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We have recently shown that the CHEK2*1100delC mutation acts as a low penetrance breast cancer susceptibility allele. To
investigate if other CHEK2 variants confer an increased risk of breast cancer, we have screened an affected individual with
breast cancer from 68 breast cancer families. Five of these individuals were found to harbour germline variants in CHEK2.
Three carried the 1100delC variant (4%). One of these three individuals also carried the missense variant, Arg180His. In the
other two individuals, missense variants, Arg117Gly and Arg137Gln, were identified. These two missense variants reside within
the Forkhead-associated domain of CHEK2, which is important for the function of the expressed protein. None of these
missense variants were present in 300 healthy controls. Microdissected tumours with a germline mutation showed loss of the
mutant allele suggesting a mechanism for tumorigenesis other than a loss of the wild type allele. This study provides further
evidence that sequence variation in CHEK2 is associated with an increased risk of breast cancer, and implies that tumorigenesis
in association with CHEK2 mutations does not involve loss of the wild type allele.
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About 10% of breast cancer has a genetic predisposition, however,
germline mutations in BRCA1, BRCA2, TP53, PTEN and LKB1
only account for between 20 – 25% of the familial clustering (East-
on, 1999). A recent model of breast cancer susceptibility suggests a
polygenic basis for the wide variation in familial risk whereby the
individually small effects of many genes combine multiplicatively
(Antoniou et al, 2001). We have recently found evidence for this
model with the observation that the 1100delC variant in CHEK2
which is carried by *1% of the population confers a 1.7-fold
increased risk of breast cancer (Meijers-Heijboer et al, 2002).

CHEK2 functions downstream of ATM (ataxia telangiectasia-
mutated protein) in response to DNA damage (Chaturvedi et al,
1999) to phosphorylate TP53 (Chehab et al, 2000) and BRCA1
(Lee et al, 2000), therefore regulating the tumour suppressor func-
tions of these proteins. The protein contains functionally important
60 amino acid FHA domain (residues 115 – 175) and a kinase
domain (residues 226 – 486) (Matsuoka et al, 1998).

To investigate if variants of CHEK2 other than 1100delC confer
an increased risk of breast cancer, we have screened a series of 68
familial breast cancer cases, which had been screened in the Regio-
nal Genetics Service and found to be negative for mutations in
BRCA1 and BRCA2.

MATERIALS AND METHODS

Patients

EDTA-venous blood samples were collected from 68 familial breast
cancer cases attending Genetics Clinics within the Royal Marsden
NHS Trust and the South Thames Regional Genetics Unit. All
families had at least two individuals affected with breast cancer.
The breast cancer was verified by histological reports. Samples were
obtained with informed consent and local ethical approval in
accordance with the tenets of the Helsinki Declaration. DNA was
extracted from EDTA-blood samples using a standard sucrose lysis
method.

METHODS

Mutational analysis of BRCA1 and BRCA2

Mutational analysis of BRCA1 and BRCA2 was undertaken using a
combination of the protein truncation test (PTT) (Hogervorst et al,
1995), and conformation sensitive gel electrophoresis (CSGE)
(Ganguly et al, 1993). Exons 10 and 11 of BRCA2 and exon 11
of BRCA1 were screened by PTT. Exon 9 of BRCA2 and exons 2
and 20 of BRCA1 were screened by CSGE.

Mutational analysis of CHEK2

The search for germline mutations in CHEK2 was performed using
CSGE as described previously (Sodha et al, 2002). Samples that
showed variant migration bands were sequenced by direct sequen-
cing using the ABI BigDye cycle sequencing kit with dye-labelled
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terminators. These labelled products were then run on an ABI 310
sequencer (Applied Biosystems).

Loss of heterozygosity (LOH) studies

Allelic imbalance in tumours from individuals with germline muta-
tions in CHEK2 was assessed using the microsatellite marker,
D22S275, which maps to intron 4 of CHEK2. The relevant exons
were also amplified by PCR from the tumour DNA and sequenced.
DNA was obtained from paraffin-embedded tissue by dewaxing
with xylene, digesting with 10 mM Tris-HCl (pH 7.5), 1 mM

EDTA, 15% (w v71) SDS and 500 mg ml71 proteinase K for 4 h
at 568C, followed by phenol-chloroform extraction and sodium
acetate, ethanol precipitation.

Statistical analysis

The 95% confidence interval (95% CI) of the estimate of the
frequency of CHEK2 mutations in breast cancer cases was esti-
mated from the binomial distribution. All statistical
manipulations were undertaken using the statistical software
programme STATA (Version 6.0, Stata Corporation, College
Station, Texas, TX 77840, USA; http://www.stata.com).

