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European and multi-ancestry genome-wide
association meta-analysis of atopic dermati-
tis highlights importance of systemic
immune regulation

A list of authors and their affiliations appears at the end of the paper

Atopic dermatitis (AD) is a common inflammatory skin condition and prior
genome-wide association studies (GWAS) have identified 71 associated loci. In
the current study we conducted the largest AD GWAS to date (discovery
N = 1,086,394, replication N = 3,604,027), combining previously reported
cohorts with additional available data. We identified 81 loci (29 novel) in the
European-only analysis (which all replicated in a separate European analysis)
and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants
from the multi-ancestry analysis replicated in at least one of the populations
tested (European, Latino or African), while two may be specific to individuals
of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity
and eQTL associations in blood. At each locus we prioritised candidate genes
by integrating multi-omic data. The implicated genes are predominantly in
immune pathways of relevance to atopic inflammation and some offer drug
repurposing opportunities.

Atopic dermatitis (AD, or eczema) is a common allergic disease,
characterised by (often relapsing) skin inflammation affecting up to
20% of children and 10% of adults1. Several genome-wide association
studies (GWAS) have been performed in recent years, identifying
genetic risk loci for AD.

Our most recent GWAS meta-analysis within the EAGLE (EArly
Genetics and Lifecourse Epidemiology) consortium, published in 2015
uncovered 31 AD risk loci2. Since then, additional GWAS have been
published which have confirmed known risk loci3,4 and discovered
novel loci5. Five novel loci were identified in a Europeanmeta-analysis6,
and variants in 3 genes were implicated in a rare variant study in
addition to 5 novel loci7. Four novel loci were reported in a Japanese
population (and another 4 identified in a trans-ethnic meta-analysis in
the same study)8, giving a total of 71 previously reported AD loci2–14

(defined as 1Mb regions) of which 57 have been reported in European
ancestry individuals, 18 have been reported in individuals of non-
European ancestry and 29 in individuals across multiple ancestry
groups (Supplementary Data 1).

The availability of several new large population-based studies has
provided an opportunity to perform an updated GWAS of AD, aiming
to incorporate data from all cohorts that have contributed to pre-
viously published ADGWAS, as well as data fromadditional cohorts, to
present the most comprehensive GWAS of AD to date, including
comparison of effects between European, East Asian, Latino and Afri-
can ancestral groups. In this work we identify novel loci and use multi-
omic data to further characterise these associations, prioritising can-
didate causal genes at individual loci and investigating the genetic
architecture of AD in relation to tissues of importance and shared
genetic risk with other traits.

Results
European GWAS
The discovery Europeanmeta-analysis (N = 864,982; 60,653 AD cases
and 804,329 controls from 40 cohorts, summarised in Supplemen-
tary Data 2) identified 81 genome-wide significant independent
associated loci (Fig. 1a and Supplementary Fig. 1). 52 were at
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previously reported loci (Table 1) and 29 (Table 2) were novel
(according to criteria detailed in themethods). All 81 were associated
in the European 23andMe replication analysis (Bonferroni corrected
P < 0.05/81 = 6 × 10−4), N = 2,904,664, Table 1). There was little evi-
dence of genomic inflation in the individual studies (lambda <1.05)
and overall (1.06). Conditional analysis determined 44 additional
secondary independent associations (P < 1 × 10−5) across 21 loci
(Supplementary Data 3).

The SNP-based heritability (h2
SNP) for ADwas estimated to be 5.6%

in the European discovery meta-analysis (LDSC intercept=1.042
(SE =0.011)). This is low in comparison toheritability estimates for twin
studies (~80%)15,16, but comparable with previous h2

SNP estimates for
AD in Europeans (5.4%)6.

Multi-ancestry GWAS
In a multi-ancestry analysis including individuals of European, Japa-
nese, Latino and African ancestry (Supplementary Data 2,
N = 1,086,394; 65,107 AD cases and 1,021,287 controls), a total of 89
loci were identified as associated with AD (Fig. 1b and Supplementary
Fig. 1). 75 of these were not independent of lead variants identified in
the European-only analysis (r2 > 0.01 in the relevant ancestry) and a
further 9 showed some evidence for association (Bonferroni cor-
rected P < 0.05/89 = 5.6 × 10−4) in the European analysis, but 5 were
not associated (P > 0.1) in Europeans (Table 3, Supplemen-
tary Data 4).

Of the 14 loci that reached genome-wide significance in the multi-
ancestry discoveryanalysis only (Table 3), 8 replicated in at least oneof

Fig. 1 | Manhattan plots of atopic dermatitis GWAS. (a) the European-only fixed
effectsmeta-analysis (n= 864,982 individuals) and (b) themulti-ancestryMR-MEGA
meta-analysis (n = 1,086,394 individuals). −log10(P-values) are displayed for all

variants in the meta-analysis. Variants that meet the genome-wide significance
threshold (5 × 10−8, red line) are shown in green.
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the replication samples (of European, Latino and/or African ancestry;
Bonferroni corrected P <0.05/14 = 3.6 × 10−3). Two index SNPs which
did not replicate in any of the samples (rs9864845 (near CCDC80),
rs4312054 (nearNLRP10)) appear to have been driven by association in
the Japanese RIKEN study only (Supplementary Data 4, Supplementary
Figs. 2, 3). Whilst the allele frequencies of these index SNPs are similar
between Europeans and Japanese (37% vs 42% for rs9864845, 41% vs
46% for rs4312054, Supplementary Data 5), in a multi-ancestry fixed
effect meta-analysis at both these loci there were neighbouring (pre-
viously reported)8 SNPs with stronger evidence of association
(rs72943976, P = 2 × 10−9 and rs59039403 P = 2 × 10−35, Supplementary
Fig. 3), that did show large allele frequencies for Japanese (~34% and
13%, respectively) but <1% in Europeans. A further 4 loci did not
replicate, and on closer examination (Supplementary Fig. 2, and MAF
in cases <1%), their association in the discovery analysis appeared to be
driven by a false positive outlying result in a single European cohort.

