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Uncovering the neurophysiology of mood, motivation and
behavioral symptoms in Parkinson’s disease through

intracranial recordings

1% Matthew Apps? and Simon Little (*

Lucia Ricciardi

Neuropsychiatric mood and motivation symptoms (depression, anxiety, apathy, impulse control disorders) in Parkinson’s disease
(PD) are highly disabling, difficult to treat and exacerbated by current medications and deep brain stimulation therapies. High-
resolution intracranial recording techniques have the potential to undercover the network dysfunction and cognitive processes that
drive these symptoms, towards a principled re-tuning of circuits. We highlight intracranial recording as a valuable tool for mapping
and desegregating neural networks and their contribution to mood, motivation and behavioral symptoms, via the ability to dissect
multiplexed overlapping spatial and temporal neural components. This technique can be powerfully combined with behavioral
paradigms and emerging computational techniques to model underlying latent behavioral states. We review the literature of
intracranial recording studies investigating mood, motivation and behavioral symptomatology with reference to 1) emotional
processing, 2) executive control 3) subjective valuation (reward & cost evaluation) 4) motor control and 5) learning and updating.
This reveals associations between different frequency specific network activities and underlying cognitive processes of reward
decision making and action control. If validated, these signals represent potential computational biomarkers of motivational and
behavioural states and could lead to principled therapy development for mood, motivation and behavioral symptoms in PD.
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INTRODUCTION

Parkinson’s disease (PD) is a highly disabling neurodegenerative
movement disorder, affecting 1% of the population over the age of
60'. To date, motor symptoms of PD have been the main focus of
research and therapy development. However, people with PD,
which has been described as the quintessential neuropsychiatric
disorder, also experience a range of disabling non-motor symptoms
including mood, motivation and behaviour such as depression,
anxiety, apathy and impulsive compulsive behaviours (ICB)%. The
prevalence of mood and motivation disorders in PD is high,
reaching 50% for depression and anxiety, 40% for apathy® and
14-30% for ICB2. Yet, despite their prevalence, the complexity of
these symptoms and their interaction with current treatments for
motor symptoms, the circuit mechanisms underlying them remain
unclear. As a result, there have to date been few successful
treatment options for motivation and behavioral symptoms in PD*>.

Mood and motivation disorders in PD have sometimes been
broadly classified into two different extremes of a single spectrum
with “hypodopaminergic” symptoms (depression, anxiety, and
apathy) at one end and “hyperdopaminergic” symptoms (patho-
logical impulsivity and ICB) at the other®=2, This simple distinction
does support a significant role for dopamine in the pathophysiol-
ogy of these symptoms and is based on a number of clinical and
experimental observations®~'2. However, a single dimension of
behaviour is insufficient to account for the complex and multi-
faceted neuropsychiatric symptoms (NPS) that occur in PD.
Moreover, it is unlikely that complex mood states or behaviours
map accurately onto such a simplistic schema such as a “hypo” or
‘hyper’ dopaminergic state. Rather, mood states arise from the
complex interactions between systems in the brain, and likely

arise from different computations that might also be reflected in
distinct oscillatory processes that are present during specific
behaviors. Therefore, different mood and motivational states
might map onto different oscillations within the cortico-basal
ganglia networks and these may go awry in PD, contributing to
non-motor symptoms.

Invasive neurophysiology, and specifically intracranial record-
ings, provide tools for recording neural network signals that can
be combined with behavioural paradigms that index distinct
aspects of behaviour. Such recordings offer the potential to tap
into neural synchronisation at different frequencies, and thus
potentially functionally segregate processing streams that are
spatially overlapping in the cortex and basal ganglia'>.

Intracranial recordings can be performed using intraoperative
microelectrode recordings of single or multiple neurons, or local
field potential (LFP) recordings of aggregated neural population
signals. Electrophysiological LFP activities are classically analysed
with respect to partially physiological distinct power (spectral)
bands including: delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz),
beta (13-30 Hz) and gamma (35-100 Hz). Together these techni-
ques can help identify the site, spectral signatures and precise
temporal windows that are involved in specific cognitive sub-
processes.

