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Introduction 
 

The SARS-COV-2 pandemic has contributed to significant global morbidity and mortality. As 

of the 7th of March 2023, there have been over 759 million cases of COVID-19, including 6.8 

million deaths1. The burden of disease was greatly felt by all public health organizations, but 

particularly on healthcare systems which were frequently put under strain as they managed surges 

of infections2. The unprecedented scale and speed of the pandemic, its similarities to influenza and 

the three major foci of care homes, hospitals and the community, proved to be a challenging 

combination for devising a standard list of symptoms for COVID-19. Accurate recognition of the 

symptoms that indicated infection and warranted urgent testing was particularly important in the 

early stages of the pandemic when Polymerase Chain Reaction (PCR) testing kits were in demand3.  

 

The gold standard for diagnosing SARS-COV-2 infection is an oropharyngeal/nasal PCR swab, 

although latterly Lateral Flow Tests are used for rapid diagnosis4. In the UK, PCR testing was 

initially prioritised to those presenting with a new (or worsening) cough, fever, or breathlessness5. 

However other symptoms, such as altered or loss of smell (anosmia) or taste (ageusia), and gastro-

intestinal symptoms (such as loss of appetite and diarrhoea) have been associated with COVID-

196–8. In a Cochrane Review (2021), mainly based on more severely affected populations (e.g. 

hospitalised patients), the pooled specificities for anosmia and ageusia were high (90.5%) 

suggesting these symptoms may be a useful marker for COVID-199. The updated review (2022) 

concluded that most other individual symptoms had poor diagnostic accuracy10. 

 

In a study of 483 subjects in Washington DC of whom 42% were healthcare or essential workers, 

aged between 25-44 years, who retrospectively reported symptoms, 27% were reported to be PCR 
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positive. Wojtusiak et al. concluded that clusters of symptoms are more predictive of COVID-19 

than any one specific symptom11 . In a different study, the same authors   also examined the 

importance of the order of symptom occurrence in deriving a disease diagnostic model12. A meta-

analysis based on sample data collected from nine established longitudinal cohorts designed a 4-

category cross-sectional outcome aiming at capturing characteristics of long COVID in the UK 

population13. Based on questionnaires completed by subsets of participants between July 2020 and 

September 2021 and self-reported COVID results as well as presence/absence of symptoms, the 

meta-analysis demonstrated considerable heterogeneity between studies13. 

 

The observation of previous research is that there is a great deal of variation in data collection 

methods (e.g. smartphone apps, patient records14–16), epidemiological heterogeneity of study 

populations (e.g. hospitals, Intensive Care Units, care homes13–15) and different reporting methods 

(e.g. self-reports, interviews17). As symptoms develop over time, cross-sectional outcomes and 

retrospectively collected information on symptoms may be difficult to relate to COVID-19 onset 

which is also known to have a variable incubation period (2-14 days)18. The Zoe Health study 

compared three different symptom-based diagnostic models for SARS-CoV-2 and investigated the 

effect of demographic variables on the models’ performance metrics and found that the 

discrimination power of all models improved with the number of days of symptoms included, 

whilst the most relevant symptoms for detecting COVID-19 were anosmia and chest pain12.  

 

The UK phase 3 Novavax COVID-19 clinical trial was conducted at 33 sites and recruited 15,185 

participants19. Its primary aim was to evaluate the efficacy and safety of the vaccine. We used the 

prospectively reported symptoms of possible SARS-CoV-2 infection to assess the discrimination 
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power of individual symptoms and to investigate an optimal combination to generate a diagnostic 

model for the presence of SARS-CoV-2 infection in the UK population.  

  

https://doi.org/10.1017/S0950268824000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268824000037


 

7 
 

Methods 
 
The data for this analysis were provided by Novavax, Inc.19. The methods and results of the trial 

are described elsewhere19. Data included are from 28th October 2020 until 28th February 2021.  

 

Monitoring for COVID-19 
 
All participants had a SARS-CoV-2 PCR test performed at recruitment and were tested for 

symptomatic infection throughout the study. Participants were instructed to contact the study team 

within 24 hours if they self-assessed COVID-19 symptoms (Table 1), triggering a surveillance 

visit. Throat/nasal swabs were self-collected by participants approximately 24 hours after the onset 

of symptoms, then daily for up to 3 days. A participant with suspected or confirmed COVID-19 

was asked to complete a symptom diary, starting on their first day of symptoms, reporting daily 

for a minimum of 10 days (even if their symptoms resolved and regardless of SARS-CoV-2 PCR 

result). Participants with confirmed symptomatic COVID-19, signified by a positive PCR test, 

continued documenting their symptoms until resolution. Virologic confirmation was performed by 

PCR assay at the U.K. Department of Health and Social Care laboratories with the TaqPath system 

(Thermo Fisher Scientific). 

 

Statistical methodology 

The main objective was to construct an optimal diagnostic model for COVID-19 based on 

participants’ symptoms and to highlight differences in the dynamics of specific symptoms in 

groups defined by participants who experienced COVID-19 and those who did not. To extrapolate 

the results to the UK population we started by plotting and empirically comparing the distribution 

of age, gender and ethnicity distributions in the sample data to that of the UK population20–22. We 
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then used post-stratification techniques for incorporating population demographic distributions23. 

This procedure allowed us to produce estimates generalisable to the UK community population. 

Weights were derived and assigned to each participant such that the subsequent estimation 

procedures inflated the effect of under-represented groups (e.g. young ethnic minorities) and 

depressed the effect of overrepresented groups in the sample (e.g. old White).  

