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Graphical Abstract

Single-cell immune cell profiling reveals emergency myelopoiesis as a hallmark
for infants suffering from severe respiratory syncytial virus (RSV) disease. Pro-
liferative HLA-DRLow monocyte subsets distinguish infants with severe RSV
disease. Blood transcriptomic analysis also points to emergency myelopoiesis
associated with severe RSV disease and delivers candidate biomarker genes for
the stratification of infants with varying RSV disease severity.
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Abstract
Whereas most infants infected with respiratory syncytial virus (RSV) show no or
only mild symptoms, an estimated 3 million children under five are hospitalized
annually due to RSV disease. This study aimed to investigate biological mecha-
nisms and associated biomarkers underlyingRSVdisease heterogeneity in young
infants, enabling the potential to objectively categorize RSV-infected infants
according to their medical needs. Immunophenotypic and functional profil-
ing demonstrated the emergence of immature and progenitor-like neutrophils,
proliferative monocytes (HLA-DRLow, Ki67+), impaired antigen-presenting
function, downregulation of T cell response and low abundance ofHLA-DRLow B
cells in severe RSV disease. HLA-DRLow monocytes were found as a hallmark of
RSV-infected infants requiring hospitalization. Complementary transcriptomics
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identified genes associated with disease severity and pointed to the emergency
myelopoiesis response. These results shed new light on mechanisms underlying
the pathogenesis and development of severe RSV disease and identified potential
new candidate biomarkers for patient stratification.

1 BACKGROUND

Respiratory syncytial virus (RSV) infection is the leading
global cause of hospitalization and mortality in infants
with severe acute respiratory tract infections (ARTI).1–3
Globally, RSV infection resulted in 33.1 million episodes,
3.2 million hospitalizations and 59,600 in-hospital deaths
in children younger than 5 years old in 2015.3
About 45% of hospitalizations and in-hospital deaths

occur in infants younger than 6 months old.3,4 Prema-
ture birth, chronic lung disease, congenital heart disease
and immunodeficiency are associated with an increased
risk for severe bronchiolitis.5 Nevertheless, most chil-
dren hospitalized with RSV disease are born at term and
have no pre-existing comorbidities.6 In severe RSV dis-
ease there is a dysregulated immune response as evidenced
by an increase in the inflammatory cytokines interleukin
(IL)-6 and IL-8 in airway fluids7–10 and blood,11–13 pro-
nounced monocytes (CD69+), T cells (CD8+ T cells and
CD3+ double-negative T cells) and neutrophils,14 and
decrease of IFN-y response both in airways15,16 and in the
blood.11,17,18 Mejias et al. used whole blood transcriptomic
analyses to attempt to identify biomarkers by translating
the abundance or depletion of cell subsets into alterations
in gene expressionmarkers.19 Whole-blood transcriptomic
analyses also revealed that gene expression signatures
such as MMP8, OLFM4 and ARG1 in severe RSV disease
strongly suggest activation of innate immune cell subsets,
including monocytes and neutrophils.20–22 In the study by
Heinonen et al., infants aged 6–12 months with mild RSV
disease, who were treated as outpatients, demonstrated
a higher expression of genes that are related to inter-
feron (IFN) compared to those admitted as inpatients.23
This suggests that these older infants had a more robust
antiviral response against RSV infection.23 Integration
of transcriptome and blood immune-profiling using a
32-marker panel showed that IFN overexpression is asso-
ciated with decreased odds of hospitalization, whereas
increased numbers of HLA-DRLow monocytes are asso-
ciated with increased risk of hospitalization compared
with healthy controls.23 However, our understanding of
pathogenesis based on comprehensive immune profiles is
incomplete and clinically useful markers that discriminate
betweenmild,moderate and severeRSVdisease andwhich
predict the future course of events are lacking.

One objective of the European Commission-funded
REspiratory Syncytial virus Consortium of EUrope
(RESCEU; https://resc-eu.org) is to identify biomarkers of
RSV disease severity in infants to aid clinicalmanagement.
Whole blood samples were collected from the multina-
tional RESCEU infant case-control study24 and RESCEU
birth cohort study.25 We investigated single-cell immune
profiles in whole blood of infants with various clinical
manifestations of RSV infection using a novel 42-marker
CyTOF panel, allowing simultaneous exploration of cells
that carry out innate and adaptive immune responses,
including B cell, T cell, monocyte and neutrophil cell
subsets. Using this approach, we found evidence of emer-
gency myelopoiesis and dysregulated adaptive immune
responses in severe RSV disease compared with mild RSV
disease. Random forest analysis identified monocytes with
an elevated level of cell cycle marker Ki67 and decreased
HLA-DR expression in hospitalized infants as a correlate
for RSV disease severity alongside transcriptomic evidence
of activated sets of genes that correlated with levels of
immune pathology. These findings not only enhance our
understanding of the pathogenesis of RSV disease but also
may help identify which RSV-infected infants need close
monitoring, support and future-specific therapeutics.

2 METHODS

2.1 Clinical cohort studies

2.1.1 Infant case-control cohort study

The RESCEU case-control cohort is a multinational, mul-
ticenter, observational study (clinical trial registration
number: NCT03756766). The study protocol, study objec-
tives, recruitment, eligibility criteria, informed consent,
study procedures and data collection have been described
previously.24 In brief, infants < 12 months old with RSV
disease were recruited from the University Medical Cen-
ter Utrecht (UMCU) in The Netherlands, Hospital Clínico
Universitario de Santiago (SERGAS) in Spain, Imperial
College (IMPERIAL) National Health Service Trust (NHS)
and Oxford University Hospital NHS Trust (OXFORD) in
the United Kingdom during the RSV seasons 2017–2018
(season 1), 2018–2019 (season 2) and 2019–2020 (season 3).
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Healthy controls without underlying comorbidities were
recruited outside of the RSV season.
Eligibility criteria included hospitalization for less than

48 h at enrolment or within 96 h of disease onset, no previ-
ous receipt of medications to treat RSV infection, no prior
exposure to an investigational RSV vaccine or medication,
no previous receipt of immunoglobulins or monoclonal
antibodies, and had not used montelukast or oral steroids
within seven days before enrolment. Infants with co-
morbidities were included in the differential analysis,
however, they were not evaluated in this manuscript.
RSV was detected using an RSV point-of-care test

(POCT) by either a rapid antigen detection test (Alere
I) (Alere Inc) or a rapid RSV polymerase chain reaction
(PCR) test at the hospital setting, or an RSV PCR test
at the laboratory. Convalescence samples were collected
7 ± 1 weeks after a positive RSV diagnostic test result.

2.1.2 Infant birth cohort study

The RESCEU infant birth cohort study is a multinational,
multicenter, prospective and observational study (clinical
trial registration number: NCT03627572). The study proto-
col, design, inclusion and exclusion criteria, recruitment
and informed consent procedures have been described
previously.25
Infants were recruited at birth and followed up during

their first year of life throughout three subsequent RSV
seasons (2017–2020). Recruitment was conducted at five
sites of which three sites collected samples at the moment
of RSV infection: UMCU in the Netherlands, Hospital
Clínico Universitario de Santiago (SERGAS) in Spain, and
Oxford University Hospital NHT Trust (OXFORD) in the
United Kingdom. Biological samples were collected when
RSV-ARTI was confirmed by the Alere I RSV POCT assay.
Convalescence samples were collected 7 ± 1 weeks after a
positive RSV POCT test.

