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Abstract: Under the term cardiorenal syndrome (CRS) falls an increasing number of patients who
present with combined heart and kidney dysfunction. Despite the increasing knowledge concerning
CRS pathophysiology, diagnosis, and treatment, many of the aforementioned aspects remain obscure
in everyday clinical practice. Some of the challenges that clinicians face when they treat CRS
nowadays is the need for a patient-centered management with early diagnosis, early intervention, the
distinction of true kidney injury from permissive renal function deterioration during decongestion
therapy, and the development of therapeutic algorithms to guide therapy.

Keywords: cardiorenal syndrome; anemia; hypochloremia; biomarkers

1. Introduction

Over the last decades, an increasing number of patients have suffered from combined
heart and kidney dysfunction largely known as cardiorenal syndrome (CRS). The term
“cardiorenal syndrome” first appeared in November 1913, when Thomas Lewis proposed
the presence of a close relationship between the heart and the kidney [1]. Since then,
much progress has been achieved in the fields of CRS pathogenesis, classification, and
therapy. However, critical problems remain in clinical practice regarding accurate patient
classification and early CRS identification before significant organ damage occurs. Fur-
thermore, the present research has not resulted in a practical, tailored, and evidence-based
therapeutic approach.

CRS often coexists with anemia, which in turn has a negative impact on the heart and
renal axis. The cardiorenal anemia syndrome (CRAS) is associated with a higher mortality
and morbidity rate. Treatment options for this category of patients are currently restricted
to intravenous iron and erythropoiesis-stimulating agents (ESAs).

In this review, we pinpoint the fields of CRS that remain poorly understood with an
emphasis on CRAS, a relatively new subtype of the syndrome requiring specific management.

1.1. Cardiorenal Syndrome: Current Definition and Classification of the Syndrome

Following the first mention of the syndrome in 1913 [1], the National Heart Lung and
Blood Institute working group attempted a more thorough characterization in 2004. This
early definition was successful in explaining the bidirectional interaction that exists between
the heart and the kidney, as well as how renal or cardiac disease leads to subsequent harm
of the other organ, yet, the syndrome’s intricacy was not fully understood.
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In 2008, Ronco et al. [2] defined CRS as “disorders of the heart and kidneys whereby
acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the
other”. In the same year, the working group of Acute Disease Quality Initiative (ADQI)
proposed the classification of CRS into five distinct subtypes according to the primary
organ insulted. When the primary injured organ was the heart, it was called CRS types 1
and 2. When the major organ was the kidney it was called CRS types 3 and 4. Organ injury
was classified as acute CRS (types 1 and 3), or chronic CRS (types 2 and 4). CRS type 5
denotes the simultaneous dysfunction of both organs as a result of a systemic insult (for
example, cirrhosis or sepsis) [3].

Hatamizadeh et al., based on the underlying pathophysiology and the main clinical
manifestations, proposed that CRS could be divided into seven subcategories: (1) hemo-
dynamic, (2) uremic, (3) vascular, (4) neurohumoral, (5) anemia- and/or iron-metabolism-
related, (6) mineral-metabolism-related, (7) malnutrition–inflammation–cachexia-related [4].

The ADQI classification has some limitations in terms of clinical use. Its main short-
coming is that clinicians cannot distinguish whether a patient has renocardiac or cardiorenal
syndrome in the majority of cases. Most patients come with an episode of acute heart
failure (AHF) or, more frequently, an acute decompensation on the basis of chronic heart
failure (CHF) with associated acute kidney injury (AKI), making a correct classification
of the patient into CRS types 1, 2, or 3 challenging. Similarly, in the case of a renocardiac
syndrome (CRS type 3 or 4), it can be difficult, if not impossible, to determine if the AKI
preceded the occurrence of the cardiac injury. Furthermore, patients are classified in over-
lapping subcategories during the course of their disease, complicating categorization and
care even further.

A combined assessment tool that classifies patients as having either a cardiorenal or a
renocardiac syndrome would be a more effective classification approach. This classification
would be based on the patient’s history and a detailed clinical examination combined with
cardiac and renal ultrasound. For example, echogenic small kidneys may indicate a renal
predominance for the CRS. In contrast, normal sized kidneys with compromised heart
function in a cardiac ultrasound may indicate the heart as the main culprit. The response
to the therapeutic approach could be of further help in this classification. For example,
a creatinine decline in response to diuretic therapy could be interpreted as cardiorenal
syndrome type 1 or 2. On the contrary, a creatinine increase during decongestion therapy
could be interpreted as a renocardiac CRS, due to the overestimation of the true GFR and
the masked kidney failure due to volume overload.

A classification of CRS patients into different hemodynamic profiles based on their
clinical phenotype has been proposed [5]. This classification method utilizes tissue perfu-
sion adequacy (cardiac output (CO) and effective circulation fluid volume (ECFV)) and the
extent of pulmonary congestion (central venous pressure (CVP) or pulmonary capillary
wedge pressure (PCWP)). Accordingly, patients are classified into four subcategories “wet
or dry” and “warm or cold” [6]. This classification, despite its predictive value in determin-
ing the need for urgent intervention and its usefulness in guiding decongestion therapy,
receives limited use in everyday assessment as it requires an interventional and complex
measurement of hemodynamic indices.

Key point 1: It becomes evident that a new classification system of CRS is required to
categorize patients early in the course of the disease (cardiorenal or renocardiac) in order to
deliver the appropriate therapy. A kidney ultrasound, echocardiogram, and the response
to decongestion treatment may be helpful.