RESULTS

Table 1 shows the family details of the 68 breast cancer cases
studied. All had a strong family history of breast cancer or
breast-ovarian cancer. The median age at diagnosis of all cases
was 47 years.

Seventeen of the 68 patients were fully screened for mutations in
BRCA1 and BRCA2. The others were screened for mutations in
exons 9 – 11 of BRCA2 and exons 2, 11 and 20 of BRCA1. No
pathogenic mutations were detected in any of the 68 patients. This
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Table 1 Family details of the 68 patients studied

No. of these Median age range

No. of breast families with of proband

No. of families cancer cases ovarian cancer (years; range)

16 4+ 5 48 (35 – 58)
20 4 5 49 (33 – 56)
16 3 3 42 (31 – 51)
16 2 3 44 (32 – 59)

Breast Cancer

46y
Arg117Gly

Brain Tumour

Bowel Cancer

Other Cancer

40y

50y

50y
Arg137Gln

52y 33y

50y

Case H10Case G11

42y
1100delC

38y

<60's>

Case B9 Case D11

49y 47y 62y

58y
1100delC

35y 54y

Case F4

33y
1100delC
Arg180His

40y

40y52y

Bilateral Breast Cancer

Figure 1 The pedigrees of the breast cancer cases with germline mutations in CHEK2 (individuals harbouring the mutation are arrowed). The trees have
been altered to preserve anonymity, but not alter the meaning of the report.
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analysis is estimated to detect approximately 75% of the reported
BRCA1 mutations and 50% of the BRCA2 gene. (BIC database:
www.nhgri.nih.gov/Intramural_research/Lab_transfer/Bic/).

The full coding sequence of CHEK2 was screened for muta-
tions in all 68 patients. Six sequence variants were identified.
Figure 1 shows the family histories of the individuals carrying
the variants. Three of the cases, B9, F4 and D11, carried the
1100delC variant. One of these cases, F4, also carried the
missense variant, Arg180His. The other two individuals, G11
and H10, carried sequence changes in exon 2 – Arg117Gly and
Arg137Gln.

To establish whether the CHEK2 missense variants identified
represent polymorphisms, 300 healthy controls were screened for
these sequence changes. None of the controls were found to
harbour these changes. Unfortunately, germline DNA was not
available from other members in any of the three families to exam-
ine whether either variant was carried by any other family member
affected with breast cancer.

Paraffin embedded tissue was available from the two patients
with the 1100delC variant (B9 and D11) and the patient with
the Arg117Gly variant (G11). Analysis of tumour DNA from B9
showed no evidence of allelic imbalance by sequencing. Sequencing
of relevant exons from tumour DNA from D11 and G11, however,

showed that the mutant allele was lost and the wild type allele
retained (Figure 2).

Figure 3 shows D22S275 genotypes of patients F4, B9 and paired
normal -tumour DNA samples from patients D11 and G11. We
have previously shown that the 165bp allele of D22S275 is asso-
ciated with the 1100delC variant (Meijers-Heijboer et al, 2002)
and in this study all three patients who harbour this sequence
change (B9, F4, D11) possessed this allele. Figure 3 shows evidence
of LOH in the tumour DNA from patients G11 and D11. However,
there was retention of the 165bp allele in patient D11, who carried
the del1100C variant.

DISCUSSION

In our study, three of the 68 breast cancer patients (4%; 95% CI:
1 – 12%), carried the 1100delC variant which we have previously
reported to act as a low-penetrance breast cancer susceptibility
allele (Meijers-Heijboer et al, 2002). One of these individuals also
carried the missense variant, Arg180His. Two other missense
variants were also detected in the patients analysed, Arg117Gly
and Arg137Gln. Neither of these was detected in a large series of
controls implying that they may have a role in the aetiology of
breast cancer. On the assumption that they have pathogenic poten-
tial, variations in CHEK2 may account for around 7% (95%; CI:
2 – 16%) of familial breast cancer cases.

