Rodriguez J, Meyers SN, Lee DC, Davidson C, Wu E.
 Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging 2008;1:282-93.
- Wald DS, Morris JK, Wald NJ et al. Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med 2013;369:1115-23.
- 12. Gershlick AH, Khan JN, Kelly DJ et al. Randomized trial of complete versus lesiononly revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: the CvLPRIT trial. J Am Coll Cardiol 2015;65:963-72.
- Mehta SR, Wood DA, Storey RF et al. Complete Revascularization with Multivessel PCI for Myocardial Infarction. N Engl J Med 2019;381:1411-1421.
- Thiele H, Akin I, Sandri M et al. PCI Strategies in Patients with Acute Myocardial Infarction and Cardiogenic Shock. N Engl J Med 2017;377:2419-2432.
- Stone GW, Ali ZA, O'Brien SM et al. Impact of Complete Revascularization in the ISCHEMIA Trial. J Am Coll Cardiol 2023;82:1175-1188.
- 16. Farooq V, Serruys PW, Bourantas CV et al. Quantification of incomplete revascularization and its association with five-year mortality in the synergy between percutaneous coronary intervention with taxus and cardiac surgery (SYNTAX) trial validation of the residual SYNTAX score. Circulation 2013;128:141-51.

- 17. Tonino PA, Fearon WF, De Bruyne B et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 2010;55:2816-21.
- Tonino PA, De Bruyne B, Pijls NH et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213-24.
- Perera D, Ryan M, Morgan HP et al. Viability and Outcomes With Revascularization or Medical Therapy in Ischemic Ventricular Dysfunction: A Prespecified Secondary Analysis of the REVIVED-BCIS2 Trial. JAMA Cardiol 2023;8:1154-1161.

Johnal Preve

Figure Legends

Figure 1. Study consort diagram. 18 patients in the OMT arm had missing baseline angiography but were included in completeness of revascularization analyses as the revascularization index was assumed to be 0. CMR – cardiac magnetic resonance imaging, FDG-PET fluorodeoxyglucose positron emission tomography, OMT – optimal medical therapy, PCI – percutaneous coronary intervention

Figure 2. Anatomical completeness of revascularization vs OMT. Kaplan-Meier plot of the primary outcome (death or hospitalization for heart failure). The presented HR for comparisons are adjusted. Incomplete AR vs OMT: Unadjusted HR = 1.13 (95% CI 0.85 to 1.51), p=0.40. Complete AR vs OMT: Unadjusted HR = 0.75 (95% CI 0.54 to 1.06), p=0.10. AR – anatomical revascularization, CI – confidence interval, HR – hazard ratio, OMT – optimal medical therapy

Figure 3. Viability guided completeness of revascularization vs OMT. Kaplan-Meier plot of the primary outcome (death or hospitalization for heart failure). The presented HR for comparisons are adjusted. Incomplete VGR vs OMT: Unadjusted HR = 0.93 (95% CI 0.67 to 1.30), p=0.68. Complete VGR vs OMT: Unadjusted HR = 0.80 (95% CI 0.56 to 1.13), p=0.20. CI – confidence interval, HR – hazard ratio, OMT – optimal medical therapy, VGR – viability guided revascularization

Figure 4. Primary and secondary outcomes for complete revascularization

Forest plot presenting the treatment effect of complete anatomical and viability guided revascularization on primary and pre-specified secondary outcomes. AR – anatomical revascularization, CI – confidence interval, CV – cardiovascular, HHF – hospitalization for heart failure, LV – left ventricle, VGR – viability guided revascularization

Central Illustration. Completeness of Revascularization in REVIVED-BCIS2

Core lab analyzed coronary angiography and cardiac magnetic resonance imaging were used to define anatomical and viability guided completeness of revascularization. Primary and secondary outcomes are presented for those achieving complete revascularization vs OMT. CV- cardiovascular, HHF – hospitalization for heart failure, LV – left ventricle, OMT – optimal medical therapy, RI_{coro} – coronary revascularization index, RI_{myo} – myocardial revascularization index

Journal Prevention

Table 1. Baseline characteristics of participants in anatomical and viability guided

