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A B S T R A C T   

Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease characterized by prominent “non-ischemic” 
myocardial scarring predisposing to ventricular electrical instability. Diagnostic criteria for the original 
phenotype, arrhythmogenic right ventricular cardiomyopathy (ARVC), were first proposed in 1994 and revised 
in 2010 by an international Task Force (TF). A 2019 International Expert report appraised these previous criteria, 
finding good accuracy for diagnosis of ARVC but a lack of sensitivity for identification of the expanding 
phenotypic disease spectrum, which includes left-sided variants, i.e., biventricular (ABVC) and arrhythmogenic 
left ventricular cardiomyopathy (ALVC). The ARVC phenotype together with these left-sided variants are now 
more appropriately named ACM. The lack of diagnostic criteria for the left ventricular (LV) phenotype has 
resulted in clinical under-recognition of ACM patients over the 4 decades since the disease discovery. In 2020, 
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the “Padua criteria” were proposed for both right- and left-sided ACM phenotypes. The presently proposed 
criteria represent a refinement of the 2020 Padua criteria and have been developed by an expert European TF to 
improve the diagnosis of ACM with upgraded and internationally recognized criteria. The growing recognition of 
the diagnostic role of CMR has led to the incorporation of myocardial tissue characterization findings for 
detection of myocardial scar using the late‑gadolinium enhancement (LGE) technique to more fully characterize 
right, biventricular and left disease variants, whether genetic or acquired (phenocopies), and to exclude other 
“non-scarring” myocardial disease. The “ring-like’ pattern of myocardial LGE/scar is now a recognized diagnostic 
hallmark of ALVC. Additional diagnostic criteria regarding LV depolarization and repolarization ECG abnor-
malities and ventricular arrhythmias of LV origin are also provided. These proposed upgrading of diagnostic 
criteria represents a working framework to improve management of ACM patients.   

1. Introduction 

Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease 
characterized by substitution of the ventricular myocardium by fibrous 
or fibrofatty scar tissue, predisposing to malignant ventricular arrhyth-
mias and sudden cardiac death (SCD) [1,2]. The disease was initially 
designated as a arrhythmogenic right ventricular dysplasia because it 
was thought to be a congenital defect in the development of the right 

ventricular (RV) myocardium [3]. The subsequent discovery that the 
disease is frequently caused by genetic defects in the cardiac desmo-
somes has led to its recognition as a cardiomyopathy (arrhythmogenic 
right ventricular cardiomyopathy; ARVC) [2,4]. Insights arising from 
postmortem investigations, genotype–phenotype correlation studies and 
myocardial tissue characterization by contrast-enhanced cardiac mag-
netic resonance (CMR) have increased the awareness that the disease 
often involves the left ventricle (LV). Accordingly, the current 

Fig. 1. Fibro-fatty myocardial scarring as a common pathologic myocardial lesion to the varieties of ACM phenotypes. 
This figure shows that ACM is a distinctive cardiomyopathy whose fibro-fatty myocardial scarring represents the hallmark myocardial lesion and the arrhythmogenic 
substrate common to all the phenotypic disease variants (Scarring/arrhythmogenic cardiomyopathy). 
ARVC phenotypic variant (A-B): Macroscopic longitudinal section of the heart showing apicobasal and transmural right ventricular myocardial scarring (A). 
Panoramic histologic view of the RV free wall showing full-thickness myocardial loss with replacement by fibrous and fatty tissue, with residual myocardium 
confined to the endocardial trabeculae (trichrome stain). 
ABVC phenotypic variant (C-E): Macroscopic transverse section of the heart showing infundibular and inferior subtricuspidal aneurysms (C). Panoramic histological 
view of the inferior aneurysm showing wall thinning with transmural fibrofatty myocardial replacement (D). Panoramic histological view showing subepicardial 
fibro-fatty scar of the left ventricular free wall. 
ALVC (dominant-left ARVC) variant (F–H): Macroscopic transverse section of the heart showing a whitish, thin, linear discoloration in the LV posterior-lateral wall 
(asterisk), involving the sub-epicardial and mid-mural myocardial layers. Histologic examination (boxed area) showing subepicardial/mid-myocardial fibrous (B) 
and fibro-fatty (C) myocardial replacement. 
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designation of ‘arrhythmogenic cardiomyopathy’ (ACM) better reflects 
the evolving concept of a “scarring” non-ischemic myocardial disease, 
either genetic or post-inflammatory, that may affect both ventricles, 
with some phenotypic variants being biventricular or left-dominant 
(Fig. 1) [5]. 

1.1. Historical overview on diagnostic criteria 

Arrhythmogenic cardiomyopathy diagnostic criteria were first pro-
posed in the 1994 and revised in the 2010 by an international Task Force 
(TF) [6,7]. Although these criteria demonstrated good accuracy for the 
original ARVC phenotype, they lacked sensitivity for left-sided disease 
variants. A 2019 International Expert report appraised of the clinical 
performance of the 2010 international TF criteria, identifying some 
diagnostic flaw and potential areas of improvement [4]. These included: 
1) the lack of diagnostic criteria for diagnosis of the broader disease 
phenotypic spectrum, including biventricular and left ventricular ACM 
variants; and 2) the absence of tissue characterization by CMR using the 
late‑gadolinium enhancement (LGE) technique. The CMR technique has 
progressively emerged as a clinically useful modality for assessing 
structural myocardial abnormalities in ACM, particularly for left-sided 
variants. Under the auspices of the Heart Rhythm Society (HRS), 
another group of experts published a consensus statement to guide 
physicians on evaluation and management of ACM, including clinically 
relevant information on genetics and disease mechanisms [8]. Both 
documents agreed that the 2010 TF criteria underrecognized a sizeable 
proportion of ACM patients with LV involvement [4,8]. In recent years, 
the increasing use of contrast-enhanced CMR has led to the recognition 
of an increasing number of individuals and families with predominantly 
biventricular or left-dominant phenotypes. Both documents drew 
attention to the limited availability of genetic, diagnostic and prognostic 
data for left-sided ACM, and highlighted the importance of defining 
diagnostic criteria for guiding experimental and clinical studies aimed to 
characterize the etiology/pathogenesis and the clinical outcome of these 
disease variants [ 4,8,9]. In 2020, an International expert consensus 
document provided upgraded diagnostic criteria for ACM (the “Padua 
Criteria”), which covered the entire disease phenotype spectrum [10]. 
The Padua criteria were derived from the diagnostic approach to ACM, 
which has been developed over 30 years by the multidisciplinary team 
of basic researchers and clinical cardiologists of the Medical School of 
the University of Padua. The present European TF report has been 

proposed by a large panel of European experts on ACM, who reviewed 
and refined the Padua diagnostic criteria, providing an upgraded and 
internationally recognized consensus document. 

