SUPPLEMENTAL MATERIALS

Cytokine-Mediated Degradation of the Transcription Factor ERG Impacts the Pulmonary Vascular Response to Systemic Inflammatory Challenge

Christopher M. Schafer¹, Silvia Martin-Almedina^{2,*}, Katarzyna Kurylowicz^{1,**}, Neil Dufton^{2,***}, Lourdes Osuna-Almagro^{2,****}, Meng-Ling Wu¹, Charmain F. Johnson¹, Aarti V. Shah², Dorian O. Haskard², Andrianna Buxton¹, Erika Willis¹, Kate Wheeler¹, Sean Turner³, Magdalena Chlebicz³, Rizaldy P. Scott^{4,*****}, , Susan Kovats^{3,5}, Audrey Cleuren¹, Graeme M. Birdsey², Anna M. Randi^{2,#}, Courtney T. Griffin^{1,5,#}

¹Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104

²National Heart and Lung Institute, Imperial College London, London, UK

³Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104

⁴Division of Nephrology & Hypertension, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL 60208

⁵Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104

*Current affiliation: Molecular and Clinical Sciences Institute, St. George's University of London, London, UK

**Current affiliation: Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637

*** Current Affiliation: Queen Mary University of London, UK

****Current Affiliation: JJC Center for Developmental Neurobiology, King's College London, Lon-

don, UK

*****Current Affiliation: Department of Pathology, Robert H. Lurie Comprehensive Cancer Cen-

ter, Northwestern University, Chicago, IL 60611

[#]Corresponding and senior authors:

Courtney T. Griffin: courtney-griffin@omrf.org

Anna M. Randi: <u>a.randi@imperial.ac.uk</u>

SUPPLEMENTAL FIGURE S1. *TNF* α *-induced ERG ubiquitination and proteasomal degradation in cultured ECs.* **(A)** HUVECs were treated with TNF α (10 ng/mL) for 0 – 10 h, and ERG protein and transcript expression were assessed by immunoblot and qPCR, respectively. **(B)** Immunoblot of ERG and ubiquitin in HUVECs following a 6 h treatment with TNF α (10 ng/mL) with and

without a 30 min MG132 (10 µM) pre-treatment. **(C)** Schematic illustration of each ERG mutant generated for this study. **(D)** Transfection of HeLa Cells with wildtype ERG and a FLAG-tagged ubiquitin led to the accumulation of high MW ERG isoforms that could be isolated by ubiquitin immunoprecipitation. Ubiquitination of ERG was more prominent following proteasomal inhibition by MG132 treatment. **(E)** HeLa cells were transfected with each of the ERG constructs from (C). Cells were then treated with MG132, and immunoblots were used to assess the ERG ubiquitination status, as in (B). *P* values were determined by a 1-way ANOVA followed by a Dunnett's multiple comparison of each timepoint to the 0 h timepoint.

SUPPLEMENTAL FIGURE S2. *Pro-inflammatory cytokines promote lung-specific ERG downregulation in vivo.* **(A)** Quantification of ERG expression in the heart after intravenous administration of LPS (1 mg/kg BW), TNF α , IL-1 α , IL-1 β , or IL-18 (50 µg/kg for each cytokine). **(B)** Immunofluorescent ERG intensity in lung tissue samples from vehicle- and LPS (4 mg/kg BW)- injected mice was quantified and normalized to DAPI (n=4). **(C,D)** ERG expression was assessed by immunoblotting lung and heart lysates at 8-48 h after LPS challenge (B) and pulmonary ERG expression was quantified by densitometry (n=4-5) (C). **(E)** At 8-48 h after LPS challenge, FLI1 expression in the lung was assessed by immunoblot. **(F)** ERG expression was assessed by immunoblot using lung lysates prepared 4 h after intraperitoneal LPS (4 mg/kg BW) injection into control and *ll1r1^{flox/flox};Tie2-Cre*⁺ mice (n=3). **(G)** ERG expression in HUVECs was quantified by immunoblot densitometry after a 10h treatment with vehicle or TNF α (10 ng/mL) in combination with IL-1 α (10 ng/mL) or IL-1 β (10 ng/mL) (n=4). **(H)** Statistical comparison of LPSinduced ERG downregulation in the lungs of male and female wildtype mice. No statistical difference was observed between genotypes. *P* values were determined by a Welch's t-test (B), a Brown-Forsythe ANOVA followed by a Dunnett's T3 multiple comparison test (D), a 2-way ANOVA followed by a Sidak's multiple comparison test (F), a 1-way ANOVA followed by a Sidak's multiple comparison test (G), or a 2-way ANOVA (H).