1.2. Preventing CRS: Is It Possible to Identify the Patients at Risk?

Despite the significant value of an early diagnosis of CRS, it becomes more and more
evident that CRS prevention and early identification of the patients at risk have a key role
in CRS management because a late diagnosis may be associated with irreversible morbidity
and organ damage.
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Potential predisposing risk factors for CRS development are under investigation.
However, the identification of contributing risk factors for either cardiorenal or renocardiac
syndrome is difficult because of their convergent mutuality [7]. Male gender, advanced age,
arterial hypertension, diabetes mellitus (DM), prior history of surgery and atrial fibrillation
(AF) constitute independent risk factors for developing AKI [8]. The prevalence of AKI and
its severity increases among patients hospitalized in the intensive care unit (ICU) with the
overall mortality being as high as 80% in this population [9]. Baseline kidney dysfunction
has been shown to predict kidney failure. In the prospective outcomes study in heart
failure (POSH study), which followed 299 patients with an LVEF >40%, the baseline serum
creatinine (SCr) was found to be an independent risk factor of worsening renal function
(WRF) [10]. Moreover, a history of prior CHF and SCr at admission >1.5 mg/dL have been
associated with WRF among CHF patients [11,12]. A post hoc analysis of the Evaluation
Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness
(ESCAPE trial) demonstrated that prior history of DM and hypertension were associated
with an increase in SCr of >0.3 mg/dL [13]. Moreover, patients developing WRF (defined
as an increase ≥0.3 mg/dL in the serum creatinine level compared with the value on
admission) in the context of HF tend to be older and suffer from atherosclerotic disease.
A fluctuating GFR is associated with a higher risk of reduced cardiac index, a need for
intravenous inotropes and vasodilator therapy, and a significantly higher mortality rate.
Albuminuria, a well-known risk factor for the development of cardiovascular disease, also
increases the risk for AKI [14,15]. Predisposition for WRF due to cachexia or obesity has
not been proven yet by epidemiologic studies [16]. Treatment-related factors such as a
high dose of diuretics in patients with ADHF demonstrated a significantly higher rate of
WRF [17].

Key point 2: A prognostic tool that incorporates the presence of risk factors (e.g., age,
gender, DM, AF, hypertension, albuminuria), clinical examination findings, and patient
history in conjunction with cardiac and renal biomarkers is crucial in order to properly
identify high-risk patients for developing a more severe and progressive form of CRS.

1.3. New Insights into CRS Pathophysiology and the Emerging Role of Serum Chloride

CRS is characterized by a plethora of interacting pathophysiologic mechanisms. Each
pathophysiologic mechanism impacts discretely on CRS’s natural course. Central venous
pressure (CVP) and intra-abdominal pressure (IAP) are of major importance. Each cardiac
decompensation episode supposedly leads to increased CVP and reduced blood return
from renal veins ultimately causing congestion within the kidneys. Kidney congestion
in turn leads to a reduced renal plasma flow, reduced glomerular filtration rate (GFR),
enhanced fluid retention, and eventually, reduced urine output and renal dysfunction [18].
Both changes in IAP and CVP correlate with alterations in renal function. An increase
in IAP above 12 mmHg is critical for WRF [19]. Similarly, an increase in CVP above
6 mmHg is associated with WRF and increased all-cause mortality in a broad spectrum
of patients with cardiovascular disease [20]. For almost a century, venous congestion
was thought to significantly impact organ perfusion, with increases in venous pressure
being related with end-organ damage and AKI [21]. Unfortunately, clinical indicators of
peripheral congestion have been shown to be insufficient in identifying fluid overload
and thus in supporting clinical decisions. CVP has long been thought to be linked to
venous congestion. However, research has cast doubt on its usefulness because CVP values
fluctuate based on patient position, the presence of mechanical ventilation, and other
factors that alter intrathoracic pressure [22]. For the time being, there is no clear consensus
on precisely determining renal venous pressure, with the scientific focus shifting to the
combinatory use of echocardiographic measures. The VEXUS scoring system incorporates
three parameters: inferior vena cava dimensions and respiratory fluctuation, as well as
hepatic, renal, and portal veins’ waveforms utilizing pulsed wave Doppler. This scoring
system has been linked to the development of AKI in postoperative cardiac surgery patients.
The incorporation of such scoring systems into everyday clinical practice may considerably



J. Clin. Med. 2023, 12, 4121 4 of 18

aid decision-making in challenging circumstances such as CRS with the option to, for
example, discontinue fluid administration, decide to increase diuretic treatment, and
manage AKI [23]. Intrarenal venous flow Doppler with a measurement of the renal arterial
resistive index as an indicator of renal congestion has been linked to the development of
AKI in patients after cardiac surgery. We feel that combining all of the above noninvasive
and low-cost approaches with a thorough clinical examination could be quite beneficial in
the care of CRS patients [24].

A reduced renal plasma flow results from a reduced cardiac output. A decreased renal
plasma flow leads to intrarenal renin release, which in turn causes the constriction of renal
capillaries, sodium retention, and vascular congestion. The validity of this theory has been
weakened after the findings of the ESCAPE trial [25]. No correlation was found between
baseline renal function and cardiac index (CI), something rather reasonable considering
the high prevalence of diverse kidney pathologies that can be irrelevant to heart failure.
Furthermore, an improvement in CI did not always result in an improvement in renal
function [26]. However, in patients presenting with acute cardiogenic shock, an associ-
ation between CI and the incidence and severity of AKI does exist, suggesting that the
contribution of the low flow theory is stronger and more obvious in the acute setting [27].