LFPs, when combined with cortical (magnetoencephalography,
electroencephalographic and electrocorticography) recordings,
can also disclose inter-regional (cortico-subcortical) networks
expressed as rich, multiplexed, spatio-spectral components™.
The precision of such recordings have the potential to dissociate
the mechanisms underlying different symptoms, particularly when
combined with experimental paradigms that can tap into the
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Fig. 1 Framework for neuropsychiatric symptoms and neurophysiology in Parkinson’s disease. Schematic indicating central
computational processes (top row), neurocognitive dysfunction and symptom presentation (middle row) and behavioral paradigms and
frequently occurring spatio-spectral LFP correlates (bottom row). These are shown for different computational stages of processing including
affect and primary emotional response, executive control of information, subjective valuation, leading to motor initiation and then motor
stopping of prepotent response where required. This leads to an outcome and feedback and learning, which will update all stages of the
decision cycle. All stages shown serially, although these are likely implemented in parallel.

computational processes that underlie behaviour. In the future,
these neurophysiology signals may serve as valuable biomarkers
for principled re-tuning of unbalanced systems by targeting the
particular frequency domains underlying a specific symptom. Such
adaptive neurostimulation approaches are already proving highly
fruitful for treating motor system impairments and here we
propose a similar approach to non-motor impairments’>'®. We
focus on particular dimensions of mood, motivation and
behaviour that are specifically impacted in PD and have been
studied with intracranial neurophysiology. Disturbances in cogni-
tion, arousal, circadian and sleep rhythms also make a significant
contribution to NPS in PD but have been covered elsewhere and
so are not reviewed here'”""°,

Our framework considers symptoms and behaviour using
experimental, behavioural paradigms that assay 1) emotional
processing, 2) executive control 3) subjective valuation (reward
and cost evaluation) 4) motor control and 5) learning and
updating (Fig. 1). Here, we specifically review the mapping of
these constructs onto underlying neurophysiology captured
through intracranial recordings. For each cognitive process we
describe neurophysiological studies that distinguish between
patient groups and then focus on studies examining neurophy-
siological recordings using behavioral paradigms and within-
subject approaches. We have included available studies using
recordings from targets used in clinical practice - subthalamic
nucleus (STN) is represented in a predominance of studies but we
also include globus pallidus interna (GPi), ventral thalamus and
pedunculopontine nucleus (PPN) in patients with PD undergoing
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Deep Brain Stimulation (DBS). We included both micro and macro-
electrode recordings either during surgery, in the few days
immediately following or in chronically implanted patients using
new sensing-enabled DBS pacemakers®°. Taken together this work
suggests there is significant promise in the potential for
neurophysiological recordings in patients to identify localised
oscillatory signals that distinguish between different mood and
motivation impairments.

Affect and emotional processing

Emotional processing and relationship with depression and anxiety —
across subject studies. In healthy and clinical populations it has
been demonstrated that deficits in emotional processing are
involved in the generation of depression and anxiety?'22, It is now
well established that parallel segregated networks subserving
limbic, associative and motor functions exist between prefrontal
cortex and basal ganglia and that these are partially spatially and
functionally dissociable at the level of the STN and basal
ganglia®>2,

Single unit micro-electrode recordings have demonstrated that
STN (particularly ventral STN) is associated with increased theta-
alpha activity (Table 1)?°. Further, increased resting state alpha
power oscillation in the left ventral STN positively correlates with
depressive symptoms in PD, whereas theta correlates negatively
with both depression and anxiety?®. LFP studies have built on this
and compared intracranial neurophysiological (STN) recordings
with symptoms of depression, measured with the Beck’s Depres-
sion Inventory (BDI-I)*7?8, Overall, these studies showed reduced
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High theta-alpha oscillations in the STN ventromedial border which

During image presentation, theta power increased for unpleasant
was negatively correlated with depressive symptoms.

Key findings
compared to neutral images in both OCD and PD patients.

Resting state

Task
IAPS

STN, OFF med, 7 PD also ON med

Target and medication
STN, OFF med

15 PD, 7 OCD

307 PD

Cohort
BDI Beck’s Depression Inventory, dIPFC dorsolateral prefrontal cortex, ERD event-related desynchronization, ERP event related potentials, GPi globus pallidus, /APS The International Affective Picture System, IFC

inferior frontal cortex, LFP Local Field Potential, PD Parkinson’s disease, STN subthalamic nucleus, OFC orbitofrontal cortex, VIM ventral intermediate nucleus.

Table 1 continued

(Buot et al.
(Rappel et al.
2019)%

Reference
2020)*'
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STN alpha reactivity (event related desynchronization) to posi-
tively valenced stimuli, and increased alpha desynchronization to
negative stimuli in depressed patients with PD, effects that
continue up to 3 months post-operatively?®. STN alpha reactivity
to positive emotional stimuli was also found to be enhanced (and
response to negative stimuli reduced) by administration of
exogenous dopamine, a relationship that was most pronounced
in non-depressed patients?’. These studies suggest that a
component of the alpha rhythm in the STN may track emotional
valence and that this indexes a negative emotional bias in patients
with PD and depression and is modulated by dopamine.