2.2 Mass cytometry analyses

Mass cytometry (CyTOF) allows for multiparametric anal-
ysis of single cells in complex biological systems26 using
antibodies labelled with isotopically pure metals27 and
quantified using inductively coupled plasma mass spec-
trometry. Current antibody labelling approaches allow for
the simultaneous profiling of over 50 molecular mark-
ers on a single-cell level. Relative to conceptually similar
fluorescence-based flow cytometry, where a cell sample is
treated with a panel of antibodies, each coupled to a dif-
ferent fluorescent dye, the use of metal-labelled antibodies

in mass cytometry increases the number of parame-
ters that can be measured, reduces the overlap between
measured channels and eliminates background autofluo-
rescence.26
The relatively low throughput in mass cytometry is typi-

cally addressed using sample multiplexing by mass-tagged
cellular barcoding28,29 that allows simultaneous analysis of
multiple samples in a single measurement. This is accom-
plished by labelling individual samples with a unique
combination of metal tags before being combined into a
single sample, stained with a single antibody panel and
analysed on a mass cytometer in a single run. Using the
following analysis, measured cells are assigned to their
corresponding source sample based on their unique mass
barcode signatures.

2.2.1 Sample collection

Blood samples were fixed in smart tubes according to the
manufacturer’s protocol and incubated for 10 min at room
temperature (RT), and subsequently stored at −80◦C until
the processing.

2.2.2 Reference sample

To provide quality control for antibody performance and
analysis of batch-related differences, whole blood refer-
ence samples were prepared and included in each mea-
sured batch. A 30 mL blood from a single healthy donor
was obtained from Janssen Pharmaceutica Biobank. To
provide a positive control for cell markers targeted by anti-
body mixes, healthy donor blood was treated in Smart
Tubes with 2 μM Janssen internally developed TLR7 ago-
nist for 6 h at 37◦C, 5 %CO2, and then fixed for 10min at RT
according tomanufacturer’s protocol, and further stored at
−80◦C until use.

2.2.3 Sample batch distribution

A total of 219 samples was divided over 12 batches, with
each batch containing 17 RSV-infected and two healthy
infant samples. One reference sample was added to each
batch to allow monitoring of the batch-to-batch variation
in median marker expression and cell population pro-
portion assessment. Allocation of the samples over the
different batches ensured equal distribution of infantswith
respect to infant age, gender and ReSVinet score-based
disease severity.30 For six donors, duplicate samples were
processed and analyzed as indicated.
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2.2.4 Sample processing

Purified metal-conjugated antibodies obtained from Stan-
dard Bio Tools or antibodies labelled using the Maxpar
Antibody Labeling Kit (Standard Bio Tools) according to
the manufacturer’s protocol were used for CyTOF staining
and analysis. Prior to staining, samples were thawed in a
water bath at 10◦C for 20minwith samplemixing by gentle
tube inversion after 10 min. After thawing, samples were
transferred over a 70 μm cell strainer (Falcon; Corning
Inc) to 50 mL tubes containing 25 mL of diluted thaw-
lyse solution (Thaw-Lyse Buffer; Smart Tube Inc) 1:1000
in nuclease-free water (UltraPure DNase/RNase-Free Dis-
tilledWater; Invitrogen). Smart tubes were washed 2 times
using 3 mL of diluted thaw- lyse buffer and the wash was
collected in the corresponding 50 mL tubes (Falcon). Sam-
ples were mixed and incubated in thaw-lyse buffer for 10
min at RT, and then centrifuged at 600 x g for 6 min at RT.
Following centrifugation, supernatants were removed by
decantation and cell pellets were resuspended in 25 mL of
diluted thaw- lyse buffer, incubated for another 10 min at
RT and then centrifuged at 600 x g for 6 min at RT. Fol-
lowing treatment with thaw- lyse buffer, cells were washed
with phosphate-buffered saline (PBS; Sigma) and then cen-
trifuged at 600 x g for 6 min at RT. After cell pellet washing
with PBS, those samples that still contained traces of red
blood cells were further incubated for 10 min at RT with
20 mL of 1:5 diluted lyse-2 buffer (Lyse 2Buffer; Smart tube
Inc) in nuclease-free water. Cell pellets were further resus-
pended in 10mL ice-cold stain buffer (BDBiosciences) and
centrifuged at 600 x g for 6 min at RT.
Samples were resuspended in 1.8 mL of stain buffer and

counted using cell counting slides (KOVA Glasstic Slide;
Thermo Fisher Scientific). Cell suspensions containing 2
million cells from each sample were transferred to a well
of a deep-well block and centrifuged at 1040 x g for 5 min
at 4◦C. Samples were then permeabilized by resuspension
in 1 mL of Barcode Perm 1:10 diluted in Maxpar PBS, and
centrifuged at 1040 x g for 5 min at 4◦C. Next, samples
were resuspended in 400 μL diluted Barcode Perm Buffer
(Standard Bio Tools) and barcoded using 50 μL 20-plex
Pd barcoding reagents (Standard Bio Tools) that were first
solved in 1:10 diluted Barcode Perm Buffer for 30 min on
ice. After the barcoding step, samples were washed once
with diluted Barcode Perm buffer, three times with stain
buffer and then pooled into a fluorescence-activated cell
sorting tube.
The pooled sample was resuspended with 50 μL of

human TruStain FcX (Biolegend) for 15 min (Fc-fragment
blocking) and stained in 300 μL of antibody mix targeting
extracellular targets (Table S1), for 40min on ice. Following
antibody staining, the pooled sample was washed twice in
ice-cold Maxpar Cell Staining buffer (Standard Bio Tools),

with centrifugation at 800 x g for 5 min at 4◦C. The super-
natantwas removed, and the cell pellet was resuspended in
1mLBDPhosflow PermBuffer III (BD Biosciences) cooled
at −20◦C, and immediately stored at −80◦C until the day
of analysis on a mass cytometer.
On the day of analysis on themass cytometer, the stained

pooled sample was removed from the −80◦C freezer,
washed twice with stain buffer and then stained with
300 μL of antibody mix, targeting intracellular markers for
40 min on ice. Following staining, the pooled sample was
washed twice with 2mL stain buffer with centrifugation at
800 x g for 5min at 4◦C. The samplewas then incubated for
20 min on ice, in an Ir-intercalator diluted in stain buffer
(0.5 μL in 1 mL stain buffer) to allow staining of the sam-
ple DNA, and then washed three times with 2 mL of stain
buffer and centrifuged at 800 x g for 5 min at 4◦C. Prior to
the last wash step, the samples were aliquoted in four sepa-
rate vials that were, following centrifugation, stored as cell
pellets until analysis.
Before the acquisition, the sample was washed twice

in Cell Acquisition Solution (Standard Bio Tools), mixed
with EQ Four Element Calibration Beads (Standard Bio
Tools), filtered through a 40 μm filter (Falcon) and then
analyzed on a Helios mass cytometer with an event rate of
approximately 300–400 cells/s.

2.3 Computational analysis of CyTOF

Data acquired on CyTOF were obtained in fcs file format
and de-barcoded and normalized using CyTOF Software
6.5.358 for Stand-Alone ProcessingWorkstations (Standard
Bio Tools). After de-barcoding and normalization, sam-
ples were loaded to Cytobank31 and manually gated. More
than 60 million singlet live cells corresponding to granu-
locytes and peripheral blood mononuclear cells (PBMCs)
were analyzed. The dataset was checked for consistency
and reliability using marker enrichment modelling32 and
Hilbert similarity.33 Based on these results one batch
was excluded. Cells from the quality-accepted files were
clustered using FlowSOM34 into 256 clusters that were
manually annotated into metaclusters. The Euclidean dis-
tance between clusters was computed based on themedian
signal intensity of markers used in clustering and the
resulting distance was used to build a graph. The corre-
sponding Minimum Spanning Tree was projected using
theKamadaKawai algorithmandused to visualize the out-
put of the clustering step. The clusters were once again
checked for consistency, and a set of generalized linear
mixed models was fitted to the data. We analyzed differ-
ences in cluster, metacluster and size of manually-gated
cell populations between the different ReSVinet disease
severity groups.30 To account for duplicated samples and
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multiple measurements (multiple sample collection time
points) patient IDs were added as random effects to the
model. In addition, differences in signal intensity were
assessed for the functional markers included in the anti-
body panel. Changes in cell abundance were estimated
relative to singlets or PBMCs. In this study, we consid-
ered changes to be significant if they had a false discovery
rate (FDR) corrected p-value of less than 0.05. Significant
changes were reported accordingly.
Furthermore, to identify coordinated changes in cellu-

