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SUMMARY
Humans use predictions to improve speech perception, especially in noisy environments. Here we use 7-T
functional MRI (fMRI) to decode brain representations of written phonological predictions and degraded
speech signals in healthy humans and people with selective frontal neurodegeneration (non-fluent variant pri-
mary progressive aphasia [nfvPPA]). Multivariate analyses of item-specific patterns of neural activation indi-
cate dissimilar representations of verified and violated predictions in left inferior frontal gyrus, suggestive of
processing by distinct neural populations. In contrast, precentral gyrus represents a combination of phono-
logical information and weighted prediction error. In the presence of intact temporal cortex, frontal neurode-
generation results in inflexible predictions. This manifests neurally as a failure to suppress incorrect predic-
tions in anterior superior temporal gyrus and reduced stability of phonological representations in precentral
gyrus. We propose a tripartite speech perception network in which inferior frontal gyrus supports prediction
reconciliation in echoic memory, and precentral gyrus invokes a motor model to instantiate and refine
perceptual predictions for speech.
INTRODUCTION

Perception is the result of the integration of sensory inputs with

prior predictions.1 Language comprehension is a natural domain

in which to study such predictions, as speech perception relies

on accurate inference to comprehend what has been said. The

role of motor cortical regions in facilitating speech comprehen-

sion, via an articulatory model, is highly controversial.2–5 None-

theless, it is clear that humans use cross-modal cues such as

lip reading and subtitles to improve speech perception, espe-

cially in noisy listening environments.6 Such cross-modal cuing

typically improves comprehension but can lead to false percep-

tion when cues mismatch.7–9 Here, we address the issue of how

and where the human brain encodes perceptual predictions for
This is an open access article und
phonemes and how these predictions are reconciled with audi-

tory inputs.

Independent manipulations of predictions and sensory inputs

can create identical perceptual outcomes from differing input

combinations.10Written text provides prior knowledge in a visual

form that is strongly associated with, but sensorily separated

from, the auditory speech signal that verifies or violates those

predictions, avoiding confounding sensory neural activity by

prior adaptation, habituation, or repetition suppression.11

Providing an explicit cross-modal prime allows assessment of

the neural mechanisms of perceptual prediction, independently

of the generation of prediction identity, and with precise control

of the phonemic overlap between written and spoken signals.

Here we manipulated written text predictions of degraded
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Figure 1. The proposed tripartite speech

network involving STG, IFG, and PrG

The general experimental approach was a 2 3 2

manipulation of cue congruency (did the written and

spoken words match or mismatch?) and sensory

detail (high vs. low; 15 vs. 3 vocoder channels).

Colored brain regions represent significant regions

in our univariate contrasts, cluster thresholded at

FDR p < 0.05. The red left IFG cluster and blue

anterior STG cluster were defined by the

match > mismatch contrast. The green cluster ex-

tending along thewhole of STG and posterior middle

temporal gyrus was defined by 15 > 3 channel

vocoder speech. The yellow PrG and turquoise IPS

clusters were defined by the sensory detail 3 con-

gruency interaction, which was a crossover inter-

action such that activity was greater for match 3 and

mismatch 15 conditions than for match 15 and

mismatch 3. All colored regions were implicated in

the overall contrast of written + spoken trials against

written-only trials. Connectivity arrows are influ-

enced by studies in nonhuman primates19 and our

physio-physiological interaction analysis.
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speech during ultra-high-field (7-T) functional brain imaging, to

test the hypothesis that motor cortex operates in combination

with lateral prefrontal cortex, to first construct perceptual

predictions for phonemes and then process sensory inputs by

reconciling prediction errors, in order to make perceptual inter-

pretations. We delineate the roles and interactions of functional

sub-regions of the language network by combining multivariate

analysis of the representations of verified and violated predic-

tions with functional connectivity measures.

To test causal influences between regions in this network,12

we study both healthy adults and people with non-fluent variant

primary progressive aphasia (nfvPPA). This rare condition

causes selective degeneration of frontal motor speech regions

while preserving the structure and function of temporal cortex.

We have previously shown with magnetoencephalography that

nfvPPA causes delayed neuronal reconciliation of predictions

as degraded fronto-temporal connections work harder to

resolve mismatching sensory inputs and prior expectations,

despite normal temporal lobe neural responses to bottom-up

manipulations of sensory detail.13 This results in inflexible, overly

influential perceptual predictions that preserve speech-in-noise

performance at the clinical cost of receptive agrammatism and

failure to comprehend unexpected speech. In contrast to stroke

aphasia, the frontal neurodegeneration in nfvPPA is stereotyped,

partial, and subtle. This enables one to study a limited disruption

of predictive mechanisms rather than a system reorganized

following their complete absence.

Our hypothesis of multi-modal perception is as follows. Before

sensory input, predictions are instantiated, based on a combina-

tion of immediate context and lifelong experience of the environ-

ment; herewesimplify this stepbyproviding theprediction identity

in the formofwritten text. At the timeof a sensory event and imme-

diately afterward, the sensory input is reconciled with the predic-

tion to infer its content, resulting in perception. This reconciliation

is the result of two distinct prediction error assessments, one of

higher-level expectations and another of lower-level sensory rep-

resentations. In lay terms, the first assessment considers whether
2 Cell Reports 42, 112422, May 30, 2023
the predicted event occurred, and the second considers whether

the sensory signals for that event were as expected. It was previ-

ously unknown whether these assessments were conducted by

the same neuronal populations firing differentially14 or by separate

populations.15 The difference between predicted and observed

sensory input is then used to refine predictions for future sensory

events.Wepropose that the refinement signal basedonprediction

errors is information weighted; a large error with low information

content provides little basis for prediction refinement beyond an

overall weakening of existing associations, while a small but pre-

cise error can be highly instructive.16,17 Note that this information

weighting is similar to previous conceptualizations of precision

weighting,16 but it is based on how informative the prediction error

in a single trial, rather than long-run uncertainties.

Our results provide evidence for distinct roles in a tripartite

speech perception network that includes superior temporal gyrus

(STG), inferior frontal gyrus (IFG), and precentral gyrus (PrG) (Fig-

ure 1). This network is partially lateralized to the dominant hemi-

sphere, and for simplicity our model focuses on left-sided struc-

tures, but we show evidence of bilateral representations in STG

and PrG but not IFG. In line with previous work,13 we show that

the role of left IFG in speech perception is to reconcile perceptual

predictions.Weextend thisbydemonstrating that the IFGachieves

this role byprocessing representationsof verified and violatedpre-

dictions in functionally segregated neural populations.18

In healthy individuals, but not patients with nfvPPA, these dif-

ferential prediction outcome representations were also observed

in anterior STG regions that are implicated in echoic mem-

ory.20,21 This is consistent with IFG’s role in restoring absent

but inferred speech in auditory temporal regions,22 modulated

by linguistic knowledge.23 In contrast, we show that only PrG

contains the combined representations of sensory input and

weighted prediction errors necessary to support the generation

and refinement of future perceptual predictions. We demon-

strate that a computational model based on our proposals can

recapitulate both univariate (signal magnitude) and multivariate

(representational information) functional MRI (fMRI) results in
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PrG, supporting the hypothesis that we use a motor model to

construct perceptual predictions for speech.

RESULTS

Structural MRI: nfvPPA atrophy of the frontal lobes only
We confirmed that patients with early nfvPPA have selective at-

rophy of frontal cortex. There was Bayesian evidence for the lack

of atrophy in auditory temporal cortical regions (Figure 2A;

Table S1). In our left-sided regions of interest (ROIs), patients

with nfvPPA had very strong evidence for reduced cortical thick-

ness in frontal operculum (BF10 = 82.3), pars triangularis (BF10 =

224.9), and precentral gyrus (BF10 = 161.1), but crucially there

was evidence for no atrophy in temporal lobe primary auditory

cortex (banks of superior temporal sulcus BF_null = 6.0) and pla-

num temporale (transverse temporal BF_null = 2.9). Right-sided

cortical thickness was reduced in homologous areas, but to a

lesser degree, not meeting cluster-wise significance.

Behavior: nfvPPA causes inflexible perceptual
predictions
In this new cohort with nfvPPA, we replicate the previous behav-

ioral andBayesianmodelingfindings13 that patientshaveabigger

perceptual clarity benefit than controls frommatching prior infor-

mation, because they make overly precise and inflexible percep-

tual predictions (Figure S1). For all individuals, the perceptual

clarity of vocodedwordswas significantly increasedbymatching

text cues, compared with neutral or mismatching cues. This ef-

fect was significantly greater in patients with nfvPPA than con-

trols, and persisted throughout the experimental session. If pa-

tients were simply making imprecise or incorrect predictions,

the effect of prior knowledge would instead have been attenu-

ated. This cannot be explained by noisier sensory input, as we

show that peoplewith nfvPPAare excellent at reporting unprimed

vocoded speech and respond to manipulations of sensory detail

and responsedifficulty in exactly the samewayashealthy individ-

uals (Figure S1). Finally, we explicitlymodel, and account for, sin-

gle-subject sensory input noise in our Bayesian behavioral

modeling. All of these findings are direct replications of the

behavior shown in our previous, independent cohortwith nfvPPA,

in whom we additionally provided evidence of intact sensory

cortical responses to bottom-upmanipulations of sensory detail,

and precisely quantified auditory perceptual performance.13

As in previous work,13 the inflexibility of perceptual predictions

(estimated as a parameter from the Bayesian perceptual

modeling) correlated with the degree of frontal atrophy, but not

temporal atrophy (with cortical thickness in IFG pars triangularis

r(31) = 0.522, p = 0.002 [Figure S2]; pars opercularis r(31) =

0.398, p = 0.022; and PrG r(31) = 0.429, p = 0.013; but not

Heschl’s gyrus r(31) = -0.026, p = 0.888 or planum temporale

r(31) = 0.050, p = 0.783).

The fMRI experimental manipulation was successful in modi-

fying behavior in both groups, with better performance for report-

ing heard speech when it was presented with 15 rather than three

vocoder channels, or matching rather than mismatching prior ex-

pectations (see supplementary results for more detail).

Patients and controls were above chance at reporting even the

most degraded speech in the open set. With the closed set from
the in-scanner experiment, patients correctly reported 55.8% of

words even in the most difficult listening condition (chance level

25%; Figure S3).

Univariate fMRI: Response amplitude is modulated by
spoken language and by context
Univariate voxel-wise analyses confirmed greater activation

throughout the left-lateralized language network when a written

and spoken word were presented together than when a written

word was presented alone; there were peaks of differential acti-

vation in STG, PrG, IFG, and intraparietal sulcus (IPS) (Figure 2C;

Table 1A). There were matching right-sided activations in STG

and PrG, but not right IFG or IPS. There were no clusters in which

controls had greater activation than patients with nfvPPA, but

patients with nfvPPA had greater activation than controls in a

small cluster in posterior right STG.

These left-sided language regions were each differentially

sensitive to our experimental manipulations of cue congruency

and sensory detail.

Cue congruency modulated activity in left IFG and anterior left

STG; greater activation was observed in these regions during tri-

als with mismatching compared with matching written cues (Fig-

ure 2C; Table 1A). No clusters showed the reverse contrast or

significantly differed by group.

Sensory detail modulated activity along left and right STG and

left IPS, as well as left posterior middle temporal gyrus; greater

activation was observed in these clusters during trials with high

(15 vocoder channels) compared with low (three vocoder chan-

nels) sensory detail (Figure 2C; Table 1A). No clusters showed

the reverse contrast or significantly differed by group.