The role of the renin–angiotensin–aldosterone system (RAAS) has been well estab-
lished in CRS pathophysiology, contributing simultaneously to the progress of HF and
the deterioration of kidney function [28]. Angiotensin II (Ang-II) is the major effector
peptide of this system. Its increased excretion is attributed to increased renin levels af-
ter overactivation of the sympathetic nervous system [29]. Ang-II causes renal efferent
arteriolar vasoconstriction, enhanced sodium reabsorption from the proximal tubules, in-
creased aldosterone-mediated sodium reabsorption, and an overexpression of endothelin-1
(ET-1) [30]. In the heart, Ang-II induces cardiac hypertrophy and a contraction of vascular
smooth muscle cells. It also contributes to the development of oxidative stress via reactive
oxygen species (ROS) formation.

Oxidative stress and chronic inflammation play a significant role in the development
of CRS. The increased production of ROS surpasses the body’s antioxidative capacity
and is attributed to inflammation, ischemic injury, and venous congestion [31]. Ischemia,
venous congestion, the activation of the SNS and RAAS induce an inflammatory cascade
of proinflammatory cytokines (TNF-a, interleukin-6, interleukin-1) and the production
of oxidative stress markers such as myeloperoxidase and nitric oxide, which result in
tissue dysfunction [32]. Recently developed pharmacotherapies such as novel antidiabetic
drugs (sodium-glucose cotransporter-2 inhibitors, SGLT2i) and finerenone may be able
to offset the important role of oxidative processes in cardiorenal disorders [33]. These
agents have demonstrated a significant antioxidant activity in preclinical and clinical
studies. Furthermore, histological investigations demonstrated that dapagliflozin therapy
decreased mesangial expansion, macrophage infiltration, and tubulointerstitial fibrosis [34].
Heerspink et al. assessed the levels of biomarkers in plasma samples from patients with
T2D enrolled in a randomized clinical trial and found that treatment with canagliflozin
decreased levels of tumor necrosis factor receptor-1 (TNFR1), interleukin-6 (IL-6), matrix
metalloproteinase-7 (MMP7), and fibronectin-1 (FN1) levels compared with the glimepiride
treatment, suggesting that canagliflozin can attenuate the molecular pathways related to
inflammation and fibrosis [35]. Furthermore, a systematic literature review of 30 studies
showed that treatment with an SGLT2i resulted in decreases of IL-6, C-reactive protein
(CRP), TNF-α, and monocyte chemoattractant protein-1 (MCP-1) [36].

Recently, sodium chloride has been suggested as a potential cardiorenal biomarker [37].
Chloride is an anion responsible for preserving serum osmolarity along with sodium as
well as fluid and acid–base balance, “competing” with serum bicarbonate. A low serum
chloride concentration leads to the activation of sodium potassium chloride cotransporter
(NKCC) in the thick ascending limb of the loop of Henle (TAL) and the sodium chloride
cotransporter (NCC) in the distal convoluted tubule [38]. Consequently, hypochloremia
leads to diuretic resistance, a mechanism of major importance in the pathogenesis and
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management of CRS. Hanberg et al. showed that chloride depletion is a key mechanism
for diuretic resistance and neurohormonal activation [39]. Maaten et al. highlighted the
role of chloride in renal salt sensing, by showing that low serum chloride was strongly
associated with impaired decongestion in AHF [40]. Another pathway linking chloride
with HF, diuretic resistance, and CRS, is the capacity of chloride to suppress renin secretion
and of hypochloremia to increase renin excretion via the mobilization of COX-2 and
prostaglandins [41]. Moreover, hypochloremia promotes renal vasoconstriction and GFR
reduction independently of renal enervation [42]. In clinical practice, hypochloremia has
been shown to be an important adverse prognostic marker associated with a higher risk
of mortality in CHF patients [43]. In a study conducted by Grodin et al., it was shown
that serum chloride levels were independently and inversely associated with long-term
mortality. Interestingly, the prognostic impact of hyponatremia was blunted if associated
with normal chloride levels [44].

Key point 3: The examination of serum chloride may pave the way for new findings in
the field of diuretic resistance and CRS. However, it is unclear if chloride is only a marker
of the severity and prognosis of CRS or a distinctive therapeutic target.

1.4. Acute Tubular Injury vs. Permissive WRF: The Overestimated Role of Creatinine

There has been a lot of debate about the clinical significance of WRF, defined as a
short-term absolute increase in serum creatinine in patients with ADHF. A major difficulty
in the management of CRS is to distinguish between true WRF, due to acute tubular injury,
from a rise in creatinine concentration as a result of effective decongestion. Recently,
it has been shown that WRF is rather a transient phenomenon attributed to intensive
decongestive therapy, not accompanied by true renal injury. Among patients with ADHF
and reduced ejection fraction only half of the cases of in-hospital WRF persisted after one
month. Moreover, patients experiencing WRF with successful decongestion were not at
increased mortality risk at 180 days, whereas, in the case of WRF with persistent congestion,
there was a heightened risk for poor clinical outcomes [45]. A Japanese study also showed
that the absence of AKI criteria on admission indicated a good prognosis even in the
presence of WRF during hospital stay, indicating that the AKI criteria, and not a simple rise
in serum creatinine (WRF), should be used for the evaluation of kidney injury [46].