Seven of the loci in Table 3 have been previously reported as
associated with AD. Two (rs117137535 (near ARRDC1)7 and rs1059513
(near STAT6)8) were previously only associated with Europeans (and
thesewere variants that were just below the genome-wide significance
threshold in our European only analysis). Three (rs4262739 (near
ETS1), rs4574025 (within TNFRSF11A) and rs6023002 (near CYP24 A1))
were previously associated in Japanese and Europeans8, while 2 were
previously associatedonly in Japanese8,10, using the same Japanesedata
(RIKEN) that we include here. Therefore, in our multi-ancestry analysis
(and replication) we identify 3 loci that have not previously been
reported in a GWAS of AD of any ancestry (rs9247 (near INPP5D),
rs34599047 (near ATG5) and rs7773987 (near AHI1)), all of which are
associated in two or more populations in our data (Table 3).

In addition, for 5 loci which had previously been associated with
individuals of European and/or Japanese ancestry, we now show
evidence that these are also associated with individuals of Latino
ancestry and one is also associated in individuals of African ancestry
(Table 3).

Comparison of associations between ancestries
Effect sizes of the index SNPs were remarkably similar between indi-
viduals of European and Latino ancestry (Supplementary Fig. 4A).
Therewere only two variants with any evidence for a difference (where
Latino P > 5 × 10−4 and the 95% confidence intervals didn’t overlap), but
the plot shows that these were only marginally different and likely to
be due to chance. Effect size comparison of the index SNPs between
individuals of European and African ancestry showed greater differ-
ences (Supplementary Fig. 4B). 17 SNPs showed some evidence for
being European-specific in that comparison. The confidence intervals
in the Japanese data weremuch wider but there was weak evidence for
one SNP being European-specific and stronger evidence for two SNPs
being Japanese-specific (Supplementary Fig. 4C). These were
rs4312054 (JAP CI: 0.75-0.84, EUR CI: 0.99-1.01) and rs9864845 (JAP CI:
1.16-1.30, EUR CI: 0.99-1.06), mentioned earlier as the SNPs that
appeared to be driven only by Japanese individuals in the multi-
ancestry meta-analysis (Supplementary Data 4).

Established associations
A review of previous work in this field (Supplementary Data 1) shows
that a total of 202 unique variants (across a much smaller number of
loci) have been reported to be associated with AD. We found evidence
for all but 7 variants of these being nominally associated in the current
GWAS (81% in the European and 96% in the multi-ancestry analysis).
Variants we did not find to be associated were either rare variants
(MAF < 0.01), or insertion/deletion mutations, which were not inclu-
ded in our analysis.

Genetic correlation between AD and other traits
LD score regression analyses showed high genetic correlation, as
expected, between AD and related allergic traits, e.g. asthma
(rg=0.53, P = 2 × 10−32), hay fever (rg=0.51, P = 7 × 10−17) and eosinophil
count (rg = 0.27, P = 1 × 10−7) (Supplementary Fig. 5 and Supple-
mentary Data 6). In addition, depression and anxiety showed notable

Table 3 | Additional loci associated with the multi-ancestry analysis

Multi-ancestry
discovery

European
discovery

RIKEN - Bio-
bank Japan

23andMe
Latino

23andMe
African

23andMe
European

Known Novel

N = 992,907 N = 864,982 N = 118,287 N = 525,348 N = 174,015 N = 2,904,664 Associations Associations

Variant Chr:position Alleles
(EAF)

P P P P P P

rs114059822a 1:19804918 T/G (0.03) 8.59E−09 0.25 – 0.07 0.03 0.87 NA NA

rs9247 2:234113301 T/C (0.21) 1.92E−09 7.32E−08 7.71E−05 1.49E−13 7.23E−03 2.93E−51 allb

rs9864845 3:112383847 A/G (0.37) 2.17E−12 0.22 3.92E−13 0.75 0.23 0.12 Japanese (Tanaka et al.8)

rs34599047 6:106629690 C/T (0.18) 3.32E−08 1.29E−07 0.03 7.18E−04 0.02 3.23E−22 allb

rs7773987 6:135707486 T/C (0.60) 1.22E−08 9.57E−08 0.15 0.18 1.95E−03 5.93E−13 European,
African

rs118029610a 9:1894613 T/C (0.03) 1.89E−08 2.97E−04 – 0.5 0.31 0.78 NA NA

rs117137535 9:140500443 A/G (0.03) 1.99E−08 5.50E−08 – 3.99E−07 0.33 9.25E−19 European (Grosche et al.7) Latino

rs4312054 11:7977161 G/T (0.43) 3.21E−12 0.86 3.46E−15 0.4 0.33 0.52 Japanese (Tanaka et al.8)

rs150113720a 11:83439186 G/C (0.02) 5.52E−10 0.40 – 0.1 0.22 0.14 NA NA

rs115148078a 11:101361300 T/C (0.02) 5.91E−09 0.37 – 3.69E−03 0.91 0.89 NA NA

rs4262739 11:128421175 A/G (0.50) 2.20E−08 6.03E−07 2.28E−03 1.89E−06 0.09 1.45E−36 European & Japanese (Tanaka
et al.8)