Emotional processing—within-subject studies. Seven other studies
have investigated changes in intracranial recordings from the STN
while performing tasks assessing emotional processing?®—°, These
studies also support a modulation of alpha in response to
emotional visual stimuli, reporting a greater alpha-ERD and larger
evoked response potential (ERP) amplitude in response to
pleasant and unpleasant stimuli compared to neutral ones in PD
patients ON medication?*33, This work has shown that the
relationship between alpha and valence holds when controlling
for arousal®?, with valence and arousal likely encoded by separate
neuronal populations in the STN?°. Two further studies specifically
investigated hemispheric laterality during emotional acoustic
stimuli and demonstrated a regional specialization (ventro-medial)
and a hemispheric asymmetry (right dominance)®**3>, which
generalizes to emotional lateralization research outside of PD*S,

Recent investigations have also evaluated emotional processing
during stimulation of the STN at different frequencies and provide
support that these alpha oscillations may be potentially mechan-
istic and causal (Fig. 2)%”. Stimulating the right-STN demonstrated
an interaction between emotional picture ratings and stimulation
frequency, with 10Hz (alpha frequency) stimulation increasing
subjective valence ratings of negative pictures compared to no
stimulation, an effect that was increased in depressed patients®’.
The study however did not measure underlying physiology during
stimulation in order to demonstrate entrainment of underlying
oscillations to stimulation and therefore only provides partial
supportive evidence of causality.

In summary, LFP studies recording from the STN in PD support
that a component of alpha band activity in the STN is correlated
with processing of emotional stimuli and degree of depressive
symptomatology.

Behaviour—impulsivity and apathy. |ICBs comprise impulse control
disorders such as pathological gambling, compulsive shopping,
compulsive sexual behaviour and eating, and related disorders such
as punding/hobbyism and dopamine dysregulation syndrome®2. ICB
are formally defined as a class of psychiatric disorders characterized
by a failure to resist a temptation, urge, or impulse that may harm
oneself or others®., An interplay between exposure to dopaminergic
medications, deep brain stimulation and personality traits, as well as
disease-related characteristics in people with PD, appears to underlie
the generation of these behavioural disorders*®*'. Many studies have
solely assessed motor impulsivity (using motor stopping tasks) and
have reported contradictory results with some studies even finding
lower motor impulsivity in certain ICB cohorts**™4, It is also worth
noting that the compulsivity component of ICB in PD has less
commonly been taken into account®. Although impulsivity and ICB
as clinical constructs encompass many different cognitive subpro-
cesses of decision making, they are likely concentrated specifically in
aberrant executive control, reward evaluation and motor control*®
(Fig. 1, Tables 2 and 3).

Impulsivity and apathy—across subjects studies. Single unit
recordings in people with PD have implicated the STN in patients
with ICB#’, however, the spectral components of micro-electrode
single unit activity have been less consistently linked to ICBs in a

Published in partnership with the Parkinson’s Foundation
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Fig.2 Neurophysiology of affect and emotional processing. A Average event locked spectrogram from 28 patients with PD, recorded from
the STN at the time of emotional image (IAPS) presentation (left). Statistical parametric mapping on stimulus locked baseline corrected
spectrograms demonstrates two significant clusters; a theta power increase and an alpha/beta de-synchronization (left). Alpha is lower
(greater desynchronization) following pleasant vs. unpleasant stimuli in the ON medication state (right). This effect reverses OFF medication,
showing that in the absence of dopamine alpha is poorly responsive to pleasant stimuli and shows increased reactivity to negative stimuli.
(reproduced with permission from Huebl et al. 2014). B Impact of alpha (10 Hz) stimulation of the STN increases IAPS valence ratings, an effect
not seen with 130 Hz stimulation (reproduced with the permission from Mandali et al. 2021).

single frequency band*. The first study evaluating neural
mechanisms of ICB in PD using LFP recordings identified low
frequency (4-10 Hz) oscillations as being linked to ICBs, particu-
larly in the ON medication state and in ventral STN*°. This study
also found greater STN-premotor/prefrontal (EEG contacts F3,F4)
cortex theta (4-7 hz) band coherence in patients with ICBs
compared to those without. However, other frequencies have also
been implicated and recently a correlation has been shown
between resting state low frequency activity in the alpha range
during the OFF medication condition and trait impulsivity as
measured with the Barratt Impulsivity scale irrespective of the
presence and severity of ICB>C,

Two studies have investigated differences in STN LFPs in PD
patients specifically with pathological gambling, using behavioural
paradigms involving economic decision-making®'*2. Spectral
analysis revealed a relationship between pre-cue beta and
diagnosis of ICB, but this difference did not predict future
choices®. However, all PD patients showed an STN low frequency
(2-12 Hz) increase during decision making and PD patients with
pathological gambling adopted a risky strategy and showed
greater, low-frequency power during high conflict trials®'. Clinical
impulsivity also predicts subcortical evoked response activity and
shows dissociable effects on STN and GPi°3.