1.2. Rationale for upgraded diagnostic criteria 

Given the increase awareness of the importance to diagnose left- 
sided variants of ACM, the growing recognition of the diagnostic value 
of CMR for detection of myocardial LV LGE/scar and the additional 
diagnostic role of LV ECG criteria and ventricular arrhythmias of LV 
origin, it was an urgent need to gather internationally recognized ex-
perts to revise and standardize the clinical diagnosis of the entire 
phenotypic spectrum of ACM. The proposed criteria represent a concrete 
implementation of the improvements suggested by the 2019 Interna-
tional Expert report [4] and a refinement of the 2020 Padua criteria 
[10], with particular reference to the identification of non-genetic dis-
eases (phenocopies) that may fulfill the diagnostic criteria for ACM, 
mostly left-sided variants. 

The criteria were developed by a European TF of internationally 
recognized experts in the basic and clinical aspects of ACM, who 
convened in a devoted Consensus Conference under the auspices of the 
European Reference Network for rare, low prevalence and complex 
diseases of the heart (ERN GUARD-Heart). All panelists were given the 
task to review the literature using PubMed and cover all topics related to 
a defined diagnostic work up, which then were presented and collegially 
discussed in the conference. The criteria were revised and standardized 
for the clinical diagnosis of the entire phenotypic spectrum of ACM on 
the basis of the current scientific evidence and the expert consensus. To 
reach consensus, the conference panelists voted on each diagnostic cri-
terion. A threshold of 80% approval with a quorum of two-thirds of the 
panel was required. An initial failure to reach consensus was resolved by 
subsequent discussions, revisions as needed, and re-voting. 

2. Diagnostic criteria 

ACM is a cardiomyopathy that affects the RV, the LV or both ven-
tricles and includes the following phenotypic variants: (i) the classic 
ARVC phenotype (also referred to as “dominant-right” phenotype), 
characterized by RV involvement with no detectable LV abnormalities; 
(ii) the arrhythmogenic biventricular cardiomyopathy phenotype, charac-
terized by the involvement of both RV and LV (ABVC); and (iii) the 

Fig. 2. LGE/myocardial fibrosis in ARVC (right-dominant ACM) phenotype. 
CMR images of a 21-year-old patient with a pathogenic PKP-2 gene variant. Post-contrast images showing LGE/fibrous replacement of RV diaphragmatic free wall in 
the long-axis 4-chamber view (A, open arrows) and RV anterolateral wall in the sagittal view (B, solid arrows). On T1- weighted images, fatty infiltration in the same 
regions (not shown). On cine sequences, RV dilatation and regional akinesia (not shown). 
ACM, arrhythmogenic cardiomyopathy; ARVC, arrhythmogenic right ventricular cardiomyopathy; CMR, cardiac magnetic resonance; RV, right ventricle; LGE, late 
gadolinium enhancement. 
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arrhythmogenic left ventricular cardiomyopathy (ALVC) phenotype (also 
referred to as “dominant-left” phenotype), characterized by LV involve-
ment with no detectable RV abnormalities (Figs. 2–4). 

Similar to the previous 1994, 2010 and the 2020 “Padua criteria” 
scoring systems, the diagnosis is based on a multi-parametric approach 
encompassing 6 categories: 1) morphological and functional ventricular 
abnormalities; 2) structural myocardial abnormalities based on tissue 
characterization findings; 3) depolarization- and 4) repolarization 
electrocardiographic alterations; 5) ventricular arrhythmias; and 6) fa-
milial/genetic background [6,7,10]. The embedding of LGE for detec-
tion of myocardial scar by CMR tissue characterization with the 
identification of ACM phenotypic variants is crucial and the most 
important novelty, while the remaining updates are diagnostic re-
finements [11–24]. 

Table 1 reports the criteria for diagnosis of both the RV (left column) 
and LV (right column) involvement by each category. 

2.1. Morpho-functional abnormalities 

The morpho-functional abnormalities can be detected with echo-
cardiography, CMR or ventricular angiography. Multidetector computer 
tomography (MDCT) also allows an accurate evaluation of ventricular 
volumes and function as well as identification of myocardial fatty tis-
sue.; it may be useful for diagnosis when CMR is contraindicated because 
of claustrophobia, non-CMR-conditional ICD, or frequent arrhythmias 
[25]. 

Of importance, morpho-functional ventricular abnormalities should 
be evaluated using a comprehensive multimodality imaging approach 
and the imaging findings integrated into the clinical context [26]. 

For diagnostic specificity, the major RV morpho-functional criterion 
requires that global RV dilatation (based on sex specific volumetric 
measurements and indexed to body surface area) or RV systolic 
dysfunction has to be associated with major regional wall motion ab-
normalities (i.e. akinesia, dyskinesia, aneurysm, or bulging) [7]. The use 
of current reference values for cardiac chamber size and function 

Fig. 3. LGE/myocardial fibrosis in Biv-ACM (biventricular ACM) phenotype. 
CMR images of a 40-year-old patient with a pathogenic DSG-2 gene variant. Postcontrast images - short-axis view (A) and long-axis 2-chamber view (B) showing LGE/ 
myocardial fibrosis in the basal anterolateral RV wall (open arrows) and anterior and inferior/inferolateral LV wall (solid arrows). On T1-weighted images no 
evidence of fatty infiltration (not shown). On cine sequences, RV regional akinesia with a mild reduction of the ejection fraction (i.e, 50%) and LV inferolateral 
hypokinesia with preserved systolic function (not shown). 
ACM, arrhythmogenic cardiomyopathy; LV, left ventricle; RV, right ventricle; CMR, cardiac magnetic resonance; DSG-2, desmoglein-2 gene; LGE, late gadolinium 
enhancement. 

Fig. 4. LGE/myocardial fibrosis in ALVC (left-dominant ACM) phenotype. CMR images of a 24-year-old patient with a pathogenic DSP gene variant. Post- 
contrast images - long-axis 4-chamber view (A), and long-axis 2-chamber view (B) showing a large amount of LV subepicardial LGE (solid arrows), extending 
from basal-to-apical segments. Note the involvement of the LV free wall and septum with a “ring-like” pattern in the short-axis view (C, open arrows). On T1- 
weighted images no evidence of fatty infiltration (not shown). On cine sequences, normal cavity size and systolic function of both ventricles (not shown). 
ACM, arrhythmogenic cardiomyopathy; ALVC, arrhythmogenic left ventricular cardiomyopathy; CMR, cardiac magnetic resonance; LGE, late gadolinium 
enhancement. 
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(normalized for sex, age, body surface area) [27], and specific reference 
values for athletes [28], are recommended. Best practice is to use 
reference ranges derived from the same diagnostic tool and the applied 
segmentation method as that used in the patient (Table 2). 