We constructed a master file which included multiple PCR tests per participant and multiple 

symptomatic episodes. The resulting data have a hierarchical structure with implications on the 

subsequent choice of analyses and estimation procedures (details in Supplementary 

Information). Participants were initially grouped by their PCR results, i.e. participants with at 

least one PCR positive result and those always negative. We reported the frequency and proportion 

of the symptomatic participants in the two groups. We estimated the probabilities of testing 

positive given a specific symptomatic episode, and the mean number of reports (or number of 

days) of a specific symptom within an illness episode. We also investigated the symptom report 

dynamics and explored the extent to which symptoms were associated with demographics. These 

analyses identified the main confounder candidates and their potential influence for the subsequent 

receiver operating characteristic (ROC) analyses. 

 

Non-parametric techniques such as local polynomial smoothing have been used to fit curves on 

the daily probabilities of the reports in the PCR+ and PCR- participants. A heatmap of daily 

probabilities of reported symptoms has also been presented in ascending order of their magnitude 

on the first day in positive patients.   
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We assessed the effect of reporting the number of days of each specific symptom on the probability 

of testing PCR positive (PCR+) vs PCR negative (PCR-), measured as the odds ratios and their 

95% CIs. We derived a symptom-based diagnostic model using two-level logistic regression and 

evaluated the discriminatory power of this model using area under the curve (AUC) as a metric for 

its discrimination. We also performed a two-stage process ROC analysis24. The technique allows 

for multiple episodes to be associated with an individual, and adjustments using population 

weights. The result is an estimate of the ROC curve for each specific symptom as a function of 

age and ethnicity – known as a covariate specific ROC curve24. Using these techniques, we have 

also highlighted the increasing discrimination power of individual symptoms based on the 

temporally ordered reports restricted to the first 1, 2, 3 to longer than 15 days after the start of the 

symptomatic illness episode. The effect of age and ethnicity on the discrimination power of 

individual symptoms were also evaluated. More details in Supplementary information. 
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Results 
 

Data summary 
 

Table 2 displays a simplified picture of the data based on a binary assessment. From 15,139 

participants, 317 (2.1%) had a PCR+ episode and 3,320 (21.9%) had at least one symptomatic 

episode. 8% (266/3320) of the symptomatic population were PCR+ and 84% (266/317) of the 

PCR+ participants reported symptoms. Figure 1 displays the age distribution against that of the 

UK population stratified by gender and ethnicity20–22. These data have been used to calculate the 

weights associated with our analyses. 

 

Table 3 presents demographic data, stratified by PCR status. The comorbidities variable indicates 

the presence of at least one comorbidity. COVID-19 was directly associated with younger age, i.e. 

one year increasing in age decreased the OR of COVID-19 by a small yet significant factor of 0.98 

(p<0.001). Ethnic minorities (excluding white) were twice as likely to test positive than their white 

counterparts, i.e. OR=1.924 (95%CI (1.169, 3.167)). The other than white category included 

Asians (n=462 (3.1%)), Black (n=60 (0.4%)) and others (n=153 (1%)).  

 

Summary symptoms data (overall and stratified by PCR status) are presented in Table 4 and 

illustrated in Figure 2. Runny nose (16.9%) was the most reported symptom in this cohort, 

followed by cough (14.6%) and tiredness (12.6%). Nausea (5.3%), diarrhoea (4.1%) and 

anosmia/ageusia (3.6%) were the least reported. This ordering is preserved in PCR- participants; 

however, in PCR+ participants cough (75.1%) was the most frequent symptom, followed by 
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congestion (74.8%) and tiredness (74.4%). Anosmia/ageusia was reported by 53.3% of PCR+ 

participants vs. 2.5% of PCR- participants.  

 
The probabilities of PCR status by specific symptoms reports 
 
Figure 3 displays the probabilities of testing PCR+ conditioned on each symptom (reported at 

least once). The prevalence of COVID-19 was 31.9% (27.1%-36.8%) in those reporting 

anosmia/ageusia and 19.4% (16%-22.7%) for loss of appetite. 

 

The number of specific symptoms’ analyses 
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Figure 4 shows the mean number of days (and their 95% CIs) that each specific symptom was 

reported during a symptomatic episode, stratified by PCR status. PCR+ participants reported a 

significantly longer duration of specific symptoms compared to PCR- participants. For example, 

the mean number of days of cough was 6-7 in PCR+ participants and 2-3 in PCR- participants.  

 

Table 5 presents an exploratory analysis on the rate ratios (fold-effects) as measures of 

associations between the mean number of days of specific symptoms with population 

characteristics, this has been also analysed in the PCR+ subgroup in Table 6. From Table 5, we 

learn that age was directly associated with an increased number of reports of runny nose, cough 

and loss of appetite, but inversely associated with sore throat and anosmia/ageusia. Women 

reported 24.3% (95% CI (11.4%, 38.7%)) more headaches than men. Other than white participants 

reported fewer symptoms than White participants; for runny nose by a factor of 0.76 (95% CI 

(0.65, 0.89)), cough (by a factor of 0.77 (95% (0.62, 0.95)), and congestion (by a factor of 0.77 

(95% (0.62, 0.96)). Increasing BMI was associated with increased reporting of myalgia (p=0.033) 

and breathlessness (p<0.001). Those with co-morbidities reported 18.5% (95% CI (8.1%, 29.8%)) 

more days of cough, 16.1% (95% CI (1.9%, 32.2%)) more days of myalgia and 22.4% (95% CI 

(3.6%, 44.5%)) more days of breathlessness on average, than those without co-morbidities (Table 

5).  