In summary, these studies demonstrate that STN and GPi
recordings can elicit ICB biomarkers at the levels of single cells,
ERPs and LFP oscillations. There is a suggestion that low frequency
local activity, particularly a component in the theta range, may be
particularly associated with ICBs in PD.

Impulsivity and apathy—within-subject studies

Executive control and reflection impulsivity: Appropriate execu-
tive control prevents reacting to inappropriate cues, responding

Published in partnership with the Parkinson’s Foundation

when too little information is available or waiting too long to
respond. Deficits of this type of information processing can result
in reflection impulsivity*>>*, There are a number of behavioural
paradigms which evaluate action inhibition under conflict which
can index higher order executive control, including the Stroop
task®®, the Flanker task®®, the Simon task®” and random dot
kinematograms (RDK)*%>°,

LFP studies in PD using the Stroop task, in which words are
presented in congruent and incongruent colours, demonstrate a
relative increase in theta activity on incongruent trials®®%'. Event-
related STN stimulation during the Stroop task has probed the
temporal window of conflict processing and demonstrated that
stimulation delivered early post stimulus causally impacts
behaviour, relatively speeding up responding on conflict trials
and increasing errors®'. Generalizing to alternative forms of
inhibitory control, other studies have recorded STN LFPs during
spatial conflict tasks (Simon task and Flanker tasks) to demon-
strate increased theta power during spatially incongruent trials,
with rewarded inhibition linked to theta phase resetting (indexed
by inter-trial theta phase clustering)52-5>. Cross-site phase locking
between motor cortex (M1) and STN has also been shown to
regulate the influence of the STN on M1 representations of
incorrect response-tendencies, in the beta band during the Simon
task®®. These results demonstrated that theta activity is linked to
conflict processing, through both theta amplitude and phase
modulations, likely supported by signal processing in other
frequency bands, including the motor cortex - subthalamic beta
network.

Recent work has combined the Flanker task with drift diffusion
modelling (DDM), a computational framework that models
decision making as a process of evidence accumulation towards
a threshold. This found that some STN theta activity is linked to

npj Parkinson’s Disease (2023) 136
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Decrease in beta, strongest for highest reward. Imperative
stimulus: increase in theta, higher for incongruent conditions,
no effect of reward. Increase in delta, no effect of congruency

or reward. Decrease in beta, stronger for incongruent

condition, no effect of reward.

Incentive modified Simon task  Motivated cue: increased theta, no effect of size of reward.

STN, ON med

16 PD

(Duprez et al. 2019)%2

ACC anterior cingulate cortex, BIS-11 Barratt impulsivity scale, ERP event related potentials, GPi globus pallidus, /ICB impulsive compulsive behaviours, ICD impulse control disorders, LFP Local Field Potential, PD

Parkinson’s disease, PFC pre-frontal cortex, QUIP-RS Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease-Rating Scale, RDK Random Dot Kinematogram, STN subthalamic nucleus.
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dynamic decision processes, rather than being simply a biomarker
of conflict, with subthalamic stimulation modulating evidence
accumulation rates and theta setting thresholds®®. A further
seminal study extends this work to other forms of conflict by using
a paradigm that presents decisions containing either high or low
reward conflict while recording from medial prefrontal cortex
(mPFC) and STN (Fig. 3)%’. This study again confirmed an increase
in mPFC and STN theta activity which, after fitting the DDM, was
found to be correlated with decision thresholds.

One challenge for behavioral tasks that present abrupt cues is
the profound evoked low frequency neural activity that any salient
sudden cue can elicit, potentially confounding salience with
conflict. A continuous form of conflict paradigm implements an
RDK in which clouds of dots continuously move in different
directions on the screen to, on average, indicate the correct
direction for an upcoming voluntary movement such as a button
press®®. In addition to investigating conflict (with dots moving in
different directions), the paradigm measures reflection impulsivity
since subjects control how much information they sample before
making a decision. RDK paradigms plus neurophysiology record-
ings in PD have confirmed increased low frequency activity during
motion conflict, activity that was coherent between medial
prefrontal cortical (mPFC) theta and STN theta-delta in conflict
trials®8, Prefrontal cortical - STN theta dynamically tracks evidence
accumulation, accounting for variable incoming evidence pre-
sentation rates®®. Combining RDK paradigms with DDM has again
demonstrated that trial-by-trial decision thresholds are also
indexed by mPFC-STN low frequency phase alignment®®. Using
RDK paradigms it has also been shown that mPFC-STN theta
appears to again be supported by a spatially and spectrally
segregated beta band neural network between motor cortex and
STN which also supports decision threshold setting’®. This study
showed that these two networks were functionally distinct in
mediating speed - accuracy tradeoffs. Specifically, an increase in
STN low frequency oscillatory power was found to predict
increased thresholds only after instructions emphasizing accuracy,
while cue-induced reductions of STN beta reflected a decreased
threshold, irrespective of whether the subject was prioritising
speed or accuracy.