A proportion of ARVC patients do not show increased RV volume 
and/or decreased systolic function [19,22,24]. This finding reflects the 
segmental nature of myocardial scar areas that may not compromise the 

global hemodynamics of the RV. For this reason, the presence of RV wall 
motion abnormalities alone (i.e., in the absence of global RV dilatation/ 
dysfunction) has been introduced as a minor criterion [19–22,24]. It 
should be recognized that the diagnostic accuracy of RV wall motion 
abnormalities may be limited by the potential misinterpretation (either 
over-or underdiagnosis) because of inherently imperfect subjective 
evaluation of cine-CMR images of the RV and the potential pitfall of non- 

Table 1 
European Task Force criteria for diagnosis of Arrhythmogenic Cardiomyopathy.  

Category RV Phenotype LV Phenotype 

I. Morpho-functional 
ventricular 
abnormalities 

Major 
• Regional RV akinesia, dyskinesia, or aneurysm 
plus one of the following: 
• global RV dilatation (increase of RV EDV according to the imaging test 
specific nomograms for age, sex and BSA)* 
or 
• global RV systolic dysfunction (reduction of RV EF according to the 
imaging test specific nomograms for age and sex)*  

Minor 
• Regional RV akinesia, dyskinesia or aneurysm of RV free wall 

Minor 
• Global LV systolic dysfunction, with or without LV dilatation (increase 
of LV EDV according to the imaging test specific nomograms for age, sex, 
and BSA)*  

II. Structural alterations Major 
• Fibrous replacement of the myocardium in ≥1 sample, with or without 
fatty tissue, at histology 
Minor 
• Unequivocal RV LGE (confirmed in 2 orthogonal views) in ≥1 RV 
region(s) (excluding tricuspid valve) 

Major 
• “Ring-like” LV LGE (subepicardial or midmyocardial stria pattern) of 
≥3 segments (confirmed in 2 orthogonal views), 
Minor 
• LV LGE (subepicardial or midmyocardial stria pattern) of 1 or 2 Bull’s 
Eye segment(s) (in 2 orthogonal views) of the free wall, septum, or both 
(excluding patchy, focal or septal junctional LGE**)  

III. Repolarization 
abnormalities 

Major 
• Negative T waves in right precordial leads (V1, V2, and V3) or beyond 
in individuals ≥14 year-old (in the absence of complete RBBB and not 
preceded by J-point/ST-segment elevation) 
Minor 
• Negative T waves in leads V1 and V2 in males ≥14 year-old (in the 
absence of RBBB and not preceded by J-point/ST-segment elevation) 
• Negative T waves beyond V3 in the presence of complete RBBB 
• Negative T waves beyond V3 in individuals <14 year-old 

Minor 
• Negative T waves in left precordial leads (V4-V6) (in the absence of 
complete LBBB)  

IV. Depolarization and 
conduction 
abnormalities 

Minor 
• Epsilon wave (reproducible low-amplitude signals 
between end of QRS complex to onset of the T wave) in 
the right precordial leads (V1 to V3) 
• Terminal activation duration of QRS ≥55 ms measured from the nadir 
of the S wave to the end of the QRS, including R’, in V1, V2, or V3 (in the 
absence of complete RBBB) 

Major 
• Low QRS voltages (<0.5 mV peak to peak) in all limb leads in the 
absence of other causes (e.g. cardiac amyloidosis, obesity, emphysema, or 
pericardial effusion)  

V. Arrhythmias Major 
• Frequent ventricular extrasystoles (>500 per 24 h), non-sustained or 
sustained ventricular tachycardia of LBBB morphology with non-inferior 
axis 
Minor 
• Frequent ventricular extrasystoles (>500 per 24 h), non-sustained or 
sustained ventricular tachycardia of LBBB morphology with inferior axis 
(“RVOT pattern”) 
• History of cardiac arrest due to ventricular fibrillation or sustained 
ventricular tachycardia of unknown morphology 

Minor 
• Frequent (>500 per 24 h) or exercise-induced ventricular extrasystoles 
with a RBBB morphology or multiple RBBB morphologies (excluding the 
“fascicular pattern”) 
• Non-sustained or sustained ventricular tachycardia with a RBBB 
morphology (excluding the “fascicular pattern”) 
• History of cardiac arrest due to ventricular fibrillation or sustained 
ventricular tachycardia of unknown morphology  

VI. Family 
history/genetics 

Major 
• Identification of a pathogenic ACM-gene variant in the patient under evaluation 
• ACM confirmed in a first-degree relative who meets diagnostic criteria 
• ACM confirmed pathologically at autopsy or surgery in a first-degree relative 
Minor 
• Identification of a likely-pathogenic ACM-gene variant in the patient under evaluation 
• History of ACM in a first-degree relative in whom it is not possible or practical to determine whether the family member meets diagnostic criteria 
• Premature sudden death (<35 years of age) due to suspected ACM in a first-degree relative 
• ACM confirmed pathologically or by diagnostic criteria in second-degree relative 

Note best practice is to use a reference range derived using the diagnostic approach and the same segmentation method as for patients. ACM = arrhythmogenic 
cardiomyopathy; BSA = body surface area; EDV = end diastolic volume; EF = ejection fraction; ITF = International Task Force; LBBB = left bundle-branch block; LGE 
= late gadolinium enhancement; LV = left ventricle; RBBB = right bundle-branch block; RV = right ventricle; RVOT = right ventricular outflow tract. 

* Cut-off values of EDV and EF of the European TF criteria for respectively RV dilatation and systolic dysfunction are reported in Table 2. 
** Septal junctional LGE at the RV insertion points. 
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pathologic RV wall motion alterations [9,29]. Demonstration of 
concomitant underlying LGE offers the potential to increase the diag-
nostic specificity of RV regional contractile alterations (see below). 

Global LV systolic dysfunction (depression of LV ejection fraction or 
reduction of echocardiographic global longitudinal strain) and regional 
LV wall motion abnormalities (regional hypokinesia, akinesia or dyski-
nesia), with or without LV dilatation, are classified as minor morpho- 
functional criteria because of the low disease specificity for diagnosing 
left-sided ACM variants, given that these morpho-functional LV abnor-
malities can be seen in other common conditions such as ischemic heart 
disease. It is noteworthy that the ventricular remodeling of ALVC is often 
evidenced by echocardiography or cine CMR as a hypokinetic and non- 
dilated (or mildly dilated) LV ventricle [19,22,24,30]. 