completeness of revascularization analyses

(N=700) (N=670) analysis (N=619) Ag, mean (SD), years 652.4 ± 9.1 692.2 ± 9.1 693.1 ± 9.0 Male sex (%) 541.4 (8.7.) 587.4 (87.5) 544.4 (87.9) Body-mass index (IGR) 220.0 (2.4 r to 31.7) 23.1 (2.4 s to 32.0) 23.4 (2.4 s to 32.0) Diabetec (%) 230.1 (2.4 r to 31.7) 25.1 (2.4 s to 32.0) 26.4 (2.4.0) Uppertension (%) 331 (5.5) 37.6 (5.5) 3.48 (6.5.1) Current or previous smoker (%) 44 (12.0) 490 (73.1) 454.(73.3) Cerrethorwascular disease (%) 44 (12.0) 490 (73.1) 454.(73.8) Rate (%) ⁴ 60.03 61.03 60.03 61.01 Rate (%) ⁴ 60.03 60.03 60.03 60.03 Make duther on not reported 11.1.61 10.1.61 10.1.61 Make duther on not reported 233.(33.3) 221.03.01 123.(25.8) History of myocardial infraction (%) 34 (20.9) 33.4 (20.3) 124.1 (20.5) Previous C(%) 142.(20.3) 137.(20.5) 124.6 (20.5) CS Angina		REVIVED trial	Anatomical CoR analysis	Viability-guided CoR
Image Image Image Image Image Ag, mean (SD), years 6614 (S7.7) 587 (87.6) 544 (87.9) Body-mass index (IQR) 28.0 (24.7 to 31.7) 28.1 (24.9 to 31.9) 28.1 (24.9 to 31.7) Body-mass index (IQR) 28.0 (24.7 to 31.7) 28.1 (24.9 to 31.9) 28.0 (24.3 to 32.0) Unrent or previous sonder (%) 530 (52.9) 378 (56.5) 348 (66.3) Current or previous sonder (%) 501 (72.9) 490 (73.1) 454 (73.3) Carrent or previous sonder (%) 541 (12.0) 61 (12.1) 70 (11.3) Peripheral vascular disease (%) 49 (13.4) 60 (13.4) 85 (13.7) Race (%) 60 (90.9) 61 (9.9) 61 (9.0) Black 6 (9.0) 66 (90.4) 563 (91.0) History of myocardial infarction (%) 322 (52.3) 322 (52.3) History of myocardial infarction (%) 323 (33.3) 221 (33.0) 221 (92.8) Previous PC (%) 444 (20.3) 133 (4.9) 31 (4.9) 1 16 (66.6) 448 (67.2) 418 (67.9) 1 126 ((N=700)	(N= 670)	analysis
Ag. mean (SD), years 69.4 ± 9.1 69.2 ± 9.1 69.1 ± 9.0 Male sex (%) S64.(87.7) S68.(76.5) S44.(87.9) Dabetes (%) 28.0 (24.7 to 31.7) 28.1 (24.9 to 31.9) Z8.1 (24.9 to 32.0) Dabetes (%) S98 (41.3) Z77 (41.3) Z60 (24.0 Hypertension (%) S98 (55.9) 378 (55.5) S48 (56.5) Carrent or previous snoker (%) S91 (57.9) 390 (73.1) 454 (73.3) Carrent or previous snoker (%) S94 (24.0) S91 (23.4) S91 (23.7) Paripheral vascular disease (%) S44 (27.0) A7 (7.0) 40 (5.5) Back 6 (0.9) 6 (1.0) Mate, 54 (9.0.6) 66 (0.9) 65 (3.1) Miked, other on not reported 11 (1.6) 11 (1.6) 10 (1.5) History of myocardial infarction (%) 232 (25.3) 232 (4.9) 33 (4.9) 31 (4.9) Previous PCI (%) 142 (20.3) 136 (20.3) 121 (1.9.5) 14 (7.9) Carrent or heart faiture in prior 2 years (%) 233 (3.3) 221 (3.0) 123 (4.9) S10 for theart faiture in prior 2 years (%) </th <th></th> <th></th> <th></th> <th>(N=619)</th>				(N=619)
Male sex (%) 614 (87.7) 587 (87.6) 544 (87.9) Body-mass index (IQR) 28.0 (24.7 to 31.7) 28.1 (24.9 to 31.9) 28.1 (24.9 to 31.0) Diabetes (%) 391 (55.9) 378 (56.5) 348 (56.3) Current or previous somber (%) 510 (72.9) 490 (73.1) 454 (73.3) Cerebrovascular disease (%) 84 (12.0) 81 (12.1) 70 (11.3) Peripheral vascular disease (%) 94 (13.4) 90 (13.4) 85 (13.7) Race (%) 44 (7.0) 47 (7.0) 40 (6.5) Black 66 (0.9) 6 (0.9) 6 (1.0) Mixed, other or not reported 11 (1.6) 11 (1.6) 10 (1.6) White 634 (00.6) 656 (03.4) 556 (31.1) 327 (53.1) Hospitalization for heart failure in prior 2 years (%) 233 (33.3) 221 (33.0) 213 (34.4) Previous CAG6 (%) 34 (4.9) 33 (4.9) 31 (50.0) CS Angina Class - - - - 0 143 (20.5) 137 (20.5) 126 (20.5) 126 (20.5) 1	Ag, mean (SD), years	69.4 ± 9.1	69.2 ± 9.1	69.1 ± 9.0
Body-mass index (IQR) 28.0 (24.7 to 31.7) 28.1 (24.9 to 31.9) 28.1 (24.9 to 32.0) Diabetes (%) 289 (41.3) 277 (41.3) 260 (42.0) Hypertension (%) 5310 (72.9) 3478 (65.5) 348 (56.3) Current or previous smoker (%) 84 (12.0) 81 (12.1) 70 (11.3) Peripheral vacular disease (%) 94 (12.4) 90 (13.4) 8 (51.7) Rate (%) ^A 60 (9.9) 6 (0.9) 6 (1.0) Asian 46 (7.0) 47 (7.0) 40 (65.) Black 6 (0.9) 6 (0.9) 6 (1.0) Mixed, other or not reported 11 (1.6) 11 (1.6) 10 (1.6) White 634 (00.6) 600 (90.4) 56 (9.0) History of myocardial infaction (%) 327 (52.3) 326 (33.1) 327 (52.8) Previous FCI (%) 142 (20.3) 136 (20.3) 121 (15.9) Previous FCI (%) 142 (20.5) 137 (20.5) 126 (15.9) CS Angina Class 70 (10.5) 6 (10.9) 11 (1.8) 1 14 (2.0) 121 (18.2) 11 (1.8)	Male sex (%)	614 (87.7)	587 (87.6)	544 (87.9)
Diabetes (%) 228 (4.3) 277 (4.3) 226 (4.2) Hypertension (%) 331 (55.9) 378 (56.5) 348 (56.3) Current or previous smoker (%) 484 (12.0) 81 (12.1) 454 (7.3) Cerebrowascular disease (%) 94 (13.4) 90 (13.4) 85 (13.7) Race (%) 44 (12.0) 81 (12.1) 70 (11.3) Peripheral vascular disease (%) 94 (13.4) 90 (13.4) 85 (13.7) Race (%) 44 (12.0) 47 (7.0) 40 (5.5) Black 60 (0.9) 6 (0.9) 6 (1.0) Mittee other on treported 11 (1.5) 11 (1.5) 10 (1.5) White 610.9.0 6 (3.3) 322 (53.1) 322 (53.2) Hospitalization for heart failure in prior 2 years (%) 233 (33.3) 122 (13.3) 121 (19.5) Previous CAB (%) 34 (4.9) 33 (4.9) 31 (5.0) 12 (19.5) CS Angina Class 14 (2.0) 137 (0.5.5) 61 (9.9) 1 14 (2.0) 12 (1.8) 11 (1.8) 4 10.1.1 0 (0.0)	Body-mass index (IQR)	28.0 (24.7 to 31.7)	28.1 (24.9 to 31.9)	28.1 (24.9 to 32.0)
iypertension (%) 334 (56.3) 348 (56.3) 348 (56.3) Current or previous smoker (%) 510 (72.9) 490 (73.1) 454 (73.3) Cerebrovascular disease (%) 84 (12.0) 81 (12.1) 70 (11.3) Peripheral vascular disease (%) 94 (13.4) 90 (13.4) 85 (13.7) Race (%) - - - Asian 49 (7.0) 6 (0.9) 6 (0.9) 6 (1.0) Black 6 (0.9) 6 (0.6) 6 (0.6) 6 (0.6) White 634 (90.6) 666 (90.4) 563 (91.0) History of myocardial infraction (%) 322 (53.3) 221 (13.0) 213 (34.4) Previous PCI (%) 142 (20.3) 136 (20.3) 121 (19.5) Previous CAGG (%) 324 (9.9) 31 (4.9) 31 (5.0) CS Angina Class - - - Q 143 (20.5) 137 (20.5) 16 (9.9) 1 143 (20.5) 137 (20.5) 16 (9.9) 1 120 (10.1) 100.0) 0 (0.0) NYHA Class -	Diabetes (%)	289 (41.3)	277 (41.3)	260 (42.0)
Current or previous smoker (%) 510 (72.9) 400 (73.1) 454 (73.3) Cerebroxscular disease (%) 84 (12.0) 81 (12.1) 70 (11.3) Peripheral vascular disease (%) 94 (13.4) 90 (13.4) 85 (13.7) Race (%) ^P - - - Asian 94 (70.0) 47 (7.0) 40 (6.5) Black 6 (0.9) 6 (0.9) 6 (1.0) Mixed, other or not reported 11 (1.6) 11 (1.6) 10 (1.6) White 6 (0.90.4) 563 (91.0) - History of myocardial infarction (%) 372 (53.1) 336 (53.1) 372 (58.3) Previous CA66 (%) 34 (4.9) 33 (4.9) 31 (5.0) CCS Angina Class - - - 0 464 (66.6) 448 (67.2) 148 (67.9) 1 142 (02.3) 137 (20.5) 16 (9.9) 2 75 (10.8) 70 (10.5) 61 (9.9) 1 12 (1.1) 11 (1.8) 11 (1.8) 4 10.1 0 (0.0) 0 (0.0)	Hypertension (%)	391 (55.9)	378 (56.5)	348 (56.3)
Genebrowscular disease (%) 94 (12.0) 81 (12.1) 70 (11.3) Peripheral vascular disease (%) 94 (13.4) 90 (13.4) 85 (13.7) Race (%) 49 (7.0) 47 (7.0) 40 (6.5) Black 66 (0.9) 6 (1.0) Mol (6.5) Black 61 (1.6) 11 (1.6) 10 (1.6) White 634 (90.6) 606 (90.4) 553 (91.0) History of myocardial infarction (%) 372 (53.3) 322 (13.3.0) 221 (33.0) 213 (3.4.4) Previous CABG (%) 142 (20.3) 136 (20.3) 121 (19.5) 126 (20.5) CS Angina Class	Current or previous smoker (%)	510 (72.9)	490 (73.1)	454 (73.3)
Peripheral vascular disease (%) 94 (13.4) 90 (13.4) 85 (13.7) Race (%)*	Cerebrovascular disease (%)	84 (12.0)	81 (12.1)	70 (11.3)
Race (%)*	Peripheral vascular disease (%)	94 (13.4)	90 (13.4)	85 (13.7)
Asian 49 (7.0) 47 (7.0) 40 (6.5) Black 6 (0.9) 6 (0.9) 6 (1.0) Miked, other or not reported 11 (1.6) 11 (1.6) 10 (1.6) White 634 (90.6) 656 (90.4) 553 (91.0) History of myocardial infarction (%) 323 (33.3) 221 (33.0) 213 (34.4) Previous CA6G (%) 34 (4.9) 33 (4.9) 31 (5.0) CCS Angina Class 75 (10.8) 77 (10.5) 126 (20.5) C CS Angina Class 75 (10.8) 70 (10.5) 11 (1.8) 1 143 (20.5) 137 (20.5) 126 (20.5) 2 75 (10.8) 70 (10.5) 61 (9.9) 3 14 (2.0) 12 (1.8) 11 (1.8) 4 10.1 0 (0.0) 0 (0.0) NYHA Class 17 (24.7) 153 (24.5) 145 (23.6) II 126 (18.1) 121 (18.2) 115 (18.7) II 126 (18.1) 121 (18.2) 145 (23.6) IV 10 (1.4) 8 (1.2) 7 (1.1) Ca	Race (%) ^a			
Black 6 (0.9) 6 (0.9) 6 (0.9) 6 (1.0) Mixed, other on to reported 11 (1.6) 11 (1.6) 10 (1.6) Mixed, other on not reported 634 (90.6) 606 (90.4) 553 (91.0) History of myocardial infarction (%) 372 (53.1) 356 (53.1) 327 (52.8) Hospitalization for heart failure in prior 2 years (%) 233 (33.3) 221 (33.0) 213 (34.4) Previous CAG6 (%) 34 (4.9) 33 (4.9) 31 (6.0) 221 (35.0) 212 (19.5) Previous CAG6 (%) 34 (4.9) 33 (4.9) 31 (5.0) 221 (20.5) 23 (20.5) 21 (20.5) </td <td>Asian</td> <td>49 (7.0)</td> <td>47 (7.0)</td> <td>40 (6.5)</td>	Asian	49 (7.0)	47 (7.0)	40 (6.5)
Niked, other or not reported 11 (1.6) 11 (1.6) 10 (1.6) White 634 (90.6) 606 (90.4) 563 (91.0) History of myocardial infarction (%) 372 (53.1) 336 (53.1) 327 (52.8) Hospitalization for heart failure in prior 2 years (%) 233 (33.3) 221 (33.0) 213 (34.4) Previous PCI (%) 142 (20.3) 136 (20.3) 121 (19.5) Previous CABG (%) 34 (4.9) 33 (4.9) 31 (5.0) CCS Angina Class 464 (66.6) 448 (67.2) 418 (67.9) 1 143 (20.5) 137 (20.5) 61 (9.9) 3 14 (2.0) 12 (1.8) 11 (1.8) 4 10 (0.1) 0 (0.0) 0 (0.0) NYHA Class 12 (18.1) 11 (1.8) 115 (18.7) I 126 (18.1) 121 (18.2) 115 (18.7) I 12 (18.1) 11 (1.6) 347 (56.5) III 120 (14.1) 8 (12.2) 7 (1.1) Cardiac medication (%) 584 (83.5) 557 (83.3) 511 (82.7) RASA inhibitor 584	Black	6 (0.9)	6 (0.9)	6 (1.0)
White 634 (90.6) 666 (90.4) 563 (91.0) History of myocardial infarction (%) 372 (53.1) 326 (53.1) 3221 (32.8) Hospitalization for heart failure in prior 2 years (%) 233 (33.3) 2211 (33.0) 2121 (34.4) Previous CABG (%) 142 (20.3) 136 (20.3) 121 (19.5) CCS Angina Class - - - 0 444 (66.6) 448 (67.2) 418 (67.9) 1 143 (20.5) 137 (20.5) 126 (20.5) 2 75 (10.8) 70 (10.5) 61 (9.9) 3 14 (2.0) 121 (18.2) 111 (1.8) 4 10 (1) 0 (0.0) 0 (0.0) NYHA Class - - - I 126 (18.1) 121 (18.2) 115 (18.7) III 127 (24.7) 163 (24.5) 347 (56.5) III 634 (90.6) 658 (90.7) 551 (90.6) Mineralocation (%) - - - RAS inhibitor 554 (83.5) 5557 (83.3) 511 (82.7)	Mixed, other or not reported	11 (1.6)	11 (1.6)	10 (1.6)
History of myocardial infarction (%) 372 (53.1) 356 (53.1) 327 (52.8) Hospitalization for heart failure in prior 2 years (%) 233 (33.3) 221 (33.0) 213 (34.4) Previous PCI (%) 142 (20.3) 136 (20.3) 121 (19.5) Previous CABG (%) 34 (4.9) 33 (4.9) 31 (5.0) CCS Angina Class 464 (66.6) 448 (67.2) 418 (67.9) 0 464 (20.5) 137 (20.5) 126 (20.5) 2 75 (10.8) 70 (10.5) 61 (9.9) 3 14 (2.0) 12 (1.8) 11 (1.8) 4 10 (1.1) 0 (0.0) 0 (0.0) NYHA Class 122 (18.2) 115 (18.7) I 126 (18.1) 121 (18.2) 145 (23.6) IN 387 (55.7) 373 (56.1) 347 (56.5) IN 101 (1.4) 8 (1.2) 7 (1.1) Cardiar medication (%) 557 (83.3) 551 (80.7) RAS inhibitor 584 (83.5) 557 (83.3) 551 (80.7) Dost-PCI BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10	White	634 (90.6)	606 (90.4)	563 (91.0)
Hospitalization for heart failure in prior 2 years (%) 233 (33.3) 221 (33.0) 213 (34.4) Previous PC1 (%) 142 (20.3) 136 (20.3) 1121 (19.5) Previous CABG (%) 33 (4.9) 33 (4.9) 31 (5.0) CCS Angina Class	History of myocardial infarction (%)	372 (53.1)	356 (53.1)	327 (52.8)
Previous PCI (%) 142 (20.3) 136 (20.3) 121 (19.5) Previous CABG (%) 34 (4.9) 33 (4.9) 31 (5.0) CCS Angina Class - - 0 464 (66.6) 448 (67.2) 418 (67.9) 1 143 (20.5) 137 (20.5) 126 (20.5) 2 75 (10.8) 70 (10.5) 61 (9.9) 3 144 (2.0) 12 (1.8) 111 (1.8) 4 10 (0.1) 0 (0.0) 0 (0.0) NYHA Class - - - I 126 (18.1) 121 (18.2) 115 (18.7) III 347 (55.5) 373 (56.1) 347 (55.5) III 120 (12.4) 145 (23.6) - IV 10 (1.4) 8 (1.2) 7 (1.1) Cardiac medication (%) - - - RAAS inhibitor 554 (83.5) 557 (83.3) 551 (80.10) Baseline Spita Score, median (IQR) 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI ECT score, median (IQR) 22.0 (15.0 to 28.5)	Hospitalization for heart failure in prior 2 years (%)	233 (33.3)	221 (33.0)	213 (34.4)
Previous CABG (%) 33 (4.9) 33 (4.9) 31 (5.0) CCS Angina Class	Previous PCI (%)	142 (20.3)	136 (20.3)	121 (19.5)
CCS Angina Class 464 (66.6) 448 (67.2) 418 (67.9) 0 443 (20.5) 137 (20.5) 126 (20.5) 2 75 (10.8) 70 (10.5) 61 (9.9) 3 114 (2.0) 12 (1.8) 11 (1.8) 4 10.1) 0 (0.0) 0 (0.0) NYHA Class 1 121 (18.2) 115 (18.7) I 126 (18.1) 121 (18.2) 145 (23.6) NI 126 (18.1) 121 (18.2) 145 (23.6) II 126 (18.1) 1337 (56.1) 347 (56.5) III 387 (55.7) 373 (56.1) 347 (56.5) IV 101.4) 81.2.2 7 (1.1) Cardiac medication (%) 557 (83.3) 511 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline StDi Spopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Post-PCI BCIS jeopardy score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0)	Previous CABG (%)	34 (4.9)	33 (4.9)	31 (5.0)
0 464 (66.6) 448 (67.2) 418 (67.9) 1 143 (20.5) 137 (20.5) 126 (20.5) 2 75 (10.8) 70 (10.5) 61 (9.9) 3 14 (2.0) 12 (1.8) 111 (1.8) 4 1 (0.1) 0 (0.0) 0 (0.0) NYHA Class 1 12 (18.2) 115 (18.7) I 126 (18.1) 121 (18.2) 144 (23.6) IV 387 (55.7) 373 (56.1) 347 (56.5) III 10 (1.4) 8 (1.2) 7 (1.1) Cardiat medication (%) 584 (83.5) 557 (83.3) 5511 (82.7) Baseline Societ (100, %) 584 (80.6) 668 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline Societ, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 2 (0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) CD +/ CRT at randomization (%) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) Lef	CCS Angina Class			
1 143 (20.5) 137 (20.5) 126 (20.5) 2 75 (10.8) 70 (10.5) 61 (9.9) 3 14 (2.0) 12 (1.8) 11 (1.8) 4 10.1) 0 (0.0) 0 (0.0) NYHA Class 1 126 (18.1) 121 (18.2) 115 (18.7) I 126 (18.1) 121 (18.2) 145 (23.6) 145 (23.6) II 1387 (55.7) 373 (56.1) 347 (56.5) 145 (23.6) IV 101 (1.4) 8 (1.2) 7 (1.1) 7 (1.1) Cardiac medication (%) 557 (83.3) 511 (82.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline Syntax score, median (IQR) 20 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) Residual syntax score, median (IQR) 3 (148 (21.1) 140 (20.9) 129 (20.8) Residual syntax score, median (IQR) 3 (19 ± 9.9 3 (1.9 ± 9.8) 3 (1.1 ±	0	464 (66.6)	448 (67.2)	418 (67.9)
2 75 (10.8) 70 (10.5) 61 (9.9) 3 14 (2.0) 12 (1.8) 11 (1.8) 4 1 (0.1) 0 (0.0) 0 (0.0) NYHA Class 1 12 (1.8) 11 (1.8) I 1 (0.1) 0 (0.0) 0 (0.0) NYHA Class 12 (18.1) 121 (18.2) 115 (18.7) I 1 12 (24.7) 163 (24.5) 145 (23.6) IV 10 (1.4) 8 (1.2) 7 (1.1) Cardiac medication (%) 8 75 (18.3) 551 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 2.0 (15.0 to 28.5) 22.0 (15.0 to 4.9) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) Left wartricular ejection fraction, mean (SD),%	1	143 (20.5)	137 (20.5)	126 (20.5)
3 14 (2.0) 12 (1.8) 11 (1.8) 4 1 (0.1) 0 (0.0) 0 (0.0) NYHA Class 1 0 (0.0) 0 (0.0) I 1 (0.1) 0 (0.0) 0 (0.0) NYHA Class 1 121 (18.2) 115 (18.7) I 1 28 (55.7) 373 (56.1) 347 (56.5) III 172 (24.7) 163 (24.5) 145 (23.6) IV 10 (1.4) 8 (1.2) 7 (1.1) Cardiac medication (%) - - - RAAS inhibitor 584 (83.5) 557 (83.3) 551 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 386 (49.8) Baseline BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Post-PCI BCIS jeopardy score, median (IQR) 8 (6 to 10) 8 (6 to 10) 8 (0 (2.0 to 14.0) 8.0 (2.0 to 14.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 129 (20.8)	2	75 (10.8)	70 (10.5)	61 (9.9)
4 1 (0.1) 0 (0.0) 0 (0.0) NYHA Class - - - I 126 (18.1) 121 (18.2) 115 (18.7) II 387 (55.7) 373 (56.1) 347 (56.5) IV 101 (14) 8 (1.2) 7 (1.1) Cardiac medication (%) - - - RAAS inhibitor 554 (83.5) 557 (83.3) 511 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline BCIS jeopardy score, median (IQR) 2 (0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) Residual syntax score, median (IQR) 3 (148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability tet (%) - 479 (78.5)	3	14 (2.0)	12 (1.8)	11 (1.8)
NYHA Class I I I 126 (18.1) 121 (18.2) 115 (18.7) II 387 (55.7) 373 (56.1) 347 (56.5) III 172 (24.7) 163 (24.5) 145 (23.6) IV 101 (18.2) 7 (1.1) 7 (1.1) Cardiac medication (%) 81.2) 7 (1.1) RAAs inhibitor 584 (83.5) 557 (83.3) 511 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Post-PCI BCIS jeopardy score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) 8.0 (2.0 to 14.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) CMR 479 (78.	4	1 (0.1)	0 (0.0)	0 (0.0)
I 126 (18.1) 121 (18.2) 115 (18.7) II 387 (55.7) 373 (56.1) 347 (56.5) III 172 (24.7) 163 (24.5) 145 (23.6) IV 10 (1.4) 8 (1.2) 7 (1.1) Cardiac medication (%) 557 (83.3) 511 (82.7) RAAS inhibitor 584 (83.5) 557 (83.3) 511 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) 129 (20.8) Left wantricular ejection fraction, mean (SD), % ^c 31.9 ± 9.8 33.1 ± 9.8 32.1 ± 9.8 Viability test (%) CMR 479 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5)	NYHA Class			
II 387 (55.7) 373 (56.1) 347 (56.5) III 172 (24.7) 163 (24.5) 145 (23.6) IV 10 (1.4) 8 (1.2) 7 (1.1) Cardiac medication (%) 7 7 (1.1) RAAS inhibitor 584 (83.5) 557 (83.3) 551 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) Baseline syntax score, median (IQR) 148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 31.9 ± 9.8 32.1 ± 9.8 Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) To 479 (78.5) 458 (78.2) 453 (78.0)		126 (18.1)	121 (18.2)	115 (18.7)
III 172 (24.7) 163 (24.5) 145 (23.6) IV 8 (1.2) 7 (1.1) Cardiac medication (%) 7 RAAS inhibitor 584 (83.5) 557 (83.3) 511 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left wentricular ejection fraction, mean (SD),% ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) CMR 479 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5) 128 (21.8) 128 (22.0)	П	387 (55.7)	373 (56.1)	347 (56.5)
IV 8 (1.2) 7 (1.1) Cardiac medication (%) - - - RAAS inhibitor 584 (83.5) 557 (83.3) 511 (82.7) Beta blocker 6634 (90.6) 6608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left wentricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) - - - - DSE CMR 479 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5) 128 (21.8) 128 (22.0)	III	172 (24.7)	163 (24.5)	145 (23.6)
Cardiac medication (%) Image: Marking the medication (%) Image: Marking the medication (%) RAAS inhibitor 554 (83.5) 557 (83.3) 511 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) 8.0 (2.0 to 14.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 1440 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Viability test (%) The set of the s	IV	10 (1.4)	8 (1.2)	7 (1.1)
RAAS inhibitor 584 (83.5) 557 (83.3) 511 (82.7) Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left wentricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) CMR 479 (78.5) 458 (78.2) 453 (78.0) DSE Stal (20R) 131 (21.5) 128 (21.8) 128 (22.0)	Cardiac medication (%)			
Beta blocker 634 (90.6) 608 (90.7) 561 (90.6) Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) 8.0 (2.0 to 14.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Viability test (%)	RAAS inhibitor	584 (83.5)	557 (83.3)	511 (82.7)
Mineralocorticoid receptor antagonist 364 (49.4) 332 (49.6) 308 (49.8) Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Viability test (%) 74 79 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5) 128 (21.8) 128 (22.0)	Beta blocker	634 (90.6)	608 (90.7)	561 (90.6)
Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 8 (6 to 10) 8 (6 to 10) Post-PCI BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) CMR 479 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5) 128 (21.8) 128 (22.0) Number of viable segments (IQR) 7 (4 to 10) 7 (4 to 10) 7 (4 to 10)	Mineralocorticoid receptor antagonist	364 (49.4)	332 (49.6)	308 (49.8)
Post-PCI BCIS jeopardy score, median (IQR) 2 (0 to 4) 2 (0 to 4) 2 (0 to 4) Baseline syntax score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) 479 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5) 128 (21.8) 128 (22.0) Number of viable segments (IQR) 7 (4 to 10) 7 (4 to 10) 7 (4 to 10)	Baseline BCIS jeopardy score, median (IQR) ^b	8 (6 to 10)	8 (6 to 10)	8 (6 to 10)
Baseline syntax score, median (IQR) 22.0 (15.0 to 28.5) 22.0 (15.0 to 28.5) 22.0 (15.0 to 29.0) Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%)	Post-PCI BCIS jeopardy score, median (IQR)	2 (0 to 4)	2 (0 to 4)	2 (0 to 4)
Residual syntax score, median (IQR) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) 8.0 (2.0 to 14.0) ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%)	Baseline syntax score, median (IQR)	22.0 (15.0 to 28.5)	22.0 (15.0 to 28.5)	22.0 (15.0 to 29.0)
ICD +/- CRT at randomization (%) 148 (21.1) 140 (20.9) 129 (20.8) Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) CMR 479 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5) 128 (21.8) 128 (22.0) Number of viable segments (IQR) 7 (4 to 10) 7 (4 to 10) 7 (4 to 10)	Residual syntax score, median (IQR)	8.0 (2.0 to 14.0)	8.0 (2.0 to 14.0)	8.0 (2.0 to 14.0)
Left main coronary artery disease (%) 95 (13.6) 88 (13.2) 85 (13.8) Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%)	ICD +/- CRT at randomization (%)	148 (21.1)	140 (20.9)	129 (20.8)
Left ventricular ejection fraction, mean (SD), % ^c 31.9 ± 9.9 31.9 ± 9.8 32.1 ± 9.8 Viability test (%) 31.9 ± 9.8 32.1 ± 9.8 32.1 ± 9.8 <td>Left main coronary artery disease (%)</td> <td>95 (13.6)</td> <td>88 (13.2)</td> <td>85 (13.8)</td>	Left main coronary artery disease (%)	95 (13.6)	88 (13.2)	85 (13.8)
Viability test (%) M M M CMR 479 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5) 128 (21.8) 128 (22.0) Number of viable segments (IQR) 7 (4 to 10) 7 (4 to 10) 7 (4 to 10)	Left ventricular ejection fraction, mean (SD), % ^c	31.9 ± 9.9	31.9 ± 9.8	32.1 ± 9.8
CMR 479 (78.5) 458 (78.2) 453 (78.0) DSE 131 (21.5) 128 (21.8) 128 (22.0) Number of viable segments (IQR) 7 (4 to 10) 7 (4 to 10) 7 (4 to 10)	Viability test (%)			
DSE 131 (21.5) 128 (21.8) 128 (22.0) Number of viable segments (IQR) 7 (4 to 10) 7 (4 to 10) 7 (4 to 10)	CMR	479 (78.5)	458 (78.2)	453 (78.0)
Number of viable segments (IQR) 7 (4 to 10) 7 (4 to 10) 7 (4 to 10)	DSE	131 (21.5)	128 (21.8)	128 (22.0)
	Number of viable segments (IQR)	7 (4 to 10)	7 (4 to 10)	7 (4 to 10)