Latino

rs1059513 12:57489709 C/T (0.08) 5.15E−09 1.57E−07 0.33 3.06E−04 0.17 6.95E−16 European (Tanaka et al.8) Latino

rs4574025 18:60009814 T/C (0.55) 7.00E−10 1.48E−06 2.67E−05 2.59E−04 1.24E-05 2.96E−05 European & Japanese (Tanaka
et al.8)

Latino, African

rs6023002 20:52797237 C/G (0.52) 4.05E−10 2.26E−06 2.82E−07 5.96E−03 0.07 3.22E−28 European & Japanese (Tanaka
et al.8)

Latino

For loci that were associated in the multi-ancestry discovery analysis, but not the European discovery analysis, we show the (unadjusted two-sided) P-values for association across 4 diverse
ancestral groups, European, Japanese, Latino andAfrican. Full association statistics (includingORand95%CI) for each variant canbeviewed inSupplementaryData 4 (and results acrossall cohorts
individually are depicted in Supplementary Fig. 2).
Alleles are reported as effect allele/other allele.
Genome build = GRCh37/hg19.
NA indicates finding not replicated and likely to be false-positive in discovery.
Bold is used in the novel column to denote the 3 associations that are entirely novel (i.e. locus has not been associated in any ancestry previously).
– Variant was not available in dataset.
aGenome-wide significant loci without replication that are assumed to be false positives in the discovery data.
bWhilst not identified in any GWASADpapers, these loci have previously shown evidence for association with AD in the supplementarymaterial ofmethodological papers92 or GWAS of combined
allergic disease phenotype5.
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genetic correlation with AD (rg = 0.17, P = 2 × 10−7), a relationship
which has been reported previously, but causality has not been
established17. Furthermore, gastritis also showed substantial genetic
correlation (rg = 0.31, P = 1 × 10−5), which may be due to the AD
genetic signal including variants with pervasive inflammatory func-
tion or the observed correlation could indicate a shared risk locus for
inflammation or microbiome alteration in the upper gastrointestinal
tract, or it may reflect the use of systemic corticosteroid treatment
for atopic disease which in some cases causes gastritis as a side
effect.

Tissue, cell and gene-set enrichment
The tissue enrichment analyses using distinct molecular evidence
(representing open chromatin and gene expression) both found
blood to be the tissue showing strongest enrichment of GWAS loci
(Fig. 2). The Garfield test for enrichment of genome-wide loci (with
P < 1 × 10−8) in DNase I hypersensitive sites (DHS broad peaks) found
evidence of enrichment (P < 0.00012) in 41 blood tissue analyses, a
greater signal than another tissue or cell type (Fig. 2a and Supple-
mentary Data 7). The strongest enrichment (OR > 5.5 and P < 1 × 10−10)
was seen for T-cell, B-cell and natural killer lymphocytes (CD3+,
CD4+, CD56+ and CD19+). As expected for AD, Th2 showed stronger
enrichment (OR = 4.3, P = 1 × 10−8) than Th1 (OR = 2.3, P = 2 × 10−4). The
strongest enrichment in tissue samples representing skin was seen
for foreskin keratinocytes (OR = 2.0, P = 0.008), but this did notmeet
a Bonferroni-corrected P-value threshold (0.05/425 = 1 × 10−4).

The most enriched tissue type in MAGMA gene expression
enrichment analysis was whole blood (P = 2 × 10−14). Others that met
our Bonferroni-corrected P-value (P < 0.0009) were spleen, EBV-
transformed lymphocytes, sun-exposed and unexposed skin, small
intestine and lung (Fig. 2b and Supplementary Data 8).

DEPICT cell-type enrichment analysis identified a similar set of
enriched cell-types: blood, leucocytes, lymphocytes and natural killer
cells, but with the addition that the strongest enrichment was seen for
synovial fluid (P = 2 × 10−7), which may be due to its immune cell
component.

The DEPICT pathway analysis found 420 GO terms with enrich-
ment (FDR < 5%) amongst the genes from our GWAS loci (Supple-
mentary Data 9). The pathway with the strongest evidence of
enrichment was ‘hemopoietic or lymphoid organ development’
(P = 1 × 10−16). All terms with FDR< 5% are represented in Supple-
mentary Fig. 6, where the terms are grouped according to similarity
and the parent terms labelled illustrating the strong theme of
immune system development and signalling.

Gene prioritisation and biological interpretation in silico
The top genes prioritised using our composite score from publicly
available data for each of the established European AD loci are shown
in Table 1 and Fig. 3a (and the evidence thatmakes up the prioritisation
scores is shown in Supplementary Fig. 7). The top three prioritised
genes at each independent locus are shown in Supplementary Data 10
and a summary of all evidence for all genes reviewed in silico is pre-
sented in Supplementary Data 11.