The interaction between cue congruency and sensory detail

modulated activity in left and right PrG, left middle frontal gyrus,

left and right IPS, and left posterior middle temporal gyrus (Fig-

ure 2C and Table 1A). These were all crossover interactions,

such that there was greater activity for low sensory detail speech

that matched the written cue, and high sensory detail speech

that mismatched the written cue (Figures 3B and S4). No clusters

differed significantly by group.

Multivariate fMRI
Weapproached the informationpresent inbrain responsepatterns

systematically, proceeding step by step from global to local com-

parisons. We first combine all conditions and both groups in a

whole-brain searchlight approach to ascertain where in the brain

a given representation can be found. Only then do we assess the

consistency of these representations between conditions and

groups using an ROI approach, conservatively defined with

orthogonal contrasts.25 Despite the complexity of our study

design, this conservative approachmeans that our results cannot

be due tomultiple comparisons: all of our reported searchlight an-

alyses demonstrated significant clusters at p < 0.001 with both

false discovery rate (FDR) and family wise error (FWE) whole-brain

correction,we testedonlyhypothesis-driven representational sim-

ilarity analysis (RSA) grids, and, despite a whole-brain approach,

we see significant results only where they might have been ex-

pected a priori: in left PrG, left and right STG, and left IFG.

Ourmultivariate analyses do not include self-to-self decoding of

word identity as this is a relatively non-specificmeasure of speech
Cell Reports 42, 112422, May 30, 2023 3



Figure 2. Structural MRI, fMRI paradigm, and univariate fMRI results

(A) Cortical thickness in 15 patients with nfvPPA compared with 19 controls. Rendered brains show cluster-corrected whole-brain results for the comparison of

patients with nfvPPA against controls, with a 10-mm surface smoothing kernel. Negative log p maps are shown overlaid on a template cortical surface,

thresholded above 2 for visualization (i.e., uncorrected p < 0.01). Areas meeting permutation-based cluster-wise significance after 10,000 iterations are shown as

opaque, while other areas are shownwith transparency. Also shown are single-subject average cortical thicknesses in atlas-based ROIs from the left hemisphere.

Circles represent single subjects. Squares represent the mean, and error bars standard error of the mean. Squares are shown in black where they do not

significantly differ, and colored by group where they do. Patients displayed significant atrophy in IFG and PrG (all t(32) <�4.05, p% 0.0003) but, crucially, normal

volume in auditory temporal brain regions (all one tailed t(32)R 0.06). Bayesian analysis confirmed very strong evidence for a group difference in frontal ROIs (all

BF10 > 82) but also moderate evidence for no atrophy in auditory ROIs (BF01s 2.9 and 6.0).

(B) A schematic of written + spoken trials from the in-scanner fMRI paradigm, which were the basis of the multivariate representational similarity analysis (RSA),

and represented eight-elevenths of all trials. Participants also experienced written-only trials two-elevenths of the time, in which the spoken word was omitted.

Finally, one-eleventh of trials were response trials, included to monitor attention and ensure in-scanner behavioral effects from our manipulation. Response trials

followed the same pattern as written + spoken trials, but, 1,050 ms after the onset of the sound stimulus, participants were presented with a written response cue

‘‘What did you hear?’’ above a number of alternatives. They had 6 s to respond using a button box, during which no further written or auditory stimuli were

presented.

(C) Univariate fMRI contrasts, cluster thresholded at FDR p < 0.05.
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Table 1. Cluster-based statistics to accompany neuroimaging analyses

Contrast Region

MNI co-

ordinates

Degrees of

freedom

Peak

t score

Cluster

sizes

(voxels)

FDR

p value

FWE

p value

A: Univariate analysis

Written + spoken > written left STG �52 �18 6 31 12.52 5474 <0.001 <0.001

left PrG �52 �8 42 31 8.49 1314 <0.001 <0.001

left IFG �51 34 �1 31 5.54 149 <0.001 <0.001

left IPS �30 �58 42 31 6.42 125 <0.001 <0.001

Right STG 46 �25 11 31 12.72 4325 <0.001 <0.001

Right PrG 51 �7 40 31 6.67 229 <0.001 <0.001

Written + spoken > written;

nfvPPA > controls

Right STG 58 �44 6 31 5.13 60 0.004 0.018

Mismatch > match left IFG �52 30 16 31 5.74 78 0.001 0.002

left anterior STG �57 �7 �7 31 5.14 89 0.001 0.001

15 > 3 vocoder channels left STG �62 �8 �2 31 6.43 156, 89, 57 <0.001 <0.001

left IPS �50 �42 53 31 5.34 86 <0.001 <0.001

left posterior MTG �62 �43 �6 31 4.46 45 0.013 0.045

Right STG 63 �4 0 31 5.85 122 <0.001 <0.001

Congruency by sensory

detail interaction

left PrG �33, �1, 50 31 5.21 91 <0.001 <0.001

left MFG �46 8 41 31 5.81 276 <0.001 <0.001

left IPS �28 �66 46 31 5.19 327 <0.001 <0.001

left IPS �26 �67 38 31 6.28 90 <0.001 <0.001

left posterior MTG �63 �42 4 31 4.61 59 0.007 0.012

B: multivariate analysis:

spoken-word phonology

Within conditions left PrG �44 0 47 31 4.74 507 <0.001 <0.001

left STG �59 �14 2 31 6.72 4187 <0.001 <0.001

Right STG 53 �27 10 31 6.62 4825 <0.001 <0.001

Between conditions left PrG �52 �10 34 31 5.02 453, 345 <0.001 <0.001

left STG �60 �8 4 31 8.76 8170 <0.001 <0.001

Right STG 66 �32 8 31 9.84 9333 <0.001 <0.001

C: multivariate analysis:

prediction error phonology

Model 1, partial correlations left IFG �51 14 7 31 5.33 717 <0.001 <0.001

Model 2, sparse matrices left IFG �51 14 7 31 4.96 504 <0.001 <0.001

Controls > nfvPPA, model 1 left anterior STG �61 �1 �5 31 5.97 407 <0.001 <0.001

Controls > nfvPPA, model 2 left anterior STG �61 �1 �7 31 5.50 462 <0.001 <0.001

D: physio-physiological

connectivity analysis

PrG > STG connectivity left insula �32 17 2 31 6.28 95 <0.001 0.001

left middle frontal gyrus �48 26 30 31 5.89 91 <0.001 0.001

left frontal pole �38 54 10 31 5.51 161 <0.001 <0.001

left IPS �46 �48 48 31 6.04 77 0.001 0.004

Physio-physiological

interaction

left occipital fusiform �34 �67 �16 31 6.77 60 0.006 0.006

left occipital fusiform �24 �72 �7 31 6.18 54 0.007 0.012

left occipital fusiform �16 �90 �13 31 4.88 56 0.007 0.009

left inferior occipital gyrus �27 �91 5 31 5.56 127 <0.001 <0.001

left IPS �26 �49 47 31 5.40 63 0.006 0.004

Right occipital fusiform 21 �78 �7 31 5.91 66 0.006 0.003

Right lateral occipital 34 �80 29 31 5.19 46 0.015 0.028
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representations: words may differ along many different dimen-

sions (e.g., semantic, phonological, acoustic, lexical). Instead,

we focus on phonology by assessing the number of shared seg-

ments between word pairs (counting individual phonemes from

the consonant-vowel-consonant [CVC] syllables).

Multivariate fMRI: Phonological information is
represented in STG and PrG, not IFG or IPS
Representational dissimilarity matrices based on spoken-word

phonological representations correlated with observed multivar-

iate fMRI patterns in left and right STG and left PrG (Figure 3A;

Table 1B). Thesematrices convey the number of shared segments

between each spoken word and all other words; i.e., where in the

brain was the representation of ‘‘pit’’ most similar to that of ‘‘pick’’

and ‘‘kit,’’ withwhich it shares two segments, less similar to "kick,’’

‘‘debt,’’ and ‘‘‘net,’’ with which it shares one segment, and most

dissimilar to all other words? The first matrix assessed these rep-

resentations within condition; i.e., where were there phonological

representations keeping cue congruency and sensory detail

constant? The second matrix assessed the ability of these

representations to be generalized between conditions; i.e., where

were there consistent phonological representations despite

manipulations of cue congruency and sensory detail? There

was strong agreement in the topography of the whole-brain

searchlight maps created from within-condition and between-

condition comparisons.

Multivariate fMRI: STG represents spoken-word
phonology, while PrG contains dual representations
The STG represents spoken-word phonology across all condi-

tions (Figure 3B, intercept F(1,32) = 29.3, p = 5.993 10�6; no sig-

nificant main effects or interactions of sensory detail, congru-

ency, and diagnosis). However, in PrG, there was a significant

crossover interaction between vocoder detail and cue congru-

ency (Figures 3B and 3F(1,32) = 14.8, p = 5.37 3 10�4), which
Figure 3. Phonological representations of spoken words were observe

(A) Whole-brain searchlight results for the RSA of spoken-word shared segments

participants, excluding self-to-self comparisons. Left: design matrices for RSA. T

and congruency. In the shared-segments model, spoken words had a dissimilar

consonant or vowel, and one-third if they shared two consonants or vowels. Righ

note that, in both comparisons, left PrG and right and left STG clusters were FWE

condition phonological similarity (i.e., when cue congruency and vocoder detail

‘‘pick’’ than it is to ‘‘road’’?). The bottom map shows the same comparison betwe

when cue congruency or vocoder detail were changed?). There was strong agre

tations in PrG and STGbut not IFG or IPS. Note that, although the input data to thes

effectively introducing a degree of smoothing into the output. The appearance of

that searchlights centered on these locations will have included voxels below th

(B)ROI analysisbrokendownbyconditionandgroup. For univariate bar charts,wh

effects, error bars represent between-subject standard error to show variability

pendently determined so the results are not double dipped, error bars represent th

for repeated-measures comparisons.24 TheSTGROIwas defined by greater univa

multivariate representational similarity of shared segments in all conditions (F(1,32

The PrG ROI was defined by the univariate interaction, which was a crossover in

conditions than in the mismatch 3 and match 15 conditions. Multivariate represe

between vocoder detail and cue congruency (F(1,32) = 14.8, p = 5.37 3 10�4), wh

(C) ROI analysis for between-condition representations of phonological shared s

consistently across all conditions (F(1,32) = 40.4, Greenhouse-Geisser p = 3.91

interaction between diagnosis and condition. In the PrG ROI defined from the w

represented spoken-word phonology consistently across all conditions (F(1,32) =

stronger in 19 controls than in 15 patients (diagnosis F(1,32) = 5.06, Greenhouse
did not significantly vary by group (F(1,32) = 1.44, p = 0.239).

Crucially, this was in the opposite direction to the univariate inter-

action that had defined the ROI, such that phonological repre-

sentations explainedmore of the multivoxel pattern in conditions

where overall activity was lower. This is exactly the relationship

that would be predicted of a brain region combining spoken-

word phonology and information-weighted prediction errors for

prediction refinement (cf. section ‘‘illustrative computational

modeling of univariate and multivariate fMRI’’).

Multivariate fMRI: nfvPPA reduces the consistency of
phonological representations in PrG but not STG
We examined the robustness of phonological representations

to manipulations of cue congruency and sensory detail. Specif-

ically, we assessed the consistency of phonological represen-

tations in six individual cross-condition pairs (Figure 3C)

and compared this across groups with repeated-measures

ANOVAs in the STG and PrG ROIs.