SUPPLEMENTAL FIGURE S3. Organotypic downregulation of ERG and FLI1 following acute LPS challenge. **(A-D)** The expression of ERG (grey) in ECs (CD31; green) at 8 h after acute LPS challenge (4 mg/kg BW) was assessed by immunostaining tissue sections of the lung (A), heart (B), kidney (C), and liver (D). DAPI (blue) was used as a nuclear counterstain.

SUPPLEMENTAL FIGURE S4. *Downregulation of ERG in pulmonary capillary ECs following intratracheal influenza infection.* **(A)** Additional images demonstrating the loss of ERG (grey) expression within pulmonary ECs (CD31; green) at 6 d after intratracheal influenza administration. DAPI (blue) was used as a nuclear counterstain. Right panel, the pixel intensity in the ERG channel is plotted as a surface intensity representation demonstrating the selective loss of ERG expression in capillary ECs, relative to larger caliber vessels, following influenza infection. **(B)** Quantification of immunofluorescent ERG signaling, normalized to DAPI, in lung tissue sections collected from vehicle- and influenza-infected mice (n=3). *P* values were determined by 1-way ANOVA followed by a Dunnett's multiple comparison test.

SUPPLEMENTAL FIGURE S5. Organotypic effects of endothelial Erg deletion of immune cell recruitment. (A) The ROSA^{mTmG} reporter line was crossed with the Cdh5(PAC)-Cre^{ERT2} line to demonstrate the specificity of Cre activity (GFP; green) to ECs (CD31; red) in the lung, heart, liver, and kidney. (B) Lung tissue sections from control and Erg^{iECko} mice were immunostained for Isolectin-B4 (green), smooth muscle actin (red), and iNOS (grey) demonstrating elevated immune cell recruitment in the lung following endothelial Erg deletion. (C-E) Total immune cells (CD45; red) and neutrophils (MPO; green) were visualized by immunostaining heart (C), kidney (D), and liver (E) tissue sections collected from control and Erg^{iECko} mice.

SUPPLEMENTAL FIGURE S6. *Differences in the transcriptional regulation of vascular stability by ERG in vitro and in vivo.* **(A)** The expression of TIE2 was quantified in lung tissue sections collected from control and Erg^{iECko} mice. Immunofluorescent TIE2 signal intensity was normalized against DAPI, which was used as a nuclear counter stain (n=3). **(B,C)** qPCR was used to quantify the expression of *TEK, CDH5,* and *CLDN5* in cultured HUVECs treated with non-specific (NS) or *Erg* siRNA (B;n=3) or murine lung tissue collected from control or Erg^{iECko} mice (C; n=3). **(D)** The expression of *Tek, Cdh5,* and *Cldn5* in wildtype murine lung tissue was also quantified following LPS treatment (4 mg/kg BW) for 6 and 24 h (n=4-5). *P* values were determined by a Welch's t-test (A), unpaired t-tests (B,C) or a 1-way ANOVA followed by a Dunnett's multiple comparison test (D).

SUPPLEMENTAL TABLE S1. A comprehensive list of mammalian ubiquitin ligase genes⁴¹ was cross referenced against the gene expression profiles of ECs within the lung, heart, liver, and kidney previously identified by EC-TRAP⁴⁰. mRNA abundance is based on log₂-transformed transcript per million (TPM) read values (n=3) and presented as a range from green (high abundance) to red (low abundance). All ubiquitin ligase genes that are >2-fold more highly expressed in lung ECs relative to the other organs are indicated in red.