It becomes increasingly clear that WRF should always be assessed in parallel with
its clinical context. If adequate diuresis is present, a rise in creatinine is associated with
better long-term outcomes as shown by several studies such as a post hoc analysis of the
DOSE-AHF trial. Indeed, an aggressive diuresis during admission for AHF with or without
WRF was associated with better clinical outcomes whereas a drop in serum creatinine was
paradoxically associated with worse clinical outcomes [47]. In the PROTECT study, WRF
defined as a creatinine increase of >0.3 mg/dL was associated with a longer hospital stay
and worse 30- and 90-day outcomes especially in patients with residual congestion at the
time of renal function assessment [48]. Similarly, Stolfo et al. showed that WRF did not
affect the prognosis of ADHF and on the contrary, when associated with BNP reduction,
identified patients with adequate decongestion at discharge and favorable outcome [49].
The detection of intrinsic renal damage remains a challenge and requires the combination
of a clinical assessment in association with a rise of specific urinary and plasma biomarkers.

Key point 4: Permissive WRF is not associated with unfavorable renal and overall
outcomes when it is accompanied by decongestion and enhanced diuresis.

1.5. Diagnosis of Acute CRS: The Need for a Panel of Multiple Biomarkers

There has been a lot of discussion concerning the controversial role of serum creatinine
and eGFR in the timely diagnosis of acute kidney injury. It is clear now that serum creatinine
changes become clinically obvious once severe damage has already occurred, although
these changes continue to be the final gold standard indicator for renal dysfunction. In
view of the known weaknesses of creatinine, researchers have turned their attention to
other potential cardiorenal biomarkers.
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1.5.1. Cardiac Biomarkers

The cardiac troponins, cardiac troponin T (cTnT), and cardiac troponin I (cTnI) are well-
studied specific biomarkers of myocardial injury and infarction correlating with ventricular
remodeling after HF and increasing with the progression of HF. Therefore, they have a role
in risk stratification and prognosis in patients with HF. They also predict cardiovascular
and all-cause mortality in patients with CKD [50].

The two preferred biomarkers for HF are B-type natriuretic peptide (BNP) and N-
terminal probrain natriuretic peptide (NT-proBNP), released from cardiomyocytes in re-
sponse to atrial stretching and evoke a natriuretic and cardioprotective role. They both
correlate with HF NYHA classification, left ventricular ejection fraction (LVEF), and ven-
tricular pressure, thus contributing to prognosis and risk stratification of patients with
HF [51]. Moreover, they correlate with renal dysfunction and predict cardiovascular and
all-cause mortality in CKD patients, with the NT-proBNP being more sensitive [52]. Bossel-
mann et al. assessed the prognostic significance of several CV biomarkers in patients with
systolic dysfunction and renal dysfunction. Interestingly, it was shown that all five CV
biomarkers (including cTnT, proatrial natriuretic peptide, copeptin, proadrenomedullin,
and NT-proBNP) had a prognostic significance for mortality risk, that did not interact
with renal dysfunction and could be interpreted independently of eGFR [53]. Copeptin
(the C-terminal part of arginine vasopressin peptide) is a biomarker of cardiovascular
diseases and a significant predictor of mortality in patients with myocardial infarction [54].
Adrenomedullin (ADM) is produced in the adrenal medulla, vascular endothelial cells,
and in the heart in response to physical stretch and is associated with pressure and volume
overload. Mid regional proadrenomedullin (MR-pro-ADM) is a more stable molecule
than ADM, thus being easier to be measured. MR-pro ADM is a significant predictor of
morbidity in HF and correlates with the development and progression of CKD [55].

1.5.2. Renal Biomarkers

Until now, creatinine has remained the principal biomarker of renal function that
guides therapeutic decisions and determines the presence of AKI. Despite its wide use, a
rise in creatinine levels follows several hours to days (depending on renal reserve or AKI
extend) after the initial insult failing to timely diagnose the renal injury. Therefore, the
identification of new biomarkers for the early detection of AKI has become an increasing
need in clinical practice. Among identified biomarkers associated with kidney function,
cystatin-C has been well studied. Cystatin-C is an endogenous cysteine proteinase inhibitor
that is freely filtered in the glomerulus, completely reabsorbed by renal tubular epithelial
cells and is found in urine only during tubular injury. Plasma cystatin-C can increase earlier
than creatinine in early stages of AKI [56] and can detect small reductions in GFR. Apart
from its role as a marker of kidney function, cystatin-C is also an independent risk factor
for all-cause and cardiovascular mortality among elderly persons with or without CKD.
Cystatin-C is also related to HF progression, cardiovascular events and death, thus being
a potential predictor of cardiovascular complications in patients with atherosclerosis and
coronary heart disease [57,58].

NGAL is a useful early marker for AKI, being able to diagnose the development of
AKI up to 48 h prior to a clinical diagnosis, also correlating with AKI severity [59]. The
value of serum NGAL in AHF was assessed in the AKINESIS study which found that
plasma NGAL was not superior to creatinine for predicting WRF and therefore its use to
diagnose AKI in AHF could not be recommended [60]. On the other hand, urinary NGAL
may predict the development of WRF in AHF. Overall, the diagnostic utility of NGAL
varies between different patient populations and is affected by comorbidities, timing of
measurement, and cutoff values [61].

Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein markedly ex-
pressed by the proximal tubule in response to renal injury, being a reliable predictor of
AKI. It is also a predictor of disease progression in various cardiovascular diseases such as
myocardial infraction and postcardiac surgery [62].
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1.5.3. Other Biomarkers

C-type natriuretic peptide (CNP) together with atrial (ANP) and B-type (BNP) natri-
uretic peptides make up the family of natriuretic peptides, a family of hormones involved
in the regulation of blood pressure, electrolyte, and volume homeostasis [63]. Both ANP
and BNP have been extensively studied during the past years, whereas CNP, the ances-
tral precursor from which these two molecules evolved, and urinary CNP have recently
attracted the attention of research as emerging biomarkers in HF and renal injury. CNP
is mainly expressed in the kidney but also in cardiomyocytes, vascular endothelium, and
bone [64]. Plasma levels of CNP are typically low and CNP is thought to act as an autocrine
or paracrine factor. Urinary CNP is predominantly derived from local renal production
and the urinary CNP excretion rate reflects renal structural integrity and function. CNP
lacks significant diuretic and natriuretic effects under normal circumstances but demon-
strates antiproliferative and antifibrotic properties and also exhibits a vasodilating role,
thus contributing to the regulation of vascular tone [65]. Urinary CNP levels have been
shown to increase in patients with AHF, suggesting an activation of the renal natriuretic
peptide system in HF. An elevation of the urinary excretion of CNP is probably attributed
to increased renal interstitial pressure, renal tubular injury, hypoxia, and renal fibrosis.
CNP correlates with prognosis, in the setting of AHF, being able to detect renal dysfunction
in HF better than urinary NGAL and KIM-1 [64]. Urinary CNP excretion may represent
a marker of early renal structural remodeling and underlying renal injury both acutely
and chronically [66]. CNP also has a dominant role in HF with its plasma levels been in-
creased in this setting and correlating with a high-risk group of patients with cardiovascular
comorbidities and left ventricular dysfunction.

1.5.4. Novel Diagnostic Methods

Given that CRS is a syndrome with various clinical features, correct diagnosis can
be extremely challenging in such patients. Artificial intelligence using expert-driven
knowledge and specialized machine-based decision trees can help significantly towards
this direction. Indeed, this was shown in a paper by Dong-Ju Choi et al., where an
artificial intelligence clinical decision support system (AI-CCSS) presented a high diagnostic
accuracy for heart failure [67]. Further development of such AI-based tools could be of
significant importance in patients with CRS, where proper and early diagnosis is the key
for optimal management (Table 1 and Figure 1).

Key point 5: A panel of new biomarkers (in plasma and/or urine) and artificial
intelligence support systems could aid in the early identification of CRS patients at risk of
developing adverse outcomes.

Table 1. Important Key Points in CRS Diagnosis, Classification, and Management.

Novel methods and biomarkers are required for accurate
clinical classification of CRS.

Artificial intelligence support systems and clinical algorithms
may be used to identify patients with CRS

who are at risk of adverse outcomes.

Panel of novel plasma and urine biomarkers for risk stratification
and for the distinction of WRF from true AKI.

Incorporation of improved methods of assessing venous congestion (VExUS) into routine
clinical practice

Volume and Neurohormonal Control, SGLT2i, Inotropic support,
Ultrafiltration, Iron repletion, Finerenone
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Figure 1. Assessment of venous congestion in CRS. Fluid overload has been clearly associated with
adverse outcomes in critically ill patients such as end-organ damage and therefore, an increased
incidence of acute kidney injury. Renal dysfunction developing in the setting of hypervolemia
results from a decline in renal venous outflow and hence an increase in renal interstitial pressure.
Novel methods of assessing venous congestion are much needed in order to establish effective
and timely, appropriate decongestive treatment. Clinical evaluation is a key step for the assess-
ment of volume overload including recurrent weight gain, the development of diuretic resistance
(constantly increasing diuretic dose to achieve effective decongestion and/or the need for a com-
binatory use of diuretics with different modes of action for sequential nephron segment blockade),
frequent hospitalizations in order to receive intravenous diuretic therapy, the presence of pleural
effusion, peripheral oedema/anasarca, and/or ascites. Inferior vena cava (IVC) is the first venous
compartment where congestion becomes apparent. Hepatic venous flow abnormality follows IVC
distension with a subsequent development of portal vein pulsatility and renal venous flow Doppler
abnormalities. All the above measurements constitute the VEXUS scoring system, with elevated
levels if natriuretic peptides (B-type natriuretic peptide, N-terminal pro-brain natriuretic peptide)
are signs of intravascular and intracardiac congestion. An increased ratio of blood urea nitrogen
(BUN) to creatinine as well as dilutional hyponatremia are markers of the pathological activation
of the renin–angiotensin–aldosterone system and sympathetic nervous system. The inversed urine
ratio of sodium to potassium ratio as well as a constantly decreased fractional excretion of sodium in
urine both depict a potential mechanism of diuretic resistance, therefore favoring the intensification
of diuretic therapy.

1.6. Treatment and Management of CRS: Questions to Be Answered?

The therapeutic pillars in the management of CRS are decongestion, endogenous
vasodilation, inotropic support, inhibition of the neurohormonal axis, and extracorporeal
therapy. Intravenous loop diuretics are considered the gold standard of therapy although
they have not been shown to improve survival or attenuate disease progression [68].
Despite the wide recommendation for systematic use of loop diuretics in the management
of CRS so as to achieve aggressive diuresis, a gap of knowledge remains concerning their
optimal use. First of all, data on diuresis in heart failure have been collectively extrapolated
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from patients with and without renal dysfunction. Therefore, the effect of loop diuretics on
the cardiorenal axis has not been specifically studied.