 

In those with a positive PCR (Table 6) many of these trends remained significant, for example, 

the effect of age on myalgia (p=0.039) and loss of appetite (p=0.012), the effect of gender on 

headaches (p=0.033), of ethnicity on congestion (p=0.002) and of BMI on breathlessness 

(p=0.012). Increased BMI was associated with longer duration of cough (p=0.022). 
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Figure 5 and  
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Figure 6 present the daily probabilities of specific symptoms (starting with the first report of any 

symptom), stratified by PCR result. Whilst these probabilities fall swiftly in PCR- participants 

(Figure 6), they start more slowly and peak later in those with COVID-19 ( 
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Figure 5). Fever peaked on the 4th day (24%), followed by chills (27%), whilst myalgia (31%) and 
loss of appetite (28%) peaked on the 5th day. Anosmia/ageusia (27%) and cough (43%) peaked on 
the 12th day. These findings are also reflected in 
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Figure 7; symptoms in PCR negative participants fall rapidly shown by the dark purple, whereas 

they are later to peak and slower to fade in PCR positive participants, shown by the changing 

colour scale.  

 

The optimal diagnostic model for testing PCR positive based on symptoms and controlled 
for population characteristics 
  

Figure 8 presents the effects (ORs) of reporting a specific symptom for 3 days within an episode, 

on the probability of testing PCR+. The rationale for considering 3-day symptom effect as a 

meaningful magnitude for the length of reports was inspired by 
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Figure 4.  In this figure, all specific symptoms seem to have a mean less than 3 days in PCR- 

participants. Anosmia/ageusia (OR=14.4 (95%CI 9.2,22.6)), nausea (OR=5.8 (95%CI 4.2,7.9)), 

loss of appetite (OR=5.6 (95%CI 4.5, 7.2)) and fever (OR=5.4 (95%CI 4.2, 6.97)) have the 

strongest effects in terms of magnitude and statistical significance.  

 

The most parsimonious model, i.e. the model with the least number of predictors, yet explaining 

the most variability in the data, is shown in Table 7. The model retains anosmia/ageusia (OR=5.2 

(95%CI 3.4, 7.9)), loss of appetite (OR=2.3 (95%CI 1.6, 3.3)), fever (OR=1.9 (95%CI 1.4, 2.6)), 

congestion (OR=1.9 (95%CI 1.5, 2.4)) and cough (OR=1.3 (95%CI 1.1, 1.6)) as key symptoms 

associated with a PCR+ episode, whilst runny nose (OR=0.7 (95%CI 0.5,0.9)) and chills (OR=0.6 

(95%CI 0.4, 0.8)) are associated with testing PCR-. This model has a discrimination power of 

approximatively 0.86 in terms of AUC but does not account for population weights.  

 

Table 8 presents combinations of symptoms predicting the probabilities of COVID-19 using the 

optimal model. For example, a white participant of 50 years of age would have over 90% 

probability of testing PCR+ if s/he reported 3 days of loss of taste and smell, 3 days of loss of 

appetite, 3 days of fever and 3 days of cough with 1 day of congestion, runny nose and chills.  

 
The discriminatory power of specific symptoms 
 

Figure 9 shows how the discriminatory power of individual symptom evolves if only the first 

number of days after onset are considered - that is only day 1, only days 1-2, only days 1-3 and so 

on. Symptoms which peak later such as anosmia/ageusia gain discrimination power as the number 

of days of reporting increases. For other less specific symptoms, the individual discrimination 
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power remains constant or even declines, for example sore throat peaks very early and then tapers 

off.   

 

The area under the curve in Figure 10 shows the discrimination power of each symptom in the 

model using the maximum likelihood ROC 2-stage regression analysis (uncontrolled for age and 

ethnicity and population weighted). The higher the AUC, the better the symptom discriminates 

between PCR+ and PCR-, the steep incline of the curve followed by the flattening line suggests 

that discrimination is little affected as the number of false positives increases.  

 

When controlled for age and ethnicity, the two-stage ROC model does not quantify their effects 

on the ROC curve of specific symptoms in a directly interpretable manner, but qualitative 

conclusions are displayed in Table 9 and visualised in Figure 11. Age and ethnicity affect the 

ROC curve for each symptom, notably the discriminatory power of anosmia/ageusia decreased 

with increasing age and is smaller ethnic minorities, compared to White ethnicity.  
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Discussion 
 

The main objectives of this study were to develop a symptom-based diagnostic model for a PCR-

proven SARS-CoV-2 infection, investigate the dynamics of the symptoms and their discrimination 

power for a potential COVID-19 diagnostic model. Our prospective, longitudinal, real-time 

collection, together with analytical techniques (post-stratification weights20–22), which produce 

generalizable results to the UK adult community population, provides a better understanding on 

the dynamics of COVID-19 symptomology. The rather poor engagement of people other than 

White in COVID-19 clinical trials has been documented25 but our method overcame this difficulty.  