LOG2 (Transcripts per Million)						
E3 Ligases	Lung	Heart	Liver	Kidney		
RNF7	9.23	8.42	7.93	8.31		
RBX1	9.04	8.60	8.38	8.74		
ANAPC11	8.66	8.52	8.37	8.60		
RNF187	7.64	6.01	6.46	6.57		
RNF141	7.36	5.90	5.40	4.72		
RNF130	7.34	6.52	7.18	6.73		
NSMCE1	7.34	7.14	6.80	7.19		
RNF167	7.33	7.17	6.65	7.23		
RNF114	7.03	7.37	6.86	7.61		
RNF5	6.93	6.02	6.85	6.88		
RCHY1	6.91	6.63	6.48	6.91		
NOSIP	6.81	7.47	7.30	7.95		
RNF181	6.68	7.03	7.03	7.41		
RNF220	6.57	5.00	5.30	5.25		
SPOP	6.47	6.55	6.11	6.27		
RNF125	6.44	6.39	4.44	5.67		
IRF2BP2	6.43	5.28	4.63	5.03		
TRIM8	6.42	4.23	4.42	4.50		
RNF144A	6.40	4.61	3.78	5.09		
RNF4	6.18	6.72	6.37	6.39		
RNF146	6.16	6.50	6.08	6.28		
MKRN1	6.06	4.73	5.01	4.88		
NEDD4	6.05	7.35	5.68	6.85		
RBCK1	5.97	6.97	6.58	6.83		
CYHR1	5.95	5.46	5.39	6.08		
TRAF7	5.95	6.55	5.52	6.48		
TRIM35	5.92	4.74	4.77	4.96		
CGRRF1	5.91	5.95	5.80	6.09		
MAEA	5.87	6.56	5.91	6.55		
MYLIP	5.84	5.58	6.65	5.37		
RNF10	5.84	5.61	5.19	5.65		
RNF11	5.83	5.15	4.37	4.99		
SMURF2	5.78	4.02	2.96	4.20		
PEX2	5.70	5.86	5.76	5.98		
RNF145	5.70	4.51	4.82	5.20		
XIAP	5.67	4.70	4.25	4.64		
MARCH2	5.67	4.91	5.40	4.92		
RNF14	5.66	6.17	5.40	6.10		
RNF185	5.63	5.71	5.64	5.88		
ZNRF1	5.50	4.19	5.13	4.42		
RNF44	5.50	5.30	4.75	5.45		
BFAR	5.49	5.60	5.44	5.55		
PPIL2	5.37	6.27	5.89	6.35		