The optimal dose of diuretics administered is dependent on the degree of renal dys-
function. Thus, various algorithms for dose adjustment of loop diuretics and thiazides (if
used in conjunction) exist in order to guide decongestion [69]. However, dose adjustment
for other diuretics in renal insufficiency has not been established. Another question con-
cerns the mode of administration of loop diuretics, that is, continuous vs. bolus therapy.
According to the DOSE trial (Diuretic Optimization Strategies Evaluation), a study that
compared continuous vs. intermittent infusions of furosemide, there was no difference
between these modalities in symptoms control or net fluid loss at 72 h. In addition, the
group of patients receiving a higher dose of diuretics presented more frequently short-term
WRF compared with the group receiving lower doses, but in the long term (60 days),
no adverse outcomes were noticed, suggesting that a rise in creatinine in the context of
decongestion should always be assessed in parallel with the clinical status.

It is very common in clinical practice to combine loop diuretics with thiazide diuretics,
carbonic anhydrase inhibitors (e.g., acetazolamide), metolazone (thiazide like diuretic),
or potassium-sparing diuretics in order to achieve sequential nephron blockade and thus
overcome diuretic resistance. The addition of acetazolamide to loop diuretic therapy in
patients with ADHF resulted in a higher incidence of successful decongestion but no benefit
in terms of survival or rehospitalization for heart failure in a recent randomized, placebo-
controlled trial (ADVOR trial) [70]. In the setting of inhibition of the Na-K-2Cl symporter
by loop diuretics, sodium reabsorption is enhanced at the distal convoluted tubule [71].
This phenomenon is dealt with the combined use of thiazide diuretics resulting in greater
diuresis and weight loss compared to loop diuretics alone. However, according to head-
to-head comparisons between diuretics, superiority has not been proven for any of them
yet [72,73]. The addition of mineralocorticoid receptor antagonists (MRA) in the context of
AHF and CRS have resulted in improved natriuresis [74]. However, the ATHENA-AHF
study did not show a significant benefit with the addition of MRA in the setting of AHF
with diuretic resistance [75].

Diuretic resistance frequently arises during the treatment of CRS. Various responsible
mechanisms have been recognized, including a reduced oral bioavailability due to intestinal
edema, an accumulation of uremic toxins diminishing the secretion of diuretics into the
proximal tubule, a decreased glomerular filtration of diuretics with acute reductions of GFR,
and a compensatory enhancement of RAAS and SNS [69]. To overcome diuretic resistance, a
combination treatment with thiazide diuretics (such as metolazone) is commonly employed.
There are some data supporting the uptitration of loop diuretics as a preferred strategy over
routine early addition of thiazide diuretics due to the increased prevalence of electrolyte
disturbances, WRF, and mortality [76].

The use of vasodilating agents is an effective way to reduce central venous pressure
(CVP) and increase net filtration pressure in the kidney. Nitroglycerin and nitroprusside
are both vasodilating agents able to decrease CVP. However, neither nitrates, nitroprusside,
nor nesiritide have shown robust evidence for improving clinical outcomes in AHF, except
perhaps for early symptom improvement [77]. Nesiritide, a B-type natriuretic peptide, was
not associated with any benefit in the rate of death and rehospitalization and had a small,
nonsignificant effect on dyspnea when used in combination with other therapies. It was not
associated with a WRF, but it was associated with an increase rate of hypotension. Based on
these results, nesiritide cannot be recommended for routine use in patients with AHF [78].

Inotropic support is critical for maintaining perfusion pressure to vital organs but has
also been associated with increased mortality in several trials. Among inotropic agents,
milrinone, low-dose dopamine, and dobutamine have not shown any improvement in renal
function and mortality rates. One of the most promising inotropic agents, levosimendan,
has shown contradictory results. On one hand, it was associated with hemodynamic
improvement and a lower mortality at 1 and 6 months but on the other hand, according to
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the SURVIVE and the REVIVE I and II trials, levosimendan did not improve mortality and
displayed an increased risk of hypotension, cardiac arrhythmias, and death at 90 days [79,80].

Neurohormonal axis inhibition with the use of angiotensin-converting enzyme in-
hibitors (ACE-I) and angiotensin receptor blockers (ARB) are one of the cornerstones in the
therapy of AHF. These agents improve mortality even in cases of severe renal insufficiency
and/or severe CHF. Although they can acutely cause WRF, in most cases, renal function
returns to baseline with the additional benefit of the long-term stabilization of kidney
function [81]. Therefore, withholding neurohormonal blocking agents, in the view of a
mild or temporal rise in creatinine, is not recommended [72].