2.2. Structural myocardial abnormalities 

The structural myocardial abnormalities may be detected by CMR or 
endomyocardial biopsy (EMB). 

Contrast-enhanced CMR offers the unique ability to identify LV LGE/ 
myocardial scar (Supplementary Table 1). LGE needs to be ascertained 
well, typically with confirmation using two orthogonal planes or based 
on 3D-LGE-imaging or different approaches to exclude artifacts. 

Although CMR has a low diagnostic sensitivity for LGE due to the 
thin RV wall and the suboptimal CMR resolution, demonstration of RV 
LGE may be useful for ACM diagnosis after exclusion of other scarring 
RV conditions, including ischemic heart disease or certain congenital 
heart disease such as Tetralogy of Fallot. Accordingly, the presence of 
LGE in at least one RV region on myocardial tissue characterization by 
CMR has been introduced as a minor RV criterion [24,31–34]. The 
combination of myocardial tissue characterization and the assessment of 
regional RV wall motion provides the best accuracy for diagnosing RV 
involvement by CMR, since the detection of an underlying LGE/ 
myocardial scar on CMR increases the diagnostic specificity of RV wall 
motion abnormalities (and vice versa) [4,34]. 

LV LGE/myocardial scar occur earlier in the disease (pre detectable 
wall motion abnormalities) and may have a highly characteristic 
appearance which consists of non-ischemic LGE/myocardial scar 
affecting the subepicardial (less often the mid-myocardial) layers of the 
LV free wall, most often in the inferolateral region, with or without 
septal involvement [11–24,35]. Extensive LV LGE of ≥3 Bull’s Eye 
segments, either contiguous in the same short-axis slice (“ring-like”) or 
discontinuous is classified as major criterion because it is highly specific, 
while segmental LV LGE affecting 1 or 2 LV Bull’s Eye segments 
(excluding not clinically relevant patchy, focal or septal junctional LGE) 
as minor [4,11,14–17,19]. The ring-like pattern of LGE is characteristi-
cally observed in ALVC caused by a genetic defects of DSP, FLNC or PLN 

(REF), although it could be also found in disease phenocopies 
[15,19,36]. 

LGE needs to be ascertained well, typically with confirmation using 
two orthogonal plans or based on 3D-LGE-imaging or different ap-
proaches to exclude artifacts. 

Focal or patchy LV LGE is considered non-diagnostic and no clini-
cally relevant in the absence of other abnormal findings. Of note, the 
pattern of “septal junctional” LGE at the RV insertion points, which is 
characterized by focal involvement of the inferior (or less frequently 
anterior) ventricular septum at the site of RV attachment, is excluded 
from the diagnosis of ACM because of its non-pathologic significance. 

Fatty tissue can be detected with dedicated sequences by CMR (or by 
MDCT), and it is often observed in the same regions of LGE/scar. 
Although fatty tissue is not considered a diagnostic criterion when 
present alone, its combination with LGE increases the diagnostic speci-
ficity [34]. 

Electroanatomic voltage mapping may provide additional anatomic 
and electrophysiologic information on RV electroanatomic myocardial 
scar(s) in selected patients with inconclusive CMR “structural” findings 
[13,20,36,37]. The availability of advanced catheter technology (con-
tact, high-density and omni-catheters) and the use of strict electro-
physiologic criteria (evidence of contact confirmed by pacing and 
recording, identification of areas of contiguous electrogram abnormal-
ities fulfilling established criteria for amplitude, width and fractionation 
and sampled at maximum 10 mm fill threshold) permit to minimize the 
risk of inaccurate interpretation of low-amplitude electrogram re-
cordings in areas of normal myocardium [36]. The general consensus of 
the expert panel was to not recommend electroanatomic voltage map-
ping as a routine diagnostic tool, but to limit its use to patients under-
going electrophysiological study and catheter ablation of sustained VT, 
in whom the demonstration of reentrant VT mapped to a region of 
electroanatomic scar tissue may support the clinical diagnosis. 

Because of the invasive nature with the inherent risk of complica-
tions, EMB is reserved to selected cases in whom the diagnosis (or 
exclusion) of ACM depends on histologic demonstration of replacement- 
type fibrosis, with or without fatty tissue (major structural criterion). 
EMB is a key test for the identification of non-genetic variants of ACM, 
such as isolated cardiac sarcoidosis, whose diagnosis relies on the his-
tologic evidence of noncaseating epithelioid cell granulomas in the 
myocardium [38]. 

2.3. ECG repolarization abnormalities 

Among the repolarization abnormalities, negative T wave in right 
precordial leads V1, V2 and V3 or beyond is a major criterion for ARVC 
in individuals with complete pubertal development (usually of age ≥ 14 
years) (Fig. 5 A) [7,39–43]. Excluded are negative T-waves in V1 to V3 
combined with J-point/ST-segment elevation due to early repolarization 
and those associated with complete RBBB secondary to the conduction 
defect. 

Negative T waves in right precordial leads V1 and V2 are classified as 
a minor criterion for ARVC in males ≥14 year-old, in the absence of 
RBBB and J-point/ST-segment elevation. Negative T waves extending 
beyond V3 either in the presence of complete RBBB or in individuals 
<14 year-old is also a minor criterion. Of note, negative T waves 
extending from V1 to V5 or V6 can reflect a more severe RV dilatation 
with displacement to lateral leads, rather than expression of a 
concomitant LV disease [22]. Among the few ARVC patients who have 
an otherwise normal ECG and experienced ventricular arrhythmias, the 
most prevalent nonspecific abnormality was T-wave inversion in ≥2 of 3 
inferior leads [44]. However, this ECG pattern may be observed in the 
normal population and in other heart diseases and it was not included 
among the present diagnostic criteria because of its low disease 
specificity. 

The presence of isolated negative T waves in left precordial leads 
(V4–V6), with or without involvement of inferior leads, in the absence of 

Table 2 
Ventricular dilatation and systolic dysfunction by CMR (nomograms for age, sex, 
and BSA).  