lar abundance related to disease severity we trained several
random forest models35,36 based on cluster or metacluster
abundance. Parameters were tuned following best prac-
tices and results were assessed using a confusion matrix,
variable importance and compositional biplots37 based on
features selected by each model. To account for popu-
lations that were not detected in specific samples, we
replaced zeros with pseudo counts corresponding to one
cell and corrected the remaining values by substracting the
pseudo counts so that the composition remains invariant,
as suggested in Martin-Fernandez et al.38 We performed
the analysis according to standard practice: for either clus-
ters or metaclusters we first estimated the node size and
the number of features from the data, then estimated the
top features using the minimal depth algorithm. We then
trained a random forest to predict hospitalization status
from the abundance of selected features, using Out of
Bag cross-validation. Results were assessed by comparing
the predicted label to the ground truth using a confu-
sion matrix; we also reported the variable importance for
the top features. Finally, we used compositional biplots37
to visualize the contributions of the top features to the
separation between the different classes.
Overall, we analyzed 184 samples from RSV ARTI and

convalescence visits from infants less than 1 year old.
The analysis involved six duplicated samples, which were
accounted for in the statistical analysis as indicated above.
In the downstream analysis, 32 healthy control infants,
and RSV visits of 41 non-hospitalized infants (mild), 46
hospitalized infants not needing mechanical ventilation
(moderate) and 18 hospitalized infants needing mechani-
cal ventilation (severe) were contrasted.

2.4 Transcriptome analyses

2.4.1 Sample collection and RNA extraction

The whole blood samples were collected in Paxgene tubes
(PAXgene Blood RNATube, BD) and stored at−80◦C until
the processing. The RNAwas extracted using the QIAsym-
phony PAXgene Blood RNA Kit (QIAGEN) according to
the manufacturer’s instructions. After the quality control,

the RNA was further processed for Clariom GOScreen
microarray (Thermo Fisher).

2.4.2 Labelling with GeneChip Pico Reagent
Kit

First-strand cDNA was synthesized with a combination
of a Poly-dT and random primers containing a 5′-adaptor
sequence. A 3′-adaptor was added to the single-stranded
cDNA followed by low-cycle PCR amplification. The
cDNAwas used as a template for in vitro transcription that
produces amplified amounts of antisense mRNA, (cRNA).
The cRNA was then used as input for a second round
of cDNA synthesis, producing double-stranded cDNA.
After fragmentation, denaturation and end-labeling the
targets are hybridized on the single GO Screen plate,
according to the manufacturer’s instructions (Thermo
Fisher; GeneChip Pico Reagent Kit). Single sample car-
tridge arrays were stained on a GeneChip Fluidics Station
450 and scanned on a GeneChip scanner 3000 7G while
array plates were stained and imaged on the GeneTitan
Multi-Channel Instrument.

2.4.3 Transcriptomics data preprocessing

Microarray data were preprocessed using R, Bioconduc-
tor package.39,40 The RobustMulti-Array Average function
was used to normalize the raw data.41 Outliers were
removed from the downstream data analysis based on
visual guidance on the principal component spectral map
and sample clustering (Pearson correlation with complete
linkage).

2.5 Computational analysis of
transcriptomics data

Whole blood transcriptomics analysis was performed with
the samples from 266 RSV-ARTI visits, 56 healthy controls
and 211 RSV convalescence visits.
The weighted gene correlation network analysis

(WGCNA) method was used to integrate cell clusters
from the single-cell immune profiling analysis and the
clinical characteristics of disease severity with the tran-
scriptomics data. The WGCNA method was used to create
data-driven gene clusters (modules) of highly correlated
genes using the transcriptomic data42 from the overlapped
samples between single-cell immune profiling and tran-
scriptomics data (N = 169). The transcriptomics dataset
(N = 169) consisted of 69 RSV-ARTI visits from otherwise
healthy infants, 18 RSV-ARTI visits from infants with any
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comorbidities, 51 RSV convalescence visit samples and
samples from 31 healthy control infants. The analysis
was performed with the WGCNA package in R using the
unsigned method (both positive and negative correlations
were considered). Sample clustering was applied to detect
outliers (cut height 120). The minimum cluster size was
set to 10. Seven samples were identified as outliers, so
162 subjects were used for the downstream analysis. The
modules were created with the minimum module size
including a minimum of 25 genes, and soft power 3, which
corresponds to the scale-free topology fit index is 0.8, as
advised in the literature.43 After the calculation of the
network adjacencies, the adjacency matrix was converted
to a topological overlap matrix (TOM), and the genes were
clustered based on the TOM-based dissimilarity. Module
eigengenes (MEs) were created with a minimum module
size of 25 genes. After the creation of MEs, the modules
were related to clinical RSV disease severity parameters
of RSV-ARTI visits from otherwise healthy and healthy
control infants, and cell count data of the cell clusters
generated from the CyTOF analysis.
We investigated the transcriptomics data with unsu-

pervised principal component analysis (PCA) to explore
the biggest contributor of the gene expression variation
between the samples and supervised differential expres-
sion analysis (limma) to understand the gene expression
alterations by disease severity and their biological implica-
tions.With the PCA analysis, we identified the effect of the
collection site. This technical effectwas corrected using the
ComBat function of the sva package in R.44 For the super-
vised differential expression analysis, the limma (linear
models for microarray data) package with empirical Bayes
linear models was used.45 Age groups (0–3 months, 3–6
months,> 6months) and sex datawere added as covariates
and the effect of the subjectswas blocked. Fold change (FC)
and FDRs were used for the identification of significantly
differentially expressed genes. Gene ontology (GO) analy-
sis was investigated using the GOstats package in R.46,47 A
hypergeometric model was used to investigate GO biolog-
ical terms using significant (FDR p-value < .05) up- and
down-regulated genes separately.
Sparse partial least squares discriminant analysis (sPLS-

DA) was conducted using the MixOmics package in R
(ver = 6.24). sPLS-DA was used to compress the data in a
supervisedmanner using severity groups determined from
the ReSViNET score. sPLS-DA allows for the specification
of the number of genes to be used in the training of the
model. For this analysis, the top 100 genes contributing to
components 1 and 2 were used in the training of themodel.
PLS-DA analysis aims to find a set of coefficients/weights
for features that result in themaximumpossible separation
between the dependent variable-based groups in projected
space. The loadings/variable importance of genes in this

analysis correspond to how strongly they drive the map-
ping of a specific sample in a specific cardinal direction in
the projected data.