Ultrafiltration (UF) is a potential useful method in parallel with diuretic therapy
especially in those patients presenting with diuretic resistance and severe renal insufficiency.
The CARRESS-HF study evaluated the utility of UF in ADHF with worsening renal function.
The trial was terminated prematurely due to a lack of efficacy of UF and a higher prevalence
of adverse events [82]. However, doubts exist concerning the use of fixed-rate UF prescribed
for all patients included in the trial, because high rates of UF could be responsible for
hypotension or other adverse events. The role of adjustable UF rate in ADHF was examined
in a small study of 56 patients, which showed that UF treatment was associated with
prolonged clinical stabilization [83]. However, larger clinical trials to support the use
of UF in the area of ADHF and CRS are clearly needed. The time point at which UF
should be initiated, the optimal rate of fluid removal, and the time point at which UF
should be discontinued and replaced by standard therapies are some of the major concerns
to be resolved [84]. In addition, different renal replacement therapy (RRT) modalities,
continuous RRT (CRRT) vs. intermittent RRT, have not been compared head-to head
in patients with CRS. Little is also known about the efficacy and safety of peritoneal
dialysis (PD) for the treatment of acute CRS. PD has several advantages over extracorporeal
dialysis as it requires less infrastructure and specialized staff, causes less hemodynamic
disturbances, is associated with a lower risk of bleeding, and has showed more benefit
for fluid control and the preservation of renal function compared to UF therapy [85,86].
According to a study from Thailand which included 147 patients with CRS1 during acute
coronary syndrome (ACS), those who received PD as a primary treatment achieved better
hemodynamic stability and survival [87]. Moreover, the hemodynamic impact of PD on
venous congestion, right ventricular function, pulmonary artery systolic pressure (PASP),
and clinical status was studied in 21 elderly patients with CRS and CHF. It was found
that PD conferred a substantial benefit in NΥHA clinical status which was in line with an
improvement in venous congestion and right ventricular systolic pressure [88]. There are
presently no formal guidelines for initiating RRT in CRS patients. We believe that RRT
should be initiated based on the treating physician’s clinical judgment and the current
KDIGO guidelines, which state: dialysis is usually considered when there are (a) symptoms
or indicators of renal failure; (b) difficulty to control volume status or blood pressure; and
(c) a progressive worsening in nutritional status that is resistant to therapies. All of these
indications may also apply to CRS, which means that RRT can begin well before eGFR
falls below the traditional threshold of 10 mL/min/1.73 m2, when uremic symptoms are
present or volume management and nutritional status are difficult to maintain [89].

The scientific world has largely recognized SGLT2i as an effective treatment not
only for type 2 diabetes mellitus, but also for HF and CKD patients. Several trials have
demonstrated its combined cardio- and renal-protective role in patients with and without
type 2 diabetes mellitus. SGLT2i has been postulated to have several pleiotropic effects,
including the restoration of autophagy, which may be important in the reversal of HF
pathogenesis. Additional processes include the modulation of inflammatory, oxidative,
and fibrotic pathways, as well as improved endothelial function and decreased epicardial
adipose tissue [90,91].

Inhibiting SGLT2 in the proximal tubule lowers plasma glucose and hemoglobin A1C
(HbA1C), while improving insulin sensitivity and beta-cell activity. A net calorie loss
results in a loss of body weight. Aside from the effects on glucose, the combination of
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osmotic diuresis and natriuresis results in a decreased plasma volume (preferentially from
the interstitial space) and, as a result, a decreased blood pressure. The effect of SGLT2i on
tubuloglomerular feedback has also been shown to restore excess glomerular pressure and
filtration [92–95]. The fast decrease in extracellular volume caused by SGLT2i is assumed
to be a key mechanism behind the improved HF outcomes observed in clinical trials [92].
The use of SGLT2 inhibitors was associated with an improvement in ventricular function
indices (LVEF, GLS, LVESV, LVMi, LAVi, and E/e’) in a systematic review and meta-analysis,
indicating the role of SGLT2 inhibition in the reversal of cardiac remodeling [96].

They also improve renal function by both preventing and delaying the course of
chronic kidney disease. SGLT2i usage has been linked to a lower glomerular pressure, a
lower activity of the intrarenal renin angiotensin aldosterone system (RAAS) and sympa-
thetic nervous system (SNS), lower inflammatory and fibrotic indicators, and an increase
in hematocrit, hence reducing renal hypoxia. These effects manifest clinically as a stabi-
lization of the estimated glomerular filtration rate (eGFR), a decreased blood pressure, and
decreased albuminuria and ischemic injury [92,93].

A large body of evidence from randomized clinical studies has established SGLT2i’s
effectiveness in diabetic and nondiabetic renal disease, independently of glycemic status
and baseline renal function. The rise of this therapeutic class, together with the recently de-
veloped new-generation mineralocorticoid receptor antagonist finerenone, has the potential
to reduce the excess burden of CKD [91].

Key point 6: In the clinical setting of CRS, a multimodal therapeutic approach involves
diuretic usage, neurohormonal activation inhibition, inotropic support, and extracorporeal
volume management. Due to their pleiotropic effects, SGLT2i are ideal candidates to
prevent or even ameliorate combined cardiac and renal dysfunction.

1.7. Cardiorenal Anemia Syndrome (CRAS): A New Area of Research and a Potent Therapeutic
Target in CRS

CRAS is considered to be a pathological triangle in which the dysfunctional interplay
between the kidney and the heart may lead to the development of anemia. When anemia
appears, a vicious cycle commences, where HF and renal dysfunction cause anemia, which
in turn will worsen the first two conditions and will unfavorably affect morbidity and
mortality [97]. Anemia is frequently observed in patients with CHF and is associated with
an increased risk of mortality [98]. The prevalence of anemia, varying from 14% to 70%,
increases in parallel with the severity of CHF, the CKD stage, and patients’ age, while the
treatment of anemia leads to an improvement in cardiac and renal function as well as to
less hospitalizations for HF [99].

According to the optimize-HF registry, anemia is associated with a 30% increase in
all-cause mortality and morbidity [100]. The combined impact of CRS and anemia on
mortality was evaluated by the ANCHOR trial. In that trial, it was shown that very
high (≥17 g/dL) or very low (<13 g/dL) hemoglobin levels independently predicted an
increased risk of death and hospitalization in CRS with both preserved and reduced systolic
function [101]. The increased mortality in anemic CHF patients is partially explained by the
hemodynamic and nonhemodynamic responses caused by the decreased oxygen supply
to the tissues. These anemia responses include an increased left ventricle workload and
output, an increased activity of the renin–angiotensin–aldosterone system and sympathetic
nervous system, a retention of salt and water, a reduced GFR and renal blood flow, which,
jointly, result in a deterioration of the HF status and adverse outcomes [102].