 

We found a four-month prevalence of COVID-19 of 2.1%, in line with the estimated population 

prevalence at that time26. Of the individual symptoms, anosmia and/or ageusia were the least 

reported symptoms overall (3.6%); however, participants reporting them for 3 days or more were 

more likely to test positive for COVID-19 (OR= 14.4 (9.2,22.6)). Figure 3 presents the 

probabilities testing positive conditioned on symptoms reports. Also, of those testing positive for 

SARS-CoV-2, over half (53.3%) reported the presence of anosmia or ageusia (Figure 2). Other 

symptoms such as loss of appetite, a new fever, congestion and cough were strongly associated 

with a positive result. Fever, cough and anosmia/ageusia have been identified as the strongest 

candidates for predicting COVID-19 in studies such as a REACT-1 and also in a meta-analysis of 

9 studies examining symptoms of COVID-19 and long COVID syndrome13,17. The odds of having 

COVID-19 have been reported as positively associated with shortness of breath (OR=3.1, 

(95%CI)), although our results do not support it as a ‘leading’ symptom 13. On its own runny nose 

was the most reported symptom (16.9%) in our study, and frequently reported in those with 

confirmed COVID-19 (72.6%). The participants reporting it were the least likely (8%) to test 
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positive for COVID-19 (Figure 3), when accounting for the entire episode, and the symptom 

turned out to have high discriminatory power (AUC=0.83, Figure 9) in ruling out the disease, 

consistent with other findings11,17. 

 

Unlike many other studies6–8,10,16, this research examined the number of days that specific 

symptoms are reported within an infection episode. We found that PCR+ participants reported a 

significantly longer duration of specific symptoms per episode, compared with those that were 

PCR-; cough had the longest duration followed by tiredness whilst runny nose had the longest 

duration among PCR- participants. We also found that cough, anosmia/ageusia and loss of appetite 

peaked later in SARS-CoV-2 infection, typically around day 12 (Figure 5). Research in 

Czechoslovakia demonstrated anosmia and ageusia had a later onset than other symptoms, 

beginning a median of two or more days after the onset of symptoms, and lasting longer than fever 

or loss of appetite27. These findings are consistent with Wojtusiak et al who found that headaches, 

chills and cough were more relevant if they occurred at onset, whilst loss of taste and smell and 

loss of appetite had a higher relevance if they occurred later in the infection12. 

 

Previous research has suggested that individual symptoms are not predictive of COVID-19 on their 
own. Our analysis has suggested that individual symptoms would not have had sufficient 
predictive power for COVID-19 early in their occurrence but that this would increase with the 
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number of days in which they manifest (
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Figure 9). Hence, our final predictive model is based on specific symptomatic episodes, i.e. their 

entire number of symptomatic days within an episode and adjusted for age and ethnicity. The 

model retained episodes of anosmia/ageusia, loss of appetite, fever, congestion and cough as all 

positively associated with testing PCR+, together with runny nose, chills and age as all negatively 

associated with testing PCR+ (Table 7) consistent with other findings28. The concept of 3 days as 

a meaningful magnitude for the length of reports was inspired by Figure 4, in which all symptoms 

had a mean of less than 3 days in PCR- participants. In light of this, this information may be 

particularly useful at the time of clinical triage, namely the number of days symptoms have been 

experienced by subjects presenting for hospital care. The model, based on two-level logistic 

regression, has a discriminating power of ~86%.  

 

Our ROC analysis showed that the discrimination power of anosmia/ageusia increased from 
irrelevance during the first few days to exceeding all others after day 9 (
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Figure 9). Our report also showed that the discriminatory power of anosmia/ageusia decreases with 

age, which may reflect a biological phenomenon associated with aging29. Cough alone remained 

relatively constant in its discrimination power, however PCR- participants also reported prolonged 

cough. Our data do not support diarrhoea as a candidate symptom of COVID-19. 

 

Two-stage ROC analysis suggests that the prediction power may be less discriminatory in older 

participants and in those from ethnic minorities, this was true for all symptoms.  Comparatively, 

the Canas et al. model showed better discrimination in participants of normal weight compared to 

those who were underweight and/or overweight, and in non-healthcare workers and, consistent 

with our results, found that younger people were more likely to test PCR positive, possibly due to 

increased social mixing15. Our diagnostic model is similar to this model as it identified persistent 

cough and loss of smell, alongside abdominal pain and myalgia as early features of COVID-1915. 

However, the Canas model had a younger population than our study (mean age 46.7 years vs 53.1 

years) and COVID-19 was self-reported, thereby the results are difficult to compare15. Moreover, 

the study reported ‘blisters on the feet’ and ‘eye soreness’ as relevant features of COVID-19, the 

significance of which the paper questions itself15.  

 

Our estimated prevalences of specific symptoms among both positive and negative groups are 

higher than those presented in the meta-analysis by Bowyer et al13. Although the study participants 

stem from nine longitudinal cohorts, the data collection is essentially retrospective and cross-

sectional. The authors stated a great deal of heterogeneity. Notably the data have been collected 

during the summer whilst ours were collected during the winter, including Christmas, when 

transmission intensified, hence we postulate that variation could be attributable to the season. Our 
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prevalence of specific symptoms among PCR+ and PCR- are closest to those from Generation 

Scotland cohort (access via Bowyer et al. or from University of Edinburgh)13,30 consistent with our 

explanation above, given somewhat cooler temperatures in Scotland during the summer. We have 

retrieved some partial information and appended a relevant comparative Table in the 

Supplementary information.  