3 RESULTS

3.1 Clinical characteristics of the infant
cohorts and strategy for immune profiling
and transcriptomics analyses

The RESCEU case-control study recruited 325 RSV-
infected infants testing positive for RSV either from
inpatient or outpatient clinics from the UMCU in the
Netherlands, Hospital Clínico Universitario de Santiago
(SERGAS) in Spain, OxfordUniversity Hospital NHS Trust
(OXFORD) and Imperial College London in the United
Kingdomduring 2017–2020.24,48 The RESCEUbirth cohort
study was included in the single-cell immune profiling
analysis to complement the number of infants with mild
RSV disease. Whole blood samples from 88 RSV-infected
infants with no co-morbidities and 32 healthy control sam-
ples were analyzed for the single-cell immune profiling
study using mass cytometry (CyTOF) to explore the diver-
gent immune response within the hospitalization parame-
ters to measure RSV disease severity (Figure 1). Next, we
analyzed whole blood transcriptomics data of 212 RSV-
infected infants with no co-morbidities, and 56 healthy
control samples, to explore differential gene expression
profiles within the RSV disease severity groups. Sixty-
nine RSV visits and 31 healthy control samples overlapped
between these two analyses. Disease severity groups were
classified by hospitalization status: mild RSV disease being
non-hospitalized infants, moderate RSV disease being hos-
pitalization without needing mechanical ventilation and
severe RSV disease being needed for mechanical ven-
tilation (SIMV/HFO), and the terms used consistently
throughout themanuscript. Using the clinical information
about infant hospitalization status, infants with mild and
moderate RSV disease were comparedwith healthy infants
as a control group and RSV disease severity was also stud-
ied by comparing severe versus mild and moderate RSV
disease.
Themajority of the infants with severe RSV diseasewere

younger than 3months old (N= 11 (78.6%)), and themajor-
ity of infants with mild RSV disease were older than 6
months old (N= 20 (64.5%)) (Table 1). The sex of the infants
was balanced between the groups. Most infants requiring
mechanical ventilation were recruited at the UMCU in
the Netherlands. Clinical features in the transcriptomics
dataset were similar to the single-cell immune profiling
study in terms of age, sex, timing of sampling andReSVinet
score distribution (Table S2).
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ZIVANOVIC et al. 7 of 21

F IGURE 1 Schematic overview of the cohort and the strategy for single-cell immune profiling and transcriptomics analysis. (A) Infants
with no respiratory syncytial virus (RSV) disease (referred to as healthy) and RSV-positive infants were recruited from outpatient clinics
(mild) and from hospitals (moderate). Infants with severe RSV disease received mechanical ventilation. (B) Whole blood samples were
analyzed with a 42-marker antibody panel enabling profiling of a wide range of cell subsets and search for correlates or predictors of disease
severity (experiment 1). Transcriptomics data from the REspiratory Syncytial virus Consortium of EUrope (RESCEU) case-control study was
used to define differential gene expression and gene ontology pathway analysis to understand the transcriptional profile of the disease
(experiment 2) and to integrate with the single-cell immune profiling data to associate a set of gene expressions with cell subsets (experiment
3). Created with BioRender.com.

3.2 Phenotypic immune profiling of
blood from RSV infants

To comprehensively characterize different cell subsets in
infant peripheral blood, we designed a 42-marker antibody
panel and performed system-level blood immune profiling
using mass cytometry. FlowSOM unsupervised clustering
was applied based on all phenotypic markers (Figure 1).

Using a 16 × 16 SOM-grid, this analysis yielded 256 cell
clusters. Clusters were then assigned to 37 metaclusters
representing peripheral blood immune cell populations,
including T cells, granzyme+ and granzyme– TCRγδ T
cells, pDC, cDC2, monocytes, B cells, NK cells, granulo-
cytes, basophils and one metacluster combining clusters
with unspecific phenotype. During further analysis of clus-
ters with unspecific phenotype cluster 126 was identified
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8 of 21 ZIVANOVIC et al.

TABLE 1 Clinical and demographic characteristics of the infants for the single-cell immune profiling.

MILD MODERATE SEVERE

Healthy
controls

(RSV-infected,
non-hospitalized)

(RSV-infected,
hospitalized without
mechanical ventilation)

(RSV-infected,
hospitalized with
mechanical ventilation)

Infants (N = 32) (N = 31) (N = 43) (N = 14)
Age at enrolment (in days)
Below 3 months 2 (6.3%) 6 (19.4%) 20 (46.5%) 11 (78.6%)
3–< 6 months 11 (34.4%) 5 (16.1%) 13 (30.2%) 2 (14.3%)
6–12 months 19 (59.4%) 20 (64.5%) 10 (23.3%) 1 (7.1%)

Age at enrolment (in days) Only infants younger than 6 months
Number of infants (N) 13 11 33 13
Mean (SD) 109 (35.6) 88.9 (45.8) 75.9 (46.8) 59.2 (36.1)
Median [Min, Max] 103 [48, 165] 89 [35, 165] 56 [15, 165] 43 [20, 134]

Sex
Female 7 (21.9%) 18 (58.1%) 19 (44.2%) 6 (42.9%)
Male 25 (78.1%) 13 (41.9%) 24 (55.8%) 8 (57.1%)

Season
Season1 0 (0%) 26 (83.9%) 13 (30.2%) 12 (85.7%)
Season2 32 (100%) 3 (9.7%) 26 (60.5%) 2 (14.3%)
Season3 0 (0%) 2 (6.5%) 4 (9.3%) 0 (0%)

Study
Case-control 32 (100%) 14 (45.2%) 42 (97.7%) 14 (100%)
Birth cohort 0 (0%) 17 (54.8%) 1 (2.3%) 0 (0%)

Site
OXFORD 8 (25.0%) 5 (16.1%) 30 (69.8%) 2 (14.3%)
UMCU 24 (75.0%) 26 (83.9%) 13 (30.2%) 12 (85.7%)

Gestational Age (in weeks)
Mean (SD) 39.6 (0.989) 39.6 (1.12) 38.2 (6.11) 39.1 (1.14)
Median [Min, Max] 40.0 [37, 42] 40.0 [37, 41] 39.0 [0, 42] 39.0 [37, 41]
Missing 1 (3.1%) 0 (0%) 0 (0%) 0 (0%)

ReSVinet Score
Mean (SD) NA (NA) 3.74 (1.86) 8.63 (3.18) 14.9 (2.54)
Median [Min, Max] NA [NA, NA] 3.00 [1, 9] 9.00 [3, 15] 15.0 [10, 18]
Missing NA (NA) 0 (0%) 0 (0%) 0 (0%)

Time of sampling
Mean (SD) NA (NA) 3.22 (1.58) 4.75 (1.82) 4.33 (0.985)
Median [Min, Max] NA [NA, NA] 3.00 [1, 7] 5.00 [2, 8] 4.00 [3, 6]
Missing NA (NA) 4 (12.9%) 31 (72.1%) 2 (14.3%)

Data are represented as the number of samples (%) unless otherwise stated. Mechanical ventilation is defined as the use of invasive ventilation (SIMV/HFO),
whereas non-mechanical ventilation is defined as the use of O2 (> 21%), low-flow nasal cannula, CPAP/BiPAP and high-flow oxygen therapy. The time of sampling
is calculated as the RSV visit date—symptom onset date.

as mucosal- associated invariant T (MAIT) cells. Flow-
SOM clusters were annotated based on median marker
expression, as illustrated in Figure 2, and the overlap of
cell clusters and metaclusters with manually gated cell
populations (Figures S1–S3).

3.3 Severe RSV is characterized by a
high neutrophil/lymphocyte ratio

For the analysis of the relative abundance of lympho-
cytes and neutrophil cell subsets, the neutrophil to
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ZIVANOVIC et al. 9 of 21

F IGURE 2 Unsupervised clustering with FlowSOM and cluster-specific median marker expressions. (A) Minimum spanning tree
representation of FlowSOM clusters and metaclusters. Individual cell clusters (circles) are numbered while meta clusters (referred to as
‘bubble’ in the legend) are represented by different colors. (B) Heatmap showing cell clusters grouped by meta cluster and median expression
level for each specific marker. Cluster numbers on the y-axis; marker names on the x-axis. Meta clusters are sorted by color as represented in
the legend. Apart from CD69, CD83, granzyme B, p-Y705-STAT3 (‘functional’ markers) and CD127, all measured markers were used for cell
subset phenotyping (‘phenotypic’ markers) and used for FlowSOM clustering.
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10 of 21 ZIVANOVIC et al.