PJA2	5.36	5.76	4.77	5.33
RNF13	5.35	6.27	6.12	6.11
AMER	5 33	5 32	5 75	5.61
	5.00	2.02	4.00	0.01
PELII	5.33	3.99	4.20	4.11
KCMF1	5.31	4.18	3.90	4.08
IRF2BPL	5.28	4.24	3.24	4.11
BIRC3	5 27	5 32	5 16	5 12
	5.24	5.20	5.76	5.82
	5.24	5.20	5.20	3.02
RNF115	5.20	5.03	5.18	4.67
TRIM25	5.18	4.72	4.20	4.15
TRIM28	5.15	5.08	5.31	5.31
ZFP91	5.15	4.26	3.90	4.17
DNE138	5 12	/ 31	3 56	3 00
	5.12	4 .01	0.00	0.00
PJAT	5.10	0.21	0.02	0.15
RNF6	5.08	6.24	5.36	6.10
RBBP6	5.08	4.11	3.55	4.18
MARCH5	5.03	4.48	4.53	4.78
MAP3K1	4 99	6 15	5.09	5 40
	4.04	4.04	4.01	4.40
STUDT	4.94	4.94	4.91	4.49
MARCH8	4.93	4.10	4.07	3.96
RNF2	4.92	4.95	4.59	4.75
RNF38	4.91	4.04	3.03	3.66
RNF19B	4 88	4 05	5.23	4 72
	4.00	2.77	0.20	4.00
KINF 144D	4.00	3.11	3.50	4.33
BIRC2	4.86	4.38	3.70	4.57
MARCH7	4.86	4.07	3.32	3.48
PCGF1	4.86	4.03	4.02	4.38
MGRN1	4 82	6 10	5 30	5 78
	4.02	5.06	4 70	5.20
	4.01	5.00	4.70	5.20
RMND5A	4.81	4.32	4.32	4.05
ZNRF2	4.77	3.31	3.41	3.44
MSL2	4.75	3.68	3.31	3.70
RNF20	4.72	4.33	4.11	4.20
LIBR7	1 72	1.87	1 28	1 00
	4.72	4.07	4.20	4.33
RINF25	4.08	4.90	4.70	5.20
RNF215	4.65	3.69	3.54	4.58
UBE3B	4.63	4.36	3.78	4.06
CHFR	4.62	4.11	3.96	4.08
PCGE5	4 60	3 55	2.96	3 19
CNOT4	1.00	4.15	2.00	2 70
	4.09	4.15	3.44	5.79
BRAP	4.59	3.75	3.73	4.21
TRAF2	4.58	5.73	5.39	6.06
RNF121	4.57	5.03	4.33	4.88
UHRF2	4.55	3.83	3.69	3.46
MKRN2	4.52	5 35	4.40	5 28
Malas 2	4.40	0.00	4.05	1.20
Marn2	4.49	4.05	4.05	4.05
RNF19A	4.49	4.90	3.66	4.77
SYVN1	4.47	3.77	3.95	3.64
TRIM26	4.46	4.66	4.70	4.74
VPS41	4 42	5 36	5 17	5 17
DNE102	4.40	2.00	4.04	2.14
	4.42	5.20	4.04	3.11
BMI1	4.40	3.52	2.85	3.46
UBE3A	4.37	3.61	3.44	3.66
MARCH6	4.36	3.65	2.63	3.70
MEX3C	4.36	3.52	2 29	2 97
DNE166	4.30	1 17	1.00	4.32
	4.33	4.17	4.00	4.33
RNF213	4.32	4.75	4.88	4.72
LNX2	4.28	4.02	3.58	4.46
RLIM	4.28	4.12	3.33	4.06

DTX3	4.27	4.90	3.35	4.54
TRAF5	4.26	3.87	2.77	4.13
VPS11	4.23	5.29	4.62	5.32
HECW2	4 21	2 32	2 25	3.01
DNFT1	/ 18	4.82	1 33	4.65
	4.10	4.02	4.00	4.00
	4.18	4.14	3.05	4.09
I RIM47	4.17	5.90	5.28	5.79
WWP1	4.16	4.05	2.81	3.28
CBLL1	4.16	3.68	3.16	3.36
TRIM41	4.14	3.22	4.27	3.55
MID2	4.14	2,19	1.65	2,59
RNE31	4 12	4 33	4 70	4 90
NEX1	4.09	5 14	4 16	4.40
	4.03	2.66	4.10	4.40
SCAFT	4.07	3.00	3.33	3.31
NHLRUT	4.05	0.53	N.D	N.D
RNF216	4.05	4.15	3.92	4.22
RSPRY1	4.04	3.68	3.67	4.05
RFWD2	3.97	3.00	2.57	3.14
RNF168	3.96	3.42	2.90	3.22
TMEM129	3.88	5.20	4.28	4.77
RNF169	3.86	3.51	3.46	3.87
	3.85	3.04	2 37	2.04
	2.00	2.04	2.07	2.34
	3.81	3.94	3.31	4.17
SH3RF1	3.81	4.19	4.03	3.87
RNF40	3.79	4.40	4.16	4.41
MUL1	3.78	4.71	4.33	4.62
IRF2BP1	3.75	2.91	3.30	3.49
MIB1	3.75	3.93	3.32	3.62
NEURI 3	3 73	5 13	6 16	5 57
RNF214	3 72	3 48	3.08	3 51
	3.72	2 19	2.60	3.03
	0.72	0.70	2.00	3.03
	3.70	2.12	1.70	1.97
RNF111	3.69	3.49	3.09	3.20
MDM4	3.64	2.49	1.92	2.53
WDSUB1	3.61	4.97	3.99	4.88
RNF139	3.61	3.00	2.92	3.17
RNF26	3.61	3.15	2.87	2.77
ARIH2	3.60	3.31	2.81	2.94
RNF122	3 59	3.61	2 92	4 13
\\\\\/D2	3.55	4 00	4.02	4.10
	3.55	4.99	4.27	4.92
	3.54	3.24	3.27	3.11
RC3H2	3.53	2.60	2.15	2.53
NEURL1B	3.52	2.94	0.71	4.14
ZFPL1	3.48	4.85	4.79	3.75
TRIM32	3.46	4.60	3.94	4.06
TRIM27	3.46	2.46	2.79	2.80
HECTD1	3.45	3.69	2.68	2.87
CBLB	3 43	1 91	0.93	1.52
TRIP12	3 / 3	4.06	3.67	3.54
	3.40		2.42	2.04
UDL4A	0.40	2.11	2.43	2.00
	3.40	3.56	3.35	3.44
PML	3.39	4.65	4.45	4.37
FANCL	3.39	3.28	2.45	3.21
RNF135	3.38	4.27	4.91	4.28
SMURF1	3.38	3.12	2.87	3.51
ANKIB1	3.38	2.50	2.47	2.97
TRIM65	3.35	4.09	3,19	3.18
LIBR3	3.32	3.76	2.52	3 35
TTC3	3 31	4.12	2.02	3.81
1100	0.01	7.12	2.04	0.01