Right ventricular dilatation and systolic dysfunction  

Women Men Athletes 

EDV/ BSA (ml/m2) >112 >121 >130 
EF (%) <51 <52 <52   

Left ventricular dilatation and systolic dysfunction  

Women Men Athletes 

EDV/BSA (ml/m2) >96 >105 >122 
EF (%) <57 <57 <58 

CMR cutoff values of EDV and EF for non-athletes (+ or − 2 SD from the mean, 
respectively) derived from Petersen et al. [25] and for athletes (99%CI) from 
D’Ascenzi et al. [26] 
The accuracy of nomograms is limited for children and elderly. 
BSA, body surface area; EDV, end-diastolic volume; EF, ejection fraction. 
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LBBB is a minor criterion for the LV phenotype (Fig. 5 E). The pattern 
shows limited specificity for the disease mostly in individuals of Afro- 
Caribbean ethnicity and among athletes [39,40,42]. 

2.4. ECG depolarization abnormalities 

ECG markers of RV conduction disturbances (in the absence of RBBB) 
are considered minor criteria, which include prolongation of right pre-
cordial QRS duration with a delayed S-wave upstroke (terminal activa-
tion delay >55 ms) with or without QRS fragmentation and post- 
excitation epsilon waves (i.e., low-amplitude high frequency signals 
between end of QRS complex to onset of the T wave) (Fig. 5 A–B). [7] 

The “epsilon wave” pattern has been classified as minor criterion because 
it is largely influenced by ECG sampling rate and filtering and subject to 
a high interobserver variability [45]. 

A major criterion for LV involvement is the pattern of low QRS 
voltages in limb leads (<0.5 mV in all limb leads), which reflects the 
replacement of the sub-epicardial LV myocardium by scar tissue (in the 
absence of other potential causes such as cardiac amyloidosis, emphy-
sema, pericardial effusion or obesity) (Fig. 5 D) [22]. It is rarely 
observed in healthy individuals and appears highly specific of LV 
myocardial scarring in patients with ACM [46]. It is noteworthy that 
inappropriate setting of low band-pass filters (<100 Hz) can cause 
spurious QRS voltage attenuation. Late potentials on signal averaged- 

Fig. 5. Electrocardiographic abnormalities and ventricular arrhythmias in ACM variants. 
(Top) ECG abnormalities and ventricular arrhythmias associated with the ARVC phenotype: negative T waves in leads V1 to V4 with prolongation of the right 
precordial QRS complex and delayed S-wave upstroke (the terminal activation duration, TAD, which is the interval between the nadir of the S wave and the end of all 
depolarization deflections, is prolonged, at 80 msec, in lead V1; the normal value is <55 msec.) (A); epsilon-wave in lead V1 (B); and ventricular tachycardia with a 
left bundle branch block morphology (C). 
(Bottom) ECG abnormalities and ventricular arrhythmias associated with the ALVC phenotype: low QRS voltages (<0.5 mV) in the limb leads (arrow) (D), negative T- 
waves in leads V4 to V6 (arrows) (E), and ventricular tachycardia with a right bundle branch block morphology (F). 
Adapted from Reference [2,30]. 
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ECG are no longer considered, given their low diagnostic accuracy 
compared to modern diagnostic tests [4,47]. The majority of cardio-
logical centers worldwide do not routinely employ this technique in the 
evaluation of patients with ACM [48]. However, SAECG may have a role 
for risk stratification of ACM through the identification of a potentially 
arrhythmogenic ventricular scar. This should be investigated by future 
studies correlating SAECG measurements of low amplitude late poten-
tials of long duration with electroanatomic mapping-defined arrhyth-
mogenic substrates, i.e., electroanatomic scars associated with a 
clinically documented sustained ventricular tachycardia [20]. 

2.5. Ventricular arrhythmias 

According to the present European TF guidelines, ventricular ar-
rhythmias need to be evaluated not only in terms of absolute number (i. 
e., premature ventricular beats (PVBs) >500/24 h) and complexity 
(non-sustained or sustained VT), but also with regard to the morphology 
of PVBs, that denotes the ventricular region for the origin of the 
arrhythmia (Fig. 5 C and F). Hence, it is clinically relevant to record the 
ventricular arrhythmia on 12- lead ECG by exercise testing or 12‑lead 
24-h Holter monitoring. Demonstration of PVBs, non-sustained or sus-
tained VT with a LBBB and a non-inferior axis pattern has a greater 
disease-specificity (major ventricular arrhythmia criterion) than ven-
tricular arrhythmia showing a LBBB/inferior axis morphology (minor 

ventricular arrhythmia criterion) as it indicates a RV outflow origin 
(RVOT) which is most often due to the idiopathic RVOT arrhythmia 
[4,49]. 

Several ECG scoring systems based on the QRS morphology during 
VT have been proposed for differential diagnosis [49–52]. Compared 
with idiopathic RVOT VT, in ARVC-related RVOT VT the QRS duration is 
longer (≥120 msec), QRS precordial transition is later (in V5 or V6) and 
QRS notching is more frequent. These QRS morphologic features are 
“site-dependent” rather than “disease-specific” and permit differentia-
tion of free-wall from septal location of the RVOT VT, but not the 
identification of the underlying substrate, i.e., cardiomyopathic vs 
idiopathic. In selected patients, an electrophysiological study to test the 
inducibility of the clinical VT and/or multiple VT morphologies by 
programmed ventricular stimulation, or to demonstrate RV electro-
anatomic scar by electroanatomic voltage mapping may be useful for a 
differential diagnosis [32]. 

A RBBB morphology of either PVBs or VT may denote an origin from 
the LV [53]. The pattern of RBBB and superior axis with a broad QRS 
positive in V1 and late precordial transition to negative QRS (beyond 
V3) is often recorded in association with a LV scar involving the lateral 
or infero-lateral wall, as typically observed in patients with ABVC or 
ALVC [19,30,54]. Of note, PVBs with such a RBBB morphology, either 
monomorphic or associated with PVB of different morphologies, are 
typically induced by exercise testing in patients with left-sided ACM 

Table 3 
Different causes of Arrhythmogenic Cardiomyopathy.  