BCIS denotes British Cardiovascular Intervention Society, CABG coronary artery bypass grafting, CCS Canadian Cardiovascular Society, CMR cardiovascular magnetic resonance imaging, CoR completeness of revascularization, CRT cardiac resynchronization therapy, CTO chronic total occlusion, DSE dobutamine stress echocardiography, ICD implantable cardioverter defibrillator, IQR interquartile range, NYHA New York Heart Association, PCI percutaneous coronary intervention, RAAS renin angiotensin aldosterone system.

^a Race as self-reported by participants using options defined by the investigators.

^b The British Cardiovascular Intervention Society (BCIS) jeopardy score is a quantification of the extent of myocardial jeopardy relating to clinically significant coronary artery stenoses. The score ranges from 0 (no significant coronary disease) to 12 (disease jeopardizing the whole left ventricular myocardium). The score presented is as calculated by angiography core laboratory.

^c Baseline left ventricular ejection fraction measured by the blinded echocardiography core laboratory.

ournal Press

0.5 1.0 1.5 2.0

Supplementary Material

Contents

1. <u>REVIVED SITES AND INVESTIGATORS</u>	3
2. TRIAL ORGANIZATION AND OVERSIGHT	5
Core Laboratories	5
	5
DOBUTAMINE STRESS ECHOCARDIOGRAPHY CORE LABORATORY	5
	5
ANGIOGRAPHIC CORE LABORATORY	5
Committees and Oversight	6
TRIAL STEERING COMMITTEE	6
DATA AND SAFETY MONITORING COMMITTEE	6
CLINICAL EVENTS COMMITTEE	6
TRIAL STATISTICIANS	7
	•
3. FIGURES	8
Figure S1 – Co-registration of coronary lesions to American Heart Associatio	n myocardial segments 8
Figure S2 – Example of coronary and myocardial revascularization index calc	ulation 9
Figure S3 – Impact of anatomical completeness of revascularization by resid	ual SYNTAX score on
the primary outcome	10
Figure S4 – Comparison of core lab vs site reported anatomical completenes	s of revascularization
(PCI Group)	11
	12
	1£
Table S1 – Imputed missing data	12
Table S2 – Utilization of guideline directed medical therapy	13
Table S3 – Core-lab adjudicated BCIS-JS	14
Table S4 – Core-lab adjudicated anatomical and viability-guided completene	ess of revascularization
	14
Table S5 – Comparison of baseline characteristics in those achieving comple	te vs incomplete
anatomical revascularization	15
Table S6 – Primary and clinical secondary outcomes by residual SYNTAX sco	re 17
Table S7 – Primary and clinical secondary outcomes by anatomical complete	eness of
revascularization	17
Table S8 – Relationship between completeness of revascularization and out	comes (with RIcoro and
RI _{mvo} as continuous variables)	18
Table S9 – Primary and secondary outcomes by viability-guided completene	ss of revascularization
(50% late gadolinium enhancement threshold)	18
Table S10 - Comparison of baseline characteristics in those achieving complete	ete vs incomplete
viability-guided revascularization	19

Table S11 – Primary and secondary outcomes by viability guided completeness of revascular	ization
(25% late gadolinium enhancement threshold)	21
Table S12 – Change in 2-year summary KCCQ score by anatomical and viability-guided	
completeness of revascularization	22

1. **REVIVED Sites and Investigators**

Center	Principal Investigator	Site team
Guy's & St Thomas' Hospital	Prof Divaka Perera	Prof Amedeo Chiribiri
		Prof Gerry Carr-White
		Dr Antonis Pavlidis
		Prof Simon Redwood
		Dr Brian Clapp
		Prof Aldo Rinaldi
		Dr Haseeb Rahman
		Dr Natalia Briceno
		Ms Sophie Arnold
		Ms Amy Raynsford
Golden Jubilee National Hospital, Glasgow	Prof Mark Petrie	Dr Margaret McEntegart
		Dr Stuart Watkins
		Dr Aadil Shaukat
		Dr Paul Rocchiccioli
		Ms Louise Cowan
Barts Heart Centre, London	Dr Roshan Weerackody	Dr Ceri Davies
		Dr Elliot Smith
		Dr Bhavik Modi
Roval Bournemouth Hospital	Dr Peter O'Kane	Dr. Jehangir Din
no yai boumemoutin noopitai		Dr Jonathon Hinton
Leeds General Infirmary	Prof John Greenwood	Dr Jonathan Blaxill
	The sound reenwood	Dr Abdul Mozid
		Ms Michelle Anderson
Royal Victoria Hospital Rolfact	Dr Lana Divan	Dr Simon Walch
Royal Victoria Hospital, Bellast		Dr Mark Spance
		Ms Patricia Glover
Frooman Hospital Nowcastle	Dr Richard Edwards	Dr Adam McDiarmid
Freeman Hospital, Newcastle	Di Richard Edwards	Dr Mohaned Egred
		Ms Hannah Stevenson
King's College Hespital London	Dr. Goorgo Amin Voussof	Prof Aiay Shah
King's College Hospital, London	Di George Amin-Yousser	Prof Therese McDonagh
		Dr Jonathan Byrno
)		Dr Nilesh Pareek
		Mr Jonathan Breeze
Clanfield Hospital Leisester	Prof Anthony Corchlick	Prof Corold McCopp
Glefffeld Hospital, Leicester	FIOL Anthony Gersninck	Dr Andrew Ladwiniec
		Drafilian Squire
		Ms Donna Alexander
Prictal Payal Infirmary	Dr. Kalpa Do Silva	Dr. Julian Strange
Bristor Royal Infinitiary	Di Kaipa De Silva	Dr Tom Johnson
		Dr Angus Nightingalo
		Ms Laura Gallego
St Coorgo's Hospital London	Drof Jamos Coratt	Dr Claudia Casgrava
St George's Hospital, London	Prof James Spratt	Dr Ruport Williams
		Dr Kupert Williams
		Dr Bitt Lim
Diadorfielde Herritel Makefield		Dr Pitt Lilli
Pinderheids Hospital, Wakefleid	Di Dwayne Conway	Dr Paul Broakshy
	Du la va a Catta	
New Cross Hospital, Wolverhampton	Dr James Cotton	Dr Richard Horton
		Ms Stella Metherell
Kettering General Hospital	Dr Kai Hogrete	Dr Adrian Cheng
	1	Ms Sian Sidgwick