F IGURE 3 Neutrophil to lymphocyte (N/L) ratio and metaclusters of cells including immature and progenitor neutrophils associated
with different degrees of respiratory syncytial virus (RSV) disease severity. (A) Box plot of neutrophil to lymphocyte ratio (log2 ratio) in
infants grouped in classes of increasing RSV disease severity (hospitalization status). Age and sex data were plotted with different colours and
shapes, respectively. The 2 horizontal lines (red dashed) represent a 2-fold increase or decrease in the ratio (1 and −1 on log2 scale). (B)
Volcano plots show differential analysis of cell subsets for various comparisons of infants with different degrees of RSV disease severity. The
estimated fold change is shown on the x-axis and -log10 of the adjusted p-value is shown on the y-axis. The horizontal lines represent false
discovery rate (FDR)-adjusted p-value < 0.05. (C) Results of differential analysis at the cluster level are visualized as Tree Blend plots: for each
cluster 2 colour scales are built corresponding to estimated fold change (blue to red for depleted and enriched clusters respectively) and
significance (from white to yellow for the negative log10 of the FDR-adjusted p-value) and mixed to generate a set of colours representative of
both variables. For each contrast, the clusters in the Minimum Spanning Tree projection are coloured after the mixed colours corresponding
to the results of the significance test. For the tree blend cell cluster legends, please refer to Figure 2A.

lymphocyte (N/L) ratio was calculated and contrasted
across infant RSV disease groups (Figure 3A). The neu-
trophil and lymphocyte subsets were determined by aggre-
gating cell clusters belonging to lymphocyte or granulocyte
cell subsets. The N/L ratio in infants with mild RSV dis-
ease was similar to the ratio in the group of healthy
infants. However, the N/L ratio progressively increased in
moderate to severe RSV disease, and it was significantly
higher in severe versus mild RSV disease (FDR-adjusted
p-value < .05).

3.4 Phenotypic immune profiling in
relation to RSV disease severity

We contrasted patient groups based on the changes in
cell population frequency at the metacluster (‘bubble’)
level relative to the total cell number included in the sin-
glets gate (Figure 3B, as defined in manual gating strategy
in Figure S1A), focusing on significantly modulated cell
metaclusters (FDR-adjusted p-value < 0.05). We estimated

the same contrast including only the infants younger than
6 months old to ensure that our findings were not influ-
enced by differences in age between the groups (Figure
S4).
Mild RSV disease is marked by the cytotoxic T-cell

response. Relative to healthy infants, mild RSV disease
was characterized by an increase in memory CD8 T cell
metacluster population, indicating activation of a cytotoxic
CD8 T cell-driven anti-viral response in both younger (< 6
months old) and all infants (< 1 year old) (Figure 3B and
Figure S4, upper left panel). This cell subset showed pro-
liferative capacity based on the high Ki67 levels and high
expression of CD279, a marker linked to T cell activation
and/or exhaustion.49
Moderate RSV disease presents with a mixed immune

response. Relative to healthy infants, moderate RSV dis-
ease showed a lower abundance of antigen-presenting
cell subsets cDC2 and pDC, NK cells, granzyme+ and
granzyme– TCRγδT cells, T-betHigh atypical B cells (ABCs)
and basophils in both younger (< 6 months old) and all
infants (< 1 year old) (Figure 3B and Figure S4, upper
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ZIVANOVIC et al. 11 of 21

right panel), similar to infants with severe RSV. Con-
versely, similar tomild RSV disease, moderate RSV disease
showed activation of the anti-viral response indicated by
the upregulation of proliferative memory CD8 T cells rel-
ative to healthy infants. In addition, higher frequencies of
antibody-producing plasma cells and immature neutrophil
subsets were observed in moderate RSV disease relative to
healthy infants. Taken together, moderate RSV in infants
hospitalized without mechanical ventilation showed a
mixed immune response, combining features of activated
cellular and humoral immune responses along with a
decrease in NK cells and TCRγδ T cells, inflammatory
response and myeloid dysregulation.
Severe RSV disease is marked by decreased T-cell sub-

sets and immunotolerance with activation of emergency
myelopoiesis. Comparedwith infantswithmild andmoder-
ate disease, infants with severe RSV disease showed lower
proportions of different T cell subsets, including naïve
CD8, cytotoxic CX3CR1+ effectormemory (EM)CD8, Th17
CD4, CD279+ CD4 T cells and granzyme B+ TCRγδ T
cells in both younger (< 6 months old) and all infants (< 1
year old) (Figure 3B and Figure S4, lower left panel). Fur-
thermore, severe RSV disease was associated with lower
proportions of NK cells and CD56High NK cell subsets,
basophils and professional antigen- presenting cells pDC
and cDC2 metaclusters relative to mild disease in both
younger (< 6 months old) and all infants (< 1 year old)
(Figure 3B and Figure S4, lower left panel). Relative to
moderate RSV, severe RSV was characterized by signif-
icantly lower levels of the Breg metacluster, a cell type
involved in inflammation control and immunotolerance in
both younger (< 6months old) and all infants (< 1 year old)
(Figure 3B and Figure S4, lower right panel). Like hospital-
ized infants with moderate disease, those with severe RSV
were marked by a significant increase in granulocyte sub-
sets linked to progenitor-like and immature phenotypes
relative to both mild and moderate RSV disease in both
younger (< 6 months old) and all infants (< 1 year old)
(Figure 3B and Figure S4, lower right panel). Based on
the cluster profile of these metaclusters, immature (clus-
ter 129) and progenitor-like (clusters 113, 114) cell subsets
have proliferative status, uncharacteristic of mature gran-
ulocytes and decreased levels of myeloid lineage markers
such as CD11b, CD24, CD66b, CD11c, CD16 relative to
mature subsets (Figure 2 and Figure S1B). In addition,
these clusters show specific patterns of CD62L and CD16
protein expressionwhich allows their identificationwithin
the granulocyte subset, as previously reported by Cortjens
et al.50 and Pillay et al.51 (Figure S1B).
Together, the immature granulocyte subpopulations

observed in all infants hospitalized with RSV, in combi-
nation with weakened humoral, CD4 and CD8 T cell and
innate-lymphocyte response in mechanically ventilated

infants, indicates an activation of emergency myelopoiesis
and impaired adaptive immune response in severe RSV.
In addition, decreased Breg levels in severe RSV, relative
to moderate may indicate the importance of immunotoler-
ance in managing the infection.

3.5 Differential analysis of cell cluster
frequencies relative to PBMC cell subset
between different patient groups

Differential analysis of cell cluster frequencies between
patient groups showed increased neutrophil abundance
in infants with moderate and severe RSV. For a detailed
view of cellular changes within the PBMC compartment
(i.e., excluding effects of changes in granulocyte subsets on
relative proportions of other cell subtypes within the sin-
glet gate), we performed a differential analysis of PBMC
cell subsets relative to the PBMC gate as depicted in
Figure S1, between different patient groups (Figure 3C–F).
Remarkably, a significant upregulation of the progenitor-
like neutrophil subset was observed in infants with severe
relative to mild RSV (Figure 3F: cluster 114). While unex-
pected within the PBMC compartment, this cell cluster
may represent the low-density neutrophils that are a
hallmark of emergency granulopoiesis. Additionally, the
following observations were noted.
Hospitalized infants show unfavourable monocyte pro-

files marked by downregulation of HLA-DR+ monocytes
and the appearance of immune-depressed, immature-like
HLA-DR– monocytes. The immune profiles of hospital-
ized infants (with or without mechanical ventilation) were
characterized by specific monocyte cell populations dis-
playing low expression levels of HLA-DR and proliferative
status based on elevated levels of Ki67, an immature-like
monocyte cell subset.52,53 We observed an increase in these
monocyte subsets in moderate RSV disease relative to
healthy infants (Figure 3D: clusters 221, 222, 236 and 238)
and in severe, relative to mild, RSV disease (Figure 3E:
clusters 221, 222 and 236). In contrast, monocyte subsets
characterized by high HLA-DR expression showed down-
regulation in moderate RSV disease relative to healthy
infants (Figure 3D: clusters 204 and 256) and in severe,
relative to mild RSV disease (Figure 3E: cluster 204).
Increase in inflammatory monocytes in moderate and