ETIOLOGY  PHENOTYPIC VARIANT(S) OTHER (POSSIBLE) PHENOTYPIC FEATURES 

Genetic causes  
Desmosomal gene defects     

PKP2 - Plakophilin C ARVC   
DSP - Desmoplakin ALVC-BIV-ARVC Subtle hair and skin abnormalities  
DSC2 - Desmocollin 2 ARVC-BIV   
DSG2- Desmoglein 2 ALVC-BIV    

Cardio-cutaneous syndromes    
JUP-Plakoglobin (recessive) ARVC-ALVC Hair and skin abnormalities (Naxos disease)  
DSP-Desmoplakin (recessive) ALVC Hair and skin abnormalities (Carvajal disease) 

Non-desmosomal gene 
defects (genocopies)     

TMEM 43 (Transmembrane protein 43 - luma) ARVC High risk of SCD in males  
PLN (Phospholamban) ALVC-BIV-ARVC   
FLNC (Filamin C) ALVC-BIV Skeletal myofibrillar myopathy.  
DES (Desmin) ALVC-BIV Skeletal myofibrillar myopathy. Conduction system abnormalities  
LMNA (Lamin A/C) ALVC-BIV Skeletal muscular dystrophy. Sinus node dysfunction and 

conduction system abnormalities.  
TGFB3 (transforming growth factor-3)* ARVC   
CTNNA3 (alpha-T-catenin)* ARVC   
CDH2 (cadherin-2)* ARVC   
SCN5A (Sodium channel alpha unit)* ARVC-ALVC    

Neuromuscular disorders    
DMD-Duchenne muscular dystrophy ALVC   
DMD-Becker muscular dystrophy ALVC   
DMPK-Myotonic dystrophy or Steinert ALVC Sinus node dysfunction and/or AV conduction abnormalities 

Non-genetic causes 
(phenocopies)     

Inflammatory    
Post-acute or subacute/chronic viral myocarditis ALVC   
Cardiac sarcoidosis (chronic granulomatous 
myocarditis) 

ALVC-BIV-ARVC Multiorgan involvement. Conduction abnormalities (bundle 
branch block, bifascicular block and AV block)  

Auto-immune multisystem diseases (systemic lupus 
erythematous; polymyositis /dermatomyositis; 
scleroderma) 

ALVC Multiorgan involvement. Conduction abnormalities.Vasculitis.   

Parasitic infectious    
Chagas disease ARVC-BIV-ALVC  

Unknown cause     
Idiopathic ALVC-BIV-ARVC   

* Genes with limited evidence of ACM causality using the Clinical Genome Resource approach to gene-disease curation [56]. 
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[55–61]. Other causes of exercise-induced, mostly polymorphic, ven-
tricular arrhythmias include catecholaminergic polymorphic ventricular 
tachycardia or ischemic heart disease. 

The presence of ventricular arrhythmias with a RBBB morphology at 
rest or during exercise is classified as a minor diagnostic criterion 
because of its low specificity not only for the underlying disease but also 
for the chamber of origin of the arrhythmia. Indeed, PVBs or VT with a 
RBBB morphology and early transition by V2 or even V3 has been 
mapped and ablated in the apical/inferior septal regions of a dilated RV 
[62]. 

Idiopathic “fascicular” arrhythmias characterized by a typical RBBB 
morphology and narrow (<130 ms) QRS are excluded from the diag-
nosis [47]. 

2.6. Family history/molecular genetics 

Although the diagnostic criteria include the assessment of family 
history and molecular genetics, caution is recommended in the inter-
pretation of the genotyping results in the light of the risk of misdiagnosis 
[63]. Misinterpretation of molecular genetic results is the consequence 
of our limited current understanding of the genetic basis of ACM and the 
high genetic noise, due to frequent disease-associated genetic variants 
both in the normal population and in other cardiomyopathies [64–66]. 
Moreover, preliminary data show that if molecular genetic findings are 
excluded from the diagnostic score the diagnostic yield is only reduced 
by 10% and does not impact the prognosis of ACM [67]. 

Accordingly, molecular genotyping is indicated to identify a patho-
genic or likely pathogenic variant in a proband with phenotypic mani-
festations of ACM, followed by variant-specific cascade screening among 
family members for the detection of gene carriers at a preclinical stage 
[4]. 

The identification of a pathogenic ACM-gene variant according to the 
2015 ACMG classification [68] is classified as major diagnostic criterion, 
while likely-pathogenic variant as a minor diagnostic criterion (Table 1). 
Genes with evidence of ACM causality according to the Clinical Genome 
Resource approach to gene-disease curation are reported in Table 3. 

Family history criteria are also met if the disease is confirmed either 
pathologically or by diagnostic criteria in a first- degree relative (major 
criterion) or a second-degree relative (minor criterion). Premature SCD 
(<35 years old) due to suspected ACM in a first-degree relative is clas-
sified as a minor criterion [8]. 

3. Phenotypic variant 

Because ACM is a structural heart disease rather than a genetic ion 
channel disorder, the diagnosis of any phenotypically overt ACM variant 
requires that at least one criterion, either major or minor, from category 
I (i.e., morpho-functional RV abnormalities) or II (i.e., structural RV 
abnormalities) is fulfilled in association with criteria from other cate-
gories. Pathogenic gene variants, ECG abnormalities or arrhythmias 
alone (i.e., in the absence of morpho-functional and structural criteria) 
can be observed in individuals, mostly family members, with “preclin-
ical ACM” or “clinically concealed ACM”. These recognized early stages 
are characterized by an incomplete development of the disease pheno-
type because of the lack of structural abnormalities (i.e., overt 
myocardial scarring) and/or morpho-functional alterations (i.e., 
regional or global systolic dysfunction), which are a prerequisite for a 
clinical diagnosis of ACM. 

The diagnosis is considered “definite” when 2 major, 1 major and 2 
minor, or 4 minor RV or LV diagnostic criteria from different categories 
are met. If morpho-functional and/or structural criteria are met for both 
ventricles, the patient is diagnosed with ABVC. A structural LV criterion 
(i.e., non-ischemic LV LGE), either major or minor, is required for 
diagnosis of ALVC. Non-definite diagnosis of ACM (“borderline” or 
“possible) is made in the presence of a lower total number of fulfilled 
diagnostic criteria (Supplementary Fig. 1). Patients with non-definite 

ACM should be followed-up to evaluate the possible disease progres-
sion over time to reach the criteria for a definite diagnosis. 

4. Etiology 

Pathogenic variants of genes encoding desmosomal proteins are the 
most frequent cause of inherited ACM, accounting for approximately 
50% of probands [63]. The original ACM phenotype (and the derived 
diagnostic criteria for both right- and left-sided disease) is expressed by 
desmosomal gene-related disease (Fig. 6 A-B); however, it rarely may be 
reproduced by non-desmosomal genes defects (“genocopies”), including 
those associated with inherited neuromuscular disorders (Fig. 6 C–D) 
[69,70]. Moreover, a sizeable proportion of patients with non-genetic 
diseases, such as inflammatory cardiomyopathies including post-viral 
myocarditis and cardiac sarcoidosis as well as cardiomyopathies in the 
context of auto-immune multisystem diseases, may exhibit a phenotype 
which closely resembles that of inherited ACM (“phenocopies”) and 
fulfils the diagnostic score (Fig. 6 E-F) [71,72]. Finally, the cause of the 
disease may be not-identifiable (“idiopathic” ACM) (Table 3). 