	Dr Tim Lockie	Dr Niket Patel
		Dr Roby Rakhit
Manchester Royal Infirmary	Dr Fozia Ahmed	Dr Cara Hendry
		Dr Farzin Fath-Odoubadi
		Dr Douglas Fraser
		Dr Mamas Mamas
Royal Infirmary of Edinburgh	Dr Miles Behan	Dr Alan Japp
Sunderland Royal Hospital	Dr Nicholas Jenkins	Dr Sam McClure
		Ms Karen Martin
Wythenshawe Hospital	Dr Eltigani Abdelaal	Dr Jaydeep Sarma
		Dr Sanjay Sastry
		Dr Jo Riley
Liverpool Heart and Chest Hospital	Dr Pradeep Magapu	Prof Rod Stables
		Dr David Wright
Southampton General Hospital	Dr Michael Mahmoudi	Dr Andrew Flett
		Prof Nick Curzen
		Ms Sam Gough
		Ms Zoe Nicholas
Royal Devon & Exeter Hospital	Dr Andrew Ludman	Dr Hibba Kurdi
		Ms Sam Keenan
		Mr Kevin Thorpe
University Hospitals Coventry &	Prof Prithwish Banerjee	Dr Luke Tapp
Warwickshire		Mr Abeesh Panicker
The James Cook University Hospital,	Dr Mark de Belder	Dr Jeet Thambyrajah
Middlesbrough		Dr Neil Swanson
Lister Hospital, Stevenage	Dr Neville Kukreja	Dr Mary Lynch
Lister Hospital, Stevenage Derriford Hospital, Plymouth	Dr Neville Kukreja Dr Girish Viswanathan	Dr Mary Lynch Ms Elaine Jones
Lister Hospital, Stevenage Derriford Hospital, Plymouth	Dr Neville Kukreja Dr Girish Viswanathan	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield Queen Alexandra Hospital, Portsmouth	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn Dr Huw Griffiths	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney Prof Paul Kalra
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield Queen Alexandra Hospital, Portsmouth Royal Oldham Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn Dr Huw Griffiths Dr Tim Gray	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney Prof Paul Kalra Dr Jolanta Sobolewska
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield Queen Alexandra Hospital, Portsmouth Royal Oldham Hospital Great Western Hospital, Swindon	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn Dr Huw Griffiths Dr Tim Gray Dr Steve Ramcharitar	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney Prof Paul Kalra Dr Jolanta Sobolewska Ms Laura McCafferty
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield Queen Alexandra Hospital, Portsmouth Royal Oldham Hospital Great Western Hospital, Swindon	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Tim Edwards Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn Dr Huw Griffiths Dr Huw Griffiths Dr Tim Gray Dr Steve Ramcharitar	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney Prof Paul Kalra Dr Jolanta Sobolewska Ms Laura McCafferty Dr John Irving
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield Queen Alexandra Hospital, Portsmouth Royal Oldham Hospital Great Western Hospital, Swindon Ninewells Hospital, Dundee	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn Dr Huw Griffiths Dr Tim Gray Dr Steve Ramcharitar Dr Thomas Martin	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney Prof Paul Kalra Dr Jolanta Sobolewska Ms Laura McCafferty Dr John Irving Dr Zaid Iskandar
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield Queen Alexandra Hospital, Portsmouth Royal Oldham Hospital Great Western Hospital, Swindon Ninewells Hospital, Dundee Basingstoke & North Hampshire Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn Dr Huw Griffiths Dr Tim Gray Dr Steve Ramcharitar Dr Steve Ramcharitar Dr Thomas Martin	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney Prof Paul Kalra Dr Jolanta Sobolewska Ms Laura McCafferty Dr John Irving Dr Zaid Iskandar Dr James Beynon
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield Queen Alexandra Hospital, Portsmouth Royal Oldham Hospital Great Western Hospital, Swindon Ninewells Hospital, Dundee Basingstoke & North Hampshire Hospital The York Hospital	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn Dr Huw Griffiths Dr Tim Gray Dr Steve Ramcharitar Dr Steve Ramcharitar Dr Thomas Martin Dr Jason Glover Mr Maurice Pye	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney Prof Paul Kalra Dr Jolanta Sobolewska Ms Laura McCafferty Dr John Irving Dr Zaid Iskandar Dr James Beynon Dr Jimon Megarry
Lister Hospital, Stevenage Derriford Hospital, Plymouth Worcestershire Acute Hospitals Worthing Hospital Salisbury District Hospital Blackpool Victoria Hospital Dorset County Hospital Birmingham Heartlands Hospital Northern General Hospital, Sheffield Queen Alexandra Hospital, Portsmouth Royal Oldham Hospital Great Western Hospital, Swindon Ninewells Hospital, Dundee Basingstoke & North Hampshire Hospital The York Hospital North Wales Cardiac Centre	Dr Neville Kukreja Dr Girish Viswanathan Dr Helen Routledge Dr Nick Pegge Dr Tim Wells Dr Gavin Galasko Dr Gavin Galasko Dr Tim Edwards Dr Kaeng Lee Dr Julian Gunn Dr Huw Griffiths Dr Tim Gray Dr Steve Ramcharitar Dr Steve Ramcharitar Dr Thomas Martin Dr Jason Glover Mr Maurice Pye Dr Paul Das	Dr Mary Lynch Ms Elaine Jones Ms Sarah Norman Dr Jasper Trevelyan Dr Sukhbir Dhamrait Dr Manas Sinha Dr Christopher Cassidy Dr Javed Iqbal Dr Fraser Witherow Dr James Beattie Dr Mike Pitt Dr Abdallah Al-Mohammad Ms Helen Denney Prof Paul Kalra Dr Jolanta Sobolewska Ms Laura McCafferty Dr John Irving Dr Zaid Iskandar Dr James Beynon Dr Simon Megarry Dr Chris Bellamy

2. Trial Organization and Oversight

Core Laboratories

Cardiac MRI Core Laboratory

Prof Amedeo Chiribiri (Lead; Reader), King's College London Dr Pier Giorgio Masci (Reader), King's College London Dr Sohaib Nazir (Reader), King's College London Dr Jennifer Silva, King's College London Dr Ebraham Alskaf, King's College London Dr Holly Morgan, King's College London

Dobutamine Stress Echocardiography Core Laboratory

Prof Roxy Senior (Lead; Reader), Royal Brompton Hospital, London Dr Alexandros Papachristidis (Reader), King's College Hospital, London Dr Navtej Chahal (Reader), Royal Brompton Hospital, London Dr Rajdeep Khattar (Reader), Royal Brompton Hospital, London Dr Saad Ezad, King's College London

Echocardiography Core Laboratory

Dr Stam Kapetenakis (Lead), Guy's and St Thomas' Hospital, London Ms Jane Draper (Reader), Guy's and St Thomas' Hospital, London Ms Sheila Subbiah (Reader), Guy's and St Thomas' Hospital, London Ms Annabel Oraa (Reader), Guy's and St Thomas' Hospital, London Ms Olga Khaleva (Reader), Guy's and St Thomas' Hospital, London Dr Haotian Gu (Reader), Guy's and St Thomas' Hospital, London Dr Sarah Blake (Reader), Guy's and St Thomas' Hospital, London Ms Emily Denman (Reader), King's College Hospital, London Ms Almira Whittaker (Reader), King's College Hospital, London Ms Marilou Huang (Reader), King's College Hospital, London Ms Sandya Nandakumar (Reader), King's College Hospital, London Dr Joseph Okafor (Reader), Guy's and St Thomas' NHS Foundation Trust, London

Angiographic Core Laboratory

Dr Margaret McEntegart (Lead), Golden Jubilee National Hospital, Glasgow Dr Matthaios Didangelos (Reader), Golden Jubilee National Hospital, Glasgow Dr Novalia Sidik (Reader), Golden Jubilee National Hospital, Glasgow

Committees and Oversight

Trial Steering Committee

Prof Andrew Clark, Chair of Clinical Cardiology, Castle Hill Hospital, Hull (Chair) Mrs Helen Williams, Pharmacist, NHS Southwark Clinical Commissioning Group, London Dr Pablo Perel, Epidemiologist, London School of Hygiene & Tropical Medicine Dr David Walker, Consultant Cardiologist, Conquest Hospital, St. Leonards-on-Sea Prof Rod Stables, Consultant Cardiologist, Liverpool Heart and Chest Hospital Prof Divaka Perera, Chief Investigator, King's College London Ms Liz Bestic, Patient, Carer and Public representative Mrs Paula Young, Patient, Carer and Public representative Mrs Helen Datta, Patient, Carer and Public representative Mr Jeremy Dearling, Patient, Carer and Public representative

Data and Safety Monitoring Committee

Prof Peter Ludman, Consultant Cardiologist, Queen Elizabeth Hospital, Birmingham (Chair) Dr Suzanna Hardman, Consultant Cardiologist, The Whittington Hospital, London Dr Louise Brown, Senior Statistician, MRC Clinical Trials Unit at University College London

Clinical Events Committee

Prof Roxy Senior, Professor of Cardiology, Royal Brompton Hospital, London (Chair) Dr Zaheer Yousef, Consultant Cardiologist, University Hospital of Wales Dr Rajan Sharma, Consultant Cardiologist, St George's Hospital, London Dr Shazia Hussain, Consultant Cardiologist, University Hospitals of Leicester NHS Trust Dr Stephen Hoole, Consultant Cardiologist, Royal Papworth Hospital Dr Ninian Lang, Reader in Cardiology, University of Glasgow Dr Kieran Docherty, Clinical Lecturer in Cardiology, University of Glasgow Dr Roy Gardner, Consultant Cardiologist, Golden Jubilee National Hospital, Glasgow Prof Andrew Sharp, Consultant Cardiologist, University Hospital of Wales Dr Ricardo Petraco, Consultant Cardiologist, Imperial College Healthcare NHS Trust Dr Vasileios Panoulas, Consultant Cardiologist, Royal Brompton and Harefield Hospitals

Dr Andreas Schuster, Consultant Cardiologist, Universitätsmedizin Göttingen, Germany Dr Kaleab Asrress, Consultant Cardiologist, Bankstown-Lidcombe Hospital, Australia Dr Matthew Lee, Clinical Lecturer in Cardiology, University of Glasgow Prof Pardeep Jhund, Professor of Cardiology and Epidemiology, University of Glasgow Dr Eugene Connolly, Director, Global Clinical Trial Partners, Glasgow Prof Raj Kharbanda, Consultant Cardiologist, John Radcliffe Hospital, Oxford Ms Farandeep Dhaliwal, London School of Hygiene & Tropical Medicine (Admin)

Trial Statisticians

Ms Joanne Dobson, London School of Hygiene & Tropical Medicine Mr Matthew Dodd, London School of Hygiene & Tropical Medicine Prof Tim Clayton, London School of Hygiene & Tropical Medicine

3. Figures

Figure S1 – Co-registration of coronary lesions to American Heart Association myocardial segments

Figure S1A – Right dominant circulation

Figure S1B – Left dominant circulation

Each coronary lesion with a visual diameter stenosis of >70% was assigned to a SYNTAX segment by core lab readers. SYNTAX segments were then linked to American Heart Association segments as demonstrated in these polar maps depending on coronary dominance.