 

Though multiple centres participated in the clinical trial, the three level regression techniques did 

not reveal important differences in the estimates or their standard errors. Variability between the 

centres was not expected to be significant as the same trial protocol and procedures were used. We 

have disregarded the effect of the intervention (placebo or vaccine), as preliminary analysis did 

not show a significant impact on results (data not shown). 
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Limitations 
 

Despite the data being gathered prospectively and in real-time, we observed gaps in the daily 

records, for example, a participant may report fever for 3 consecutive days, then none on the fourth 

day and then again on the fifth and sixth days. The statistical analysis considered the number of 

reports (i.e. the number of days with specific symptoms) rather than the whole length of time they 

were experienced. This may have led to underestimating their effect; however, we are confident 

that recall bias has been minimalised to a greater extent than if the data had been collected from a 

retrospectively collected self-report. Asymptomatic infections are likely to be underrepresented in 

this analysis. As this research set out to explore symptoms of COVID-19 we don’t believe this to 

be a major limitation to our analysis, but it does mean we cannot calculate the true prevalence of 

COVID-19 infection in the study population, Unfortunately, we also did not benefit from 

information such as recent contacts or travel/work patterns which could have been useful in 

building a reliable diagnostic model as suggested by the Cochrane Review paper10. At the time of 

data collection, the circulating strain of SARS-CoV-2 was the alpha variant31, however omicron 

has a higher tropism for naso-epithelial cells than pulmonary cells32 and anosmia has been reported 

less frequently with the omicron variant33. Therefore, care should be taken if applying the model 

outside our study population. 
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Conclusion 
 

This research adds to the body of literature on COVID-19 symptoms as an in-depth exploration of 

symptoms reported by those unaware of their diagnosis at the time of reporting, thereby 

minimising reporting bias. We found younger participants, and those from ethnic minorities were 

more likely to test positive for COVID-19 and, consistent with previous research, anosmia and/or 

ageusia most strongly predict a positive PCR result; however, we have also shown that these 

symptoms peak late in infection. This calls into question their consideration as early markers of 

the disease. Similar to other research we found that a cluster of fever, congestion and cough are all 

positively associated with COVID-19, with PCR positive participants reporting more days of 

symptoms e.g., cough, than those who were PCR negative. We also found that diarrhoea, runny 

nose and chills are not indicative of COVID-19. Overall, our model has a discriminating power of 

86% to predict COVID-19; although, as anosmia and ageusia often develop later in the infection, 

our proposed model is unlikely to identify early infections, particularly in the elderly or those from 

ethnic minorities.   
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Tables legends 
 
Table 1 Qualifying symptoms of suspected COVID-19. 

 
Table 2 The PCR and symptomatic status of all study participants; 3320 (21.9%) of all 

participants had at least one symptomatic episode and 317 (2.1%) of all had a PCR+ episode. 

Table 3 Cohort demographics stratified by participant PCR status. The ORs measure univariate 

associations between the PCR status and population characteristics, irrespective of the presence 

of symptoms. 

Table 4  Number (proportions) of participants with specific symptoms, overall and conditioned 

on the presence/absence of a PCR confirmed episode. 

Table 5  The fold-effects of demographics and their 95%CIs on the mean number of days of 

specific symptoms reported during a symptomatic episode. The estimation uses a Poisson zero 

inflated model on the number of reports of an episode and allows for multiple episodes with 

events associated with one participant. This analysis accounts for the length of the event-episode. 

Table 6 The fold-effects of demographics and their 95%CIs on the mean number of days of 

specific symptoms reported during a symptomatic episode restricted to the PCR+ participants. 

The estimates are the result of fitting a zero-inflated Poisson model on the number of reports 

within an episode whilst allowing for multiple episodes with events associated with one 

participant. This analyses also account for the length of the event-episode. 
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Table 7 The optimal model for PCR+ based on symptoms and population characteristics on a 

two-level weighted logistic regression analysis. The adjusted effects of three specific reports are 

shown. 

 
Table 8  Examples of various combination of potential bundles of symptoms and their 

corresponding probabilities of testing positive as predicted by the optimal model above (age is 

held at 50 years and the ethnicity is assumed White). That is, a White participant of 50 years of 

age reporting 1 day of anosomia/ageusia, 3 days of loss of appetite and 3 days of fever and one 

day of nose congestion and 3 days of cough and 1 day of runny nose and 1 day of chills had 83% 

chance to test positive (column in bold). 

 
Table 9 The effect of age and ethnicity on the ROC curve and subsequently on discrimination 

power associated with each classifier in the model. The coefficients are only qualitatively 

interpreted.  
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Figures Legends 
 
Figure 1. Age distribution in the study sample compared to that of the UK population, stratified 

by gender and ethnicity.  
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Figure 2. Proportions of participants with specific symptoms, overall and stratified by PCR 

status, illustrating Table 3 above. For example: overall, 16.9% of all participants reported runny 

nose at least once but the figure is much higher (72.6%) among PCR+ contrasting with 15.7% 

among PCR-.  
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Figure 3. The predicted probabilities of PCR+ status, stratified by the presence of specific 

symptoms, and their 95%CIs. Predictions related to each specific symptom are unadjusted for the 

others and are based on a binary regression with robust standard errors accounting for multiple 

episodes with events associated with a participant. For example, in participants with loss of taste 

or smell, regardless of the presence or absence of other symptoms, the probability of a positive 

PCR test is 0.319 or 31.9%. 
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Figure 4. The predicted mean of number of days specific symptoms were reported during an 

episode and their 95%CIs. The red values (PCR+) are referred to the left axis and the blue values 

(PCR-) are referred to the right axis. The analysis is restricted to symptomatic participants only. 

For example, for those participants reporting cough as part of an episode, the mean of the number 

of days was 6-7 days in PCR+ participants and 2-3 days in PCR-. 
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Figure 5 . The daily probabilities of reporting specific symptoms starting with the first report 

conditioned on PCR+ participants and their corresponding illness episode, i.e. ignoring the 

symptomatic episodes associated with these participants which were negative. Non-parametric 

methodology was used to capture the shape of the time series reports. 