severe RSVdisease (hospitalised infants).Moderate RSVdis-
ease displayed a higher abundance of intermediate mono-
cyte subset, characterized by highCD69, relative to healthy
infants (Figure 3D: cluster 156), a subset associated with
an inflammatory role,54 and CD69-promoted tissue infil-
tration and retention.55,56 Furthermore, we also observed
higher levels of a cell subset representing CD141+ mono-
cytes in severe, relative to mild, RSV disease (Figure 3E:
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cluster 223). The CD141+monocytes have been associated
with higher production of the inflammatory cytokines IL-
1β, IL-6 and TNF and a reduction in FoxP3+ Treg skewing
in vitro.57
Immunomodulatory role of Treg and Breg in hospitalized

infants. AlongwithCD8 andCD4Th1 subsets, we observed
upregulation of effector Treg cells CD45RO+CD28+Ki67+
Treg in moderate RSV disease relative to healthy infants
(Figure 3D: cluster 140), peaking in moderate RSV but
declining in severe cases. Hospitalized infants also show
high levels of Breg population relative to healthy infants
(Figure 3D: cluster 84), while infants on mechanical
ventilation had lower levels of CD123-Breg cells relative
to infants hospitalized without mechanical ventilation
(Figure 3F: cluster 83). Together, the differential abun-
dance of Treg and Breg cell subsets may indicate the
importance of immunomodulation and suppression of
inflammation in RSV severity.
Moderate and severe RSV is characterized by a decrease

in HLA-DR+ B cells. The B cell subsets characterized by
high HLA-DR expression (clusters 1, 50, 17, 82 and 49)
progressively decreased in abundance in infants with a
higher degree of disease severity: in mild RSV disease
relative to healthy infants (Figure 3C: cluster 50), in mod-
erate RSV disease relative to healthy infants (Figure 3D:
clusters 1, 17, 49, 50 and 82), and severe relative to mild
(Figure 3E: cluster 50) and relative to moderate RSV dis-
ease (Figure 3F: clusters 50 and 65). In parallel to the
depletion of HLA-DR+ B cells, hospitalized infants with
moderate RSV showed an increase in B cell subsets char-
acterized by low HLA-DR expression relative to healthy
infants (Figure 3D: clusters 69 and 100). AsHLA-DR is vital
for B-T cell interactions and antibody production, reduced
HLA-DR+ B cells in hospitalised infants might hinder the
humoral response in severe RSV.

3.6 Random forest identifies
HLA-DRLow monocytes as a hallmark of
severe RSV disease

To classify different patient groups based on their immune
profiles and identify cell subpopulations correlating with
disease severity, we applied the supervised machine learn-
ing algorithm random forest,58 which builds multiple
decision trees and takes their majority vote for classifi-
cation and prediction (Figure 4). Using the cell cluster
frequencies relative to the total PBMC subset as an input,
the random forest algorithmwas trained to classify infants
in clinically annotated RSV disease severity groups, with
the correct assignment to their respective group for 85% of
healthy infants, 69% of infants with mild, 70% of infants
with moderate and 57% of infants with severe RSV disease

(overall error rate 28.8%, Figure 4A). Most infants that the
random forest model incorrectly assigned into this latter
group were infants with moderate RSV disease. The low-
est predicting power of random forest was thus observed
when distinguishing between moderate RSV disease ver-
sus severe RSV disease. HLA-DRLow monocytes (cluster
221) are themost important cell subset for the classification
of severe RSV disease, whereas cDCs are the most impor-
tant cell subset for the classification of healthy infants
(Figure 4B). Based on patient grouping on the composi-
tional biplot, we observed a gradual shift from healthy
infants to infants with RSV disease with increasing RSV
severity (Figure 4C). Healthy infants are grouped on the
right side of the biplot driven by the vectors indicating
the abundance of APC, pDC and cDC2 and ABC B cells
and naïve CD8 T cells, and closely positioned to the non-
hospitalized RSV patient group, indicating immune profile
similarity. In contrast, infants with severe RSV disease
occupy the left side of the biplot driven by the vectors
indicating the abundance of several monocyte subsets,
including HLA-DRLow clusters (221 and 222).
Overall, with the exception of patients with severe RSV

(57% prediction accuracy), the random forest was able to
correctly predict clinical patient groups based on the pro-
filed cell subsets, and specifically identified HLA-DRLow
monocyte subsets as an important factor for characterizing
severe RSV in infants (clusters 221 and 238).
The analysiswas also replicated using the cell cluster fre-

quencies relative to the total cell count (singlets gate) as an
input with similar results for RSV disease severity based on
ReSVinet classification (Figure S5A,B) and length of hos-
pital stay (Figure S5C,D). The analyses reiterate the role of
immature (cluster 129) and progenitor neutrophils (clus-
ters 113 and 114) and HLA-DRLow monocytes (cluster 221)
in the identification of severe RSV disease and indicate the
predictive value of these cells for the length of stay in the
hospital.

3.7 Functional marker analysis
identifies increased p-STAT3 activation in T
cell, granulocyte and monocyte cell subsets

To assess the activation and functional status of immune
cell subsets in severe RSV, we compared protein expres-
sion levels of several functional markers across the
patients’ groups (Figure 5). No significant difference was
observed in mild RSV disease relative to healthy con-
trols (Figure 5A). We observed upregulation of p-STAT3
in numerous cell subsets in patients with moderate RSV
relative to healthy infants (Figure 5B), with the high-
est upregulation observed in naïve CD4 T cell subset,
Treg and CD279 positive CD4 T cells. Similarly, patients
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ZIVANOVIC et al. 13 of 21

F IGURE 4 Random Forest analysis identifies HLA-DRLow monocytes (cluster 221) as the most important cell subset for classifying
severe respiratory syncytial virus (RSV) disease in peripheral blood mononuclear cells (PBMCs). (A) Heatmap representing a confusion
matrix, indicating the percentage of cases with correct random forest classifier’s predictions and vice versa. In the confusion matrix, the
columns represent the true patient group labels versus the predicted ones in the rows, with the diagonal representing the percentage of times
when predictions match the true label. (B) The heatmap lists cell subsets (rows) most important for patient group classification (columns)
and indicates the cell subset association with different RSV disease severity groups. (C) A compositional biplot provides a graphical
representation of patient similarity across patient groups and of cell subsets driving their separation, the length of the line corresponding to
the importance of the feature. Line labels correspond to cell clusters (name and cluster number included).

with severe RSV displayed significant upregulation of p-
STAT3 in CD4 and CD8 naïve T cells, Treg, CD279 high
CD4 T cells, as well as in monocyte subsets relative to
patients with mild and moderate RSV (Figure 5C,D). In
addition, we observed differential regulation of granzyme
B levels depending on the RSV disease severity. Patients
with moderate RSV showed an increase in granzyme B
in CD8 central memory (Ki67) (cluster 62) (Figure 5C),
while patients with severe RSV showed downregulation
of granzyme B in NK cell subsets relative to patients with
moderate (Figure 5D, clusters 159, 142 and 147) and mild
RSV (Figure 5C, cluster 142). Several monocyte subsets,
including classic monocytes (clusters 204, 220, 255 and
120), progenitor-like monocytes (clusters 221 and 222) and
CD141 monocytes (clusters 224 and 240) showed signifi-
cant upregulation of CD83 activation marker in patients
with moderate RSV relative to healthy infants (Figure 5B).
Significant upregulation of CD69 was observed in NK and
TCRγδ cell subsets in patients with moderate RSV relative
to healthy infants (Figure 5B: clusters 54, 127, 142, 142, 144,
157, 159, 160 and 112), and in severe RSV disease relative to
mild disease (Figure 5C: clusters 54, 96, 128, 144 and 160)
and relative to moderate RSV disease (Figure 5D: clusters
54 and 160) indicating activation ofNKandTCRγδ cell sub-

sets. High CD69 expression in the absence of granzyme B
can indicate that an alternative method of cytotoxicity is
active such as death receptor-mediated targeted killing.59