The development of CRAS is multifactorial and several contributing risk factors have
been recognized. Advanced age, a low body mass index, diabetes mellitus, a reduced left
ventricular ejection fraction (LVEF), the omission of renin–angiotensin system inhibitors,
and the use of intravenous loop diuretics are independently associated with CRAS [97,103].
Furthermore, deficiencies in vitamin B12 and folic acid, iron deficiency, blood losses caused
by aspirin and anticoagulants, an expansion of plasma volume and hemodilution, increased
inflammation causing reduced erythropoietin (EPO) production and action, concomitant
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renal insufficiency, poor nutritional status, intestinal malabsorption due to significant
edema are some of the conditions leading to anemia in HF patients.

Anemia of CKD has several underlying mechanisms. Among the most important
ones are an inadequate synthesis of EPO, a limited availability of iron for erythropoiesis,
increased hepcidin, reduced EPO receptors, and finally, the use of ACE inhibitors and
ARBs [102,104,105]. In a large cohort study of patients with HF, it was shown that EPO
levels were usually increased due to chronic inflammation resulting in a resistance of the
bone marrow for EPO and the inhibition of erythropoiesis [104,106]. Concurrently, iron
metabolism was also altered due to the increased production of hepcidin, a hormonal
response triggered by the chronic inflammatory status, reducing iron absorption from the
gastrointestinal tract and its bioavailability for hemoglobin synthesis [107].

Currently, there are no evidence-based recommendations for managing patients with
CRAS. The treatment of these patients is multifaceted as a concomitant control of anemia,
renal dysfunction, and heart failure is needed. Kidney Disease Improving Global Out-
comes (KDIGO) organized an international conference and concluded that erythropoiesis-
stimulating agents (ESAs) had no impact on the prevention or treatment of HF in patients
with CKD [108,109]. On the contrary, the treatment of patients with chronic HF and iron
deficiency, with or without anemia, with intravenous iron, resulted in improved functional
capacity, eGFR, and symptoms according to the findings of several studies [110,111].

Intravenous iron and ESAs are the cornerstone therapy for anemia treatment in patients
with CKD [112]. However, for patients with anemia and HF, the use of ESAs is currently
not recommended due to their adverse outcomes, leaving only intravenous iron as the
recommended therapy for these patients. Intravenous iron therapy has been shown to
improve iron parameters in parallel with improvements in NYHA functional status, 6 min
walk test (6MWT), and quality of life (QOL) in patients with HF and iron deficiency, with
or without anemia or CKD [110,113–115].

ESA therapy has been associated with reductions in LV mass and wall thickness
and an improvement in renal parameters [116]. However, treatment with darbepoetin
alfa did not improve clinical outcomes in patients with mild to moderate anemia and
systolic heart failure and provoked thromboembolic events [116]. The American College of
Cardiology Foundation, the Heart Failure Society of America, and the European Society
of Cardiology recommended against the use of ESAs for the treatment of anemia in HF
patients [117]. Trials of ESAs in patients with anemia and CKD have demonstrated an
increased risk of cardiovascular events associated with higher Hb targets [118–120]. Overall,
ESA therapy is prescribed in a small proportion of patients with CRAS based on the
KDIGO recommendations for the treatment of anemia in CKD patients [118,121]. Therefore,
intravenous repletion of iron stores can be a sufficient single therapy for anemia in CRAS
patients with an additional benefit on HF (see Table 1).

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) represent a novel
class of drugs for the management of anemia in CKD and CRAS. These inhibitors promote
physiological EPO production by inhibiting the prolyl hydroxylase enzymes that are
responsible for the degradation of the hypoxia-inducible factors (HIF), the transcription
factors that induce expression of EPO in the kidneys and the liver. Apart from their impact
on EPO, HIFs drive a coordinated response resulting in increased iron uptake and decreased
hepcidin levels, leading to a more effective mobilization and usage of iron. Clinical trials
with HIF-PHIs have shown a decrease in hepcidin and ferritin levels and increase in total
iron binding capacity and usage of iron for erythropoiesis [122]. There have been some
recent trials with different oral inhibitors (vadadustat, daprodustat, desidustat) that showed
maintenance or improvement of anemic status in patients with CKD and anemia [123,124].
However, HIFs have additional effects that are not necessarily beneficial due to their ability
to affect multiple organs and cellular functions and having an impact on angiogenesis,
tumor growth, and glucose metabolism [123,124]. Therefore, the long-term safety of these
agents must be further investigated in future studies.
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Key point 7: Given the limited therapeutic approaches available, CRAS poses a clinical
difficulty. A fraction of CRS patients with severe CKD may benefit from tight anemia
management with ESAs. Iron store replenishment may be beneficial in the majority of
CRAS patients.

2. Conclusions

A CRS classification system that assesses the underlying organ damage and its tempo-
ral sequence will assist clinicians in providing appropriate therapy to the proper patient.
Furthermore, a combination of several biomarkers (both cardiac and renal) must be estab-
lished in order to identify patients who are at higher risk of developing a more severe form
of CRS. Serum chloride and CNP appear to be potential indicators, but additional research
is needed before they can be used in clinical practice. CRS management is still complicated
due to the intricacies of decongestive therapy and inotrope selection, the management
of diuretic resistance, and the best timing and dose of ultrafiltration therapy. Anemia
in the context of cardiac and renal failure comprises a complex triad that should always
be addressed.
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