 

  

https://doi.org/10.1017/S0950268824000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268824000037


 

38 
 

Figure 6. The daily probabilities of reporting specific symptoms starting with the first report in 

PCR-participants. 
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Figure 7. The probabilities of daily occurrences of various symptoms have similar magnitude in 

both PCR+ and PCR- groups on the first reporting day whilst they peak up later during illness 

evolution in PCR+ patients and decline in those PCR-, also reflected in the previous figures. 
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Figure 8.  The effect (OR) of reporting a specific symptom for 3 days during an episode, 

irrespective of other symptoms reported during that episode. 
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Figure 9.  The discrimination power of individual symptoms based on the temporally ordered 

reports restricted to the first 1, 2, 3 to longer than 15 days after symptomatic illness episode 

starts. 

 

  

https://doi.org/10.1017/S0950268824000037 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268824000037


 

42 
 

Figure 10. The estimated discrimination power of each classifier. The plot and the AUC 

estimates follow a maximum likelihood ROC weighted regression analysis uncontrolled for age 

and ethnicity. 
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Figure 11. The effect of age and ethnicity on the ROC curve and subsequently on discrimination 

power associated with each classifier in the model. The colours indicating specific symptom are 

similar to those displayed in Figure 10. 
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• Fever (referred to as FEVER) 
• New onset cough (referred to as COUGH) 
• New onset or worsening of shortness of breath or difficulty breathing compared to recruitment time (referred 

to as BREATHLESSNESS) 
• New onset fatigue (referred to as FATIGUE) 
• New onset generalised muscle or body aches (referred to as MYALGIA)  
• New onset headache (referred to as HEADACHES) 
• New loss of taste or smell (referred to as LOSS OF TASTE/SMELL) 
• New loss of appetite (referred to as ANOREXIA) 
• Acute onset of sore throat (referred to as SORE THROAT) 
 Acute onset congestion (referred to as CONGESTION) 
 Acute onset runny nose (referred to as RUNNY NOSE) 
• New onset of chills (referred to as CHILLS) 
• New onset of nausea (referred to as NAUSEA) 
• New onset of diarrhoea (referred to as DIARRHOEA) 

 
Table 1. Qualifying Symptoms of Suspected COVID-19.  
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 Overall 
 PCR- PCR+ Total 
No symptomatic episode 11768  51 11819 
At least one symptomatic episode   3054 266 3320 (21.9%) 
 14822 317 

(2.1%) 
15139 

 
Table 2. The PCR and symptomatic status of all study participants; 3320 (21.9%) of all 
participants had at least one symptomatic episode and 317 (2.1%) of all had a PCR+ episode. 
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Table 3. Cohort demographics stratified by participant PCR status. The ORs measure univariate 
associations between the PCR status and population characteristics, irrespective of the presence 
of symptoms.  
 
  

VARIABLE Summary/ 
Category 

ALL 
 

PCR+ 
 

PCR- 
 

OR p-value 95%CI - 
low 

95%CI - 
high 

  15139 317   14822     
AGE Mean/SD 53.1/14.9 49.2/13.6 53.2/14.9 0.983 <0.001 0.975 0.991 

(years) Median (IQR) 55(42, 65) 51(38, 60) 55(43, 65)     
 Min-Max 

 
18-84 18-79 18-84     

GENDER Male 7,808(51.6%) 152(48.0%) 7,656(51.6%) 1.086 0.550 .829 1.423 
 Female 7,331(48.4%) 165(52.1%) 7,166(48.4%)     

ETHNICITY White 14280 (94.3%) 288(90.9%) 13992(94.4%) 1.924 0.010 1.169  3.167 
 BAME 675(4.5%) 26(8.2%) 649(4.4%)     
 Missing 184 (1.2%) 3(0.95%) 181(1.2%)     

BMI Mean/SD 27.6/5.3 28.2/5.6 27.6/5.3 1.003 0.845 .976 1.030 
 Median (IQR) 26.7(23.9-

30.4) 
27.1(24.1-

31.6) 
26.7(23.9-

30.4) 
    

 Min-Max 15.1-55 16.8-53 15.1-55     
 Missing 412(2.7) 7(2.5) 405(2.7)     

BMI>30 No 10777(71.2%) 216(68.1%) 10561(71.3%) 1.002 0.991 .759 1.321 
 Yes 3950(26.1%) 94(29.7%) 3856(26.0%)     
 Missing 412(2.7%) 7(2.2%) 405(2.7%)     

Presence of comorbidities No 8372 (55.3%) 177(55.8%) 8195(55.3%) 0.816 0.128 .628 1.060 
 Yes 6767 (44.7%) 140 (44.2%) 6627(44.7%)     
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 ALL PCR+  PCR- 
SYMPTOMS 15139  317  14822 

 Number Proportion Number Proportion Number Proportion 
RUNNY NOSE 2559 16.9% 230 72.6% 2329 15.7% 