3.8 Whole blood transcriptomics
analysis identifies activation of myeloid
cells in severe RSV disease

We hypothesized that the observed emergency
myelopoiesis in infants with severe RSV might be
correlated with, and be reflected by, a set of gene expres-
sionmarkers in whole blood. Unsupervised PCA onwhole
blood transcriptomics data from infants at RSV visits and
healthy controls (N = 268 samples, Table S2) revealed
genes that drive the most pronounced variation in the
gene expression dataset. Transcriptomics profiles from
infants with severe RSV disease (N = 48) clearly differed
frommoderate (N= 92), mild (N= 72) and healthy infants
(N = 56) (Figure 6A). The top five genes that drive this
difference are CD177 (CD177), HP (haptoglobin), MMP8
(metallopeptidase 8), OLFM4 (olfactomedin 4) and RETN
(resistin) (Figure 6A). The effect of age was not the promi-
nent driver of these genes (Figure 6B). Other potentially
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F IGURE 5 Differential analysis of functional marker expression levels reveals significant upregulation of p-Y705-STAT3 in T cell
subsets, granulocytes and monocytes in severe respiratory syncytial virus (RSV) disease, among others. Results of differential analysis of cell
cluster median marker expression between RSV severity groups are visualized as Tree Blend plots: for each cluster 2 color scales are built
corresponding to estimated fold change (blue to red for depleted and enriched clusters, respectively) and significance (from white to yellow
for the negative log10 of the false discovery rate [FDR]-adjusted p-value) and mixed to generate a set of colors representative of both variables.
For each contrast, the clusters in the Minimum Spanning Tree projection are coloured after the mixed colours corresponding to the results of
the significance test. (A) Mild disease versus healthy controls; (B) Moderate disease versus healthy controls; (C) Severe disease versus mild
disease; (D) Severe disease versus Moderate disease. For the tree blend cell cluster legends, please refer to Figure 2A.

confounding factors, such as gender or site of sample
collection, and timing of sampling, were not revealed
as prominent drivers of variation in the transcriptomics
dataset (data not shown).
A WGCNA using the overlapping subjects between

single-cell immune profiling and the transcriptomics data
identified 66 gene modules comprising clusters of highly
correlated genes. Thesemoduleswere then used in a corre-
lation analysis withmeasures of disease severity (ReSVinet
severity score, hospitalization need, usage of mechanical
ventilation) and risk factors for disease severity (age and
sex) (Figure S6). Next, the modules were annotated with
the cell clusters/bubbles analysis. The most significant
gene modules which correlate (positively or negatively)
with RSV disease severity and cell clusters are shown in
Figure 6C. Modules named “sky blue”, “medium orchid”
and “brown”were associated themost with progenitor cell
clusters 113 (r= 0.75) and 114 (r= 0.73), which are assigned
to OLFM4+ and OLFM4– progenitor neutrophils, respec-
tively and cluster 221 (0.64),which is assigned to progenitor
monocytes. These modules are also associated the most
with severe RSV disease. The GO association of these
modules were regulation of T cell differentiation in the

thymus for the sky-blue module, leukocyte cell activation
involved in immune response for the brown module and
neutrophil degranulation for the medium-orchid module.
Of note, these modules correlated negatively with conven-
tional type 2 dendritic cells (cluster 189), classic B cells
(cluster 17), naïve CD4 (cluster 71), Th17 cells (cluster 108),
naïve CD8 T cells (cluster 47), naïve CD4 T cells (clus-
ter 26) and CD161+ CD8 T cells (cluster 126; unassigned)
(Figure 6C).
Age was positively associated with module “grey60”,

which is associated with plasma cells and involves the
genes in the adaptive immune response; and negatively
associated with module “medium orchid” which is associ-
atedwith neutrophil degranulation (Figure S6). This obser-
vation corresponds to the high innate immune response
but lower adaptive immunity in younger infants. To
explore further the effect of disease severity on the genes
in module “medium orchid” at the young age group, we
compared expression values in infants younger than 3
months old in the whole transcriptomics dataset (Table
S2). Neutrophil-associated genes (such as ARG1, BPI,
OLFM4 and MMP8) showed high expression levels in
severe RSV disease compared to milder forms and healthy
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ZIVANOVIC et al. 15 of 21

F IGURE 6 Whole blood transcriptomics analysis differentiates severe from mild respiratory syncytial virus (RSV) disease: severe RSV
disease is marked with myeloid cell activation pathways and genes. (A and B) Principal component analysis (PCA) plot demonstrating the
transcriptional similarity across the patient groups (unsupervised analysis). The PCA plot shows the first two principal components (PC1 and
PC2) that explain 16% and 9% of the variation in the dataset, respectively. The top genes driving the variation in the transcriptomics profiles of
the samples are labelled; samples are coloured by the infant disease severity class (A) and age groups (B). (C) Gene modules are shown on the
y-axis and cell subsets on the x-axis. The highest correlation is seen with the module medium orchid and clusters 113 and 114 (progenitor
neutrophils), and cluster 221 (HLA-DRLow and proliferative monocytes). Correlation values are shown from −1 (blue) to 1 (red). (D, F, H and J)
Volcano plots (left side) derived from the supervised analysis showing the differential gene expression and bubble plots (E, G, I and K) derived
from Gene ontology (GO) analysis showing the top 10 biological pathways for upregulated and downregulated genes of mild RSV disease
compared with healthy controls (D and E), moderate RSV disease compared with healthy controls (F and G), severe RSV disease compared
with mild RSV disease (H and I) and severe RSV disease compared with moderate RSV disease (J and K). The top 10 genes with the lowest
false discovery rate (FDR)-corrected p-value are shown on the volcano plots.
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controls and showed negligible difference between mild
disease and healthy controls, at young age (Figure S7).
Supervised differential expression analysis (limma),

comparing mild RSV disease with healthy controls, char-
acterized upregulation of IFN response genes (e.g. IFI27,
IFI27L2, ISG15 and IFI44L) (Figure 6D) and of GO path-
ways related to antiviral immune defence, including
immune and defence response (Figure 6E). Moderate RSV
disease is characterized by activation of the IFN immune
response combined with modulation of genes related to
myeloid leukocyte activation (Figure 6G). Furthermore,
supervised differential expression analysis unveiled an
upregulation of genes including BPI, HP and RETN in
severe RSV disease relative to mild RSV (Figure 6H), sim-
ilar to the genes identified in the unsupervised analysis
(Figure 6A). GO biological pathways (BP) analysis based
on the differentially expressed genes in severe RSV disease
relative to mild and moderate RSV highlighted an upregu-
lation of the myeloid leukocyte activation and neutrophil
activation pathways (Figure 6I,K).
Incorporating the PLS-DA analysis into our method-

ology, we trained a sparse PLS-DA model on our data
using the disease severity groups as the dependent vari-
able. We discerned a distinct separation between the
groups, illustrated in (Figure S8). Intriguingly, our anal-
ysis identified IFI27 and IFI27L2 as pivotal genes that
show high expression in all samples and groups except
for healthy controls, with relatively low expression in
severe disease when compared to mild and moderate dis-
ease. Similarly, neutrophil activity-related genes such as
MMP8 drive mapping along component one, indicating
higher expression of these genes in patients with moder-
ate and severe disease when compared to mild disease and
healthy controls. These genes manifested prominently in
the mild and moderate RSV disease groups, showcasing
a robust antiviral response. In contrast, their expression
was comparatively diminished in the control and severe
RSVdisease groups. This trend reinforces our immunepro-
filing results, emphasizing a heightened antiviral defence
in mild and moderate instances of RSV disease and a
lacklustre defence in severe cases.
Thus, whole blood transcriptomic analysis indicates

the activation of a robust antiviral response in mild RSV
disease, whereas progression to severe disease activates
the myeloid compartment of the immune system, in
accordance with the whole blood single-cell analysis.