Two previously reported studies have analysed the whole of
CHEK2 in familial breast cancer – Allinen et al (2001) studied
79 hereditary breast cancer cases and Sullivan et al (2002) exam-
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(A)  Exon 10 – wild type

(B)  Exon 10 – D11 germline

(C)  Exon 10 – D11 tumour

delG

delG

(D)  Exon 2 – wild type

(E)  Exon 2 – G11 germline

A to G

(F)  Exon 2 – G11 tumour

A to G

Figure 2 Partial sequences of exon 10 and exon 2 of CHEK2. (A) wild
type reverse sequence of exon 10 (B) germline reverse sequence of exon
10 from case D11 (C) reverse sequence of exon 10 from tumour DNA
from case D11 (D) wild type forward sequence of exon 2 (E) germline
forward sequence of exon 2 from case G11 (F) forward sequence of exon
2 from tumour DNA from case G11. The wild type allele is retained and
there is a low level signal of the mutant allele in both the sequences of
tumour DNA in (C) and (F) (arrowed).
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(A)  F4 - germline DNA

(B)  B9 - germline DNA

(C)  D11 - germline DNA

(D)  D11 - tumour DNA

(E)  G11 - germline DNA

(F)  G11 - tumour DNA

Figure 3 Genescans of the microsatellite marker D22S275. (A – C)
Germline DNA of individuals with the 1100delC variant (D) tumour
DNA of case D11 (E) germline DNA of case G11 who harbours the
variant Arg117Gly and (F) tumour DNA of G11. There is a loss of hetero-
zygosity in tumour DNA from both the cases.
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ined 45 familial breast cancer cases. Neither found evidence to
support a role of sequence variation in CHEK2 in familial breast
cancer. However, both studies failed to show that del1100C confers
an increased risk of breast cancer.

One of the missense sequence changes we identified involved
Arg117 of CHEK2. Arg117 resides within the FHA domain of
CHEK2 and is conserved through evolution (Matsuoka et al,
1998). Tumour DNA from the individual with this variant was
available to investigate whether loss of heterozygosity is a mechan-
ism by which this variant might confer susceptibility. Allelic
imbalance was detected, but the wild type allele was retained and
the mutant allele lost. It is possible that the wild type allele has
acquired a more lethal somatic mutation and therefore the mutant
allele has been preferentially lost or that this variant causes cancer
by a mechanism other than by loss of the wild type allele.

Ahn et al (2002) have recently shown that some mutations in
the FHA domain negatively affect activation of CHEK2. In response
to ionising radiation, ATM phosphorylates Thr-68 of CHEK2 (Ahn
et al, 2000). CHEK2 is then autophosphorylated on Thr-383 and
Thr-387 in a phospho-threonine 68 (Thr(P)-68)-dependent
manner (Lee and Chung, 2001). Ahn et al (2002) have shown that
phosphorylation of Thr-68 promotes oligomerisation of CHEK2 by
serving as a specific ligand for the FHA domain of another CHEK2
molecule. Only catalytically inactive CHEK2 forms oligomers. Ahn
et al (2002) have postulated that activation of CHEK2 occurs
through oligomerisation of CHEK2 via binding of the Thr-68 phos-
phorylated region of one CHEK2 to the FHA domain of another.
Oligomerisation of CHEK2 therefore increases the efficiency of
transautophosphorylation resulting in the release of active CHEK2
monomers that proceed to enforce checkpoint control. These
authors have also shown that Arg117Ala mutation negatively affects
autophosphorylation by significantly reducing the ability of CHEK2
to bind to thr (P)-68 molecule. Since the mutation we identified,
Arg117Gly, is also a non-conservative substitution it is highly likely
to behave in the same way.

Tumour DNA from two patients with the 1100delC variant was
also available to assess allelic imbalance. In one of the 1100delC
cases no LOH was observed. In the other case, D11, as in the case
with the Arg117Gly variant, sequencing of exon 10 showed that the
wild type allele was retained. However, in this individual there was
retention of the microsatellite 165 bp allele that is associated with
1100delC. It is possible that a recombination event may have taken
place between the 1100del variant and the D22S275allele.

The CHEK2*1100delC mutation results in truncation of the
protein at codon 381. Hence the functional segment of the protein
encompassing amino acids T383 and T387 which are responsible
for autophosphorylation will be lost. It is conceivable that if oligo-
merisation takes place between one normal peptide and one
truncated peptide, transautophosphorylation may be not be possible
and the normal CHEK2 molecules may still remain bound to the
truncated molecules reducing the concentration of the active mono-
mers to respond to DNA damage. Our present investigation suggests
that a few rare variants in CHEK2 may confer an increased suscept-
ibility to breast cancer. On the assumption that all the variants we
have identified have pathogenic potential then variation in CHEK2
might account for 7% (95% CI indicate up to 16%) of familial breast
cancer. The way in which mutations in CHEK2 cause breast cancer is
likely to be through mechanisms other than the loss of heterozygos-
ity that is observed with other classical tumour suppresser genes.
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