COUGH 2205 14.6% 238 75.1% 1967 13.3% 
FATIGUE 1908 12.6% 236 74.4% 1672 11.3% 

CONGESTION 1878 12.4% 237 74.8% 1641 11.1% 
HEADACHES 1718 11.3% 222 70.0% 1496 10.1% 

SORE THROAT 1595 10.5% 198 62.5% 1397 9.4% 
MYALGIA 1463 9.7% 206 65.0% 1257 8.5% 

CHILLS 1398 9.2% 189 59.6% 1209 8.2% 
FEVER 1128 7.5% 196 61.8% 932 6.3% 

BREATHLESSNESS 945 6.2% 162 51.1% 783 5.3% 
ANOREXIA 887 5.9% 184 58.0% 703 4.7% 

NAUSEA 806 5.3% 145 45.7% 661 4.5% 
DIARRHOEA 620 4.1% 99 31.2% 521 3.5% 

LOSS OF SMELL/TASTE 541 3.6% 169 53.3% 372 2.5% 

Table 4. Number (proportions) of participants with specific symptoms, overall and conditioned 
on the presence/absence of a PCR confirmed episode.  
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 AGE GENDER ETHNICITY BMI COMORBIDITES 
 RR p- 

value 
95%CI  

Low-High 
RR p- 

value 
95%CI  

Low-High 
RR p- 

value 
95%CI  

Low-High 
RR p- 

value 
95%CI  

Low-High 
RR p- 

value 
95%CI  

Low-High 
RUNNY NOSE 1.005 <0.001 1.003 1.008 0.960 0.301 0.888 1.037 0.758 0.001 0.645 0.891 0.999 0.765 0.992 1.006 1.076 0.060 0.997 1.162 

COUGH 1.006 <0.001 1.003 1.009 0.966 0.477 0.879 1.062 0.769 0.014 0.624 0.949 1.005 0.140 0.998 1.013 1.185 <0.001 1.081 1.298 
FATIGUE 0.998 0.307 0.994 1.002 1.040 0.447 0.940 1.151 0.885 0.210 0.731 1.071 1.004 0.315 0.996 1.012 1.081 0.118 0.980 1.192 

CONGESTION 0.997 0.182 0.994 1.001 1.049 0.370 0.945 1.164 0.773 0.020 0.622 0.961 1.005 0.214 0.997 1.014 1.050 0.352 0.948 1.162 
HEADACHES 0.998 0.265 0.994 1.002 1.243 <0.001 1.114 1.387 0.894 0.386 0.694 1.152 1.005 0.329 0.995 1.014 1.047 0.408 0.939 1.167 

SORE THROAT 0.995 0.021 0.990 0.999 1.056 0.419 0.925 1.205 0.887 0.488 0.633 1.244 0.998 0.781 0.988 1.009 1.039 0.567 0.912 1.182 

MYALGIA 1.005 0.060 1.000 1.010 0.975 0.713 0.853 1.115 0.820 0.101 0.647 1.040 1.012 0.033 1.001 1.023 1.161 0.025 1.019 1.322 
CHILLS 1.001 0.786 0.994 1.008 1.043 0.661 0.865 1.257 0.751 0.080 0.545 1.035 1.003 0.718 0.989 1.017 1.102 0.282 0.923 1.315 

FEVER 0.999 0.842 0.994 1.005 1.052 0.573 0.881 1.257 0.852 0.453 0.561 1.295 1.014 0.033 1.001 1.027 1.111 0.227 0.936 1.319 
BREATHLESSNESS 1.001 0.740 0.995 1.007 1.043 0.606 0.888 1.226 0.684 0.059 0.461 1.014 1.024 <0.001 1.012 1.037 1.224 0.017 1.036 1.445 

ANOREXIA 1.009 0.018 1.001 1.016 1.021 0.822 0.849 1.228 0.720 0.139 0.466 1.113 1.012 0.066 0.999 1.025 1.184 0.070 0.986 1.420 

NAUSEA 1.002 0.499 0.995 1.009 1.106 0.375 0.885 1.382 0.759 0.309 0.446 1.291 1.008 0.273 0.994 1.023 1.061 0.588 0.856 1.317 
DIARRHOEA 0.997 0.494 0.990 1.005 0.900 0.426 0.696 1.166 1.168 0.475 0.763 1.787 1.008 0.416 0.989 1.026 1.137 0.328 0.879 1.471 

LOSS OF 
SMELL/TASTE 0.989 0.018 0.979 0.998 1.239 0.112 0.951 1.614 0.894 0.763 0.433 1.847 0.994 0.656 0.966 1.022 0.802 0.105 0.614 1.047 

  
Table 5. The fold-effects of demographics and their 95%CIs on the mean number of days of 
specific symptoms reported during a symptomatic episode. The estimation uses a Poisson zero 
inflated model on the number of reports of an episode and allows for multiple episodes with 
events associated with one participant. The analyses also account for the length of the event-
episode. 
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 AGE GENDER ETHNICITY BMI COMORBIDITES 
 RR p- 

value 
95%CI  

Low-High 
RR p- 

value 
95%CI  

Low-High 
RR p- 

value 
95%CI  

Low-High 
RR p- 

value 
95%CI  

Low-High 
RR p- 

value 
95%CI  

Low-High 
RUNNY NOSE 1.003 0.390 0.996 1.011 1.006 0.950 0.831 1.219 0.608 0.050 0.369 1.001 1.008 0.416 0.989 1.028 0.982 0.851 0.814 1.185 

COUGH 1.005 0.134 0.999 1.011 1.070 0.449 0.898 1.275 0.681 0.063 0.455 1.020 1.016 0.022 1.002 1.030 1.151 0.092 0.977 1.355 
FATIGUE 1.006 0.054 1.000 1.012 1.047 0.593 0.885 1.238 0.816 0.197 0.599 1.112 1.006 0.557 0.985 1.028 1.012 0.886 0.862 1.187 

CONGESTION 0.997 0.469 0.990 1.005 1.126 0.203 0.938 1.353 0.570 0.002 0.400 0.812 1.014 0.112 0.997 1.030 1.064 0.500 0.889 1.274 
HEADACHES 1.001 0.820 0.993 1.009 1.255 0.033 1.018 1.546 0.734 0.139 0.488 1.106 1.012 0.259 0.991 1.034 1.006 0.956 0.820 1.233 