Figure S2 – Example of coronary and myocardial revascularization index

calculation

BCIS-JS - British Cardiovascular Interventional Society jeopardy score, RI_{coro} – Coronary revascularization index, RI_{myo} – Myocardial revascularization index

The Kaplan-Meir plot presents the adjusted HR for comparisons. rSS \leq 8 vs OMT: Unadjusted HR = 0.79 (95% Cl 0.57 to 1.08), p=0.14. rSS >8 vs OMT: Unadjusted HR = 1.13 (95% Cl 0.84 to 1.53), p=0.42

CI – confidence interval, HR – hazard ratio, OMT – optimal medical therapy, rSS – residual SYNTAX score

Figure S4 – Comparison of core lab vs site reported anatomical completeness of revascularization (PCI Group)

Bland-Altman plot comparing core lab and site reported RI_{coro}. Mean difference observed was -5.3%.

RI_{coro} – Coronary revascularization index

4. Tables

Table S1 – Imputed missing data

Anatomical completeness of	
revascularization analysis	
(n=670)	
Variable	Number of missing values
eGFR	9
LVEF at baseline	153
LVEF at 6 monyhd	154
LVEF at 12 months	164
Viability guided completeness of	
revascularization analysis	
(n=619)	
Variable	Number of missing values
eGFR	9
LVEF at baseline	137
LVEF at 6 months	146
LVEF 12 months	150

eGFR – estimated glomerular filtration rate, LVEF – left ventricular ejection fraction

	REVIVED trial (n=700)	Anatomical CoR analysis (n=670)	Viability-guided CoR analysis (n=619)
6 months			
RAAS inhibitor	493/647 (76.2)	475/625 (76.0)	438/579 (75.7)
Beta blocker	604/647 (93.4)	584/625 (93.4)	542/579 (93.6)
Mineralocorticoid receptor antagonist	343/647 (53.1)	333/624 (53.4)	312/578 (54.0)
			<u>x</u>
1 year			0,
RAAS inhibitor	466/625 (74.6)	451/606 (74.4)	414/561 (73.8)
Beta blocker	585/625 (93.6)	566/606 (93.4)	527/561 (93.9)
Mineralocorticoid receptor antagonist	340/624 (54.5)	332/605 (54.9)	310/560 (55.4)
2 years			
RAAS inhibitor	369/567 (65.1)	356/550 (64.7)	326/509 (64.1)
Beta blocker	529/569 (93.0)	512/552 (92.8)	477/511 (93.4)
Mineralocorticoid receptor antagonist	315/567 (55.6)	310/550 (56.4)	288/510 (56.5)

Table S2 – Utilization of guideline directed medical therapy

CoR completeness of revascularization, RAAS renin angiotensin aldosterone system.

	OMT arm	PCI arm only	
Baseline BCIS-JS⁺	Baseline	Baseline	Post-PCI
0	2/335 (0.6)	4/317 (1.3)	122/317 (38.5)
2	10/335 (3.0)	13/317 (4.1)	56/317 (17.7)
4	27/335 (8.1)	26/317 (8.2)	68/317 (21.5)
6	84/335 (25.1)	72/317 (22.7)	49/317 (15.5)
8	67/335 (20.0)	68/317 (21.5)	12/317 (3.8)
10	68/335 (20.3)	56/317 (17.7)	5/317 (1.6)
12	77/335 (23.0)	78/317 (24.6)	5/317 (1.6)
Median (IQR)	8 (6 to 10)	8 (6 to 10)	2 (0 to 4)

Table S3 – Core-lab adjudicated BCIS-JS

⁺ The British Cardiovascular Intervention Society jeopardy score (BCIS-JS) is a quantification of the extent of myocardial jeopardy relating to clinically significant coronary artery stenoses. The score ranges from 0 (no significant coronary disease) to 12 (disease jeopardizing the whole left ventricular myocardium).

Table S4 – Core-lab adjudicated anatomical and viability-guided completeness of

revascularization

Revascularization index	RI _{coro} n (%)	RI _{myo} n (%)
≤20%	28/317 (8.8)	22/266 (8.3)
21 to 40%	47/317 (14.8)	18/266 (6.8)
41 to 60%	62/317 (19.6)	29/266 (10.9)
61 to 80%	50/317 (15.8)	54/266 (20.3)
81 to 99%	12/317 (3.8)	32/266 (12.0)
100%	118/317 (37.2)	111/266 (41.7)
Median (IQR)	66.7 (50.0 to 100.0)	84.6 (60.0 to 100.0)

RI_{coro} – Coronary revascularization index. RI_{myo} – Myocardial revascularization index.

Table S5 – Comparison of baseline characteristics in those achieving complete vs

incomplete anatomical revascularization

	Optimal medical	Incomplete anatomical	Complete anatomical	P-value ^d
	therapy	revascularization (RI _{coro} ≤66.7)	revascularization (RI _{coro} >66.7)	
	(N=353)	(N=164)	(N=153)	
Age, mean (SD), years	68.8 (9.1)	70.8 ± 8.4	68.7 ± 9.6	0.03
Male sex (%)	312 (88.4)	143 (87.2)	132 (86.3)	0.81
Body-mass index (IQR)	27.9 (24.9 to 32.0)	27.7 (24.4 to 31.6)	28.7 (25.0 to 32.0)	0.50
Diabetes (%)	153 (43.3)	61 (37.2)	63 (41.2)	0.47
Hypertension (%)	207 (58.8)	91 (55.5)	80 (52.3)	0.57
Current or previous smoker (%)	267 (75.6)	117 (71.3)	106 (69.3)	0.69
Cerebrovascular disease (%)	46 (13.0)	21 (12.8)	14 (9.2)	0.29
Peripheral vascular disease (%)	46 (13.0)	26 (15.9)	18 (11.8)	0.29
Race (%) ^a				0.17
Asian	17 (4.8)	19 (11.6)	11 (7.2)	
Black	3 (0.8)	2 (1.2)	1 (0.7)	
Mixed, other or not reported	5 (1.4)	1 (0.6)	5 (3.3)	
White	328 (92.9)	142 (86.6)	136 (88.9)	
History of myocardial infarction (%)	197 (55.8)	94 (57.3)	65 (42.5)	0.01
Hospitalization for heart failure in prior 2	121 (34.3)	48 (29.3)	52 (34.0)	0.37
years (%)				
Previous PCI (%)	76 (21.5)	28 (17.1)	32 (20.9)	0.38
Previous CABG (%)	22 (6.2)	9 (5.5)	2 (1.3)	0.06
CCS Angina Class				0.32
0	236 (67.2)	102 (62.6)	110 (71.9)	
1	75 (21.4)	35 (21.5)	27 (17.6)	
2	32 (9.1)	23 (14.1)	15 (9.8)	
3	8 (2.3)	3 (1.8)	1 (0.7)	
4	0 (0.0)	0 (0.0)	0 (0.0	
NYHA Class				0.09
	57 (16.3)	27 (16.6)	37 (24.3)	
П	191 (54.6)	93 (57.1)	89 (58.6)	
ш	96 (27.4)	42 (25.8)	25 (16.4)	
IV	6 (1.7)	1 (0.6)	1 (0.7)	
ICD +/- CRT at randomization (%)	71 (20.1)	42 (25.6)	27 (17.6)	0.09
Baseline BCIS jeopardy score, median (IQR) ^b	8 (6 to 10)	10 (6 to 12)	8 (6 to 10)	0.0008
Post-PCI BCIS jeopardy score, median (IQR)	-	4 (4 to 6)	0 (0 to 0)	<0.0001
Baseline SYNTAX score, median (IQR)	22 (15 to 29)	23.5 (19.0 to 30.8)	18.0 (13.0 to 24.5)	<0.0001
Residual SYNTAX score, median (IQR)	-	13.0 (8.3 to 20.0)	1.0 (0.0 to 5.0)	<0.0001
Left main coronary artery disease (%)	45 (12.8)	25 (15.2)	18 (11.8)	0.37
Left ventricular ejection fraction, mean (SD),	31.9 ± 9.6	31.1 ± 9.1	32.8 ± 11.0	0.19
% ^c				
Viability test (%)				
CMR	243 (77.1)	116 (81.1)	99 (77.3)	-
DSE	72 (22.9)	27 (18.9)	29 (22.7)	
Number of viable segments (IQR)	7 (4-10)	6 (4-10)	7 (5-11)	0.21

^a Race as self-reported by participants using options defined by the investigators.

^b British Cardiovascular Intervention Society jeopardy score (BCIS-JS) as reported by angiography core laboratory.

^c Baseline left ventricular ejection fraction measured by the blinded echocardiography core laboratory

^d P-value denotes comparison between Incomplete vs complete anatomical revascularization groups

BCIS denotes British Cardiovascular Intervention Society, CABG coronary artery bypass grafting, CCS Canadian Cardiovascular Society, CMR cardiovascular magnetic resonance imaging, CRT cardiac resynchronization therapy, CTO chronic total occlusion, DSE dobutamine stress echocardiography, ICD implantable cardioverter defibrillator, IQR interquartile range, NYHA New York Heart Association, PCI percutaneous coronary intervention, RI_{coro} Coronary revascularization index.

Journal Pre-proof

Table S6 – Primary and clinical secondary outcomes by residual SYNTAX score

	Optimal medical therapy group [§] (Reference)	rSS >8 ^ş	Hazard / Odds ratio* (95% CI)	p-value	rSS ≤8 [§]	Hazard / Odds ratio* (95% CI)	p- value
All-cause death or	134 (38.0)	61(42.7)	0.88	0.47	53 (30.8)	1.00	>0.99
hospitalization for heart			(0.62 to 1.24)			(0.69 to 1.44)	
failure							
All-cause death	115 (32.6)	52(36.4)	0.81	0.27	44 (25.6)	0.99	0.95
			(0.55 to 1.18)			(0.66 to 1.47)	
Cardiovascular death	88 (24.9)	36 (25.2)	0.68	0.10	29 (16.9)	0.90	0.67
			(0.43 to 1.07)			(0.56 to 1.45)	
Hospitalization for heart	54 (15.3)	23 (16.1)	0.77	0.37	24 (14.0)	0.85	0.58
failure			(0.44 to 1.37)		A	(0.48 to 1.52)	
Improvement in left	101 (50.2)	44 (51.8)	1.05	0.87	48 (45.7)	0.78	0.37
ventricular ejection fraction			(0.57 to 1.94)			(0.45 to 1.35)	

CI – confidence interval; HR-hazard ratio; rSS – residual SYNTAX score

* Adjusted Hazard ratios calculated with OMT group as reference

§ Event rate - n(%)

Table S7 – Primary and clinical secondary outcomes by anatomical completeness of

revascularization

	Optimal medical	Complete anatomical	Hazard / Odds ratio*	p- value	Incomplete anatomical	Hazard / Odds ratio*	p- value
	therapy [§]	revascularization§	(95% CI)		revascularization§	(95% CI)	
	(Reference)	(RI _{coro} >66.7)			(RI _{coro} ≤66.7)		
All-cause death	134 (38.0)	45 (29.4)	0.90	0.59	70 (42.7)	0.97	0.85
or hospitalization			(0.62 to 1.32)			(0.70 to 1.34)	
for heart failure							
All-cause death	115 (32.6)	36 (23.5)	0.88	0.55	60 (36.6)	0.88	0.48
			(0.58 to 1.34)			(0.62 to 1.25)	
Cardiovascular	88 (24.9)	24 (15.7)	0.83	0.47	41 (25.0)	0.73	0.15
death			(0.51 to 1.36)			(0.48 to 1.12)	
Hospitalization	54 (15.3)	21 (13.7)	0.81	0.50	27 (16.5)	0.84	0.53
for heart failure			(0.45 to 1.48)			(0.49 to 1.44)	
Improvement in	101 (50.2)	44 (46.8)	0.94 (0.54 to	0.82	48 (49)	0.85 (0.48 to	0.58
left ventricular			1.64)			1.51)	
ejection fraction							

CI – confidence interval; HR-hazard ratio; RIcoro – Coronary revascularization index

* Adjusted Hazard/Odds ratios calculated with OMT group as reference

§ Event rate - n(%)

Table S8 – Relationship between completeness of revascularization and outcomes

(with RIcoro and RImyo as continuous variables)

Revascularization index	Outcome measure	Association	Association	
		Unadjusted HR/OR; 95%	Adjusted HR/OR;	
		CI	95% CI	
RI _{coro}	Death or HHF	0.92 (0.87 to 0.97)	0.94 (0.88 to 1.01)	
per 10% increase (PCI arm	All-cause death	0.92 (0.86 to 0.97)	0.93 (0.86 to 1.01)	
only)	CV death	0.91 (0.84 to 0.98)	0.94 (0.86 to 1.04)	
	HHF	0.96 (0.88 to 1.05)	0.98 (0.87 to 1.10)	
	LV improvement	1.05 (0.97 to 1.14)	1.06 (0.95 to 1.18)	
		C		
RI _{myo}	Death or HHF	0.98 (0.91 to 1.04)	1.00 (0.93 to 1.08)	
per 10% increase (PCI arm	All-cause death	0.98 (0.91 to 1.06)	1.00 (0.92 to 1.09)	
only)	CV death	0.98 (0.90 to 1.07)	1.01 (0.91 to 1.11)	
	HHF	0.93 (0.84 to 1.03)	0.97 (0.86 to 1.08)	
	LV improvement	1.04 (0.95 to 1.14)	1.03 (0.91 to 1.15)	

CI – confidence interval; CV- cardiovascular; HHF- hospitalization for heart failure; HRhazard ratio; LV – left ventricle; OR - odds ratio; PCI – percutaneous coronary intervention; RI_{coro} – Coronary revascularization index; RI_{myo} – Myocardial revascularization index.