In most cases the top prioritised gene had been implicated (in
previous GWAS) or is only superseded marginally by an alternative
candidate. One interesting exception is on chromosome 11, where
MAP3K11 (with a role in cytokine signalling – regulating the JNK sig-
nalling pathway) ismarkedly prioritised over the previously implicated
OVOL118 (involved in hair formation and spermatogenesis), although
the prioritisation of MAP3K11 is predominantly driven by TWAS evi-
dence in multiple cell types rather than colocalisation or other
evidence.

There are three instances where multiple associations in the
region implicate additional novel genes. Two are genes involved in
TLR4 signalling: S100A9 (prioritised in addition to the established FLG

and IL6R on chromosome 1) and AGER (prioritised in addition to HLA-
DRA on chromosome 6). The third has a likely role in T-cell activation:
CDC42SE2 (prioritised in addition to SLC22A5 on chromosome 5).

The top prioritised gene at each of the novel European loci are
shown in Table 2 and Fig. 3b. Many are in pathways already identified
by previous findings (e.g. cytokine signalling—specially IL-23, antigen
presentation andNF-kappaBproinflammatory response). At one locus,
the index SNP, rs34215892 is a missense (Pro274Leu) mutation within
the DOK2 gene, although this mutation is categorised as tolerated or
benign by SIFT and PolyPhen. The genes with the highest prioritisation
score amongst the novel loci were GPR132 (total evidence Score=24),
NEU4 (score=22),TNFRSF1B (score = 19) andRGS14 (score=19) andeach
show biological plausibility as candidates for AD pathogenesis.

GPR132 is a proton-sensing transmembrane receptor, involved in
modulating several downstream biological processes, including
immune regulation and inflammatory response, as reportedpreviously
in an investigation of this protein’s role in inflammatory bowel
disease19. The index SNP at this locus, rs7147439 (whichwas associated
with Europeans, Latinos, Africans, but not Japanese), is an intronic
variant within the GPR132 gene. The AD GWAS association at this locus
colocalises with the eQTL association for GPR132 in several immune
cell types (macrophages20, neutrophils21, several T-cell datasets22) as
well as in colon, lung and small intestine in GTEx23. GPR132 has also
been shown to be upregulated in lesional and nonlesional skin in AD
patients, compared to skin from control individuals24,25. OpenTargets
and POSTGAP both prioritise GPR132 for this locus.

The SNP rs62193132 (which showed consistent effects in Eur-
opean, Latino and Japanese individuals, but little evidence for asso-
ciation in African individuals, Supplementary Fig. 2), is in an intergenic
region between NEU4 (~26 kb) and PDCD1 (~4 kb away) on chromo-
some 2. NEU4 was the highest scoring in our gene prioritisation pipe-
line (score=22). However, PDCD1 also scores highly (score = 18,
Supplementary Data 10). NEU4 is an enzyme that removes sialic acid
residues from glycoproteins and glycolipids, whereas PDCD1 is
involved in the regulation of T cell function. The AD GWAS association
at this locus colocalises with the eQTL for NEU4 in several monocyte
and macrophage datasets22,26–28 as well as in the ileum, colon and
skin23,29. The eQTL for PDCD1 also colocalises in monocytes and
macrophages27,28 aswell as T-cells22, skin andwhole blood23. In addition
to the eQTL evidence, PCDC1 is upregulated in lesional and non-
lesional skin in AD patients compared to skin from control
individuals24,25. OpenTargets andPoPsprioritiseNEU4, whilst POSTGAP
prioritises PDCD1 at this locus.

TNFRSF1B is part of the TNF receptor, with an established role in
cytokine signalling. rs61776548 (which showed consistent associations
across all major ancestries tested) is 136 kb upstream of TNFRSF1B,
actually within an intron ofMIIP.MIIP encodesMigration and Invasion-
Inhibitory Protein, which may function as a tumour suppressor. How-
ever, TNFRSF1B is a stronger candidate gene since the AD GWAS
association at this locus colocalises with the eQTL for TNFRSF1B
T cells22,30, macrophages20, fibrobasts31 and platelets29. Furthermore,
TNFRSF1B gene expression and the corresponding protein are upre-
gulated in lesional and nonlesional skin compared to controls24,25,32 and
the PoPs method prioritised this gene at this locus.

RGS14 is a multifunctional cytoplasmic-nuclear shuttling protein
which regulates G-protein signalling, but whose role in the immune
system is yet to be established. rs4532376 is 10.5 kb upstreamof RGS14
and within an intron of LMAN2. The AD GWAS association at this locus
colocalises with the eQTL for RGS14 in macrophages20, CD8 T-cells22,
blood33 and colon23. RGS14 has also been shown to be upregulated in
lesional skin of AD cases compared to skin from control individuals25

andDEPICT prioritises this gene. However, at this locus LMAN2 is also a
reasonably promising candidate (score=15) based on colocalisation
and differential expression evidence (Supplementary Data 11). Open-
Targets and POSTGAP prioritise this alternative gene at this locus and
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Fig. 2 | Cell type tissue enrichment analysis. a GARFIELD enrichment analysis of
open chromatin data. Plot shows enrichment for AD associated variants in DNase I
Hypersensitive sites (broad peaks) from ENCODE and Roadmap Epigenomics
datasets across cell types. Cell types are sorted and labelled by tissue type. ORs for
enrichment are shown for variants at GWAS thresholds of P < 1 × 10−8 (black) and
P < 1 × 10−5 (blue) after multiple-testing correction for the number of effective
annotations. Outer dots represent enrichment thresholds of P < 1 × 10−5 (one dot)