In STG, both groups represented spoken-word phonology

consistently in all condition pairs (F(1,32) = 40.4, Greenhouse-

Geisser p = 3.91 3 10�7). There was no significant main effect

of diagnosis or condition, or interaction between diagnosis and

condition. In PrG, again both groups represented spoken-word

phonology consistently across all conditions (F(1,32) = 22.1,

Greenhouse-Geisser p = 4.66 3 10�5). However, this represen-

tationwas stronger in controls than in patients with nfvPPA (diag-

nosis F(1,32) = 5.06, Greenhouse-Geisser p = 0.032). Overall,

therefore, both groups represent phonology in PrG, but this rep-

resentation is less generalizable to other conditions in patients

with nfvPPA.

Multivariate fMRI: IFG represents verified and violated
predictions in distinct neural populations
Written-to-spokenwordmismatcheswereconsistent. Thisallowed

us to examine representational dissimilarity in verified (match) and
d in PrG and STG, but not IFG or IPS

(i.e., number of CVC elements in common across spoken words) across all 34

here were 16 words presented in four different combinations of vocoder detail

ity of 1 if they shared no consonants or vowels, two-thirds if they shared one

t: whole-brain maps cluster thresholded for visualization at FDR p < 0.05, but

p < 0.001. The top map shows which brain regions contain consistent within-

were kept constant, where is the brain representation of ‘‘pit’’ more similar to

en conditions (i.e., where was there shared similarity between ‘‘pit’’ and ‘‘pick’’

ement between the maps, with definitive evidence for phonological represen-

emapswere only smoothed at 3mm, the RSA searchlight had an 8-mm radius,

representations above the lateral fissure is therefore likely an artifact of the fact

e fissure, contributing sufficient information for searchlight decoding.

ere statisticsweredoneon thewholebrain and thesefigures are illustrative of the

in response magnitude. For multivariate bar charts, where the ROI was inde-

e standard error of themean after removing between-subject variance, suitable

riate responses for 15 > 3 channel vocoded speech, and showed above-chance

) = 29.3, p = 5.993 10�6), which did not significantly vary by group or condition.

teraction with greater fMRI signal magnitude in the match 3 and mismatch 15

ntational similarity in this region displayed the opposite crossover interaction

ich did not significantly vary by group (F(1,32) = 1.44, p = 0.239).

egments. In the STG ROI, both groups represented spoken-word phonology

3 10�7). There was no significant main effect of diagnosis or condition, or

hole-brain between-condition, shared-segments analysis, again both groups

22.1, Greenhouse-Geisser p = 4.663 10�5). However, this representation was

-Geisser p = 0.032).
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Figure 4. Multivariate assessment of consistent relationships between verified and violated predictions

All observed RSA partial correlations were such that verified and violated predictions were more dissimilar than would be observed by chance; we have inverted

the prediction RSA matrix such that these correlations are displayed as positive dark blue bars. Error bars represent between-subject standard error.

(A) Whole-brain analysis for all 34 subjects, cluster corrected at FDR p < 0.05. Bar charts show separate ROI analyses of the model of prediction dissimilarity and

its matching model of spoken-word phonology. Single-subject datapoints are shown. The IFG ROI is as shown, defined from all subjects. However, using the

anterior STG cluster from the whole-brain controls > nfvPPA contrast would be double dipping. We therefore assessed the anterior STG ROI defined from our

univariate mismatch > match contrast, displayed in blue on the inset illustrative brain. There was a group-by-condition interaction in this region (F(1,32) = 5.51,

(legend continued on next page)
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violated (mismatch) predictions, controlling for the phonological in-

formation in the spokenword. Specifically, we set up a dissimilarity

matrix based upon written-word shared segments across match

and mismatch conditions, excluding self-to-self comparisons. In

this way, we assessed whether the verified prediction for the

word ‘‘pick’’ is more or less similar than chance to the violated pre-

dictions for the words ‘‘pit’’ and ‘‘kick’’ (Figure 4, upper left).

For a clearly verified prediction (the match 15 condition, see

STAR Methods and Figure 2B), prediction errors are predomi-

nantly positive, because high precision sensory inputs exceed

uncertain predictions. In contrast, for violated (mismatch) predic-

tions there are negative prediction errors as expectations remain

unfulfilled. If positive and negative prediction errors are encoded

by differential firing patterns of the same neural units, the

hemodynamic blood-oxygen-level-dependent (BOLD) response

would be more similar than chance as spatial patterns of meta-

bolic demand overlap. However, if they are encoded by distinct

neural populations, albeit in the samebrain region, theBOLDpat-

terns would be more dissimilar than chance (i.e., a negative RSA

correlation). In such a comparison, it is important to exclude

sharedphonology in the sensory input.Wedid this in twodifferent

ways. First, we performed partial correlations of prediction error

representational similarity, removing the variance that could be

explained by spoken-word shared segments (model 1). Second,

we assessed prediction error relationships and spoken-word

shared segments with separate sparse designmatrices, in which

any comparison that contained non-zero representational

dissimilarity in one design matrix was excluded from the other

(model 2). We examined both models and tested for prediction

dissimilarity while controlling for sensory input and vice versa.

The results from both models were concordant (Figures 4 and

S5; Table 1C). All significant correlations were in the direction of

prediction dissimilarity between match and mismatch condi-

tions; i.e., verified and violated predictions were more dissimilar

than chance. Across all subjects, in both models, left IFG

showed a significant correlation with the prediction dissimilarity

model, confirming that verified and violated predictions are rep-

resented in distinct neural populations in this brain region. The

robustness of this finding is emphasized by IFGbeing the only re-

gion consistently implicated across individuals using both RSA

models, in two independent groups (controls and patients with

nfvPPA), using a cross-validated multi-voxel pattern analysis

(MVPA) distance metric.

Multivariate fMRI: Healthy adults but not patients show
prediction reconciliation in anterior STG
We tested for the presence of a stronger correlation with the pre-

diction dissimilarity model for control participants than patients

with nfvPPA. At the whole-brain level, we found this differential

effect only in left anterior STG (FWE p < 0.001; Figure 4A;

Table 1C). Controls showed consistent representations of
Greenhouse-Geisser p = 0.025). An alternative model based on separate sparse

Greenhouse-Geisser p = 0.020).

(B) Analysis within ROIs not implicated in the whole-brain analysis of prediction d

sensory input phonology in STG in controls but no consistent prediction dissimila

from the 15 > 3 vocoder channel univariate contrast. PrGROI defined from themul

univariate interaction between cue congruency and sensory detail. Figure S5 pro
prediction dissimilarity in this region, while patients did not,

and instead continued to strongly represent sensory input

phonology. In other words, while both groups displayed repre-

sentations of verified and violated predictions in IFG, only con-

trols were able to integrate these with sensory input in anterior

STG. It is not surprising that there is no main effect in anterior

STG in the presence of this interaction, as Figure 4A shows

this to be a crossover effect. This represents failed reconciliation

of prediction error in the patient population, explaining their

overly precise behavioral predictions, and low perceptual clarity

in mismatch conditions (Figure S1, replicating Cope et al.13).

There were no regions in which patients had a stronger correla-

tion than controls.

Throughout these analyses, we have shown that representa-

tions are present in particular regions, not that they are absent

in others.26 For illustration, we therefore examined three further

ROIs that had been implicated in our univariate contrasts but

not in the whole-brain analyses of prediction representations.

These data are shown qualitatively, as it would be statistically

questionable, and in violation of our pre-specified analysis strat-

egy, to showROI statistics for regions that were not implicated at

thewhole-brain level. However, they are helpful in demonstrating

that there is no trend toward a representation of prediction

dissimilarity in other regions (Figure 4B, blue bars). Across the

whole of STG, both patients and controls represent sensory

input phonology, but only controls represented prediction

dissimilarity consistently. In PrG, neither group represented pre-

diction dissimilarity consistently across all conditions, but both

represented phonology. In IPS, neither representation was found

in either group.

Functional connectivity fMRI: PrG connectivity allows
integration from multiple information sources
We propose that PrG, IFG, and STG form a network during

speech perception. To define the connectivity patterns within

this network that support the observed representations of predic-

tionandsensory input,weperformedaphysio-physiological con-

nectivity analysis (Figure 5). Specifically, we tested whether IFG

was conveying the information-weighted prediction error signal

to PrG directly, or via STG. Our analysis supports direct connec-

tivity from IFG to PrG, with multiple left frontal clusters more

strongly functionally connected to PrG than to STG (Table 1D).

PrG was also more strongly connected than STG to IPS. This

pattern of connectivity did not significantly vary by group.

We then examined the physio-physiological interaction, which

identifies brain regions that are preferentially correlated with ac-

tivity in one of our seeds when activity in the other seed was low.

This is of interest, because the strongest modulator of univariate

activity in our experiment is STG activation following the spoken

word (Figure 2C). This analysis therefore elucidates PrG connec-

tivity during periods of silence. The resultant clusters resemble a
design matrices produced almost identical results (Figure S5; F(1,32) = 5.95,

issimilarity, showing shared representations of consistent prediction error and

rity representations in patients in STG, or either group in PrG. STG ROI defined

tivariate between-condition shared-segment analysis. IPS ROI defined from the

vides a technical replicate of this figure using a different design matrix.
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Figure 5. Physio-physiological connectivity analysis results

The physio-physiological interaction can be conceptualized as an extension of

the seed-based connectivity approaches commonly employed in resting-state

fMRI analyses. It relies on the correlation of regional time series after re-

gressing out univariate behavioral effects at the first level, and as such is a non-

directional assessment of the connectivity of two regions to the rest of the

brain. Here we specified two seed regions in STG and PrG, shown in blue on

the maps above and defined from our univariate contrasts of sensory detail

and the interaction of congruency by sensory detail respectively, and as-

sessed these across all 34 subjects. The upper panels show those brain re-

gions that are more strongly connected to PrG than STG, and vice versa,

cluster thresholded at FDR p < 0.05. PrG was more functionally connected to

both IFG and IPS nodes than was STG. The lower panels show the negative

physio-physiological interaction (i.e., which brain regions were preferentially

correlated with activity in one seed when activity in the other seed was low).

Note that there is involvement of a posterior reading network, including both

IPS and the visual word form area.27
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posterior reading network, with both dorsal and ventral compo-

nents.27,28 Significant clusters were observed in the visual word

form area of left occipital fusiform, as well as left inferior occipital

gyrus and left IPS (Table 1D). Right-sided clusters were limited to

occipital visual regions. This interaction did not significantly vary

by group.

DISCUSSION

This study demonstrates distinct neural representations of pho-

nemic predictions and sensory inputs in a tripartite speech

perception network comprising STG, IFG, and PrG (Figure 1).

The important findings are that (1) IFG contains distinct represen-

tations of verified and violated predictions, which are maximally

dissimilar, indicating their processing by distinct neural popula-

tions despite their anatomical co-localization; (2) PrG displays re-

sponses, representations, and connectivity that are consistent

with the integration of sensory input and prediction refinement
10 Cell Reports 42, 112422, May 30, 2023
signals; (3) neurodegenerationof frontal cortex results in inflexible

prior expectations, causing a failure to reconcile prediction errors

with sensory signals in regions of anterior STG that support

echoic memory, and reducing the stability of phonological repre-

sentations between conditions in PrG. Overall, the data support

thehypothesis that humansuseamotormodel29 tomakepercep-

tual predictions for speech, in which precentral cortex instanti-

ates and refines predictions, and prefrontal cortex supports their

top-down reconciliation with sensory inputs in echoic memory.
A tripartite network for speech prediction and
perception
Most hierarchical generative models for perception30–33 and pre-

dictive coding31,34,35 propose a linear arrangement in which the

instantiation, reconciliation, and refinement of predictions in a

lower-order node is supported by bidirectional connectivity with

the same higher-order node. We have previously shown that the

reconciliationof perceptual predictions for speech inSTG is caus-

ally dependent on left frontal cortex,13 and this study demon-

strates that IFG contains distinct representations of verified and

violated predictions to support this role. However, it does not

necessarily follow that left IFG is solely responsible for the instan-

tiation of predictions, or their refinement based on perceptual

events. In fact, the current study shows that PrG contains the

necessary combination of representations and connections to

perform these roles. This dual support from PrG and IFG allows

STG to hold combined representations of the phonological infor-

mation in prediction outcomes36,37 and in sensory input (Figure 4).