In addition, recent work investigating mPFC-STN theta and beta
within a novel conflict paradigm showed that functional roles of
these oscillations are regionally specific (Fig. 3)”". The authors here
demonstrated that within trial adaptations to conflict are
mediated by increased mPFC-STN theta synchrony, causing
response inhibition, whereas across trials, beta signals more
strongly mediated behavioural adaptations to conflict or errors.
Here, beta was modulated within a trial in the STN, whereas more
so in PFC post trial. Support for a causal role for a component of
beta oscillations in threshold setting comes from a study which
combined RDK, DDM and closed-loop DBS in a single paradigm to
demonstrate a temporally precise causal impact of DBS and beta
oscillations on response threshold setting’2. Notably, the compo-
nent of STN beta activity coupled with the prefrontal cortex (PFC)
may have a complementary, more general role to motor initiation
threshold setting, as parallel work has demonstrated that this
network indexes working memory encoding, even in the absence
of motor initiation”>. Theta signals have also been linked to higher
order conflict resolution including moral reasoning’®. These data
are anatomically complimented by studies of single units
recording, where a change in neural firing activities was described
in the STN and in the GPi in response to conflict in a decision-
making task’® or to a deviant tone in an oddball task’®.

In summary, these studies demonstrate a link between a
component of PFC theta activity and PFC-STN synchrony in
conflict detection, in addition to complementary effects of a beta
motor cortex - STN network. Further work investigating how these
two networks collectively set thresholds for action initiation are
warranted.
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Fig. 3 Neurophysiology of executive control and conflict. A Theoretical model of medial prefrontal cortex (mMPFC)—STN mediation of
decision thresholds. mPFC detects conflict which leads to adjustment of decision thresholds in the STN. This process is interrupted by DBS.
B Modelling of relationship between mPFC theta and decision threshold (negative regression coefficient—high theta correlates with low
decision threshold, positive regression coefficient - high theta correlates with increased decision threshold). This reveals that OFF DBS (blue
line)—increased theta was associated with increased decision threshold for high-conflict trials (solid line), but not low-conflict trials (dashed
line). ON DBS, increased theta was associated with a decreased decision threshold on high-conflict trials (reproduced with permission from
Cavanagh et al. 2011). € Schematic of combined intracranial MPFC—STN intra-operative electrode recordings. D Normalized oscillatory power
averaged across all STN (upper) and mPFC (lower) electrodes and across all correct trials in a movement conflict task. Both brain regions
showed a pre-response increase in theta power, although this is earlier and greatest averaged to the cue in the case of mPFC. In the beta
band, the STN showed a pre-response decrease in power while the mPFC showed a post-response increase in beta power (reproduced with

permission from Zavala et al. 2018).

Subjective valuation: reward cost evaluation and choice impulsiv-
ity: One of the most studied cognitive functions of the basal
ganglia in animal models is reward processing’”’. In humans,
reward processing and apathy have been mapped to distributed
prefrontal cortical and basal ganglia networks with ventromedial
prefrontal, anterior cingulate cortex, supplementary motor areas
and ventral striatum plus connected areas being important
nodes®. Electrophysiological studies in PD have further expanded
our knowledge on the role of basal ganglia in reward processing
in humans using paradigms for reward, loss and effort evaluation
during recordings from STN, GPi and PPN (Table 3).