and P < 1 × 10−6 (two dots). Font size of tissue labels corresponds to the number of
cell types from that tissue tested. b MAGMA enrichment analysis of gene expres-
sion data. Plot shows P-value for MAGMA enrichment for AD associated variants
with gene expression from 54 GTEx ver.8 tissue types. The enrichment –log10(P-
value) for each tissue type is plotted on the y-axis. The Bonferroni corrected
threshold P =0.0009 is shown as a dotted line and the 7 tissue types that meet this
threshold are highlighted as red bars.
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it is possible that genetic variants at this locus influence AD risk
through both genetic mechanisms.

We did not include the 3 novel variants from the multi-ancestry
analysis in the comprehensive gene prioritisation pipeline because the
available resources used predominantly represent European samples
only. We did however investigate these variants using Open Targets
Genetics, to identify any evidence implicating specific genes at these
loci. rs9247 is a missense variant in INPP5D, encoding SHIP1, a protein
that functions as a negative regulator of myeloid cell proliferation and
survival. The INPP5D gene has been implicated in hay fever and/or
eczema5 and other epithelial barrier disorders including inflammatory
bowel disease. rs7773987 is intronic for AHI1 (Abelson helper integra-
tion site 1) which is involvedwithbrain development but expressed in a
range of tissues throughout the body; single cell analysis in skin shows
expression in multiple cell types including specialised immune cells
and keratinocytes, but the highest abundance is in endothelial cells
(data available from v21.1 proteinatlas.org). The closest genes to
rs34599047 are ATG5 (involved in autophagic vesicle formation) and
PRDM1 (which encodes a master regulator of B cells).

Network analysis
STRING network analysis of the 70 human proteins encoded by
genes listed in Tables 1 and 2 showed a protein-protein interaction
(PPI) enrichment p-value < 1 × 10−16. The five most highly significant
(FDR P = 1 × 10−9) Gene Ontology (GO) terms for biological process
relate to immune system activation and regulation (Supplementary
Data 12). The network described by the highly enriched term ‘Reg-
ulation of immune system process’ (GO:0002682) is shown in Fig. 4.

Extending the network to include the less well characterised
genes/proteins from the multi-ancestry analysis further strengthened
this predicted network: The PPI enrichment was again P < 1 × 10−16 and
‘Regulation of immune system process’ was the most enriched term
(FDR P = 5 × 10−13).

Discussion
We present the results of a comprehensive genome-wide association
meta-analysis of AD in whichwe have identified a total of 91 associated
loci. This includes 81 loci identified amongst individuals of European
ancestry replicated in a further sample of 2.9 million European indi-
viduals (as well as many showing replication in data for other ances-
tries). Of the additional 10 loci identified in a multi-ancestry analysis, 8
replicated in at least one of the populations tested (European, Latino
and African ancestry) and a further 2 may be specific to individuals of
East Asian ancestry (but require replication).

The majority of the loci associated with AD are shared between
the ancestry groups represented in our data, though there were some
notable exceptions. We report two previously identified loci with
associations that appear to be specific to the Japanese cohort
(although driven by just one cohort and still require independent
replication).Whilst these have been previously reported8, this used the
same data as examined here. However, rs59039403 within NLRP10 is a
likely deleterious missense mutation at reasonable frequency in Japa-
nese (13%) that is present at a far lower frequency (<1%) in Europeans.
Equally, previous further investigation of the association near CCDC80
found a putative functional variant (rs12637953) that affects the
expression of an enhancer (associated with CCDC80 promoter) in

Fig. 3 | PrioritisedgenesatGWAS loci.Prioritisedgenes at known (a) andnovel (b)
loci. For each independent GWAS locus the top prioritised gene (or genes if they
were tied) from our bioinformatic analysis is presented along with a bar repre-
senting the total evidence score for that gene. A more detailed breakdown of the

constituent parts of this evidence score is presented in Supplementary Fig. 5 and
the total evidence scores for the top 3 genes at each locus are presented in Sup-
plementary Data 10. NB. There are some cases of two independent GWAS signals
implicating the same gene.
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epidermis and Langerhans cells8, increasing the evidence that these
Japanese-specific loci are real. Furthermore, we have identified several
loci with association in Europeans (many of which also showed asso-
ciation in individuals of Japaneseor Latino ancestry) butwhich showed
no evidence of association in individuals of African ancestry. It is
tempting to speculate, using our knowledge of the differing AD phe-
notypes between European, Asian and African people34,35 that the dif-
fering genetic associations at some loci may contribute to these
clinical observations. rs7773987 within an intron of AHI1 may, for
example, indicate a mechanism contributing to neuronal sensitisation
leading to the marked lichenification and nodular prurigo-type
lesions36 that characterise AD in some people of African and Eur-
opean ethnicities37. Large-scale population cohorts (as used here) have
been useful for identifying associated variants. However, we do note
that the variants identified should be further examined with respect to
specific aspects of AD (age of onset, severity and longitudinal classes38)
in future analysis.