Table S9 – Primary and secondary outcomes by viability-guided completeness of

revascularization (50% late gadolinium enhancement threshold)

	Optimal medical therapy [§] (Reference)	Complete viability guided revascularization [§] (RI _{myo} >84.6)	Hazard / Odds ratio* (95% CI)	p- value	Incomplete viability guided revascularization [§] (RI _{myo} ≤84.6)	Hazard / Odds ratio* (95% CI)	p- value
All-cause death or hospitalization for heart failure	134 (38.0)	42 (32.3)	0.95 (0.66 to 1.35)	0.76	49 (36.0)	0.83 (0.60 to 1.16)	0.28
All-cause death	115 (32.6)	36 (27.7)	0.94 (0.64 to 1.38)	0.74	40 (29.4)	0.77 (0.53 to 1.11)	0.16
Cardiovascular death	88 (24.9)	24 (18.5)	0.79 (0.50 to 1.26)	0.33	29 (21.3)	0.71 (0.47 to 1.10)	0.13
Hospitalization for heart failure	54 (15.3)	15 (11.5)	0.82 (0.46 to 1.48)	0.52	18 (13.2)	0.74 (0.43 to 1.27)	0.27
Improvement in left ventricular ejection fraction	101 (50.2)	40 (50.6)	1.00 (0.58 to 1.73)	>0.99	44 (53.0)	0.95 (0.54 to 1.67)	0.86

CI – confidence interval; HR-hazard ratio; RI_{myo} – Myocardial revascularization index

* Adjusted Hazard ratios calculated with OMT group as reference

§ Event rate - n(%)