Reward versus effort trade-off paradigms, where participants
make decisions about whether to exert different levels of effort for
reward, are valuable to understanding healthy motivation and the
clinical symptom of apathy, which likely reflects modulation of

Published in partnership with the Parkinson’s Foundation

sensitivity to effort and reward’®7°, The first comprehensive study
in PD, using a reward (monetary) and effort (grip force)
paradigm®, reported an STN spectral response to both reward
and effort cues in the 1-10Hz range with larger responses
produced by larger rewards. Moreover, these responses were
reflective of the subjective value of reward and predicted patients’
trial-by-trial decisions of whether to exert effort for reward, an
effect that weakened OFF levodopa (Fig. 4)%°. Low frequency
activity also appears linked to other types of reward discounting,
as another study analysing LFPs recorded from the STN showed an
increase in theta power preceding risk taking decisions®'. Further
studies of single unit activity and LFP recorded in the STN of
patients with PD have used reward paradigms including the
Balloon Analogue Risk Task® (for risk taking behaviour), a
rewarded Go/NoGo task®, a modified version of the Monetary
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Fig. 4 Neurophysiology of reward and action inhibition. A STN
group level neurophysiology related to reward-effort decision
making. Cluster-based permutation analysis showing proportion of
subjects in which the LFP power increased significantly for each
frequency x time combination, demonstrates low frequency reward
locked STN activities (top). Low frequency activity scales with reward
value and notably the reward effect on LFP correlates with the
reward effect on behaviour (reproduced with permission from
Zenon et al. 2016). B Action stopping indexed through a stop-signal
task during LFP recordings from the STN. Stopping triggers an
increase in STN beta activity which starts prior to the stop signal
reaction time (reproduced with permission from Wessel et al. 2016).

Incentive Delay task®*®(reward evaluation) and a task of decision
making using a 2-choice preference-based task®. These studies
suggested that STN cells show significant modulation by reward
and that STN neurons that responded were valence specific (i.e.,
they responded exclusively to either reward opportunity or threat
of loss), moreover they suggest that the STN is modulated more in
response to reward than the GPi.

In summary, single unit recordings and LFP studies in the STN
and GPi in PD support that particularly the STN is involved in the
processes of reward, risk, and effort evaluation and that this may
involve a component of low frequency (particularly theta) activity.

Motor control and motor impulsivity: Information processing
and reward evaluation lead to motor preparation and initiation.
The computational process of action control involves the
appropriate release of prepared movements paired with stopping
or switching when required. Behavioural tasks can be used to
assess impulsivity defined as impaired inhibitory control over
prepotent motor or cognitive responses. Processes of action
selection versus action inhibition have been shown to map to
dissociable subcortical locations of dorsal and ventral STN

npj Parkinson’s Disease (2023) 136

respectively®”. The GPi, although less studied, also appears to
encode motor versus higher order functions topographically®®.

In the motor Go/No-Go task®® and the Stop Signal Task (SST)*°,
participants are presented with a stimulus that requires them
either to respond (Go) or withhold a response (NoGo/Stop).
Impulsive participants may make more commission errors (Go
responses on No-go or Stop trials) and/or anticipation errors
(responding too fast). A number of LFP studies have probed the
role of STN in modulating action inhibition using these tasks with
the majority taking a within-subject approach. It is now
increasingly recognized that motor impulsivity is just a single
component of impulsive behavior and may not correlate strongly
with clinical impulsivity symptoms**.

Three studies have employed simple or modified versions of the
Go-NoGo task®°192 while six studies have employed the
SST>23-97 with concurrent STN LFP recordings. In the first classical
Go-NoGo study, beta oscillations decreased prior to movement
and rebounded following post-movement in the Go trials®’.
However, in the No-Go trials, the beta decrease terminated earlier
and before the reaction time in a majority of patients. This was
supported in a modified, probabilistic, bimanual version of the Go-
NoGo paradigm in which patients had to switch hand move-
ments®2. A third, recent Go-NoGo study was more complex, in that
there was an additional monetary reward/loss component
incorporated into the design®. This was a single unit recording
study in both STN and GPi and mainly focused on reward related
neural findings, but did report that reward related firing rates were
not differentially modulated by motor initiation or inhibition.

The SST paradigm, in which the stop signal comes after the
initial go signal at a variable delay, is supported by a
computationally described analysis framework—the race model®®,
The first study to investigate STN LFP signals during the SST
showed an increase in beta oscillations after the stop signal which
was higher on successful, compared to failed stops®?. This has
been replicated in other studies, related to both reactive and
proactive inhibition and in a vocal stopping task which found that
stopping related beta changes are right lateralized (Fig. 4)°>°>°°, A
further study which did examine for across-subject symptom
differences using classical categorical symptom classification,
showed a reduction in beta desynchronisation (a relative increase)
in successful stopping®*. However, this study also showed that in
the ON medication state, successful inhibition of the response was
associated with a decrease in cortico-subthalamic gamma power
and coherence. This gamma related finding was notably only
present in the 4 out of 10 subjects with dopamine agonist related
ICDs but hasn’t been replicated in other studies which found
conflicting results®. Recent work has also shown that beta activity
is likely complemented by rapid evoked responses through the
hyperdirect pathway from prefrontal areas including the right
inferior frontal gyrus for mediating response inhibition'®,

Motor inhibition following prepotent action planning and
initiation is a final stage of response control. It is here shown to
be partly related to motor network beta signals, with an increase
in beta, multiplexed with other signals, being found at the time of
motor inhibition and associated with successful stopping.