Such a tripartite arrangement is well suited to flexible and adap-

tive speechperception. IFG can support speechprediction recon-

ciliation regardless of the nature, strength, or source of the prior

expectation. When the prior expectation is of a particular word,

fromcross-modal informationorsemanticcontext, it can reconcile

predictions created in precentral gyrus from amotor model. How-

ever, IFG also supports the reconciliation of grammatical predic-

tions. Agrammatism is a core diagnostic symptom in nfvPPA,38

with particular difficulties understanding complex grammatical

structures containing hierarchical structures or the passive voice.

In such sentences, the listener must re-orient from an expected

linear structure to parse a sentence or sub-clause.39 This linguistic

processing is a specialized function of a more general cognitive

computational system for complex and flexible thought. It is based

ondynamic functional interactions between inferior frontal and su-

perior temporal cortex,40–42 explaining the close integration be-

tween language-selective and domain-general regions in IFG.43

In the presence of IFG atrophy, there is greater activation of non-

dominant STG in response to auditory speech. This may reflect

contralateral attempts at compensation,mirroring those seendur-

ing auditory change detection.40
Illustrative computational modeling of univariate and
multivariate fMRI
To illustrate how the roles we propose for each node of the tripar-

tite speech perception network relate to the neural data, we

modeled signal magnitude (cf. univariate fMRI power) and

representational information (cf.multivariate fMRI). Thismodeling

was undertaken at different stages of hierarchical predictive



Figure 6. Illustrative computational modeling

Illustrative computational modeling of the magnitude and information content of representations at different stages of hierarchical predictive processing, based

on Sohoglu and Davis.37 In our experimental context, the prediction is the written word and the sensory input is the spoken word, which was manipulated in

sensory detail by the application of a 3- or 15-channel noise vocoder. Sensory input increased in magnitude and information as the number of vocoder channels

increased, and did not differ between match and mismatch conditions. Prediction error magnitude was greater for mismatch than match conditions, where word

identity was unexpected, and also for match 3 than for match 15, where the sensory consequences of the predictionwere only partially fulfilled.We propose that a

refinement signal based on prediction errors would be information weighted; to construct this representation, we simply multiplied the prediction error in each

condition by its information. Match 15 has aminimal refinement signal, because the prediction was completely fulfilled. Mismatch 3 also has aminimal refinement

signal, because the prediction error representation contains little information; we know that our prediction was incorrect, but we have little information fromwhich

to improve it next time. mismatch 15 and match 3 have large refinement signals, as they represent clear errors of identity and sensory expectations respectively.

Finally, we can model the univariate and multivariate responses in a region responsible for the refinement of predictions by combining our spoken and written

inputs with this information-weighted prediction error. In both cases, opposite crossover interactions were observed for signal magnitude and information,

consistent with those observed in PrG (Figure 3B). Mismatch 15 and match 3 contain combined representations of phonology and information-weighted pre-

diction error that destructively interact, such that they have higher signal magnitude but lower signal information. Match 15 and mismatch 3 contain only the

phonology, resulting in lower signal magnitude but higher signal information.
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processing (Figure 6), extending the Sohoglu and Davis

hypothesis.37

Basic modeling of sensory detail and prediction error recapit-

ulated our results in STG and IFG. Increasing the amount of sen-

sory detail in turn increased the modeled magnitude of response

to sensory input, paralleling the univariate finding in STG of

greater activity for 15 compared with three vocoder channels

(Figure 2C). Representational information also increased, but it

was high even for noisy inputs (cf. Figures 3B and S3). Prediction

error magnitude was greater for mismatch than match condi-

tions, where word identity was unexpected, paralleling this uni-

variate contrast in IFG and anterior STG (cf. Figures 2 and S4).

Prediction error representational information displayed an inter-

action pattern that we did not observe in our experimental data

but that has previously been demonstrated in posterior STG in

paradigms designed to capture lower-level prediction errors in

isolation.36,37 In our experiment, the consistent relationship be-

tween written and spoken words in mismatch trials meant that

STG representations were a mixture of sensory input, lower-
level, and consistent higher-level prediction errors, at least one

of which was available in each trial type.

We extended the basic model by proposing that a prediction-

based refinement signal would be information weighted (within

trial). This means that, when the written and spoken word match

and the spoken word is presented with high sensory detail (cf.

match 15 condition), the prediction is fully verified and there is

very little error to be used for refinement. Similarly, mismatch 3

also has a minimal refinement signal, because the prediction

error representation contains little information. In lay terms, this

is because one knows that the prediction was incorrect but

has little information from which to improve it next time. In

contrast, mismatch 15 and match 3 have large refinement sig-

nals, as they represent clear and consistent errors of identity

(mismatch15) and sensory expectations (match 3) respectively.

In other words, when a mismatching written word is presented

with high fidelity (mismatch 15), there is a large prediction error

that contains a large amount of information about the incorrect

higher-level expectation; the heard word was clearly not that
Cell Reports 42, 112422, May 30, 2023 11
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which was expected. When there is amatchingwritten word pre-

sented with low fidelity (match 3), there is a prediction error of

moderate size, because the prediction of lower-level sensory

representation is incompletely fulfilled. Participants are able to

ascertain that their higher-level expectations were fulfilled, ac-

counting for the increased perceptual clarity compared withmis-

matching low-fidelity speech (Figure S1, replicating other

studies10,13,44). This means that there is significant information

present in the prediction error about the range of lower-level sen-

sory stimuli that can result from the same higher-level prediction.

We propose that, to refine future predictions, the information-

weighted prediction error is combined with representations of

phonology in the spoken and written inputs. Adding informa-

tion-weighted prediction errors to either spoken or written inputs

predicts thesameopposing interactions for signalmagnitudeand

information. Match 15 and mismatch 3 contain only consistent

phonology from the spoken- and written-word inputs, resulting

in low signal magnitude but high signal information. In contrast,

mismatch 15 and match 3 contain combined representations of

phonology and prediction error that destructively interact, result-

ing in higher signal magnitude but lower signal information. In the

experimental data, this pattern was observed in PrG (Figure 3B).

Precentral gyrus is an integrative motor speech hub
PrG contained a representation of the phonology of spoken

words that was consistent across listening conditions (Figure 4).

This is in keeping with previous demonstrations that precentral

gyrus represents phonological (rather than acoustic) information

during speech perception.45 However, we show that this repre-

sentation is obscured by prediction errors within those condi-

tions that allow prediction refinement (Figures 3B and 6). PrG

showed strong functional connectivity with IFG and IPS (Fig-

ure 5), and there was a physio-physiological interaction with a

posterior reading network,27,28 consistent with PrG receiving

written information before speech onset.

We propose a role for PrG that reconciles seemingly contradic-

tory views of articulatory coding4,5 and extends and generalizes

theories of sensorimotor integration.29 Recall that our experiment

used written words as primes with independent and precise

manipulation of predictions and sensory input. Our design there-

fore avoided confounding effects of prior adaptation, habituation,

or repetition suppression, but we propose that thesemechanisms

are likely to be employed regardless of the source of word identity

expectations. We suggest that humans generate auditory predic-

tions of upcoming words on the basis of an internal model of the

sounds they would themselves make if reading the word aloud.46

PrG isalreadyknown toplay this roleduring lip reading,when there

is an explicit motor component to the cross-modal cue.47,48 Here

we provide evidence to generalize this role to information contain-

ing no intrinsic acoustic or motor signal (written text).

This generalization extends the classical motor theory of

speech,2 which held that we perceive speech by inferring the in-

tendedmotor gestures of other talkers.3,49 Rather than a process

of analysis by synthesis, in which the speech production process

is inverted to infer the nature of an incoming phoneme,50 we pro-

pose that an internal model of the motor program for speech is

generated pro-actively in PrG, to feedforward perceptual predic-

tions for expected speech sounds before speech is heard. These
12 Cell Reports 42, 112422, May 30, 2023
predictions are then passed to both STG and IFG, where they are

later reconciled with sensory input by an iterative settling pro-

cess.36 After speech input, this model is refined in PrG by

combining sensory input and information-weighted prediction

error. This integrative function explains PrG’s widespread con-

nectivity with language network nodes.19

Reconciliation of predictions into a single percept in
echoic memory
Our experimental design, in which mismatching written and

spoken words were presented in consistent pairs, allowed us

to undertake representational similarity analyses that examined

the consistency of the neural pattern of a violated prediction

and assess how it related to the neural pattern of a verified pre-

diction for the sameword. We demonstrated that there were sta-

ble and dissimilar representations of verified and violated predic-

tions in IFG in both groups. This is consistent with distinct neural

populations processing the perceptual outcomes of higher-level

expectations and lower-level representations,15 rather than the

same populations firing differentially.14

Controls but not patients demonstrated the same consistent

stable and dissimilar representations of verified and violated pre-

dictions in anterior STG. This same brain region also displayed

more univariate activity in the mismatch condition in both

groups, and has been implicated in previous work as the seat

of echoic memory for speech.20,21,51

Cross-modal cues reflect predictive processes because the

perceptual effect depends onwritten text being presented before

spoken words, and they are effective in improving the perceptual

quality of degraded speech only for the duration of echoic mem-

ory.44 In our experiment, we demonstrated that STG contains

dual representations of sensory input and prediction error

phonology. However, the subjective experience of an ecological

cross-modal conflict such as theMcGurk effect is not one of dual

perception; when a healthy observer is presented with video of a

speaker uttering /ga/synchronized to audio of a speaker uttering

/ba/, they hear only a combined representation /da/, and are un-

aware of the conflict until instructed to close their eyes. This

perceptual experience reflects the successful reconciliation of

cross-modal predictions in echoic memory. Here we demon-

strate that, while spoken-word phonology is represented in ante-

rior STG (Figure 3A), controls fully segregate the representations

of verified and violated predictions, accounting for more repre-

sentational information than was present in sensory input alone

(Figure 4A). This confirms top-down reconciliation resulting in

the restoration of absent but inferred speech signals in STG,22

modulated by linguistic knowledge,23 and also a suppression of

these neural populations when they represent incorrect predic-

tions. It also accounts for the earlier modulation of univariate ac-

tivity by predictive context in posterior compared with anterior

STG,52 as only anterior regions rely on IFG-mediated iterative

settling to reconcile violated predictions in echoic memory.36,46

The effects of frontal lobe neurodegeneration
To test causality of the proposed role of IFG in the language

network, we compared healthy individuals with people with focal

neurodegeneration of frontal language regions, causing progres-

sive non-fluent aphasia. The neurophysiological consequence of
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this frontal neurodegeneration is the delayed reconciliation of

perceptual predictions for speech in intact STG.13 Here we repli-

cate thefinding that thishas thebehavioral consequenceofmaking

perceptual predictions inflexible, increasing the effect of cue con-

gruency (Figure S1). This patient population allows us to make a

stronger inference about the causal role of frontal and motor parts

of the network for speech prediction and perception. An important

startingpoint is thatweshowaconsistent general patternof results

in controls and patients for univariate and multivariate control

analyses, providing an internal replication of the primary findings.