Table S10 - Comparison of baseline characteristics in those achieving complete

vs incomplete viability-guided revascularization

the statethe stateresubration (Rungs 20)resubration (Rungs 20)Age, mean (SD), years68.8 (2)70.5 ± 8.368.3 ± 3.00.04Male sex (%)312 (8A)10.12 (8A)12.12 (8A)28.72 (5.1 to 3.0.)0.72 (1.2 to 3.0.)Body-mass index (QR)27.9 (2.4 to 3.0.)27.8 (2.4 to 3.0.)28.72 (5.1 to 3.0.)0.73 (2.4 to 3.0.)Diabetes (%)207 (8A)78. (57.4 to 3.0.)28.7 (5.1 to 3.0.)0.73 (2.4 to 3.0.)Current or previous smoker (%)44 (61.3.0.)10.14 (10.3)9.2 (7.8.0.)0.6 (2.1 to 3.0.)Cerebrowscular disease (%)44 (61.3.0.)11.4 (10.3)9.6 (9.6.)0.7 (1.5.)Rack (%)17.4 (8.1)14.1 (10.3)9.6 (9.6.)0.7 (1.5.)Back (%)3.0 (8.1)11.4 (10.3)9.1 (1.5.)0.0.1Back (%)17.4 (8.1)10.7 (2.1.5.)0.0.1Mike other on rot reported5.1 (3.4.)21.1 (5.1.)0.0.1Back (M)19.7 (5.2.)10.4 (1.6.3.)10.1 (2.1.5.)Mike other on rat failure in prio 2 vas12.1 (2.1.)10.1 (2.1.)10.1 (2.1.)Previous CDR (%)75 (2.1.)46 (3.8.)10.1 (2.1.)10.1 (2.1.)Previous CDR (%)75 (2.1.)24.1 (1.6.1.)10.1 (2.1.)10.1 (2.1.)Cos angina Class on the priot of the state of		Optimal medical	Incomplete viability guided	Complete viability guided	P-value ^d
(N=33)(N=136)(N=130)(N=130)Age, mean (SD), years68.8 (9.1)70.5 ± 3.368.8 19.00.04Age, mean (SD), years312 (88.4)122 (89.7)110 (84.6)0.21Body-mass index (IQR)27.9 (24.9 to 32.0)27.7 (24.2 to 30.0)28.7 (25.1 to 32.4)0.24Dabetes (VA)207 (S8.8)78 (67.4)63 (48.5)0.14Current or previous smoker (%)267 (75.6)95 (69.9)92 (70.8)0.27Perpheral vascular disease (%)46 (13.0)23 (16.9)10 (7.7)0.62Perpheral vascular disease (%)46 (13.0)23 (16.9)10 (7.7)0.27Asian17 (4.8)14 (10.3)9 (6.9)0.71Biakt3 (0.8)1 (0.7)2 (1.5)0.02Mixed, other or not reported5 (1.4)3 (2.2)2 (1.5)0.02Hostory dirigorization for heart failure in prior 2 years72 (8.3)46 (13.8)46 (13.0)Previous CABG (%)72 (2.5)24 (17.6)21 (16.2)0.71O23 (6.72)24 (17.6)21 (16.2)0.71Previous CABG (%)22 (2.1)11 (8.1)18 (13.8)46 (13.4)CS Angina CASS23 (9.1)11 (8.1)10 (17.7)0.02Previous CABG (%)77 (52.1)22 (1.6)0.010.00CS Angina CASS23 (9.1)11 (8.1)18 (13.8)46 (13.4)113 (14.6)13 (14.6)13 (14.6)13 (14.6)13 (14.6)113 (14.6)13 (14.6)13 (14.6)		therapy	revascularization (RI _{myo} ≤86.7)	revascularization (RI _{myo} >86.7)	
Age, man (50), years68.8 (9.1)70.5 ± 8.368.3 ± 9.60.04Male sex (%)312 (88.4)122 (89.7)110 (84.6)0.21Dahetes (%)27.9 (24.9 to 20)27.7 (24.2 to 30.9)28.7 (25.1 to 23.4)0.75Hypertension (%)207 (58.8)78 (57.4)63 (45.5)0.14Current or previous smoker (%)26 (7.5.0)93 (69.9)92 (70.8)0.87Peripheral vascular disease (%)46 (13.0)14 (10.3)91 (6.7.1)0.10Race (%)46 (13.0)14 (10.3)91 (6.9.1)0.7.1Asian17 (4.8)14 (10.3)91 (5.9.1)0.02Back (bler or not reported5 (1.4)3 (2.2)21 (1.5.1)0.002History of myocardial infraction (%)197 (55.8)79 (58.1)15 (13.2.2)0.002Hospitalization for heart failure in prior 2 yeas23 (67.2)7 (5.1)21 (15.2)0.7.1Previous CR6 (%)22 (62.7)7 (5.1)21 (15.2)0.7.10.7.1CCS Angina Class12 (25.1)46 (33.8)46 (35.4)0.7.1Previous CR6 (%)22 (62.7)7 (5.1)21 (15.2)0.7.1CCS Angina Class12 (25.1)10 (30.1)10 (17.1)0.1.1Previous CR6 (%)22 (62.7)7 (5.1)21 (15.2)0.7.1CCS Angina Class12 (25.1)10 (30.1)10 (17.1)0.7.1CCS Angina Class12 (25.1)10 (30.1)10 (17.1)10 (17.1)Previous CR6 (%)61 (12.1)12 (15.2)10 (10.1)10 (17		(N=353)	(N=136)	(N=130)	
Male sor (%)312 (88.4)122 (89.7)110 (84.6)0.21Body-mass index (IQR)27.9 (24.9 to 32.0)27.7 (24.2 to 30.9)28.7 (25.1 to 32.4)0.75Body-mass index (IQR)153 (43.3)56 (41.2)53 (43.5)0.41Current or previous smoker (%)207 (58.8)78 (57.4)63 (45.5)0.87Current or previous smoker (%)46 (13.0)14 (10.3)10 (7.7)0.46Current or previous smoker (%)46 (13.0)23 (16.9)16 (12.3)0.29Race (%)46 (13.0)23 (16.9)9 (6.9)0.710.46Stand Mated, other or not reported5 (1.4)3 (2.2)2 (1.5)0.002Maked, other or not reported5 (1.4)3 (2.2)2 (1.5)0.002Hosty of mycardial infarction (%)326 (9.2)118 (68.8)117 (90.0)0.002Hosty of mycardial infarction (%)22 (6.2)7 (5.1)21 (16.2)0.75Previous CABG (%)76 (21.5)24 (17.6)21 (16.2)0.75Previous CABG (%)22 (6.7.2)7 (5.1)2 (1.5.1)0.17CCS Angina Class00.000.000.000.00120 (15.4)11 (8.1)18 (18.8)10 (17.9)0.4332 (2.5.1)10 (0.8)10 (0.6)10 (1.6.2)0.40120 (15.4)11 (8.1)18 (18.1)18 (18.1)10 (17.1)111111111111111 <td< td=""><td>Age, mean (SD), years</td><td>68.8 (9.1)</td><td>70.5 ± 8.3</td><td>68.3 ± 9.6</td><td>0.04</td></td<>	Age, mean (SD), years	68.8 (9.1)	70.5 ± 8.3	68.3 ± 9.6	0.04
Body-mass index (IQR)27.9 (24.9 to 32.0)27.7 (24.2 to 30.4)28.7 (25.1 to 32.4)0.10Diabetes (%)155 (43.3)56 (41.2)63 (45.5)0.14Current or previous snoker (%)207 (58.0)78 (57.4)63 (45.5)0.14Current or previous snoker (%)46 (13.0)140 (10.3)10 (7.7)10.6Peripheral vascular disease (%)46 (13.0)23 (16.9)16 (12.3)0.29Race (%)77 (4.8)14 (10.3)9 (6.9)10.70.21Shan17 (4.8)10 (7.7)2 (1.5)10.710.7Mixed, other on or reported51 (14.1)34 (3.2)2 (1.5)10.7White or not reported51 (14.1)74 (53.8)11.7 (60.0)0.7Previous Clock (%)22 (2.5)24 (16.3)46 (35.4)10.7Previous Clock (%)76 (2.5)24 (15.3)12.1 (8.2)0.7Previous Clock (%)22 (2.5)24 (15.1)21.1 (6.2)0.7Previous Clock (%)22 (2.5)24 (15.1)11.1 (8.1)11.1 (8.1)Previous Clock (%)22 (2.5)24 (15.1)10.1 (8.1)11.1 (8.1)Previous Clock (%)22 (2.1)11.1 (8.1)11.1 (8.1)11.1 (8.1)Previous Clock (%)22 (2.1)11.1 (8.1)11.1 (8.1)11.1 (8.1)Previous Clock (%)23 (2.6)24 (15.1)11.1 (8.1)11.1 (8.1)Previous Clock (%)23 (2.6)24 (15.1)11.1 (8.1)11.1 (8.1)Previous Clock (%)23 (2.6)24 (2.6)20 (15.1	Male sex (%)	312 (88.4)	122 (89.7)	110 (84.6)	0.21
Diabetes (%) 153 (43.3) 56 (41.2) 51 (19.2) 0.75 Hypertension (%) 207 (58.8) 78 (57.4) 63 (48.5) 0.14 Current or previous smoker (%) 267 (75.6) 95 (69.9) 92 (70.8) 0.87 Cerebroyascular disease (%) 46 (13.0) 14 (10.3) 10 (7.7) 0.46 Peripheral vascular disease (%) 46 (13.0) 14 (10.3) 9 (6.9) 0.71 Asian 17 (4.8) 14 (10.3) 9 (6.9) 0.71 Asian 3 (0.8) 10 (7.7) 2.15.5 0.71 Mixed, other or not reported 5 (1.4) 3 (2.2) 2 (1.5) 0.02 History of mocardial infarction (%) 197 (5.8) 79 (58.1) 5 (1.89.2) 0.00 History of mocardial infarction (%) 127 (5.8) 24 (17.6) 21 (16.2) 0.75 Previous PCI (%) 76 (21.5) 24 (17.6) 21 (16.2) 0.75 Previous CABG (%) 22 (62.2) 7 (5.1) 2 (1.5) 0.75 Stard (%) 22 (62.2) 7 (5.1) 9 (69.2) <td< td=""><td>Body-mass index (IQR)</td><td>27.9 (24.9 to 32.0)</td><td>27.7 (24.2 to 30.9)</td><td>28.7 (25.1 to 32.4)</td><td>0.24</td></td<>	Body-mass index (IQR)	27.9 (24.9 to 32.0)	27.7 (24.2 to 30.9)	28.7 (25.1 to 32.4)	0.24
Hyperension (%) 207 (58.8) 78 (57.4) 63 (48.5) 0.14 Current or previous smoker (%) 267 (75.6) 95 (69.9) 92 (70.8) 0.87 Cerebroxscular disease (%) 46 (13.0) 23 (16.9) 16 (12.3) 0.29 Race (%)* - 0.71 0.46 Asian 17 (4.8) 14 (10.3) 9 (6.9) 0.71 Black 3 (0.8) 1 (0.7) 2 (1.5) . . White 328 (92.9) 118 (86.8) 117 (90.0) .	Diabetes (%)	153 (43.3)	56 (41.2)	51 (39.2)	0.75
Current or previous smoker (%) 267 (75.6) 95 (69.9) 92 (70.8) 0.87 Carebrovascular disease (%) 46 (13.0) 14 (10.3) 10 (7.7) 0.46 Peripheral vascular disease (%) 46 (13.0) 24 (16.9) 10 (12.3) 0.29 Race (%)*	Hypertension (%)	207 (58.8)	78 (57.4)	63 (48.5)	0.14
Cerebroxacular disease (%) 46 (13.0) 14 (10.3) 10 (7.7) 0.46 Peripheral vascular disease (%) 46 (13.0) 23 (16.9) 16 (12.3) 0.29 Race (%) 17 (4.8) 14 (10.3) 9 (6.9) 0.71 Asian 17 (4.8) 14 (10.3) 9 (6.9) 1.17 (90.0) Black 30.8) 10.07 2 (1.5) 1.000.0 Mixed, other or not reported 5 (1.4) 3 (2.2) 2 (1.5) 0.002 Hospitalization for heart failure in prior 2 years 121 (34.3) 46 (33.8) 46 (35.4) 0.002 Previous CABG (%) 7 (2 (1.5) 2 (16.2) 0.75 0.75 Previous CABG (%) 7 (2 (1.5) 2 (16.2) 0.17 0.17 CCS Angina Class	Current or previous smoker (%)	267 (75.6)	95 (69.9)	92 (70.8)	0.87
Peripheral vascular disease (%)46 (13.0)22 (16.9)16 (12.3)0.29Race (%)*0.71Asian17 (4.8)14 (10.3)9 (6.9)0.71Black3 (0.8)1 (0.7)2 (1.5)0.01Mixed, other or not reported32 (0.2)118 (86.8)117 (90.0)0.002History of myocardial infarction (%)197 (55.8)79 (58.1)51 (39.2)0.002Hospitalization for heart failure in prior 2 years22 (6.2)72 (1.5)0.75Previous PCI (%)76 (21.5)24 (17.6)21 (16.2)0.75Previous CAGG (%)75 (21.4)30 (22.2)21 (16.2)0.75CCS Angina Class0.310.0010236 (67.2)92 (68.1)90 (69.2)0.001175 (21.4)30 (22.2)11 (16.1)0.16232 (9.1)111 (6.1)18 (13.8)0.43340.00.00.00.00.00.0110 (50.1)10 (60.2)0.00111 (6.1)11 (6.1)96 (27.4)111 (6.1)11 (6.1)10 (80.1)111 (6.1)11 (6.1)96 (27.4)111 (6.1)11 (6.1)0.00.0111 (6.1)11 (6.1)0.00.0111 (6.1)11 (6.1)10 (60.2)111 (6.1)11 (6.1)10 (60.2)111 (6.1)11 (6.1)10 (60.2)111 (6.1)11 (6.1)10 (60.1)111	Cerebrovascular disease (%)	46 (13.0)	14 (10.3)	10 (7.7)	0.46
Race (%) ⁴ - - - 0.71 Asian 17 (4.8) 14 (10.3) 9 (6.9) - Black 3 (0.8) 1 (0.7) 2 (1.5) - Mixed, other or not reported 5 (1.4) 3 (2.2) 2 (1.5) - History of myocardial infarction (%) 197 (58) 79 (88.4) 51 (39.2) 0.002 Hospitalization for heart failure in prior 2 years 121 (34.3) 46 (33.6) 117 (90.0) - (%) 76 (21.5) 24 (17.6) 21 (16.2) 0.75 Previous CA66 (%) 22 (6.2) 7 (5.1) 2 (1.6) 0.71 CCS Angina Class - - 0.31 0 236 (67.2) 52 (68.1) 90 (69.2) 116 (8.1) 1 75 (21.4) 30 (22.2) 21 (16.2) 0.31 2 32 (9.4) 111 (8.1) 18 (13.8) - 4 0 (0.0) 0 (0.0) 0 (0.0 - - 1 57 (36.3) 28 (20.69) 30 (23.1) -	Peripheral vascular disease (%)	46 (13.0)	23 (16.9)	16 (12.3)	0.29
Asian 17 (4,8) 14 (10.3) 9 (6.9) Black 3 (0.8) 1 (0.7) 2 (1.5) White 328 (92.9) 118 (86.8) 1177 (90.0) History of myocardial infarction (%) 197 (55.8) 79 (58.1) 51 (39.2) 0.002 Hospitalization for heart failure in prior 2 years 121 (34.3) 0.79 0.79 (%) 76 (21.5) 24 (17.6) 21 (16.2) 0.75 Previous CABG (%) 22 (62.2) 7 (51.1) 2 (1.5) 0.17 CS Angina Class 0 32 (61.2) 30 (02.2) 21 (16.2) 0.31 Q 326 (67.2) 32 (68.1) 90 (69.2) 1 0.18 18 (38.3) 4 0.13 18 (38.3) 1 1 18 (13.8) 1 1 13 (38.1) 1	Race (%) ^a				0.71
Black 3 (0.8) 1 (0.7) 2 (1.5) Mixed, other or not reported 5 (1.4) 3 (2.2) 2 (1.5) Mixed, other or not reported 328 (29.2) 118 (86.8) 117 (90.0) History of myocardial infarction (%) 197 (55.8) 79 (58.1) 51 (39.2) 0.002 Hospitalization for heart failure in prior 2 years 121 (34.3) 46 (33.8) 46 (55.4) 0.79 Previous CABG (%) 22 (62.2) 7 (5.1) 2.1 (16.2) 0.71 CCS Angina Class - 0.31 0 0.13 0 236 (67.2) 52 (68.1) 90 (69.2) 0.13 1 75 (21.4) 30 (22.2) 2.1 (16.2) 0.13 2 32 (9.1) 11 (8.1) 18 (13.8) - 4 0 (0.0) 0 (0.0 0 (0.0 0 0 NYHA Class - 57 (16.3) 28 (20.69) 30 (22.1) 0.43 I 191 (54.6) 77 (57.5) 79 (60.8) - - ICb -/ CRT at randomization (%) 77 (16.3) </td <td>Asian</td> <td>17 (4.8)</td> <td>14 (10.3)</td> <td>9 (6.9)</td> <td></td>	Asian	17 (4.8)	14 (10.3)	9 (6.9)	
Mixed other or not reported 5 (1.4) 3 (2.2) 2 (1.5) White 328 (92.9) 118 (86.8) 117 (90.0) History of myocardial infarction (%) 197 (55.8) 79 (58.1) 51 (32.2) 0.002 Hospitalization for heart failure in prior 2 years 121 (34.3) 46 (33.8) 46 (35.4) 0.79 (%) 76 (21.5) 24 (17.6) 21 (16.2) 0.75 Previous CABG (%) 22 (6.2) 7 (5.1) 2 (15.2) 0.17 CCS Angina Class - 0.31 0 0.31 0 236 (67.2) 92 (68.1) 90 (69.2) 11 (16.2) 0.75 1 75 (21.4) 30 (22.2) 11 (16.2) 0.43 3 8 (2.3) 2 (1.5) 10.08 0 4 0(0.0) 0 (0.0 0 (0.0 0 NYHA Class - 75 (16.3) 28 (20.69) 30 (23.1) 191 (54.6) 77 (57.5) 79 (60.8) 100 (0.0) 0.000 101 LO -/- CRT at randomization (%) 57 (16.3) 28 (20.0)<	Black	3 (0.8)	1 (0.7)	2 (1.5)	
White328 (92.9)118 (86.8)117 (90.0)History of myocardial infarction (%)197 (55.8)79 (58.1)51 (39.2)0.02Hospitalization for heart failure in prior 2 years121 (34.3)46 (33.8)46 (35.4)0.75(%)66 (21.5)24 (17.6)21 (16.2)0.75Previous PCI (%)76 (21.5)24 (17.6)21 (16.2)0.75CS Angina Class22 (6.2)72 (16.2)0.100.000236 (67.2)92 (68.1)90 (69.2)1175 (21.4)30 (22.2)11 (8.1)18 (13.8)232 (9.1)11 (8.1)18 (13.8)1382 (2.3)2 (1.5)1 (0.8)140 (0.0)0 (0.0)0 (0.0)0NHAClass57 (16.3)28 (20.69)30 (23.1)11191 (54.6)77 (57.5)79 (60.8)11191 (54.6)77 (57.5)79 (60.8)11191 (54.6)77 (57.5)79 (60.8)11191 (54.6)71 (20.1)32 (23.5)26 (20.0)0.00011191 (54.6)71 (20.1)32 (23.5)18.0 (12.0 to 23.0)40.000121212 (15.2)18.0 (12.0 to 23.0)40.00110.0011312 (15.2)18.0 (12.0 to 23.0)40.00110.00110.0011414 (21 to 5)26.0 (20.0 to 32.5)18.0 (12.0 to 23.0)40.0011518 (13.8)33 (14.4)2 (2 to 3)40.001161	Mixed, other or not reported	5 (1.4)	3 (2.2)	2 (1.5)	
History of myocardial infarction (%) 197 (55.8) 79 (58.1) 51 (39.2) 0.002 Hospitalization for heart failure in prior 2 years (%) 121 (34.3) 46 (33.8) 46 (35.4) 0.79 Previous PCI (%) 76 (21.5) 24 (17.6) 211 (16.2) 0.75 Previous CABG (%) 22 (6.2) 7 (5.1) 2 (1.5.) 0.17 CCS Angina Class 236 (67.2) 92 (68.1) 90 (69.2) 0.31 0 236 (67.2) 92 (68.1) 90 (69.2) 21 (16.2) 1 75 (21.4) 30 (22.2) 21 (16.2) 0.43 3 8 (2.3) 2 (1.5) 10.08	White	328 (92.9)	118 (86.8)	117 (90.0)	
Hospitalization for heart failure in prior 2 years (%) 121 (34.3) 46 (33.8) 0 0.79 (%) 46 (33.8) 46 (35.4) 60.79 Previous PCI (%) 76 (21.5) 24 (17.6) 21 (16.2) 0.75 Previous CASG (%) 22 (6.2) 7 (5.1) 2 (1.5) 0.31 0 236 (67.2) 92 (68.1) 90 (69.2) 0.31 1 32 (9.1) 11 (8.1) 18 (18.8) 0 2 32 (9.1) 11 (8.1) 18 (18.8) 0 4 00.0 0 (0.0) 0 (0.0) 0 (0.0) 1 57 (16.3) 28 (20.69) 30 (23.1) 0 1 191 (54.6) 77 (57.5) 79 (60.8) 0 10 96 (27.4) 29 (21.6) 20 (15.4) 0.000 11 191 (54.6) 77 (57.5) 79 (60.8) 0 11 57 (16.3) 28 (20.69) 30 (23.1) 0.0004 10 191 (54.6) 77 (57.5) 79 (60.8) 0 11 52 (15.0 29)	History of myocardial infarction (%)	197 (55.8)	79 (58.1)	51 (39.2)	0.002
(%) </td <td>Hospitalization for heart failure in prior 2 years</td> <td>121 (34.3)</td> <td></td> <td></td> <td>0.79</td>	Hospitalization for heart failure in prior 2 years	121 (34.3)			0.79
Previous PCI (%) 76 (21.5) 24 (17.6) 21 (16.2) 0.75 Previous CABG (%) 22 (6.2) 7 (5.1) 2 (1.5) 0.17 CCS Angina Class - - 0.31 0 236 (67.2) 92 (68.1) 90 (69.2) 1 1 30 (22.2) 21 (16.2) 0.31 2 32 (9.1) 11 (8.1) 18 (13.8) - 3 32 (9.1) 11 (8.1) 18 (13.8) - 4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) - NYHA Class - - 0.43 - - 11 191 (54.6) 77 (57.5) 79 (60.8) - - 11 96 (27.4) 29 (21.6) 20 (15.4) - - - 11 91 (54.6) 77 (57.5) 79 (60.8) - - - 11 91 (54.6) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 - 110 C5 /- C RT at randomization (%) 71 (20.1)	(%)		46 (33.8)	46 (35.4)	
Previous CABG (%) 22 (6.2) 7 (5.1) 2 (1.5) 0.17 CCS Angina Class 236 (67.2) 92 (68.1) 90 (69.2) 0.31 0 75 (21.4) 30 (22.2) 21 (16.2) 1 2 32 (9.1) 11 (8.1) 18 (13.8) - 3 3 (2.3) 2 (1.5) 1 (0.8) - 4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) NYHA Class 57 (16.3) 28 (20.69) 30 (23.1) - 1 191 (54.6) 77 (57.5) 79 (60.8) - 1 96 (27.4) 29 (21.6) 20 (15.4) - 1 96 (27.4) 29 (21.6) 20 (15.4) - 1 96 (27.4) 29 (21.6) 20 (15.4) - 1 191 (54.6) 77 (57.5) 79 (60.8) - 1 191 (54.6) 77 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (10R) 71 (20.1) 32 (23.5) 18.0 (12.0 to 23.0) <0.0001 </td <td>Previous PCI (%)</td> <td>76 (21.5)</td> <td>24 (17.6)</td> <td>21 (16.2)</td> <td>0.75</td>	Previous PCI (%)	76 (21.5)	24 (17.6)	21 (16.2)	0.75
CCS Angina Class 0.31 0 236 (67.2) 92 (68.1) 90 (69.2) 1 75 (21.4) 30 (22.2) 21 (16.2) 2 32 (9.1) 11 (8.1) 18 (13.8) 3 8 (2.3) 2 (1.5) 1 (0.8) 4 0 (0.0) 0 (0.0) 0 (0.0) NYHA Class 57 (16.3) 28 (20.69) 30 (23.1) I 191 (54.6) 77 (57.5) 79 (60.8) III 96 (27.4) 29 (21.6) 20 (15.4) IV 6 (1.7) 0 (0.0) 0 (0.0) ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.43 Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.0001	Previous CABG (%)	22 (6.2)	7 (5.1)	2 (1.5)	0.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CCS Angina Class				0.31
1 75 (21.4) 30 (22.2) 21 (16.2) 2 32 (9.1) 11 (8.1) 18 (13.8) 3 8 (2.3) 2 (1.5) 1 (0.8) 4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) NYHA Class 57 (16.3) 28 (20.69) 30 (23.1) 0.43 I 191 (54.6) 77 (57.5) 79 (60.8) 0.43 II 96 (27.4) 29 (21.6) 20 (15.4) 0.43 ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) 71 (20.1) 32 (23.5) 26 (20.0) 0.4001 Post-PCI BCIS jeopardy score, median (IQR) 71 (20.1) 32 (23.5) 18.0 (12.0 to 23.0) <0.0001	0	236 (67.2)	92 (68.1)	90 (69.2)	
2 32 (9.1) 11 (8.1) 18 (13.8) 3 8 (2.3) 2 (1.5) 1 (0.8) 4 0 (0.0) 0 (0.0) 0 (0.0 NYHA Class 2 (1.5) 1 (0.8) 0 (0.0) 1 57 (16.3) 28 (20.69) 30 (23.1) 1 191 (54.6) 77 (57.5) 79 (60.8) 11 96 (27.4) 29 (21.6) 20 (15.4) 12 6 (1.7) 0 (0.0) 0 (0.0) 16 D +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) 22 (15 to 29) 26.0 (20.0 to 32.5) 18.0 (12.0 to 23.0) <0.0001	1	75 (21.4)	30 (22.2)	21 (16.2)	
3 8 (2,3) 2 (1.5) 1 (0.8) 4 0 (0.0) 0 (0.0) 0 (0.0) NYHA Class 57 (16.3) 28 (20.69) 30 (23.1) I 191 (54.6) 77 (57.5) 79 (60.8) IV 6 (1.7) 0 (0.0) 0 (0.0) ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.43 Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) 22 (15 to 29) 26.0 (20.0 to 32.5) 18.0 (12.0 to 23.0) <0.0001	2	32 (9.1)	11 (8.1)	18 (13.8)	
4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0 NYHA Class 57 (16.3) 28 (20.69) 30 (23.1) I 191 (54.6) 77 (57.5) 79 (60.8) III 96 (27.4) 29 (21.6) 20 (15.4) IV 6 (1.7) 0 (0.0) 0 (0.0) ICD +/ CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) 22 (15 to 29) 26.6 (20.0 to 32.5) 18.0 (12.0 to 23.0) <0.0001	3	8 (2.3)	2 (1.5)	1 (0.8)	
NYHA Class 57 (16.3) 28 (20.69) 30 (23.1) I 191 (54.6) 77 (57.5) 79 (60.8) III 96 (27.4) 29 (21.6) 20 (15.4) IV 6 (1.7) 0 (0.0) 0 (0.0) ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.0001	4	0 (0.0)	0 (0.0)	0 (0.0	
I 57 (16.3) 28 (20.69) 30 (23.1) II 191 (54.6) 77 (57.5) 79 (60.8) III 96 (27.4) 29 (21.6) 20 (15.4) IV 6 (1.7) 0 (0.0) 0 (0.0) ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.0001	NYHA Class				0.43
II 191 (54.6) 77 (57.5) 79 (60.8) III 96 (27.4) 29 (21.6) 20 (15.4) IV 6 (1.7) 0 (0.0) 0 (0.0) ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.0001		57 (16.3)	28 (20.69)	30 (23.1)	
III 96 (27.4) 29 (21.6) 20 (15.4) IV 6 (1.7) 0 (0.0) 0 (0.0) ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.001	П	191 (54.6)	77 (57.5)	79 (60.8)	
IV 6 (1.7) 0 (0.0) 0 (0.0) ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.0001		96 (27.4)	29 (21.6)	20 (15.4)	
ICD +/- CRT at randomization (%) 71 (20.1) 32 (23.5) 26 (20.0) 0.49 Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.0001	IV	6 (1.7)	0 (0.0)	0 (0.0)	
Baseline BCIS jeopardy score, median (IQR) ^b 8 (6 to 10) 10 (6 to 12) 8 (6 to 10) 0.0004 Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.0001	ICD +/- CRT at randomization (%)	71 (20.1)	32 (23.5)	26 (20.0)	0.49
Post-PCI BCIS jeopardy score, median (IQR) - 4 (2 to 6) 0 (0 to 2) <0.0001 Baseline SYNTAX score, median (IQR) 22 (15 to 29) 26.0 (20.0 to 32.5) 18.0 (12.0 to 23.0) <0.0001	Baseline BCIS jeopardy score, median (IQR) ^b	8 (6 to 10)	10 (6 to 12)	8 (6 to 10)	0.0004
Baseline SYNTAX score, median (IQR) 22 (15 to 29) 26.0 (20.0 to 32.5) 18.0 (12.0 to 23.0) <0.0001 Residual SYNTAX score, median (IQR) - 26.0 (20.0 to 32.5) 18.0 (12.0 to 23.0) <0.0001	Post-PCI BCIS jeopardy score, median (IQR)	-	4 (2 to 6)	0 (0 to 2)	<0.0001
Residual SYNTAX score, median (IQR) - 26.0 (20.0 to 32.5) 18.0 (12.0 to 23.0) <0.0001 Total number of lesions, median (IQR) 45 (12.8) 3 (3 to 4) 2 (2 to 3) <0.0001	Baseline SYNTAX score, median (IQR)	22 (15 to 29)	26.0 (20.0 to 32.5)	18.0 (12.0 to 23.0)	< 0.0001
Total number of lesions, median (IQR) 45 (12.8) 3 (3 to 4) 2 (2 to 3) <0.001 Left main coronary artery disease (%) 31.9 ± 9.6 28 (20.6) 12 (9.2) 0.009 Left ventricular ejection fraction, mean (SD), % ^c 243 (77.1) 31.1 ± 9.5 33.5 ± 10.4 0.07 Viability test (%) 72 (22.9) 72 (22.9) 109 (80.1) 101 (77.7) - CMR DSE 109 (80.1) 101 (77.7) - - DSE 21 (20) 20 (22.3) 20 (20) 20 (20)	Residual SYNTAX score, median (IQR)	-	26.0 (20.0 to 32.5)	18.0 (12.0 to 23.0)	<0.0001
Left main coronary artery disease (%) 31.9 ± 9.6 28 (20.6) 12 (9.2) 0.009 Left ventricular ejection fraction, mean (SD), % ^c - 31.1 ± 9.5 33.5 ± 10.4 0.07 243 (77.1) - - - - - - Viability test (%) 7 (4-10) - 109 (80.1) 101 (77.7) - DSE - 27 (19.9) 29 (22.3) - - -	Total number of lesions, median (IQR)	45 (12.8)	3 (3 to 4)	2 (2 to 3)	<0.0001
Left ventricular ejection fraction, mean (SD), % ^c 33.1 ± 9.5 33.5 ± 10.4 0.07 243 (77.1) 243 (77.1) 0.07 0.07 0.07 Viability test (%) 7 (4-10) 109 (80.1) 101 (77.7) - DSE 27 (19.9) 29 (22.3) 0.07 0.07	Left main coronary artery disease (%)	31.9 ± 9.6	28 (20.6)	12 (9.2)	0.009
243 (77.1) 72 (22.9) 243 (77.1) Viability test (%) 77 (4-10) CMR 109 (80.1) DSE 27 (19.9) Number of viable comments (VOR) 0 (1.10)	Left ventricular ejection fraction, mean (SD), % ^c		31.1 ± 9.5	33.5 ± 10.4	0.07
T2 (22.9) T2 (22.9) Viability test (%) 7 (4-10) CMR 109 (80.1) DSE 7 (4-10)		243 (77.1)			
Viability test (%) 7 (4-10) 109 (80.1) 101 (77.7) - CMR 109 (80.1) 101 (77.7) - - - DSE 27 (19.9) 29 (22.3) - <td></td> <td>72 (22.9)</td> <td></td> <td></td> <td></td>		72 (22.9)			
CMR 109 (80.1) 101 (77.7) - DSE 27 (19.9) 29 (22.3) -	Viability test (%)	7 (4-10)			
DSE 27 (19.9) 29 (22.3)	CMR		109 (80.1)	101 (77.7)	-
	DSE		27 (19.9)	29 (22.3)	
Number of viable segments (IQR) 6 (4-10) / (5-11) 0.29	Number of viable segments (IQR)		6 (4-10)	7 (5-11)	0.29

