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Abstract
Chronic kidney disease (CKD), the result of permanent loss of kidney function, is a major global
problem. We identify common genetic variants at chr2p12-p13, chr6q26, chr17q23 and chr19q13
associated with serum creatinine, a marker of kidney function (P=10−10 to 10−15). SNPs
rs10206899 (near NAT8, chr2p12-p13) and rs4805834 (near SLC7A9, chr19q13) were also
associated with CKD. Our findings provide new insight into metabolic, solute and drug-transport
pathways underlying susceptibility to CKD.

In North America and Europe, chronic kidney disease (CKD) affects ∼11% of the adult
population. CKD is associated with high morbidity, and in the advanced stage requires life-
supporting treatment by renal dialysis or transplantation.1 CKD is also a major risk factor
for myocardial infarction and stroke.

CKD is a multifactorial disorder with an important genetic component.2 A number of
monogenic disorders underlying CKD have been identified, although these account for only
a small proportion of the total burden of kidney disease. Recent studies have identified
common genetic variants at the UMOD, SHROOM3, GATM and MYH9 loci associated
with kidney function in European and African American populations.2, 3 We carried out a
genome-wide association and replication study, to identify genetic loci associated with
serum creatinine levels. Though creatinine levels may be partially influenced by non-renal
factors including diet and generation from muscle metabolism, serum creatinine is a
validated measure of glomerular filtration rate.4

Genome-wide association was done in 23,812 European white participants from nine
studies; characteristics of participants and genotyping arrays used are summarised
(Supplementary Methods and Supplementary Tables 1). Creatinine levels were log10
transformed to achieve approximate normality, and SNP associations tested by linear
regression using an additive genetic model, and adjustment for age and sex. Principal
component scores were included as ancestry covariates in regression analyses, and test
statistics corrected for the genomic control inflation factor to adjust for population
substructure (Supplementary Methods).5 Analyses were performed separately in each
cohort, followed by meta-analysis using z-scores weighted by square root of sample size.
QQ plots showed good adherence to null expectations (Lambda=1.024, Supplementary
Figure 1). The genome-wide association study had 80% power to detect SNPs associated
with 0.14% of population variation in creatinine levels at P<5×10−7.

There were 109 SNPs associated with creatinine at P<5×10−7, distributed between 5 genetic
loci (chr2p12-p13, chr4q21, chr6q26, chr17q23 and chr19q13, Figure 1 and Supplementary
Figure 2). At four of these loci (chr2p12-p13, chr6q26, chr17q23, chr19q13) common
variants have not been reported to be associated with kidney function or CKD; at each locus
we selected the most strongly associated SNP for replication testing against creatinine in a
further sample of 16,626 Europeans (Supplementary Methods and Supplementary Table 2).
All four SNPs showed strong replication with creatinine (P=2.4×10−3 to 7.0×10−9, Table 1
and Supplementary Table 3). At chr4q21, the most closely associated SNP was rs9992101
(P=5.9×10−9), which is located in SHROOM3, and which is in high LD with rs17319721
(r2=0.78, HapMap CEU population), a SNP previously reported to be associated with
glomerular filtration rate.2

Next we tested the four top-ranking SNPs for association with estimated glomerular
filtration rate (eGFR) and cystatin-c (both additional measures of kidney function4), and also
with CKD, amongst the participants from the replication sample (Supplementary Methods).
SNPs rs10206899 (chr2p12-p13) and rs4805834 (chr19q13) were associated with eGFR,
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cystatin-c and CKD (Table 1 and Supplementary Table 4). In contrast, rs3127573 (chr6q26)
and rs8068318 (chr17q23) were associated with eGFR, but not with cystatin-c or CKD.
None of the four SNPs were associated with weight, hypertension, diabetes or other clinical
parameters known to influence creatinine levels (Supplementary Table 5), and the
relationships of these SNPs with creatinine were similar amongst people with and without
diabetes or hypertension (Supplementary Table 6).