However, two crucial between-group differences relate to frontal

neurodegeneration and inflexible predictive processing.

First, while both patients and controls represent verified and

violated predictions in distinct neural populations in IFG, only

controls also showed this pattern in anterior STG (Figure 4).

This anterior STG locus spatially overlapped with the univariate

contrast for greater activity during mismatch compared with

match trials, which was displayed by both groups. There was a

group-by-condition interaction in the multivariate analysis, repli-

cated across two models (Figures 4 and S5), such that patients

continued to represent only the phonology of sensory input along

the whole of STG, while, in controls, the phonological represen-

tation was replaced by one of prediction outcome in anterior

STG. This represents a failure to completely reconcile predic-

tions in patients with nfvPPA, due to impaired iterative settling

processes between STG and IFG.13,36 While controls represent

a combined perceptual outcome in echoic memory, patients

continue to represent sensory input similarly in match and

mismatch conditions, consistent with persisting and competing

representations of sensory input and prediction error. This ac-

counts for the patients’ experience of high perceptual clarity

when sensory input matches expectations, but confusion and

low perceptual clarity for unexpected sensory events (Figure S1).

Second, while both patients and controls represented the

phonology of spoken words in PrG, this representation was

stronger overall (Figure 4B) and more consistent between condi-

tions (Figure 3C) in controls compared with patients. This was

not a non-specific effect of signal quality, as there was no group

difference in the strength of within-condition phonological repre-

sentations in PrG (Figure 3B). We speculate that this reduced

consistency between conditions may underpin the impaired

perceptual learning in nfvPPA, as patients are less able to gener-

alize new knowledge to other perceptual and predictive circum-

stances despite retaining the ability to learn specific grammatical

and auditory associations.53–55

LIMITATIONS

Our experiment is designed to assess the neural mechanisms of

perceptual prediction for phonemes. This is necessary but not suf-

ficient for word comprehension. Lexical processing requires addi-

tional neural processing, which is likely to involve additional brain

regions outside of our tripartite network. For example, we have

previously shown that anterior temporal lobe is necessary for the

efficient, lateralized processing of spoken-word identity.56 We

argue that these anterior temporal responses are amodal, seman-

tic, andaccount for thephenomenonofsurfacedyslexia inpatients

with semantic dementia.57 In the current study, we included only
regularly pronounced CVC words to avoid this confound. Intrigu-

ingly, there is emerging evidence that disconnection of anterior

temporal lobe leads toan increase in the relianceofauditorycortex

on frontal and motor connectivity, perhaps in compensation.58

In order to precisely control the experimental and neural

context, we provide participants with an explicit prediction in

the form of a written prime that correctly predicted the heard

word 50% of the time. This provides a situation in which auditory

targets are predicted by cues that draw on participants’ lifelong

experience of the arbitrary associations between visual symbols

(letter strings) and auditory signals (spoken words) more power-

fully than could be achieved by a newly learned arbitrary cross-

modal association,59 which may be confounded by differential

probabilistic learning in healthy individuals and people with

nfvPPA.53 However, ecological perception of running speech in-

volves the ongoing generation of predictions by rapid integration

of novel information with the linguistic context, enabling predic-

tions of what will be said next, taking into account both seman-

tics52,56,60 and grammatical structure.53,61 Accordingly, our

experiment assesses only perceptual prediction and predictive

coding, not the process of prediction identity generation, which

would likely invoke wider-scale probabilistic networks such as

the multiple demand system, which would overlap with the lan-

guage networks studied here.18,43 This overlap would make it

difficult to dissociate activations, especially with the poor tempo-

ral resolution of MRI; running speech prediction paradigms may

be more suitable to M/EEG, where the time course of prediction

identity generation and perceptual resolution could be more

easily separated, but at the cost of spatial resolution.

There was a mid-study change in the number of response op-

tions (from two to four)provided toparticipantsduring the in-scan-

ner behavioral task, and the coronavirus pandemic prevented this

being fully counter-balanced across groups. While undesirable,

we are confident that this could not have affected the data pre-

sented here. The aim of the behavioral in-scanner task was solely

to maintain participants’ attention to the stimuli, by intermittently

asking for a response. The neural data from these response trials

were not analyzed. All of the reportedneural results come from the

standard trials, in which a response was not requested. All of the

behavioral data in themainmanuscriptwerecollectedoutof scan-

ner, and those tasks were identical across all individuals.

The effect sizes we report here may appear small, but in fact

they are equal or greater to those in comparable studies. Multi-

variate fMRI studies of language representations commonly

demonstrate MVPA Spearman correlations around 0.02–

0.04.36,45,62 These correlation values are low for two reasons:

the complexity of the neural signal being evaluated compared

with the sparse RSA matrix being evaluated, and the signal-to-

noise ratio of the measurement technique. This does not under-

mine the use of MVPA. What one evaluates with RSA is whether

the theoretical matrix is consistently represented in the neural

data across subjects, not whether it is a holistic explanation of

all the variance that is represented in those data.

The current study is a theoretically motivated, task-based

functional imaging study of people with precisely phenotyped

nfvPPA. Our group sizes are small compared with some recent

structural imaging and neuropsychological descriptive studies

of primary progressive aphasia (PPA). However, because testing
Cell Reports 42, 112422, May 30, 2023 13
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our hypothesis required a dissociation between frontal lobe atro-

phy and temporal lobe preservation (Figure 2A), we prioritized

the recruitment of this extremely rare uniform cohort over a larger

group of patients with unselected PPA who would not have al-

lowed such precise mechanistic conclusions. The reliability of

our data is emphasized by (1) exact replication of the key behav-

ioral and neuroanatomical findings from Cope et al.13 in a new

cohort, explained within the same computational framework;

and (2) replication within the new study of the primary multivar-

iate fMRI findings in both the patient and control groups. Our

study was ambitious, and only made possible by the use of a

7-T scanner, which has significantly superior signal to noise

compared with 3-T, allowing the acquisition of data either at

higher resolution, higher signal to noise, or more quickly. Here,

the priority was acquisition speed, because we know that pa-

tients often cannot tolerate the scanner environment for more

than an hour; using 7-T allowed us to collect our data with

40 min of echo planar imaging (EPI) scanning, compared with

2 h for a comparable 3-T acquisition. The higher spatial resolu-

tion imaging brought additional benefits. There is controversy

in the literature about the value of high resolution for multivariate

analyses,63 as it depends on the spatial scale of the signal,

compared with the noise and the smoothing filter.64 We as-

sessed the importance of high-resolution acquisition in our

data by repeating our analyses with 8-mm spatial smoothing,

simluating lower resolution data, and this made little difference

in most regions. However, it was crucial in left IFG, where we

argue there are two competing codes at fine-grained spatial

scale, and the results were consequently lost with 8-mm

smoothing. These results are not artifactual, because they sur-

vive independently in both patients and controls and are present

across multiple conditions and comparisons at stringent statisti-

cal thresholds but are at a spatial scale where they may have

been obscured at 3-T.

Conclusions
We provide univariate activation, multivariate representation,

and causal lesion evidence for a motor model of predictions in

speech perception. There is a tripartite speech perception

network in the dominant hemisphere in which (1) STG simulta-

neously represents sensory information and prediction errors,

(2) IFG contains distinct neural representations of verified and

violated predictions, and (3) precentral gyrus contains represen-

tations of spoken-word phonology in combination with informa-

tion-weighted prediction errors. We propose that the IFG plays a

primary role in supporting the top-down reconciliation of predic-

tions with sensory input, while precentral gyrus plays a primary

role in instantiating and refining those predictions.
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d Any additional information required to reanalyse the data reported in this work is available from the Lead Contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics
Study procedures were approved by the UK Health Research Authority after review by the Cambridge Central Ethics Committee (16/

EE/0084, 16/EE/0351). Participants had mental capacity and gave written informed consent to participation.

Participants
SeventeenpatientswithearlynfvPPAwere identifiedaccording toconsensusdiagnosticcriteria,38ofwhomfifteenwereable tocomplete

theneuroimagingprotocol andare included in the final analysis (onepatient did not tolerate the scanner environment, andanother did not

understand thebehavioural task).AsnfvPPA isa rarediagnosiswetookamulti-centreapproach.Potentialpatientparticipantswere iden-

tified in the specialist cognitive clinics of authors TEC, JC, CB, PG, KA, and JBR, then screened for 7TMRI suitability, and asked if they

would bewilling to travel to themain study site (Cambridge). There the diagnosis was verified by authors TEC and KP, and all study pro-

cedures including scanning were performed. Twenty-two age and gender matched controls were recruited, primarily from the National

Institute for Health Research ‘Join Dementia Research’ volunteer database. Nineteenwere able to complete the neuroimaging protocol

andare included in the final analysis (twodid not tolerate the scanner environment, andone hadscanner technical problems). Participant

demographics are shown in the table below, and average pure-tone audiograms are shown in Figure S6. There were no statistically

significant group differences in auditory threshold at any frequency in either ear.
up

an (sd) Number and gender Age

Years of

Education ACE-R (/100)

ACE-R excluding

fluency (/86) MMSE (/30)

Raven’s

matrices (/60)

Boston

naming (/15)

ntrol 19 (11M, 8F) 69 (6) 16.1 (2.2) 95 (4) 83 (3) 29 (2) 48 (5) 15 (1)

PPA 15 (9M, 6F) 71 (8) 14.4 (3.4) 82 (9) 75 (5) 27 (2) 33 (12) 14 (2)

erence X2(1) = 0.153

p = 0.910

t(25) = 0.592

p = 0.559

t(21) = 1.66

p = 0.112

t(16) = 4.68

p < 0.001

t(17) = 3.52

p = 0.002

t(20) = 1.72

p = 0.101

t(16) = 4.31

p < 0.001

t(19) = 2.23

p = 0.038
Demographics table: Included participant demographics. ACE-R = Addenbrooke’s cognitive examination, with the total score and

the score excluding verbal fluency reported separately. MMSE = Mini-Mental State Examination. Boston naming tests were scored

ignoring phonemic and phonetic errors, as we were interested in excluding anomia. Difference tests employed chi-squared for cat-

egorical data, and unpaired t-tests with unequal variance for continuous data.

METHOD DETAILS

Scan protocol
All participants underwent a single session of standardised magnetic resonance imaging at the Wolfson Brain Imaging Center, Uni-

versity of Cambridge, using a 7T Siemens Terra scanner, with a Siemens single-channel transmit, 32-channel receive head coil (Nova

Medical, Wilmington MA, USA). Following scout images and field maps, the vendor’s automatic shimming (at least three iterations)

and interactive manual shimming were performed to generate an homogeneous magnetic field across the brain, targeting an FWHM

of the water peakmeasured in-line at the scanner console of <40Hz. Note that the FWHM scales linearly with magnetic field, so this is

similar to usual targets of less than 20 Hz at 3T, or 10 Hz at 1.5T.65

After shimming and acquisition of final B0 field maps, participants performed four blocks of the fMRI task described below. After

two of these blocks (i.e. half way through), four volumes with the same scan parameters were acquired with the phase-encode di-

rection reversed to enable topup correction of susceptibility distortions.66 fMRI was acquired with a gradient echo echo planar im-

aging (EPI) sequence with a GRAPPA acceleration factor of 2 in single-band mode implemented by CMRR.67 If movement occurred

during the reference image, resulting in ghosting in the first acquired volumes, the block was immediately aborted and restarted after

a reminder to the participant to stay very still. 1.5mm isotropic voxels were acquired in 72 interleaved slices, each with a 150x150

voxel matrix. The acquisition plane was tilted from axial so as to avoid the eyes and maximise coverage. The resulting

108x225x225mmoblique volumewas sufficient for whole-brain coverage inmost participants, but dorsal parietal lobewas sacrificed

for those with exceptionally large brain size. Sparse acquisition allowed for an acquisition time (TA) of 1500ms, followed by a silent

gap of 1000ms during which the auditory stimulus was presented, giving a repetition time (TR) of 2500ms. Echo time (TE) was 23.4ms

and flip angle 50 degrees. The task paradigm began after four volumes, to allow settling and time to restart the block in the case of

movement during the reference image. 238 volumes were acquired, meaning that each block was slightly more than ten minutes in

duration, including the acquisition of the acceleration reference volumes, resulting in 40minutes of total task-based fMRI per session.