SORE THROAT 0.998 0.751 0.989 1.008 0.940 0.664 0.711 1.243 0.748 0.341 0.412 1.359 1.012 0.337 0.987 1.038 1.115 0.415 0.858 1.450 
MYALGIA 1.010 0.039 1.000 1.019 0.992 0.949 0.786 1.254 0.685 0.115 0.427 1.097 1.022 0.076 0.998 1.046 1.167 0.178 0.932 1.462 

CHILLS 1.008 0.225 0.995 1.021 0.915 0.554 0.681 1.229 0.695 0.282 0.359 1.347 1.014 0.432 0.980 1.049 0.945 0.706 0.705 1.266 

FEVER 1.004 0.389 0.995 1.014 0.955 0.726 0.737 1.237 0.797 0.332 0.503 1.262 1.005 0.686 0.982 1.028 0.939 0.627 0.730 1.209 
BREATHLESSNESS 1.009 0.137 0.997 1.022 1.069 0.675 0.783 1.460 0.376 0.071 0.130 1.085 1.031 0.012 1.007 1.056 1.449 0.019 1.064 1.973 

LOSS OF 
APPETITE 1.016 0.012 1.004 1.029 0.968 0.835 0.717 1.309 0.746 0.403 0.376 1.482 1.011 0.488 0.981 1.042 1.025 0.867 0.767 1.370 
NAUSEA 1.008 0.110 0.998 1.018 0.953 0.762 0.699 1.299 0.759 0.416 0.391 1.475 1.009 0.541 0.981 1.037 1.019 0.898 0.762 1.364 

DIARRHOEA 1.001 0.951 0.981 1.020 0.828 0.479 0.491 1.396 1.540 0.324 0.653 3.630 0.982 0.621 0.916 1.054 0.990 0.971 0.586 1.674 
LOSS OF 

SMELL/TASTE 0.998 0.747 0.985 1.011 1.093 0.527 0.830 1.440 0.734 0.453 0.328 1.646 1.010 0.521 0.980 1.041 0.975 0.858 0.741 1.284 

 
Table 6. The fold-effects of demographics and their 95%CIs on mean number of days of specific 
symptoms reported during a symptomatic episode restricted to the PCR+ participants. The 
estimates are the result of fitting a zero-inflated Poisson model on the number of reports within 
an episode whilst allowing for multiple episodes with events associated with one participant. The 
analyses also account for the length of the event-episode. 
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The optimal diagnostic model for PCR+ based on symptoms and population characteristics 

VARIABLE  OR p-value 95%CI - L 95%CI - 
H 

LOSS OF TASTE AND SMELL 5.181 0.000 3.400 7.894 
LOSS OF APPETITE 2.323 0.000 1.643 3.283 
FEVER 1.880 0.000 1.385 2.552 
CONGESTION 1.875 0.000 1.464 2.402 
COUGH 1.338 0.004 1.098 1.631 
RUNNY NOSE 0.662 0.004 0.500 0.877 
CHILLS 0.578 0.000 0.443 0.753 
AGE 0.988 0.024 0.977 0.998 
BAME vs. WHITE 2.434 0.001 1.406 4.214 

 
Table 7. The optimal model based on a two-level weighted logistic regression model. The 
adjusted effects of three specific reports are shown. 
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VARIABLE  NUMBER OF REPORTS 
LOSS OF TASTE AND 
SMELL 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
LOSS OF APPETITE 1 1 1 2 2 2 3 3 3 1 1 1 1 1 1 3 3 3 
FEVER 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 
NOSE CONGESTION 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
COUGH 1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 3 3 3 
RUNNY NOSE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
CHILLS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
PROBABILITY OF 
PCR+ 0.60 0.72 0.82 0.66 

0.78 0.86 0.73 0.82 0.89 0.62 0.74 0.83 0.65 0.76 0.85 0.83 0.89 0.94 

Table 8. Examples of various combination of potential bundles of symptoms and their 
corresponding probabilities of testing positive as predicted by the optimal model above (age is 
held at 50 years and the ethnicity is assumed White).  
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SYMPTOMS  COEFFICIENT P-VALUE 95%CI -
LOW 

95%CI -HIGH 

LOSS OF 
TASTE/SMELL 

BAME vs. White 
-0.436 0.041 -0.853 -0.019 

 Age -0.012 0.011 -0.021 -0.003 
ANOREXIA BAME vs. WHITE -0.312 0.116 -0.701 0.077 

 Age 0.009 0.053 0.000 0.018 
FEVER BAME vs. WHITE -0.390 0.040 -0.761 -0.018 

 Age 0.007 0.109 -0.002 0.016 
CONGESTION BAME vs. WHITE -0.556 0.016 -1.007 -0.105 

 Age -0.003 0.583 -0.012 0.007 
COUGH BAME vs. WHITE -0.521 0.028 -0.986 -0.055 

 Age 0.004 0.408 -0.005 0.014 
RUNNY NOSE BAME vs. WHITE -0.467 0.034 -0.897 -0.036 

 Age 0.000 0.998 -0.009 0.009 
CHILLS BAME vs. WHITE -0.191 0.316 -0.564 0.182 

 Age 0.010 0.023 0.001 0.019 

 

Table 9. The effect of age and ethnicity on the ROC curve and subsequently on discrimination 
power associated with each classifier in the model. The coefficients are only qualitatively 
interpreted. 
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