	0.00	0.4.4	4 70	4.00
SIAH2	3.30	2.14	1.72	1.93
TRIM39	3.28	3.51	2.71	4.18
TRIM24	3.25	3.94	2.74	3.84
DNE8	3 25	0.83	2.64	2.28
	0.20	0.00	2.04	2.20
I RIIVIZ	3.24	2.09	2.04	2.59
DTX2	3.23	3.60	3.11	3.77
TRIM56	3.22	3.18	2.73	3.66
TRAF6	3.21	2.63	1.61	2.22
	3.21	3.03	2.52	3.03
	0.21	0.00	2.52	0.00
REWD3	3.19	3.11	3.12	3.93
RNF217	3.19	1.56	0.86	1.32
TRIM37	3.16	3.38	2.82	3.62
KMT2D	3.13	3.34	2.91	3.34
TRIM11	3 12	3 25	3 33	2 70
	2.00	2.20	2.40	2.70
HERC4	3.00	3.20	5.40	3.13
UNK	3.07	3.26	3.08	2.95
RNF149	3.06	2.31	3.90	2.50
RC3H1	3.06	2.97	2.02	3.29
ZNRE3	3.05	3 25	2 81	3.09
	2.00	2.52	2.01	2.00
	3.03	3.03	2.00	3.40
PCGF2	3.03	2.75	1.93	2.51
TRIM23	2.96	3.19	2.58	2.81
UBE3C	2.95	3.63	2.37	3.13
MARCH1	2 92	2 95	3 75	3.31
DEV12	2.02	2.00	2.04	2.14
FEAIZ	2.91	3.09	2.94	3.14
ZXDC	2.89	2.09	2.00	2.21
PEX10	2.89	3.66	3.29	3.91
VPS18	2.86	3.68	3.47	3.38
VPS8	2 85	2 68	3 23	2 81
	2.00	2.00	2.20	2.67
	2.01	1.00	2.71	2.07
RLF	2.80	1.66	1.62	1.43
HACE1	2.79	2.02	1.29	1.77
UBR5	2.78	3.04	2.45	2.80
E4F1	2.75	2.57	2.42	2.67
RNF170	2 73	2.55	1 81	2.36
	2.70	2.00	2.06	2.00
	2.70	3.27	5.00	2.00
MECOM	2.68	4.58	3.34	3.61
TRIM59	2.61	2.28	0.45	2.37
UBR2	2.61	2.15	1.86	1.69
PRPF19	2 59	3 97	2 84	2.96
	2.00	2.01	2.01	2.00
	2.03	2.01	3.17	2.30
LINI	2.38	2.03	1.31	1.94
MYCBP2	2.55	2.51	1.96	2.50
LONRF1	2.52	0.94	1.76	1.07
UBR1	2.51	2.73	1.37	2.26
	2 11	2.56	1 71	2.42
	2.44	2.00	1.71	2.72
	2.42	2.09	1.44	2.70
RING1	2.38	1.50	1.82	2.03
RAD18	2.34	2.99	2.90	3.23
NEDD4L	2.29	1.51	1.14	1.64
UBR4	2 29	2 91	2 13	2 31
TDIMEO	2.20	2.57	0.19	2.01
	2.20	2.03	-0.16	2.23
KNF219	2.25	3.25	2.22	2.58
UBOX5	2.22	2.27	2.09	1.92
PELI2	2.19	2.21	0.29	1.87
CBI	2.19	1.71	1.74	2.10
REFI	2.18	2.28	1 70	1 75
	2.10	2.20	1.70	1.75
G2E3	2.18	1.89	1.25	2.09
KMT2C	2.17	1.75	1.35	1.87