Next, a structural MP2RAGE image was acquired with TR 4300ms, TE 1.99ms, flip angles 5/6 degrees, inversion times 840/

2370ms, resulting in 224 slices of 0.75mm isotropic voxels in a 300x320 matrix. Finally, a ‘‘fast’’ T2-weighted image was acquired
Cell Reports 42, 112422, May 30, 2023
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for clinical reporting and study governance with 34 slices of 3.9mm thickness acquired at an in-plane resolution of 0.225x0.225mm

with matrix size 1024x768. Total MRI session duration was approximately 75 minutes.

In-scanner paradigm
Each participant performed four blocks of an audio-visual fMRI paradigm designed to evaluate the influences of prior knowledge and

sensory degradation on the perception of spoken language by presenting a written word before a vocoded spoken word (Figure 2B).

Participants were explicitly informed, and implicitly learned through practice, that there was a 50% chance that the trial would be

congruent (written word matching the spoken word), and a 50% chance that it would be incongruent (the spoken word being one

of the other words). This strongly incentivises prediction, because in half of trials the prediction would be fulfilled, while also neces-

sitating perceptual flexibility, because in half of trials participants would need to correctly perceive a largely unexpected word. This

has a very consistent perceptual effect, increasing the perceptual clarity of the heard word when written and spoken text match.

All of our multivariate analyses are based on ‘written+spoken’ trials, in which participants were presented with a written word, fol-

lowed 700ms later by a consonant-vowel-consonant (CVC) spoken word, which was acoustically degraded using a noise vocoder

with either 3 or 15 channels, creating low and high sensory detail respectively.68 No response was requested from participants on

these trials. This allowed for a factorial manipulation of predictions, by presenting written text that either matched or mismatched

with the speech, and sensory detail, by varying the number of channels in the noise vocoder. The spoken word was synchronised

with the fMRI sparse acquisition, beginning 200ms into the one-second silent gap. These combined written+spoken pairs comprised

8/11 of trials (128 trials per block, 512 trials in total).

For modelling purposes, in 2/11 of trials (32 trials per block, 128 trials per session), participants were presented with a written word,

but no spoken word was presented; a ‘written-only trial’. Each written+spoken or written-only trial lasted one scanner TR, i.e. 2.5

seconds in total.

One eleventh of the trials were ‘response trials’ (16 trials per block, 64 trials per session), with the purpose ofmaintaining participant

attention to the screen and auditory stimuli. These ‘response trials’ did not contribute to any fMRI contrasts, and do not contribute to

any of the neural data presented in the study. In these trials, 1050ms after the onset of the sound stimulus, participants were pre-

sented with a written response cue ‘‘What did you hear?’’ above written-word alternatives. Participants had six seconds to select

an alternative using a button box in their left hand, after which time the text was removed and a null response was recorded.

Once the participant responded, the cue disappeared to avoid repeated responses, but the next trial did not begin until four scanner

TRs (10 seconds in total) had elapsed. For the first twenty participants (11 patients, 9 controls), two alternatives were presented, one

being the heard word and one being another word from the experimental set that shared no phonemes with that word (for example

‘pit’ and ‘robe’). Interim analysis showed that this was helpful in confirming attention and perception, but was so easy that perfor-

mance was close to ceiling even for mismatching text with low sensory detail. Therefore, to confirm the perceptual salience of

our experimental manipulation in the scanner environment, for the remaining subjects (4 patients, 10 controls), four alternatives

were presented, one being the heard word, and the other three being close neighbours that shared a vowel (for example ‘bard’,

‘barge’, ‘lard’, and ‘large’). It was not possible to scan more patients with the four-alternative forced-choice because of a national

lockdown during the coronavirus pandemic, resulting in a group imbalance on the in-scanner response trials, which differed only

in the number of response options provided. Sufficient behavioural data were acquired to confirm the salience of the in-scanner ma-

nipulations in both groups (see supplementary results). All of the behavioural data in themainmanuscript were collected out-of-scan-

ner, and that task was identical across all individuals.

The experimental set was restricted to sixteen words, split into four sets across four vowels, designed to facilitate representational

similarity analysis. Within each set, every word had two close neighbours that shared two phonemes (consonant plus vowel), and one

neighbour that shared only the vowel. Some consonants were shared across vowel sets. The sixteen words were: bard, barge, lard,

large; pit, pick, kit, kick; debt, deck, net, neck; robe, road, lobe, load. That is to say, after reading the word ‘pit’, the participants per-

forming optimally would create a perceptual prediction that they have a 50% chance of hearing the word ‘pit’, and a 3.33% chance of

hearing any one of the other words in the experiment.

Crucially, trials where written and spoken text mismatched were consistent, such that if a written word did not predict itself, it

instead predicted a word eight items later on the list above. Therefore, reading the word ‘bard’ meant that the subject would always

subsequently hear ‘bard’ (a matching written+spoken trial), ‘debt’ (a mismatching written+spoken trial), or nothing at all (a written-

only trial). Similarly reading ‘debt’ predicted hearing either ‘debt’, ‘bard’, or nothing at all. This consistent relationship allowed repre-

sentational similarity analyses of the consistency of the neural pattern of a prediction error, and how it related to the neural pattern of a

confirmed prediction for the same word.

In each block, every word was presented in written form eleven times, and in spoken form nine times, such that there were two

identical exemplars of every ‘written+spoken’ and ‘written-only’ trial type, and one exemplar of a response trial. To ensure consis-

tency, stimuli and trial types were presented in fixed random order, such that their order differed between blocks, but was the same

for every participant. The first trial was always ‘written+spoken’. There were between 1 and 8 other trial types between ‘written-only’

trials (i.e. they were never consecutive), and between 6 and 15 other trial types between response trials. A response trial never fol-

lowed immediately after a ‘written-only’ trial, but ‘written-only’ and ‘written+spoken’ trials had a probability of occurring immediately

after a response trial proportional to their overall frequency.
Cell Reports 42, 112422, May 30, 2023 19



Article
ll

OPEN ACCESS
In-scanner auditory stimuli were presented binaurally through Sensimetrics S15 insert earphones, and visual stimuli were pre-

sented with a VPixx PROPixx projector onto a Comar Optics rigid rear projection screen. Experiment scripts are available at

https://github.com/thomascope/PINFA_paradigm_scripts/tree/main/fMRI%20task (https://doi.org/10.5281/zenodo.7777386). The

task was delivered with Psychtoolbox, running in Matlab 2014a, synchronised with theMRI scanner pulses through a National Instru-

ments PCI 6503 card. Participants indicated responses with their left hand using a bespoke four-button box, interfacing with the

same card. After the participants had been positioned in the scanner, we confirmed that they could see the whole screen clearly,

hear stimuli in both ears, and respond appropriately using the button box.

Out-of-scanner experiments
Participants performed all study procedures in a stereotyped order. After informed consent, patient participants provided an audio

recording of their speech for scoring and assessment. This comprised a description of the ‘cookie theft’ picture from theBoston Diag-

nostic Aphasia Examination, followed by a free speech description of their hobbies and interests. All participants then completed

handedness, earedness, and general health questionnaires, digit span, revised Addenbrooke’s cognitive examination, Boston Diag-

nostic Aphasia Examination (BDAE) short form naming, and, for controls only, a Wechsler test of adult reading (WTAR).

Approximately forty minutes before the MRI scan, participants undertook the same out-of-scanner primed clarity rating task as

described in,13 based on10,44 In this task, participants are presented with a written word, followed 1050 (±50) ms later by a spoken

word, which is acoustically degraded using a noise vocoder.68 After a further 1050 (±50) ms, participants are asked to rate the

perceptual clarity of the vocoded word. In this way, the perceptual effects of cue congruency and sensory detail can be indepen-

dently manipulated and assessed.

Next, participants undertook an unprimed vocoded word identification task as described in,13 except that the number of channels

in the noise vocoder was reduced from 4/8/16 to 3/6/15 tomatch the fMRI experiment. In this task, no prior written text was provided.

Participants simply heard a noise vocoded word and, 1050 (±50) ms later, were presented with four written alternatives, from which

they selected the word that they had heard. The closeness of the three distractor items to the correct response was manipulated by

controlling the number of shared segments between the spoken word and the alternatives. None of the words presented in either of

these out-of-scanner tasks was part of the word set presented during fMRI scanning.

Participants then underwent MRI scanning as described above, followed by a lunch break.

Then, participants repeated the unprimed vocoded word identification task, but this time using only the words presented inside the

scanner environment. Because all the in-scanner words were in sets of four, there was nomanipulation of distractor difficulty – target

words shared a vowel with all three distractor words, plus an onset consonant with one and an offset consonant with another.

Next, participants repeated the unprimed vocoded word identification task from Cope et al.,13 and then repeated the clarity rating

task from Cope et al.,13 in order to assess the consistency of effects across the experimental session.

After this, participants had a short break, then completed Raven’s progressive matrices, followed by a pure-tone audiogram.

Finally, for controls only, there was onemore behavioural test. To enableMVPA analysis of prediction errors, there was a consistent

relationship between written and spoken words in the mismatch case. For example, reading the word ‘bard’ in a written+spoken trial

meant that the subject would always subsequently hear ‘bard’ (a matching trial), or ‘debt’ (a mismatching trial). It simplifies the inter-

pretation of our results if participants did not learn this relationship. To assess this, participants were presented with a written word,

then askedwhat theymight hear next, if theywere not to hear the sameword they had read. Four alternatives were presented, none of

which was the same as the written word, and one of which was the word representing the consistent mismatch from the fMRI envi-

ronment. Universally, control participants reported that they did not knowwhich answer was correct.We gave them the instruction to:

‘‘Guess, according to your ‘gut feeling’ of which word was most likely, because in the scanner the words were not presented

randomly.’’ Performance for this task was at chance across the control cohort (mean 23.9%, standard error of the mean 1.59%,

chance performance 25%).

All tasks were administered on a Dell XPS 15 laptop in a quiet clinic room, with sounds presented through Sennheiser HD250 linear

2 headphones, driven by a Behringer UCA 202 external sound card. Participants indicated responses either by pressing a number on

a keyboard (clarity rating task) or a button on a custom made response box (all other tasks).

Behavioural clarity rating and word report data from before and after 7T imaging were modelled using hierarchical Bayesian infer-

ence simulations previously described,13 based on,69 code available at: https://github.com/thomascope/7T_pilot_analysis/blob/

master/module_bayesian_behaviour.m (https://doi.org/10.5281/zenodo.7777380). The only modification to this procedure was a

scaling to account for the difference in the ratio of vocoder channel numbers between the out-of-scanner word identification exper-

iments presented here (3/6/15) and those described previously (4/8/16). Based on unprimed word identification performance across

all participants, we applied a scaling of 1.09x to the modelled sensory detail of the intermediate, 6-channel, condition to better model

expected clarity ratings.