^a Race as self-reported by participants using options defined by the investigators.

^b British Cardiovascular Intervention Society jeopardy score (BCIS-JS) as reported by angiography core laboratory.

^c Baseline left ventricular ejection fraction measured by the blinded echocardiography core laboratory

^d P-value denotes comparison between Incomplete vs complete anatomical revascularization groups

BCIS denotes British Cardiovascular Intervention Society, CABG coronary artery bypass grafting, CCS Canadian Cardiovascular Society, CMR cardiovascular magnetic resonance imaging, CRT cardiac resynchronization therapy, CTO chronic total occlusion, DSE dobutamine stress echocardiography, ICD implantable cardioverter defibrillator, IQR interquartile range, NYHA New York Heart Association, PCI percutaneous coronary intervention, RI_{myo} Myocardial revascularization index.

Journal Pre-proof

Table S11 – Primary and secondary outcomes by viability guided completeness of

revascularization (25% late gadolinium enhancement threshold)

	Optimal	Complete viability	Hazard / Odds	p-	Incomplete	Hazard / Odds	p-value
	medical	guided	ratio*	value	viability guided	ratio*	
	therapy§	revascularization§	(95% CI)		revascularization§	(95% CI)	
	(Reference)	(RI _{myo} >86.7)			(RI _{myo} ≤86.7)		
All-cause death	134 (38.0)	46 (34.8)	1.02	0.93	45 (33.8)	0.79	0.17
or hospitalization			(0.72 to 1.44)			(0.56 to 1.11)	
for heart failure							
All-cause death	115 (32.6)	40 (30.3)	1.03	0.88	36 (27.0)	0.71	0.08
			(0.71 to 1.50)		Č .	(0.48 to 1.04)	
Cardiovascular	88 (24.9)	27 (20.5)	0.88	0.56	26 (19.5)	0.66	0.07
death			(0.56 to 1.37)			(0.42 to 1.03)	
Hospitalization	54 (15.3)	15 (11.4)	0.80	0.46	18 (13.5)	0.76	0.33
for heart failure			(0.45 to 1.44)		\mathbf{O}	(0.44 to 1.31)	
Improvement in	101 (50.2)	38 (48.1)	0.94	0.83	46 (55.4)	1.02	0.96
left ventricular			(0.54 to 1.65)			(0.58 to 1.77)	
ejection fraction							

CI – confidence interval; HR-hazard ratio; RI_{myo} – Myocardial revascularization index

* Adjusted Hazard ratios calculated with OMT group as reference

§ Event rate - n(%)

Table S12 – Change in 2-year summary KCCQ score by anatomical and viability-

guided completeness of revascularization

	KCCQ* at baseline	KCCQ* at 2 years	Adjusted** difference in means at 2 years (95% CI)	P-value
Anatomical completeness				
of revascularization (RI _{coro})				
OMT	63.0 (24.9)	70.5 (24.7)	Reference	
Incomplete anatomical revascularization (RI _{coro} ≤66.7%)	57.8 (26.0)	65.8 (26.2)	-1.1 (-6.1 to 3.9)	0.66
Complete anatomical revascularization (RI _{coro} >66.7%)	65.8 (22.6)	78.1 (22.9)	4.6 (-0.2 to 9.5)	0.06
Viability guided completeness of revasculariztion (RI _{myo})		.0		
OMT	63.0 (24.9)	70.5 (24.7)	Reference	
Incomplete viability guided revascularization (RI _{myo} ≤86.7%)	60.6 (26.7)	69.8 (26.3)	0.1 (-4.8 to 5.0)	0.97
Complete viability guided revascularization (RI _{myo} >86.7%)	63.2 (22.1)	75.0 (24.0)	3.9 (-0.9 to 8.6)	0.11

CI – confidence interval; KCCQ – Kansas City Cardiomyopathy Questionnaire; OMT – optimal medical therapy; RI_{coro} – Coronary revascularization index; RI_{myo} – Myocardial revascularization index

Data are reported as mean (standard deviation); * KCCQ overall summary score; ** Adjusted for pre-specified adjustment variables and baseline KCCQ overall summary score.