UHRF1	2.13	4.24	3.45	4.18
TRAF3	2.11	1.19	1.10	1.89
TRIM62	2.07	0.96	1.07	2.41
MEX3D	2.07	0.89	0.17	0.91
NFXL1	1.99	2.41	2.92	2.07
TRIM5	1.95	2.26	2 03	1 75
PHF7	1.00	2.65	2.00	3 15
HERCO	1.88	1 95	2.70	2.60
TRIM33	1.00	1.50	0.08	1.82
	1.00	1.02	0.30	2.20
MID2	1.77	1.05	2.37	2.39
	1.70	2.00	2.71	2.42
	1./1	2.33	1.37	1.02
UNKL	1.70	2.44	1.12	2.05
DTX3L	1.69	3.21	1.25	2.70
WDR59	1.68	2.03	2.39	1.47
HERC2	1.64	2.20	1.55	1./1
DTX1	1.61	0.49	1.34	N.D
TRIM45	1.57	1.89	1.99	1.98
SHPRH	1.42	1.09	0.37	0.76
RNF123	1.41	3.28	2.56	2.72
MARCH9	1.41	N.D	N.D	-0.23
DTX4	1.38	2.75	0.12	1.87
RNF126	1.26	N.D	0.07	N.D
TRIM6	1.19	-0.69	-1.44	-0.36
HERC3	1.19	1.90	1.58	0.97
TRIM21	1.17	0.45	0.47	0.85
RNF186	1.15	N.D	2.20	3.18
LRSAM1	1.12	3.02	2.47	2.55
PCGF6	0.95	0.68	0.35	-0.17
TRIM7	0.77	1 07	0.20	2 29
RNF157	0.67	1.56	3.20	2.98
TRIM46	0.59	ND	1 45	0.10
PLAGE1	0.53	3 90	0.52	-0.88
RNF128	0.00	1 51	2.88	2.60
	0.44	0.96	1.85	0.70
TDIM36	0.33	1 22	0.34	0.75
	0.32	1.22	-0.34	
	0.30	1.20	N.D	N.D
	0.15	2.04	3.10	1.55
CBLC	N.D.	N.D	1.15	-0.01
COL9	N.D.	1.44	1.20	1.48
DUSTI	N.D.	N.D	N.D	1.91
LNX1	N.D.	4.94	-1.14	1.93
PARK2	N.D.	0.75	1.39	0.74
PDZRN3	N.D.	1.32	-0.43	1.12
RAPSN	N.D.	2.71	N.D	1.84
RNF152	N.D.	0.82	-1.03	0.61
RNF183	N.D.	N.D	N.D	2.95
RNF207	N.D.	3.01	N.D	N.D
RNF222	N.D.	N.D	1.29	0.56
RNF43	N.D.	N.D	0.96	-0.69
TRAIP	N.D.	1.43	1.26	1.57
TRIM10	N.D.	1.70	0.63	0.25
TRIM54	N.D.	4.49	N.D	N.D
TRIM55	N.D.	2.60	N.D	N.D
TRIM63	N.D.	4.70	N.D	1.18
TRIM72	N.D.	1.92	N.D	N.D

SUPPLEMENTAL TABLE S2. List of all primers used for genotyping, qPCR, and mutagenesis

performed in this study.