The dominance of blood as the tissue showing most enrichment
of our GWAS signals in regions of DNAse hypersensitivity and of eQTLs
suggests the importance of systemic inflammation in AD and this is in

keeping with knowledge of the multisystem comorbidities associated
with AD39. The dominance of blood also supports the utility of this
easily accessible tissue when characterising genetic risk mechanisms,
and for the measurement of biomarkers for many of the implicated
loci. However, skin tissue also showed enrichment and there are likely
to be some genes for which the effect is only seen in skin. For example,
we know that two genes previously implicated in AD, FLG andCD2072,18

are predominantly expressed in the skin and in our gene prioritisation
investigations there was no evidence from blood linking FLG to the
rs61816766 association and only one analysis of monocytes separated
from peripheral blood mononuclear cell (PBMC) samples28 which
implicated CD207 for the rs112111458 association, amongst an abun-
dance of evidence from skin for both genes playing a role in AD
(Supplementary Data 11). So, whilst the enrichment analysis suggests
blood as a useful tissue for genome scale studies of AD and a reason-
able tissue to include for further investigation at specific loci, it does
not preclude skin as the more relevant tissue for a subset of
important genes.

Atmany of the loci identified in this GWAS, our gene prioritisation
analysis, aswell as theDEPICTpathway analysis, implicated genes from

Fig. 4 | Predicted interaction network of proteins encoded by the top priori-
tised genes from known and novel European GWAS loci. Protein-protein inter-
action analysis carried out in STRING v11.5; nodes coloured red represent the GO

term ‘Regulation of immune system process’ (GO:0002682) for which 28/1514
proteins are included (FDR P = 1 × 10−9). Full results for all identified pathways are
available in Supplementary Data 12.
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pathways that are already known to have a role in AD pathology. The
overwhelming majority of these are in pathways related to immune
system function; STRING network analysis highlighted the importance
of immune system regulation, in keeping with an increasing awareness
of the importance of balance in opposing immune mechanisms that
can cause paradoxical atopic or psoriatic skin inflammation40. Whilst
our in silico analyses cannot definitively identify specific causal genes
(rather,wepresent a prioritised list of all genes at each locus alongwith
the corresponding evidence for individual evaluation), it is of note that
formany of the previously known loci (Table 1) our approach identifies
genes which have been validated in experimental settings, e.g. FLG41,
TNF42 and IL2243. The individual components of the gene prioritisation
analysis have their limitations, particularly the high probability that
findings, whilst demonstrating correlation, do not necessarily provide
evidence for a causal relationship. This has been particularly high-
lighted with respect to colocalisation of GWAS and eQTL associations,
where high co-regulation can implicate many potentially causal
genes44. Another limitation is that only cell types (and conditions) that
have been studied and made available are included in the in silico
analysis, and gaps in the data may prove crucial. However, we believe
this broad-reaching review of complementary datasets andmethods is
a useful initial approach to summarise the available evidence, prioritise
genes for follow-up and provide information to inform functional
experiments. The best evidence is likely to be produced from trian-
gulation of multiple experiments and/or datasets and we have pre-
sented our workflow and findings in a way to allow readers to make
their own assessments. Another important limitation of our gene
prioritisation, is that we only undertook the comprehensive approach
for loci associated in European individuals, given that the majority of
datasets used come from (and may only be relevant for) European
individuals. Expansion of resources that allow for similarly compre-
hensive follow-up of GWAS loci in individuals of non-European
ancestry are urgently needed45. However, we do report some evi-
dence that implicates certain genes at loci from our multi-ancestry
analysis, whilst noting that these require further investigation in
appropriate samples from representative populations.

Amongst the genes prioritised at the novel loci identified in this
study, four are targets of existing drugs (and have the required
direction of action consistent with the AD risk allele’s direction of
effect on the gene expression) as reported by Open Targets46: CSF1 is
targeted by a macrophage colony-stimulating factor 1 inhibiting anti-
body (in phase II trials as cancer therapy but also for the treatment of
rheumatoid arthritis and cutaneous lupus); CTSS is targeted by a small
molecule cathepsin S inhibitor (in phase I-II trials for coeliac disease
and Sjogren syndrome); IL15, targeted by an anti-IL-15 antibody (in
phase II trials for autoimmune conditions including vitiligo and psor-
iasis); andMMP12, targeted by small molecule matrix metalloprotease
inhibitors (in phase III studies for breast and lung cancer, plus phase II
for cystic fibrosis and COPD)47. These may offer valuable drug repur-
posing opportunities.

We have presented the largest GWAS of AD to date, identifying 91
robustly associated loci, 22 with some evidence of population-specific
effects. This represents a significant increase in knowledge of AD
genetics compared to previous efforts, taking the number of GWAS
hits identified in a single study from 31 to 91 and making available the
well-powered summary statistics to enable many future important
studies (e.g. Mendelian Randomization to investigate causal relation-
ships). To aid translation we have undertaken comprehensive post-
GWAS analyses to prioritise potentially causal genes at each locus,
implicating many immune system genes and pathways and identifying
potential novel drug targets.

Methods
Appropriate ethical approval was obtained for all cohorts by their
ethics committees as detailed in the Supplementary Methods.

Phenotype definition
Cases were defined as those who have “ever had atopic dermatitis”,
according to the best definition for the cohort, where doctor-
diagnosed cases were preferred. Controls were defined as those who
had never had AD. Further details on the phenotype definitions for the
included studies can be found in Supplementary Methods and Sup-
plementary Data 2.