Structural MRI preprocessing
Code for the MRI analysis pipeline is available at: https://github.com/thomascope/7T_pilot_analysis/blob/master/batch_7T_

preprocess.m (https://doi.org/10.5281/zenodo.7777380)

First, we created a mask for skull stripping by performing segmentation in SPM12, based on both the ‘unified’ and ‘second inver-

sion’ from the MP2RAGE sequence, with custom bias egularization of ‘0.00001’ and bias FWHM of ‘30’. Providing both of these
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images improves segmentation, as the unified image has superior grey/white matter contrast, while the second inversion has better

grey/CSF contrast. The mask was created by adding together the white matter, grey matter and CSF compartments, followed by the

application of the Matlab ‘imfill’ function to ensure a contiguous brain mask. This mask was then applied to produce a skull stripped

brain, which was AC-PC aligned to an elderly template brain in SPM12.

For quantitative structural data analyses we used Freesurfer 7.1.0 to assess cortical thickness. The aligned and skullstripped brain

images were provided to the ‘autorecon1’ module of Freesurfer ‘recon-all’ with the ‘-noskullstrip’, ‘-hires’, ‘notal-check’, ‘-cw256’,

and ‘-bigventricles’ flags. Next, we copied the T1.mgz image to brainmask.auto.mgz and brainmask.mgz, before submitting the ‘au-

torecon2’ and ‘autorecon3’ stages with the same flags. Every cortical segmentation was manually visually checked for quality, and

confirmed to be of good quality in all individuals in our regions of interest across superior temporal, frontal, parietal, and occipital

language regions.

Functional MRI pre-processing
First, we realigned the EPI from all runs in SPM12, including those with reversed phase encoding, to match the first in the time series

using 5th degree B-spline interpolation. Next, we applied distortion correction to all runs using ‘topup’ from FSL version 5.0.3. This is a

two-stage process. In the first stage, distortions are calculated by comparing EPI with opposite phase encoding directions; here we

used the reference image taken at the start of the third run (i.e. half way through the fMRI experiment) and a reverse-phase reference

image taken immediately beforehand. In the second stage, corrections against these distortions are applied to all images. The result-

ing images were then co-registered to the native-space structural MP2RAGE.

To create the input images for our first-level (single subject) native-space multivariate (MVPA) analyses, these re-aligned, undis-

torted, functional time-series were then resliced into the same space in SPM12, before smoothing with a 3mm FWHM kernel (twice

the voxel size).

Next we obtained deformation fields to IXI template space for every individual by performing normalisation of the structural

MP2RAGE using the CAT12 toolbox.70 As our multivariate analyses were performed in native space but regions of interest were

defined from group-level contrasts in template space, this was a particularly crucial step to allow the accurate transformation of

data between spaces.

To create the input images for our first-level template-space univariate and connectivity analyses, we applied these deformation

fields to the re-aligned, undistorted, unsmoothed functional images using the SPM12 normalise write function with 4th degree

B-spline interpolation and an output voxel size of 1.5mm isotropic. These images were then smoothed with a 3mm FWHM kernel.

Every participant performed four blocks of the task, however for three individuals (one patient, two controls), one block failed visual

data quality checks due to motion-related ‘ghosting’ artefact and was discarded. Two of the discarded blocks were the final block,

and one was the penultimate block.

fMRI Physio-physiological interaction
To assess how connectivity between brain regions supported the construction of neuronal representations we assessed the physio-

physiological interaction from the first-level univariate design matrix described above, using the gPPI toolbox.71 Note that this

approach is related to, but differs from, the similarly-named psycho-physiological interaction analysis, which can be used to assess

the effect of task on connectivity in block-design fMRI paradigms, but is not suitable for randomly presented short events as in our

experiment here. The physio-physiological interaction can be conceptualised as an extension of the seed-based connectivity ap-

proaches commonly employed in resting-state fMRI analyses. It relies on the correlation of regional time-series after regressing

out univariate task-related effects, and as such is a non-directional assessment of the connectivity of two regions to the rest of

the brain.

Wewere specifically interested in the relative connectivity of PrG and STG during the instantiation, reconciliation, and refinement of

predictions. This tests which brain regions were preferentially connected to PrG, which were preferentially connected to STG, and

which were engaged by the negative interaction of the activity in these regions. The negative interaction is of interest, because the

strongest manipulation of the magnitude of the time-series is the auditory presentation of the spoken word, meaning that this inter-

action is most sensitive to connectivity during the instantiation of prediction while reading, when STG activity is low.

Illustrative computational modelling
We constructed a computational model of hierarchical predictive processing, based on that published in.37 In our experimental

context, the prediction is the written word and the sensory input is the spoken word, which was manipulated in sensory detail by

the application of a 3 or 15 channel noise vocoder. The model uses pixel-based synthetic representations of words, with the inputs

filtered according to sensory detail, added to uniformly distributed noise, and scaled to sum to one. Prediction error was calculated

from a subtraction of the prediction from the input. Signal magnitudes for sensory input and prediction error were quantified as the

absolute difference between the observed pixel value and the mean pixel value, summed across all voxels, and thus quantified the

combined magnitude of both ‘positive’ and ‘negative’ prediction errors. Signal information was quantified as the squared Pearson

correlation (i.e. r2) between the overall pattern and an undistorted representation of the speech input. We propose that a refinement

signal based on prediction errors would be information-weighted; a large error with low information would provide little basis for spe-

cific learning beyond an overall weakening of existing associations, while a small but precise error may be highly instructive.16,17
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While this information weighting is conceptually similar to precision weighting.16 it quantifies the informativeness of the prediction

error in a single trial, rather than the long-run uncertainty in the environment. The model creates the information-weighted prediction

error by multiplying the prediction error in each condition by its representational information. More complex mathematical relation-

ships beyond simple multiplication may underlie real neuronal processes, but would not change the overall pattern for low vs high

sensory detail contrasts in matching vs fully mismatching predictive contexts. Finally, we can model the univariate and multivariate

representations in a region responsible for the refinement of predictions by adding the information-weighted prediction error to the

sensory input from the spoken word. Thus, we assume that BOLD signals reflect the combination of two distinct speech represen-

tations (information-weighted prediction error and sensory input), possibly encoded by different neural populations. Model sensory

input signal magnitudes were up to 0.75 arbitrary units, while information-weighted prediction error representations had magnitudes

of <=0.2 arbitrary units.We propose these signals to be roughly equally scaled for prediction refinement, and therefore performed this

combination by adding the information-weighted prediction error to the sensory input divided by four. Changing this multiplier would

not change the qualitative nature of the modelled interactions, merely their scaling.

Data visualisation
In this paper we use Surf Ice (https://www.nitrc.org/projects/surfice/) to represent non-quantitative volumetric regions of interest on

the BrainNet BrainMesh_ICBM152.lh surface template. We also use it to represent our surface-based structural analysis on the Free-

surfer lh.pial template, where it can display quantitative data accurately.

To display the quantitative fMRI results in a visually comparable way, we developed a Matlab script to display volumetric data on

the same cortical mesh; available at: https://github.com/thomascope/7T_pilot_analysis/blob/master/Thresholded_multivariate/

jp_spm8_surfacerender2_version_tc.m (https://doi.org/10.5281/zenodo.7777380). Because the resolution of 7T fMRI exceeds the

vertex spacing of cortical meshes, the code iterates through every vertex of the mesh, and finds the highest value voxel within a

3mm sampling radius, for projection to that location. This method resembles Surf Ice when rendering the same data, but crucially

preserves data range (Figure S7).

QUANTIFICATION AND STATISTICAL ANALYSIS

Structural MRI analysis
Between-group whole-brain comparisons were implemented in Freesurfer FSGLM using a ‘DOSS’ approach with Age as a covariate

of no-interest and a 10mm cortical smoothing kernel. The GLMmodel was evaluated first for raw significance, and then with cluster-

wise statistics based on 10,000 simulations per-hemisphere. Clusters were retained at corrected p<0.05. Our analyses focus on the

left hemisphere - the right hemisphere results are, however, shown for illustrative purposes to demonstrate that nfvPPA is a relatively

asymmetric but not strictly unilateral disease.

We then extracted the single subject cortical thickness in regions of interest defined by the Desikan-Killiany Atlas. Our regions of

interest were IFG pars opercularis and triangularis, PrG, and STGplanum temporale (‘banks of superior temporal sulcus’) and primary

auditory cortex (‘transverse temporal gyrus’). In each region, we tested for between-group differences both with a traditional, fre-

quentist two-sample t-test, and with a Bayesian t-test using the bayesFactor Matlab toolbox (https://klabhub.github.io/

bayesFactor/). This allowed us to test the strength of evidence both for and against atrophy, by reporting the Bayes Factor, BF10,

and its inverse, BF_null.

Results, subject numbers and definitions are found in Figure 2A legend and supplementary table. Data met the assumptions of the

statistical analysis approaches.

Functional MRI univariate analysis
A first-level design matrix was created in SPM12 from the behavioural task. A single event was specified at the onset of the spoken

word (i.e. 700ms after the onset of the written word) in every trial, as this is the timepoint at which it is possible to begin to reconcile

predictions and sensory evidence. For written-only trials there was no spoken word, but the event was still specified at the time it

would have occurred to model the absence of spoken input. Events were categorised into six types – ‘Match 3’, ‘Match 15’,

‘Mismatch 3’, ‘Mismatch 15’, ‘Written-only’ and ‘Response’, with the latter used only for regressing out effects of no interest.

The design matrix included each event type as a separate column, along with six head motion regressors of no interest, replicated

across all blocks. Because of the increased signal homogeneity in 7T data compared to 3T, the implicit masking threshold was

reduced from the default of 0.8 to a more inclusive threshold of 0.3. To ensure analyses were restricted to brain, an explicit grey-mat-

ter mask was applied at the second level, constructed from an 80%majority consensus of the control participants’ SPM c1 segmen-

tation at a 5% threshold.

Contrasts were evaluated for written+spoken trials at the single subject first-level and then group second-level for the main effects

of congruency and sensory detail, and the interaction between the two. An additional contrast was specified for all written+spoken

trials against written-only trials (i.e. to assess the neural effect of the presence versus absence of the spoken word). Response trials

were not analysed in these contrasts. Age was included as a covariate of no interest in all analyses.

Results, subject numbers and definitions are found in Figure 2 legend and Table 1A. Data met the assumptions of the statistical

analysis approaches.
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Functional MRI multivariate analysis
For the multivariate analysis, a more complex first-level design matrix was created in SPM12 from the behavioural task. As before,

single events were specified at the onset of the spoken word (i.e. 700ms after the onset of the written word), but now each of the six

trial types was broken down into 16 separate spoken words, resulting in 96 event types, each occurring twice per block (eight times in

total), except the response trial words, which only occurred once per block (four times in total). An additional event was specified for

the button press. Again, the design matrix included each event type as a separate column, along with six head motion regressors of

no interest, replicated across all blocks.

The native-space output of this first-level model was then subjected to whole-brain searchlight and ROI-based multivariate repre-

sentational similarity analysis using the decoding toolbox.72 Distance measures were calculated using the cross-validated Mahala-

nobis distance,73,74 which can be conceptualised as a cross-validated Euclidean distance accounting for noise covariance, and is an

unbiasedmetric with interpretable zero. Distance was evaluated from every written+spoken event to every other, resulting in a 64x64

dissimilarity matrix (16 words across 4 conditions) in each ROI or searchlight location. Searchlight analysis employed an 8mm-radius

sphere, evaluated with a cent at every voxel in the native-space image.