Reward learning and updating: Whilst there have been a
number of studies investigating motor learning and outcome
related updating'®'~'%4, to date there have been very few studies
investigating reward learning, with many reward studies only
reporting on the reward decision making epoch rather than post-
feedback physiology®”. One study directed towards reward
feedback and learning investigated whether beta oscillations are
specifically modulated by outcomes in a reinforcement learning
task'®. In the task, subjects made self-directed joystick move-
ments that were then mapped onto dynamic reward probabilities
that had to be learnt. This study found that although STN alpha
and low beta activity was negatively correlated with previous
reinforcement magnitudes, these did not specifically correlate
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with reward prediction errors (RPEs). This is somewhat surprising
given the link between beta oscillations and dopamine, which also
signal RPEs””. This might be partially explained by dissociated
effects of phasic and tonic dopamine neuronal firing or to specifics
of the task and recording / processing techniques. Notably, one
recent study evaluated LFP changes during a reward task, but this
was in only three PD patients undergoing DBS of the PPN'%, They
showed that in response to reward outcome (but not to no-reward
outcome) there was an increased power in alpha-beta bands
(10-20 Hz) in PPN'°®, supporting further reward and RPE related
research in PD.

A fuller account of the neurophysiology and neural signals of
reward and outcome learning is needed to fully capture the time
varying changes in NPS seen in PD over time, particularly the
transition from simple impulsive to compulsive behaviours*.

DISCUSSION

Non-motor symptoms and specifically NPS in PD are common and
highly disabling, yet, their pathophysiological basis is unclear and
the impact on these symptoms of pharmacological and surgical
treatments are still actively debated'?”:1%8,

In this review we examine previous studies employing
intracranial neurophysiology in patients with PD to explore
biomarkers of mechanisms underlying the generation and
maintenance of mood, motivation and behavioral symptoms.
We highlight behavioural dimensions that are particularly
pertinent to PD with specific reference to 1) emotional processing,
2) executive control 3) subjective valuation (reward and cost
evaluation) 4) motor control and 5) learning and updating.

The available data suggest that there are segregated spatio-
spectral neural networks within the brain that may partially index
separable dimensions of cognitive sub-processes underpinning
mood, motivation and behaviour. Emotional information appears
to involve a component of the alpha oscillations expressed in the
STN. Executive control and more specifically conflict detection
shows an association with pre-frontal theta activity synchronized
to a component of STN theta activity. There is also evidence that
subjective valuation (in terms of reward, loss and effort) is also
partially mediated through low frequency oscillations - mainly a
theta component. Regarding motor control and action inhibition,
the evidence supports a link between motor cortical - subcortical
beta and motor inhibition, potentially multiplexed with gamma.
The presence of different neural networks, indexed by different
spatial and spectral patterns, for the different cognitive dimen-
sions suggests that these mechanisms are likely computed
through different networks. However, although the evidence
suggests associations between different spatio-spectral networks
and underlying cognitive subprocesses, we do not expect there to
be perfect or simple one-to-one mapping between a neurophy-
siological signal and a complex computational process.

The research to date has highlighted potential biomarkers for
future neuropsychiatric state tracking in PD that could be applied
to personalized, adaptive, DBS therapies. The studies also show
how different cognitive components of high dimensional clinical
constructs, such as impulsivity or apathy, appear to be subserved
by spatially overlapping but spectrally segregated networks. This
is well illustrated by the medial prefrontal - subthalamic network
in the theta range that subserves components of impulsivity and
can be mapped to underlying computational processes including
decision threshold setting. This can be contrasted with a motor
cortical area - subcortical beta network which relates to action
control and inhibition. Therefore, although spatially overlapping,
these networks can be segregated through spectral features
which can be used to identify cortical to subcortical distributed
networks related to specific cognitive processes. We propose this
approach could be used to further identify other spatio-spectral
networks, related to distinct cognitive subprocesses, including for
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example reward (prefrontal cortex - basal ganglia) or effort
(supplementary area - basal ganglia) networks. Furthermore, and
more broadly, this supports a model whereby cortical information
from segregated regions, subserving different cognitive functions,
are funnelled into the basal ganglia, but remain partially
segregated via dissociable temporal dynamics, indexed through
spectral properties. Interactions between these spatially over-
lapping, but spectrally distinct networks, may be served by higher
order inter-frequency interactions in basal ganglia cortical
connections towards integration and action selection'®. This
spatio-spectral network model can complement and also likely
integrate with rate firing circuit models, including for example
classical prefrontal-basal ganglia parallel organization models and
direct versus indirect within basal ganglia accounts?>'1°,