GWAS analysis and quality control of summary data
We performed genome-wide association analysis (GWAS) for AD case-
control status across 40cohorts including60,653ADcases and804,329
controls of European ancestry. We also included cohorts with indivi-
duals of mixed ancestry (Generation R), as well as Japanese (Biobank
Japan), African American (SAGE II and SAPPHIRE) and Latino (GALA II)
studies, giving a total of 65,107 AD cases and 1,021,287 controls.

Genetic data was imputed separately for each cohort with the
majority of European cohorts using the haplotype reference con-
sortium (HRC version r1.1) reference panel48 (imputed with either the
Michigan or Sanger server). 8 European and 2 non-European cohorts
instead used the 1000 Genomes Project Phase 1 reference panel for
imputation. GWAS was performed separately for each cohort while
adjusting for sex and ancestry principal components derived from a
genotypematrix (as appropriate in each cohort). Genetic variants were
restricted to a MAF > 1% and an imputation quality score > 0.5 unless
otherwise specified in the Supplementary Methods. In order to
robustly incorporate cohorts with small sample sizes, we applied
additional filtering based on the expected minor allele count (EMAC)
as previously demonstrated49. EMAC combines information on sample
size, MAF and imputation quality (2*N*MAF*imputation quality score)
and a threshold of >50 EMAC was used to include variants for all
cohorts. QQ-plots and Manhattan plots for each cohort were gener-
ated and visually inspected as part of the quality control process.

Meta-analysis
For the discovery phase, meta-analysis of the European cohorts was
performed with GWAMA47 for 12,147,822 variants assuming fixed
effects, while the multi-ancestry analysis of all cohorts was conducted
inMR-MEGA50 (whichmodels the heterogeneity in allelic effects that is
correlated with ancestry). The latter included only 8,684,278 variants
as MR-MEGA excludes variants where the number of contributing
cohorts is less than 6. P < 5 × 10−8 was used to define genome-wide
significance. Clumping was performed (in PLINK 1.9051) to identify
independent loci.We formed clumps of all SNPswhichwere ±500kbof
each index SNPwith a linkage disequilibrium r2 > 0.001. Only the index
SNP within each clump is reported. For multi-ancestry index variants
within 500 kb of index SNPs identified in the European-only analysis,
we considered these to be independent if the lead multi-ancestry SNP
was not in LD (r2 < 0.01) with the lead neighbouring European variant.
Multi-ancestry fixed effect meta-analysis was also performed for
comparison with the MR-MEGA results.

Known/Novel assignment
Novel associations are defined as a SNP that had not been reported in
a previous GWAS (Supplementary Data 1), or was not correlated
(r2 < 0.1 in the relevant ancestry) with a known SNP from this list. In
addition, following the assignment of genes to loci (see gene prior-
itisation) any locus annotated with a gene that has been previously
reported were also moved to the ‘known’ list. Therefore, some loci
which are reported in Open Targets52,53 (but not reported in a pub-
lished AD GWAS study) have been classed as novel. These loci are
marked as such in Table 2.

Conditional analysis
Conditional analysis was performed to identify any independent sec-
ondary associations in the European meta-analysis. Genome-wide
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complex trait analysis-conditional and joint analysis (GCTA-COJO54)
was used to test for independent associations 250kb either side of the
index SNPs using UK Biobank HRC imputed data as the reference.
COJO-slct was used to determine which SNPs in the region were con-
ditionally independent (using default P < 1 × 10−5) and therefore
represent independent secondary associations. COJO-cond was then
used to condition on the top hit in each region to determine the
conditional effect estimates.

Replication
The genome-wide index SNPs identified from the European and
mixed-ancestry discovery meta-analyses were taken forward for
replication in 23andMe, Inc. Individuals of European (N = 2,904,664),
Latino (N = 525,348) and African ancestry (N = 174,015) were analysed
separately. Full details are available in the Supplementary Methods.

LD score regression
Linkage disequilibrium score (LDSC) regression software (version
1.0.1)55 was used to estimate the SNP-based heritability (h2

SNP) for AD.
This was performed with the summary statistics of the European dis-
covery meta-analysis. The h2

SNP was estimated on liability scale with a
population prevalence of 0.15 and a sample prevalence of 0.070.

Genetic correlation with other traits was assessed using all the
traits available on CTG-VL56 (accessed on 5th November 2021). We
considered phenotypes with p-values below the Bonferroni-corrected
alpha threshold (i.e., 0.05/1376 = 4 × 10−5) to be genetically correlated
with AD (a conservative threshold given the likely correlation between
many traits tested).

Bioinformatic analysis
For the following analyseswedefined the regionswithinwhich the true
causal SNP resides to bedeterminedbyboundaries containing furthest
distanced SNPs with r2 >= 0.2 within ±500kb of the index SNP18. We
refer to such regions as locus intervals and we used them as input for
the analyses described below.

Enrichment analysis
Enrichment of tissues and cell types and gene sets for AD GWAS loci
was investigated using DEPICT57 and GARFIELD (GWAS analysis of
regulatory or functional information enrichment with LD correction)58

ranwithdefault settings, aswell asMAGMAv.1.0659 (usingGTEx ver. 823

on the FUMA60 platform). In addition, we used MendelVar61 run with
default settings to check for enrichment of any ontology terms
assigned to Mendelian disease genes within the locus interval regions.