Each dissimilarity matrix was then compared with Spearman correlations against several candidate representational dissimilarity

matrices designed to assess specific hypotheses, as described in the results section. For searchlight analysis, this resulted in whole-

brain native space images of representational similarity, which were then deformed into template space and resliced to 1mm

isotropic voxels. These standardised maps were evaluated at the second level, with age as a covariate of no interest.

Region of interest analysis was also performed, with ROIs determined from orthogonal contrasts with patients and controls

weighted equally to avoid double-dipping.

Results, subject numbers and definitions are found in Figures 3 and 4 legends, Tables 1B and 1C, and Figures S4 and S5. Datamet

the assumptions of the statistical analysis approaches.

fMRI physio-physiological interaction analysis
Weapplied the gPPI toolbox to the first-level univariate designmatrix, which convolves task events with the haemodynamic response

function. It then adds regressor columns of the time-course of the activity in two seed regions of interest, and the interaction between

them. Here, seeds were based on the second level univariate effects across all subjects, cluster-thresholded at p<0.05: the contrast

for sensory detail that preferentially engaged STG (greater activity for 15 channel compared to 3 channel vocoded speech) and the

interaction between sensory detail and congruency that delineated a cluster in PrG.

The first-level single-subject contrasts for STG > PrG connectivity, PrG > STG connectivity, and the negative physio-physiological

interaction were evaluated at the second (group) level, with age as a covariate of no interest.

Results, subject numbers and definitions are found in Figure 5 legend and Table 1D. Data met the assumptions of the statistical

analysis approaches.
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Supplementary figures: 

 

Supplementary Figure 1: Replication of out-of-scanner behaviour from Cope et al. 13 , related to Results, Behaviour. Upper: 
Perceptual clarity rating task, with manipulations of prior congruency and sensory detail. Bar heights represent group-
averages for each condition and error bars represent standard error across individuals within each group. Middle: Four 
alternative forced choice vocoded word identification task. Bar heights represent group-averages for each condition and 
error bars represent standard error across individuals within each group. Chance performance at 25%. Bottom: Derived 
parameters from the Bayesian data modelling. A.U., arbitrary units. In all replications, patients with nfvPPA displayed 
significantly more precise prior expectations than controls (all Wilcoxon U p < 0.01).  

  



 

Supplementary Figure 2: As in Cope et al. 13, frontal atrophy resulted in inflexible perceptual predictions, related to Results, 
Behaviour. This was measured as a reduction in the standard deviation of the behavioural prior from Bayesian modelling. 
Black trend line is for all participants; blue trend line for only patients with nfvPPA; red trend line for only controls. 



 

Supplementary Figure 3: Four alternative forced choice vocoded word identification task of the fMRI paradigm words, 
related to Results, Behaviour. Conducted after the scan session. Bar heights represent group-averages for each vocoder 
channel number, and error bars represent standard error across individuals within each group. Note that every trial had two 
close neighbour and one shared vowel distractor items, i.e. the target ‘pit’ had distractor items ‘pick’, ‘kit’ and ‘kick’. Chance 
performance at 25%. 

 

  



 

Supplementary Figure 4: Intraparietal and IFG region of interest analysis broken down by condition and group for the 
shared segments model of phonological similarity, related to Figure 3. ROIs were defined from the univariate Mismatch > 
Match main effect of congruency (for IFG) and the interaction between sensory detail and cue congruency (for intraparietal 
sulcus). For univariate bar charts, where statistics were done on the whole brain and these figures are illustrative of the 
effects, error bars represent between-subject standard error to show variability in response magnitude. For multivariate bar 
charts, where the ROI was independently determined so the results are not double-dipped, error bars represent the 
standard error of the mean after removing between-subject variance, suitable for repeated-measures comparisons 2. There 
was no significant multivariate representation of word phonology in any condition for either group in either region.  

 



 

Supplementary Figure 5: Multivariate assessment of consistent relationships between verified and violated predictions, 
related to Figure 4. All observed sparse correlations were such that verified and violated predictions were more dissimilar 
than would be observed by chance – we have inverted the prediction RSA matrix such that these correlations are displayed 
as positive dark blue bars. A: Whole brain analysis, cluster corrected at FDR p<0.05. Bar charts show separate ROI analyses 
of the model of prediction dissimilarity and its matching model of spoken word phonology. The IFG ROI is as shown, defined 
from all subjects. However, using the anterior STG cluster from the whole brain Controls> nfvPPA contrast would be double 
dipping. We therefore assessed the anterior STG ROI defined from our univariate Mismatch > Match contrast, displayed in 
blue on the inset illustrative brain. There was a group by condition interaction in this region (F(1,32)=5.95, Greenhouse 
Geisser p=0.020) that matched that shown in Figure 5 using partial correlations (F(1,32)=5.51, Greenhouse Geisser 
p=0.025). B: Analysis within regions of interest not implicated in the whole brain analysis of prediction dissimilarity, showing 
shared representations of consistent prediction error and sensory input phonology in STG in controls, but no consistent 
prediction dissimilarity representations in patients in STG, or either group in PrG. STG ROI defined from the 15>3 vocoder 
channel univariate contrast. PrG ROI defined from the multivariate between-condition shared segment analysis. IPS ROI 
defined from the univariate interaction between cue congruency and sensory detail 

  



 

Supplementary Figure 6: Average pure tone audiograms for study participants, by group and ear, Related to STAR Methods. 
No statistically significant group differences were observed at any frequency in either ear. One nfvPPA participant had a left 
tympanic membrane perforation, accounting for the threshold asymmetry in that group, but they had excellent right-sided 
hearing and reported being able to clearly perceive the auditory stimuli in the scanner environment. 



 

Supplementary Figure 7: Different methods for presenting 7T functional imaging data, Related to STAR Methods. Using the 
Written+Spoken > Written-only contrast as an illustrative example. A: Overlaying data on the average structural brain 
represents it precisely and accurately, but it is difficult to visualise multiple brain regions simultaneously. Multiple slices 
must be user specified to highlight each activated region, making it a poor choice for network-level activations presented 
here. B: Projecting volumetric data onto a partially inflated cortical surface using the open source software Surf Ice gives an 
immediate impression of regional activations, including those deep in sulci that would be obscured in anatomically faithful 
renderings. However, these projections are not quantitative, as they work on the basis of inflation and averaging, including 
white matter voxels without activation. For the data presented here, open source software Surf Ice represents a peak t-
score of 6.6, while the original data extend to 12.7. C: Custom projection, as described in the methods text and available at 
https://github.com/thomascope/7T_pilot_analysis/blob/master/atlas_Neuromorphometrics/jp_spm8_surfacerender2_vers
ion_tc.m. This replicates the visual impression of spatial extent generated by Surf Ice, while correctly representing the range 
of t-scores in the data.  
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Desikan-Killiany region 

average thickness 

nfvPPA 

Mean 

Patien

t SE 

Control 

Mean 

Control 

SE 

t_stat df p_value BF10 for 

group 

difference 

BF_null for 

no atrophy 

lh_bankssts 2.144 0.056 2.087 0.032 0.924 32 0.362 0.459 6.012 

lh_caudalanteriorcingulate 2.182 0.075 2.195 0.039 -0.160 32 0.874 0.334 2.661 

lh_caudalmiddlefrontal 2.007 0.044 2.324 0.025 -6.609 32 0.000 54773.821 0.000 

lh_cuneus 1.805 0.032 1.851 0.028 -1.112 32 0.274 0.531 1.091 

lh_entorhinal 2.299 0.066 2.413 0.069 -1.181 32 0.246 0.564 1.011 

lh_fusiform 2.212 0.031 2.149 0.026 1.552 32 0.131 0.825 9.287 

lh_inferiorparietal 2.130 0.028 2.171 0.022 -1.169 32 0.251 0.558 1.025 

lh_inferiortemporal 2.167 0.032 2.139 0.016 0.832 32 0.411 0.432 5.632 

lh_isthmuscingulate 1.984 0.038 2.003 0.027 -0.424 32 0.674 0.354 2.130 

lh_lateraloccipital 1.941 0.021 1.949 0.022 -0.252 32 0.803 0.339 2.467 

lh_lateralorbitofrontal 2.230 0.030 2.258 0.017 -0.859 32 0.397 0.439 1.420 

lh_lingual 1.885 0.024 1.882 0.025 0.075 32 0.941 0.331 3.210 

lh_medialorbitofrontal 2.167 0.022 2.148 0.025 0.566 32 0.576 0.374 4.646 

lh_middletemporal 2.267 0.040 2.298 0.018 -0.755 32 0.456 0.412 1.572 

lh_parahippocampal 2.201 0.047 2.217 0.044 -0.243 32 0.810 0.338 2.486 

lh_paracentral 2.139 0.039 2.241 0.029 -2.142 32 0.040 1.826 0.279 

lh_parsopercularis 2.145 0.037 2.296 0.015 -4.048 32 0.000 82.362 0.006 

lh_parsorbitalis 2.265 0.033 2.295 0.029 -0.686 32 0.498 0.396 1.679 

lh_parstriangularis 2.072 0.027 2.207 0.016 -4.465 32 0.000 224.868 0.002 

lh_pericalcarine 1.598 0.026 1.676 0.022 -2.268 32 0.030 2.225 0.228 

lh_postcentral 1.865 0.029 1.943 0.020 -2.261 32 0.031 2.203 0.230 

lh_posteriorcingulate 2.068 0.041 2.176 0.032 -2.103 32 0.043 1.722 0.297 

lh_precentral 2.148 0.049 2.383 0.029 -4.328 32 0.000 161.093 0.003 

lh_precuneus 2.077 0.033 2.123 0.021 -1.225 32 0.230 0.587 0.962 

lh_rostralanteriorcingulate 2.418 0.054 2.336 0.026 1.466 32 0.152 0.749 8.761 

lh_rostralmiddlefrontal 2.007 0.026 2.170 0.016 -5.643 32 0.000 4459.581 0.000 

lh_superiorfrontal 2.182 0.035 2.426 0.023 -5.969 32 0.000 10384.251 0.000 

lh_superiorparietal 1.946 0.029 2.015 0.025 -1.810 32 0.080 1.136 0.458 

lh_superiortemporal 2.274 0.037 2.342 0.024 -1.595 32 0.120 0.868 0.613 

lh_supramarginal 2.139 0.028 2.225 0.022 -2.436 32 0.021 2.937 0.172 

lh_frontalpole 2.342 0.050 2.375 0.033 -0.570 32 0.573 0.375 1.871 

lh_temporalpole 2.936 0.077 2.837 0.044 1.177 32 0.248 0.562 7.178 

lh_transversetemporal 2.162 0.053 2.166 0.039 -0.064 32 0.949 0.331 2.875 

lh_insula 2.609 0.036 2.571 0.031 0.800 32 0.429 0.423 5.505 

lh_Overall_Mean 2.104 0.017 2.189 0.012 -4.210 32 0.000 121.203 0.004 



Supplementary table 1: Cortical thickness estimates from Freesurfer by group, related to Figure 2. Mean and standard error 
are followed by the t-score, degrees of freedom, and p-value for a two sample t-test with unequal variances. Given the 
illustrative nature of this table, p-values are not corrected for multiple comparisons. In our frontal regions of interest 
(lh_parstriangularis, lh_parsopercularis, and lh_ precentral) p values were all <=0.01 even after Bonferroni correction across 
35 regions. BF10 is the Bayes Factor for a group difference in either direction (i.e. a two-tailed test), while BF_null is the 
Bayes Factor for no atrophy in the patient group (i.e. the inverse of a one-tailed test). 
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