Limitations and suggestions for behavioural neurophysiology
in PD

Although promising, computational neurophysiology aimed at
understanding fundamental mechanisms of motivation and its
dysfunction is still at an early stage. A key issue relates to the
specificity of identified biomarkers for specific symptoms, NPS and
cognitive sub-processes. The data to date supports the hypothesis
that there may be meaningful and clinically useful segregation
between specific spatio-spectral networks with dissociable cogni-
tive subprocesses. Neurophysiological recordings, with high
spatial and temporal resolution, significantly increase the speci-
ficity of mapping from neural activity to NPS in PD compared to
alternative techniques. However, single site LFP recordings, even
in narrow power bands may contain activity from multiplexed
underlying neuronal pools linked to different networks. Low
frequency activity particularly has more spatial spread which could
exacerbate this mixing of signals. Therefore, at a given site, there is
not likely a simple one-to-one mapping between an oscillatory
frequency band and a symptom or behavioural mechanism. We
therefore recommend recording of multi-site (cortical and
subcortical) LFPs where possible to investigate spatio-spectral
networks rather than simply trying to relate single-site single
power bands to individual symptoms of computational processes.
Furthermore, many of the underlying dimensions and associated
behavioural paradigms are not perfectly orthogonal to each other
and therefore will correlate with multiple neural activities.

It is important to stress that future studies should focus on
decorrelating the contributions of different dimensions of
motivation related cognitive processing (including motor pro-
cesses such as vigour), given that NPS are highly correlated. This
could be achieved by testing multiple different behavioural
paradigms together in a single cohort in order to examine for
specificity of correlations or through using computational models
that can isolate separable latent cognitive variables. Notably a
majority of studies have been recorded from the STN, rather than
GPi, and yet research to date suggest that these two nodes are
functionally dissociable and therefore further interrogation of the
GPi (and other targets) will be valuable. Intracranial physiology is
also currently restricted to PD patients with relatively long disease
duration and severe motor symptoms as inclusion criteria for DBS
and caution is warranted before extrapolating these findings to all
patients with PD. However, pre-operative neuropsychiatric evalua-
tion of DBS patients selects for patients without extremes of NPS
which supports a degree of generalization.

While there is a wealth of behavioural research in PD, there is a
relative lack of studies specifically designed to investigate neural
biomarkers of NPS based on categorical assessments of clinical
severity. Integrating the categorical and dimensional approaches
and investigating the role of dopaminergic medications through
longitudinal (within-subject) studies will help reveal more about
inter-individual and the intra-individual differences. Also, this will
clarify whether neural correlates identified are secondary to the
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symptom themselves (states) or related to predisposing factors
that make certain PD patients more prone to develop symptoms
(traits). Further, there is a current lack of research investigating the
underlying neurocircuitry and neural signals of reward learning in
PD, which could be critical to understanding the longitudinal
evolution of behavioral symptoms in PD, particularly the progres-
sion towards more compulsive, habitual responding’''''2, A
progression from action, to habits and then compulsions in PD
shows parallels to processes that have been mapped out in
addiction processes''3,

Towards future principled therapies for neuropsychiatric
symptoms

Previous research findings using intracranial recordings have been
used to guide treatment developments for motor symptoms in
PD, including the use of STN beta power as a neural marker to
drive adaptive DBS stimulation in PD for bradykinesia and
rigidity’>114-116, Adopting the same approach for non-motor
symptoms and identification of the precise neural markers of NPS
could be used in the future for closed-loop therapy for mood,
motivation and behavioral symptoms in PD. The recent release of
new commercial DBS devices that sense neural signals as well as
having the capability to deliver precisely temporally targeted
stimulation according to neurophysiological biomarkers opens a
direct and potentially rapid translational pipeline to leverage this
emerging knowledge base3?.

PD has been described as the quintessential neuropsychiatric
disorder?. Using neurophysiological approaches combined with
dimensional paradigms and categorical classification, we have the
potential to uncover fundamental neurophysiological mechanisms
of mood, motivation and behavioural symptoms in PD. This
understanding could then be used towards the characterization of
accurate biomarkers and principled therapy developments in PD,
and further applied to a wide range of other neuropsychiatric
disorders.
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