The boundaries between these different etiologies may not be well 
demarcated. There is growing evidence of a complex interplay between 
genetic background and myocardial inflammation [73]. Inflammation in 
response to viral infection and/or immune triggers have been postulated 
to mediate/promote myocyte damage and death in genetic ACM. Acute 
myocarditis-like episodes with chest pain associated with ECG changes 
and troponin release may represent the initial clinical presentation and/ 
or a disease progression modality (the so called “hot-phase”) in patients 
with genetic ACM, mostly caused by pathogenic variants of DSP gene 
[74,75]. As a corollary, a non-ischemic myocardial scar found at CMR 
imaging evaluation after an episode of clinically overt acute myocarditis 
does not necessarily exclude a genetic etiology. 

According to previous classifications of cardiomyopathies, where 
each phenotype is sub-classified into familial and non-familial forms and 
non-familial cardiomyopathies are further subdivided into acquired and 
idiopathic (not-identifiable cause) variants, both the HRS Expert 
Consensus Statement on Arrhythmogenic Cardiomyopathy [10] and the 
International Expert report [4], previously proposed an etiologic clas-
sification which under the large umbrella of ‘arrhythmogenic cardio-
myopathy’ comprised a spectrum of conditions of different etiologies, 
either genetic or non-genetic, involving the RV, the LV or both, whose 
common denominator was the prominent non-ischemic ventricular 
myocardial scarring and the scar-related ventricular arrhythmias. 

Beside the overlapping phenotype, the clinical rational of this pro-
posed classification was that all etiologic variants are associated with a 
distinctively higher risk of arrhythmic SCD because myocardial scarring 
acts as a substrate of malignant ventricular arrhythmias. At variance 
with patients with DCM, in those presenting with ACM the implantation 
of an ICD for primary prevention should be considered, regardless of the 
etiology, earlier during the disease course when the systolic ventricular 
function is not yet severely depressed. [37,76] 

Because of the diverse etiology, detection of a disease with pheno-
typic features fulfilling the diagnostic criteria for ACM should prompt a 
systematic search for the underlying cause. The identification of the 
specific cause is crucial because the clinical outcome, disease progres-
sion and the risk of SCD varies depending on the etiology [77–83]. The 
clinical work-up for identification of the specific etiology includes 
family screening, medical history (mostly for a prior “clinically proven” 
acute myocarditis), molecular genetic investigation, biochemical and 
metabolic laboratory, advanced imaging techniques and, in selected 
cases, endomyocardial biopsy. Family clinical screening followed by 
molecular genetic testing in case of proven or suspected inheritable 
disease is a key step to diagnose the genetic defect, either desmosomal or 
non-desmosomal, or to identify a familial but “gene elusive” condition. 
In the etiologic assessment may be of help to evaluate whether the 
disease is confined to the heart or occurs in the context of multiorgan 
involvement (for instance, neuromuscular diseases or sarcoidosis). 
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Targeted clinical work-up, based on disease-specific tests and diagnostic 
criteria is needed for etiologic characterization of some ACM pheno-
copies (for instance fludeoxyglucose uptake by positron emission to-
mography for cardiac sarcoidosis or serology for Chagas’ disease). 
“Idiopathic” ACM is diagnosed in patients presenting with a disease 
phenotype which fulfils the diagnostic criteria but remains of unknown 
etiology after detailed clinical and genetic evaluation (Supplementary 
Fig. 2). 

A number of “non-scarring” myocardial diseases or chest deformity 
may mimic some ACM features such as ventricular dysfunction/dilata-
tion, without fulfilling the diagnostic criteria because they lack the prom-
inent myocardial scarring which is the distinctive pathologic lesion of 
the disease. These differential diagnoses include: 1) congenital heart 
diseases such as left-to-right shunt due to atrial septal defects or partial 
anomalous pulmonary venous drainage leading to a RV volume over-
load; 2) conditions characterized by global ventricular dilatation/ 
dysfunction unrelated to myocardial scarring such as pulmonary artery 
hypertension, athlete’s heart or DCM; and 3) chest deformity such as 
pectus excavatum or carinatum and pericardial absence which may 
mimic ECG changes and imaging abnormalities [84]. 

Dilated cardiomyopathy is the most common condition requiring a 
differential diagnosis with ALVC. CMR imaging study permits to identify 

the main discriminant features between the two cardiomyopathies, 
which consist of different LV remodeling patterns, extent and regional 
distribution of myocardial fibrosis as evidenced by LGE, and relation 
between amount of LGE and LV systolic dysfunction [15,19–24]. LV 
myocardial scarring/LGE in patients with ALVC may replace up to 
25–30% of the total LV mass, directly impacts on the reduction of LV 
systolic function and induces mild or no LV dilatation (“hypokinetic, 
non-dilated LV”). On the contrary, the extent of LV LGE in DCM ranges 
from patchy to absent (> 50% of cases) and is unrelated to the LV 
dilatation and systolic dysfunction (“non-scarring” cardiomyopathy) 
[15,19]. 

5. Clinical impact of upgraded diagnostic criteria 

The lack of specific diagnostic criteria for left-sided variants of ACM 
has resulted in clinical under-recognition and under-treatment of pa-
tients with phenotypes other than the original ARVC over the four de-
cades since the disease discovery [85]. Recent studies demonstrated that 
the limited sensitivity of 2010 TF criteria developed to diagnose the 
ARVC phenotype only, accounted for a significant proportion of missed 
diagnoses of ACM depending on the relative prevalence of ABVC and 
ALVC variants among study cohorts. In this regard, of 91 US patients 

Fig. 6. Cardiac magnetic resonance features and histopathologic findings of arrhythmogenic left ventricular cardiomyopathy phenotype of different 
aetiologies. Desmosomal gene-related form (prototype disease phenotype): post-contrast T1 inversion recovery sequence in short-axis view showing subepicardial 
late gadolinium enhancement of the infero-lateral left ventricular wall in a DSP-gene mutation carrier (A). Panoramic histopathologic view showing fibro-fatty 
myocardial replacement of the outer layer of the infero-lateral left ventricular wall in a sudden cardiac death victim carrying a DSP-gene mutation (B). Muscular 
dystrophy variant (genocopy): post-contrast T1 inversion recovery sequence in short-axis view showing a subepicardial stria of late gadolinium enhancement in the 
left ventricular wall (white arrows) (C); corresponding panoramic histopathologic view of the inferolateral left ventricular wall showing replacement-type fibrosis 
confined to the outer-mid layer of the musculature (D). Post-myocarditis variant (phenocopy): post-contrast T1 inversion recovery sequence in short-axis view 
showing subepicardial late gadolinium enhancement of the inferolateral left ventricular wall (E); corresponding panoramic histopathologic view of the inferolateral 
left ventricular wall showing extensive fibro-fatty myocardial replacement in the subepicardial layer (F). 
Adapted from Reference [4]. 
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with DSP-related ACM, 49% with predominantly left-sided disease did 
not meet 2010 TF criteria, including 25% of those who experienced 
sustained ventricular arrhythmia or heart failure [81]. Moreover, of 679 
p.Arg14del variant carriers with PLN-related left-sided ACM, 96% did 
not fulfill 2010 TCF criteria at baseline [80]. 