By default, MAGMA only assigns variants within genes. DEPICT
maps all genes within a given LD (r2 > 0.5) boundary of the index var-
iant. DEPICT gene set enrichment results for GO terms only were
grouped (using the Biological Processes ontology) and displayed using
the rrvgo package. The default scatter function was adapted to only
plot parent terms62.

Prioritisation of candidate genes
To prioritise candidate genes at each of the loci identified in the Eur-
opean GWAS, we investigated all genes within ±500 kb of each index
SNP (selected to capture an estimated 98% of causal genes)63. The
approach used has been previously described by Sobczyk et al.18. For
each gene we collated evidence from a range of approaches (as
described below) to link SNP to gene, resulting in 14 annotation cate-
gories (represented as columns in Supplementary Fig. 7). We sum-
marised these annotations for each gene into a score in order to
prioritise genes at each locus. We present the top prioritised gene in
the main tables, but strength of evidence varies and so we encourage
readers to use our full evaluation (of all the evidence presented in
Supplementary Data 11 for all genes at each locus) for loci of interest.

We tested for colocalisation with molecular QTLs, where full
summary statistics were available, using coloc64 method (with betas as
input).Weused the eQTLCatalogue65 andOpenGWAS66 to downloada
range of eQTL datasets from all skin, whole blood and immune cell
types as well as additional tissue types which showed enrichment for
our GWAS loci, such as spleen and oesophagus mucosa18. A complete
list of eQTL datasets20–23,26–31,33,67–71 is displayed in Supplementary
Data 13. pQTL summary statistics for plasma proteins72 were down-
loaded from Open GWAS. An annotation was included in our gene
prioritisation pipeline if therewas a posterior probability >95% that the
associations from the AD GWAS and the relevant QTL analysis shared
the same causal variant.

Additional colocalisation methods were also applied. TWAS
(Transcriptome-Wide association Study)-based S-MultiXcan73 and
SMR (Summary-based Mendelian Randomization)74 were run on
datasets available via the CTG-VL platform (including GTEx tissue
types and 2 whole blood pQTL72,75 datasets available for the SMR
pipeline). For S-MultiXcan and SMR, we report only results with
p-values below the alpha threshold established with Bonferroni cor-
rection, as well as no evidence of heterogeneity (HEIDI P-value >
0.05) in SMR analysis.

Genes were also annotated if they were included in any of the
globally enriched ontology/pathway terms from the MendelVar ana-
lysis described above or if they were identified in direct look-ups of
keywords: “skin”, “kera”, “derma” in their OMIM76 descriptions, or
Human Phenotype Ontology77/Disease Ontology78 terms.

We also used machine learning candidate gene prioritisation
pipelines – DEPICT57, PoPs79, POSTGAP80 and Open Targets Genetics53

Variant 2 Gene mapping tool as well as gene-based MAGMA59 test. We
added annotations to genes reported in the top 3 (by each of the
pipelines).

Wemined the literature for a list of differential expression studies
and found 9 RNA-Seq/microarray plus 4 proteomic analyses involving
comparisons of AD lesional25,32,81–84 or ADnonlesional24,25,32,82,85–87 skin vs
healthy controls. Studies with comparisons of AD lesional acute vs
chronic88, blood proteome in AD vs healthy control32 and FLG knock-
down vs control in living skin-equivalent89 were also included. We
annotated each gene (including direction of effect, i.e. upregulated/
downregulated) with FDR <0.05 in any dataset.

Lastly, we annotated genes where the index SNP resided within
the coding region according to VEP (Variant Effect Predictor)90

analysis.
For each candidate gene, we established a pragmatic approach to

combine all available evidence in order to prioritise which the most
plausible candidate gene(s). This prioritisation was carried out as
follows:

• The number of annotations (each representing one piece of
evidence) were summed across all methods and datasets, to
derive a ‘total evidence score’, i.e., if coloc evidence was
observed for 5 datasets for a particular gene, this would add 5 to
the score for that gene.

• Additionally, to assess if evidence was coming from multiple
datasets using the same method, or evidence was coming from
diverse approaches, we counted ‘evidence types’, summing up
the methods (as opposed to datasets) with an annotation for
each gene tested (up to a maximum of 14), i.e., in the same
example of coloc evidence observed in 5 datasets, this would
add 1 to this measure for this gene. Evidence types are repre-
sented by the columns in Supplementary Fig. 7.

• In order to prioritise genes with the most evidence, whilst
ensuring there was some evidence of triangulation across
methods, at each locus we prioritised the gene with the highest
‘total evidence score’ with a minimum ‘evidence type’ of 3. ‘Evi-
dence type’ was also used to break ties.
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Network analysis
Network analysis of the prioritised genes was carried out using stan-
dard settings (minimum interaction score 0.4) in STRING v11.591.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Summary statistics of the GWASmeta-analyses generated in this study
have been deposited in the GWAS Catalog under study accession IDs
GCST90244787 and GCST90244788. The variant-level data for the
23andMe replication dataset are fully disclosed in the main tables and
supplementary tables. Individual-level data are protected and are not
available due to data privacy laws, and in accordance with the IRB-
approved protocol under which the study was conducted.

Code availability
Code for the bioinformatic analysis is available here: https://github.
com/marynias/eczema_gwas_fu/tree/bc4/new_gwas.
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