4 DISCUSSION

In our study, we explored immune responses in infants
with mild (outpatients), moderate (inpatients without
mechanical ventilation) and severe (inpatients with

mechanical ventilation) RSV disease to identify potential
biomarkers linked to disease severity. We found that
infants with mild RSV symptoms exhibit an immune
response marked by cytotoxic CD8 T cells and adaptive
immunity activation. All hospitalized infants (moderate
and severe RSV disease) show reduced antiviral responses
and increase of inflammatory monocytes and HLA-DRLow
B cells, and signs of neutrophil activation. Hospitalised
infants with mechanical ventilation (severe RSV disease)
display a high neutrophil/lymphocyte ratio (or lymphope-
nia), the proliferation of Ki67+ HLA-DRLow monocytes,
progenitor and immature neutrophils, and a dimin-
ished T cell response, pointing towards the activation of
emergency myelopoiesis.
The use of the cell cyclemarker Ki67+ in the study panel

allowed us to explore the proliferative status of monocytes
and neutrophils, among others. The proliferative status
of monocytes and neutrophils in peripheral circulation is
associated with an immature state and indicates immature
cell recruitment to the peripheral circulation, a hallmark of
emergency myelopoiesis. Such dysregulated myeloid pro-
file may contribute to the insufficient antiviral immune
response; however, the severe disease phenotype can also
be the result of and hyper-inflammatory environment.60
Proliferative (Ki67High) blood monocytes have also been

reported in coronavirus disease 2019 (COVID-19)-infected
patients,61,62 suggesting that the observed immune pro-
file is not specific or solely limited to severe RSV disease.
In their longitudinal analysis, Mann et al.61 identified
increased Ki67 expression in blood monocytes, reduced
COX-2 expression and a high neutrophil to T cell ratio
as early predictors of disease severity.61 In particular,
the authors showed the presence of activated monocytes
early upon hospital admission which gradually reduced as
patients progressed towards more severe disease, indicat-
ing the potential use of monocytes as a predictive tool to
stratify and select patients thatwill likely benefitmost from
a therapeutic intervention.61 Additional longitudinal stud-
ies and investigation of immune profiles of infants with
severe RSV disease will be necessary to appreciate whether
dysregulated monocytes can be used as early predictors of
severe RSV disease.
One of the mechanisms proposed to explain the lym-

phopenia in severe virus infections is the overproduction of
IL-6 driving the activation of the STAT3 pathway, leading to
impaired lymphopoiesis by directly affecting hematopoi-
etic stem cells.63 Conversely, IL-6 release invokes neu-
trophilmobilization frombonemarrow,64 for a hallmark of
emergency granulopoiesis.65,66 In this study, we observed
significant upregulation of p-Y705-STAT3, a downstream
target of the IL-6R pathway, in numerous cell subsets
including T cell subsets, granulocytes and monocytes,
while the most pronounced effect was in naïve CD4 and
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naïve CD8 T cells. In contrast, no significant upregulation
of p-Y705-STAT3 was observed in non-hospitalized RSV-
infected infants. Interestingly, IL-6 signalling has also been
associated with downregulation of HLA-DR expression in
monocytes and B cells in COVID-19.60,67
Various neutrophil subsets have been associated with

severe RSV disease, including mature, immature, progeni-
tor and suppressive subsets, which highlight different roles
of neutrophils depending on disease severity level.50 The
progenitor neutrophil subset was characterized by high
Ki67 expression, as well as by low expression of gran-
ulocyte lineage markers such as CD24, CD11b, CD66b
and CD11c. The premature release of immature myeloid
cells from the bone marrow is thought to be associ-
ated with innate immune dysfunction (or vice versa),
alongside more extensive lung damage and poorer clini-
cal outcomes.61 Integrated analysis of single-cell immune
profiling and whole blood transcriptomics demonstrated
that myeloid/neutrophil activation in the blood of infants
with severe RSV disease is strongly associated with highly
increased expression of a distinct set of genes (especially
ARG1, AZU1, BPI, CEACAM8, DEFA1, DEFA3, ELANE,
LTF, MMP8, OLFM4 and TCN1), demonstrating the poten-
tial of transcriptomics as a biomarker for discerning RSV
disease severity.
Furthermore, here we report the emergence of HLA-

DRLow B cells in severe RSV disease. HLA-DRLow B cells
and monocytes have been associated with immunode-
pression or immunoparalysis, and have been previously
reported in sepsis68 and COVID-19.67 In the latter case,
the downregulation of HLA-DR has been associated with
STAT3 mediated effect of IL-6.67 HLA-DR is essential for
B cell interaction with T cells, subsequent B cell activation
and the generation of antibody-producing cells. Hence, it
can be assumed that a decreased proportion of HLA-DR+
B cells and the appearance of HLA-DR- B cells in mod-
erate and severe RSV disease may significantly affect the
humoral response in severe RSV in infants.
The observation that severe RSV is often seen in very

young infants (< 3 months old) may signify an underlying
immature immunity to infections, including an imbal-
ance of Th1/Th2 immunity and low levels of antibodies,
all leading to an immune environment that makes the
infant more susceptible for severe infections. Likewise,
in this study, the infants using mechanical ventilation
were significantly younger than the non-hospitalized and
non-ventilated infants. To tackle this possible bias, we con-
ducted complementary analyses in infants younger than 6
months old and infant age was included as a covariate in
our statistical analyses.
It is unknown whether the observed immature mono-

cytes or neutrophils are predictive of infants with a high

risk for severe RSV disease or rather a consequence and
hence a correlate of severe disease. While our study
describes in detail the immune environment and reveals
correlated markers of severe versus mild RSV disease and
healthy infants, its case-control design does not allow us
to speculate on potentially predictive biomarkers of severe
RSVdisease. The differences in immune profiles could also
be attributed to the time of sampling at the disease pre-
sentation. Although we see a bigger variability in the time
of sampling in severe RSV disease, the time of sampling
is comparable between the disease groups. To enable us to
use biomarkers as a predictor of disease, prospective analy-
sis of disease severity (mild cases evolving into severe cases
of disease) and longitudinal sampling would be necessary.
Whole blood analysis provides a reflection of the sys-

temic response to the viral infection but is only secondary
to the initial host immune response that is elicited in the
lung mucosa where RSV infection occurs. Therefore, the
involved cell subsets and associated transcriptomic mark-
ers could be different in the lung versus our findings in
blood. Immune profiling of mucosal tissue and compari-
son with the results found in whole blood was not possible
in our study but is a potential avenue for future studies.
Our study has limitations. Firstly, It is known that the

use of mechanical ventilation enhances lung inflamma-
tion, and therefore alters immune response.69,70 In this
study, we classified severe RSV disease by hospitalization
and the use of mechanical ventilation; therefore, the ele-
vated immune response in severe RSV disease might be
influenced by mechanical ventilation. Secondly, bacterial
co-infections or the presence of other respiratory viruses
might influence RSV disease presentation. A comprehen-
sive analysis of a panel of respiratory viral and bacterial
infections was, unfortunately, not covered in our study.
Thirdly, considering that we only recruited infants under
1 year of age, the likelihood of prior RSV infection in
these infants is minimal, however, prior RSV infections
in some of the older children are conceivable. Finally, we
acknowledge that our study’s conclusions are based on
phenotypic observations in whole blood. While emphasiz-
ing the significance of phenotypic assaysAs the phenotypic
patterns offer valuable information, complementary func-
tional assays will be required to gain further insights into
the appearance of emergency myelopoiesis in severe RSV
disease.
To our knowledge, this is the first study to provide phe-

notypic evidence in whole blood for the involvement of
emergency myelopoiesis in severe RSV disease. Single-cell
immune profiling and integrated transcriptomic analy-
ses revealed specific cell subsets and genes that correlate
with mild or severe RSV disease, warranting validation in
independent cohorts.
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