The available data confirm that this modern approach has the po-
tential to substantially impact the diagnostic accuracy and permits a 
comprehensive identification of phenotypic varieties of ACM, mostly by 
the demonstration of LV LGE/myocardial scarring by post-contrast CMR 
sequences. The clinical impact of upgraded diagnostic guidelines 
including criteria for diagnosing the LV phenotype, was estimated by the 
“post-hoc” application of the previous 2020 “Padua criteria” scoring 
system to 112 patients diagnosed at the University of Padua over the 
period 2015–2019, using the 2010 TF criteria [9]. All patients fulfilled 
the criteria for definite (N = 87), borderline (N = 15), and possible (N = 9) 
ARVC. Of the 87 patients previously diagnosed with definite ARVC, 51 
also fulfilled the new LV criteria, either morpho-functional or structural, 
and were re-classified as ABVC. Of 15 patients previously diagnosed 
with borderline ARVC, 5 were re-classified as definite ARVC because they 
met the RV LGE criterion and 6 as ABVC due to evidence of LV LGE. Of 9 
patients previously diagnosed with possible ARVC based on the detection 
of a pathogenic desmosomal-gene variant (4 DSP, 3 FLNC, and 2 DSG) in 
the absence of RV morpho-functional and/or structural abnormalities, 7 
were re-classified as ALVC because they met the LV structural (LV LGE) 
criterion [9]. 

The improvement of the diagnostic yield of ACM by the use of “Padua 
criteria” was also demonstrated in a pediatric cohort with involvement 
of the LV in half of the study sample [86]. 

Moreover, the incremental value of the diagnostic criteria was 
consistently confirmed among carriers of variants in DSP, PNL and FLNC 
genes, which are recognized left-sided variants-causing genes. In a 
pooled analysis of patients with FLN-related ACM, more than half of 
cases were diagnosed with definite ALVC according to the “Padua 
criteria”, compared with the minority fulfilling the 2010 ITF criteria 
[87]. Of 72 probands with DSP-related ACM, the number of patients 
reaching a definite diagnosis of ACM using the “Padua criteria” versus 
the 2010 ITF criteria raised by 35% [88]. 

These data suggest that a better characterization of the disease 
phenotype leading to a substantial improvement of the diagnostic ac-
curacy for ACM can be similarly obtained by using the proposed new 
European TF criteria which represent a refinement of the previous 
“Padua criteria” [10]. 

6. Terminology 

The panelists of the present European TF consensus document were 
aware of the need to appropriately revise the disease terminology in 
order to formalize that ACM is a primarily “scarring” myocardial disease 
as a result of a myocyte death and fibro-fatty repair process, with scar- 
related ventricular arrhythmias and progressive impairment of ventric-
ular systolic function which correlates with the amount of scar tissue 
replacement of the lost ventricular myocardium. 

The appropriateness of the relatively non-specific designation 
“arrhythmogenic” cardiomyopathy has been rightly disputed. It has 
been argued that the term ‘arrhythmogenic cardiomyopathy’ encom-
passes all cardiomyopathies, as all cardiomyopathies are potentially 
arrhythmogenic. The adjective ‘arrhythmogenic’ was first introduced by 
Marcus and Fontaine in their original report on a series of affected pa-
tients presenting with right ventricular tachycardia [3]. Hence, it refers 
to the propensity of the disease to induce ventricular arrhythmias in 
relation to the underlying myocardial scar tissue that acts as an 
arrhythmogenic substrate. The original disease nomenclature was main-
tained over decades for respect to the tradition and the pioneers of the 
disease (the missed Professors Guy Fontaine, Frank Marcus, Andrea 
Nava and Nicos Protonotarios) who coined this term. However, basic 
scientists and clinical cardiologists over time have used the term ACM 

thinking about a primarily “scarring” and secondarily “arrhythmogenic” 
heart muscle disease. Four decades later, the time has come to appro-
priately revise the terminology in order to emphasize the distinctive 
phenotype of the disease. The updated designation of “scarring/ 
arrhythmogenic cardiomyopathy” [89], more specifically would reflect 
the hallmark pathobiological feature of the disease, namely the non- 
ischemic myocardial scarring, which is common to the phenotypic va-
rieties of the disease (with involvement of RV, LV or both) and inde-
pendent from the disease etiology, either genetic forms or phenocopies, 
and it allows differential diagnosis with “non-scarring” heart muscle 
disease such as dilated cardiomyopathy (or non-dilated LV cardiomy-
opathy) [90], in which the impairment of systolic function, with or 
without ventricular dilatation, is unrelated to myocardial fibrosis. 

7. Conclusions 

This European TF consensus document is intended to provide prac-
tical guidance and advice for a modern diagnostic approach to the entire 
phenotypic spectrum of ACM and is expected to improve the quality of 
care. A key upgrade of the proposed diagnostic approach was the 
recognition that a variety of phenocopies may meet the diagnostic 
criteria for the LV phenotype, originally expressed by desmosomal gene- 
related ACM, and need to be accurately identified because the prognosis, 
treatment and outcome may be etiology-dependent. The incorporation 
of myocardial tissue characterization by CMR for detection of myocar-
dial scarring using the LGE technique is of added value for a more ac-
curate diagnosis of the disease phenotype, with particular reference to 
ABVC and ALVC variants, and helps differential diagnosis with other 
“non scarring” myocardial diseases, with ensuing important prognostic 
and therapeutic implications. Novel diagnostic criteria regarding ECG 
abnormalities of LV depolarization/ repolarization and ventricular ar-
rhythmias of LV origin are also updated and provided. The goal of 
upgraded criteria based on the expanding phenotypic and etiologic 
spectrum of ACM is to fill the diagnostic gap of the previous diagnostic 
guidelines and to provide a feasible codification for future translational 
and clinical research. Before these proposed European TF diagnostic 
criteria are routinely used of in the real-world clinical practice, their 
clinical utility needs to be further validated by future studies on patient 
populations with a variety of disease phenotypes of different etiologies. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ijcard.2023.131447. 
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