SNP rs10206899 (chr2p12-p13), linked with creatinine, eGFR, cystatin-c and CKD, is close
to a number of genes including NAT8, NAT8B, ALMS1, DUSP11 and TPRKB (Figure 1).
NAT8 is a biologically compelling candidate for the observed association. NAT8 is a
member of the GCN5-related N-acetyltransferase (GNAT) superfamily, a group of enzymes
that catalyze transfer of an acetyl group from acetyl-coenzyme A to a wide range of acceptor
substrates.6 NAT8 is strongly, and almost exclusively, expressed in kidney (Supplementary
Figure 3), in particular by tubular cells of the renal cortex (Supplementary Figures 4 and 5).
Acetylation is a key metabolic pathway for the detoxification of nephrotoxic substances
such as aminoglycosides, inhalational anaesthetics and environmental toxins including
industrial solvents such as trichloroethylene.7, 8 SNP rs10206899 is in high LD (r2=1.0) with
the only common non-synonymous SNP in NAT8, rs15358 (A595G). SNP rs15358 gives
rise to a non-conservative amino acid change (F143S) within the acetyl-coenzyme A binding
site an effect predicted to influence acetylation by NAT8 (Supplementary Figure 6). SNP
rs15358 was also closely associated with creatinine levels in the genome-wide study
(P=1.8×10−8). Our findings raise the possibility that common genetic variation in NAT8
may influence acetylation pathways, disturbances of which are known to be associated with
drug and toxin induced kidney injury.

NAT8B is highly homologous with NAT8, also contains an acetyltransferase domain, but is
only expressed at low levels in kidney (Supplementary Figure 3). Mutations in ALMS1 are
responsible for Alström Syndrome, a rare autosomal recessive multisystem disorder
characterised by progressive kidney and hepatic failure, obesity and insulin resistance,
blindness and hearing loss.9 Though DUSP11 and TPRKB are also in proximity to
rs10206899, neither has been implicated in kidney function. DUSP11 is a dual specificity
protein phosphatase, TPRKB encodes p53-related protein kinase-binding protein, and is of
unknown function. Neither is strongly or preferentially expressed in kidney.

SNP rs4805834 (chr19q13) is close to SLC7A9, a cationic amino acid transporter, highly
expressed in kidney tubular cells (Supplementary Figure 3).10 SLC7A9 is a strong candidate
for the association of rs4805834 with creatinine, eGFR, cystatin-c and CKD; mutations in
SLC7A9 cause cystinuria and nephrolithiasis, and are associated with increased risk of
CKD.10 SNP rs4805834 is also near CCDC123 and C19orf40. The latter (also known as
FAAP24) has been identified as a component of the Fanconi anemia core complex which
plays a crucial role in DNA damage response,11 but has no reported relationship to kidney
function. The function of CCDC123 is not known.

SNPs rs3127573 (chr6q26) and rs8068318 (chr17q23) were associated with creatinine and
eGFR. SNP rs3127573 is near to SLC22A2, an organic cation transporter strongly and
preferentially expressed in kidney (Supplementary Figure 3), which contributes to excretion
of creatinine and other substrates by renal tubular epithelial cells.12 Common variants at this
locus are reported to influence kidney injury by nephrotoxic drugs such as cisplatin.13 SNP
rs8068318 is located in TBX2, a member of the highly conserved T-box family of
transcription factors.14 TBX2-/- mutants have a range of morphological defects including
limb deformities and cardiac anomalies, but a renal phenotype has not been described.14

TBX2 is widely expressed in tissues, including developing and adult kidneys15, though the
structural and functional roles of TBX2 in the kidney are not known. SNP rs8068318 is also
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near BCAS3 and hypothetical gene C17orf82. BCAS3 may be involved in angiogenesis,
though is not known to be involved in kidney function.

In addition to SHROOM3, we also replicate previously reported association of rs12917707
in UMOD (P=1.7×10−5) and rs2467853 in GATM (P=6.0×10−6) with creatinine in the
genome-wide association study.2 Though our study had 80% power to detect a 1% change in
creatinine at P<0.05 associated with variants of 4% prevalence, we did not find a
relationship of the MYH9 locus with creatinine.3 MYH9 variants may have a less important
role in kidney function amongst Europeans than the other variants identified.

Our findings of common genetic variants associated with creatinine, cystatin-c and CKD
provide insight into the metabolic, solute and drug-transport mechanisms underlying kidney
function and CKD. Further evaluation of these pathways may enable biomarker discovery,
and new strategies to protect kidney function and prevent CKD.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Architecture of the loci associated with creatinine in the genome-wide association study.
The most significant SNP in each region is plotted in blue. LD is based on the HapMap CEU
sample and is colour-coded: red (r2 to top SNP 0.8–1.0), orange (0.5–0.8), yellow (0.2–0.5)
and white (<0.2).
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