Primer Name	Sequence	Application
<i>ll1r1-flox</i> - F	5`-GAAAAGTGCTAGAACATCCTTTGAG	Construction (114 rd flow)
ll1r1-flox - R	5`-GTACCAATGGAGGCCAGAAG	Genotyping (<i>II1r1-flox</i>)
Tnfa-WT - F	5`-TAGCCAGGAGGAGAACAGA	
Tnfa-WT - R	5`-AGTGCCTCTTCTGCCAGTTC	Genotyping (TNFa-KO)
Tnfa-MUT - R	5`-CGTTGGCTACCCGTGATATT	
iCdh5-Cre - F	5`-GTACCAATGGAGGCCAGAAG	
iCdh5-Cre - R	5`-CGAACCTGGTCGAAATCAGT	Genotyping for Cdh5(PAC)-Cre
Control - F	5`-CGAACCTGGTCGAAATCAGT	ERT2
Control - R	5`-GTAGGTGGAAATTCTAGCATCATCC	
Erg-flox #1 - F	5'-AGAGTCTCTGCACACAGAACTTCC	
Erg-flox #1 - R	5`-AATGCTCTGGTAAGGCACACAAGG	Genotyping for Erg-flox
loxP-FWD	5`-GAGATGGCGCAACGCAATTAATG	
Erg-flox #2 - F	5'- AGATTTTGTTCTGGTTAACAAGCCGTGC	Constructing for Fra flox
Erg-flox #2 - R	5'- AATGAGACAGAGCCATGAGGTAGATGGG	Genotyping for Erg-nox
VE Cad - F	5`-GCAGGCAGCTCACAAAGGAACAAT	
VE Cad - R	5`-TGTCCTTGCTGAGTGACAGTGGAA	Genotyping for cVE Cad-Cre
VE Cad Cre - R	5`-ATCACTCGTTGCATCGACCGGTAA	
Tie2-Cre - F	5`-GGGAAGTCGCAAAGTTGTGAGTTG	
Tie2-Cre - R	5`-TCCATGAGTGAACGAACCTGGTCG	Genotyping for TIE2-Cre
Control - F	5`-CGAACCTGGTCGAAATCAGT	
IControl - R	5`-GTAGGTGGAAATTCTAGCATCATCC	
Erg001-F	5'-CCAAGCTTTTGATCGCATTATGGCCAGC	pcDNA3.1-Erg-Myc cloning
Erg-R-Myc	5`CTCTAGATTACAGGTCCTCCTCGCTGATCAGCTTCTGCTCG- TAGTAAGTGCCCAGATGAGAAGG	pcDNA3.1-Erg-Myc clone
K67	5'-AGCCAGGGTCACCATCAGAATGGAATGTAACCCTA	pcDNA3.1-Erg-Myc Mutagenesis
K89	5'-GATGAATGCAGTGTGGCCAGAGGCGGGAAGA	pcDNA3.1-Erg-Myc Mutagenesis
K92	5'-GCTGCCCACCATCCTCCCGCCTTTGGC	pcDNA3.1-Erg-Myc Mutagenesis
K92b	5'-CCAGAGGCGGGAGGATGGTGGGCAG	pcDNA3.1-Erg-Myc Mutagenesis
K111	5'-CGGCAGCTACATGGAGGAGAGGCACATGCCAC	pcDNA3.1-Erg-Myc Mutagenesis
K271	5'-CCACGCCCCAGTCGAGAGCTGCTCAACC	pcDNA3.1-Erg-Myc Mutagenesis
K282	5'-CGCTGGTCTTCAGTTCTGGGCACTGTGGAAG	pcDNA3.1-Erg-Myc Mutagenesis
mActb-F	5`-TGTTACCAACTGGGACGACA	qPCR: Murine Housekeeping
mActb-R	5`-GGGGTGTTGAAGGTCTCAAA	Gene
hActb-F	5'-CTCTTCCAGCCTTCCTTCCT	qPCR: Human Housekeeping
hActb-R	5`-AGCACTGTGTTGGCGTACAG	Gene
mGapdh-F	5`-TCAACGGCACAGTCAAGG	qPCR: Murine Housekeeping
mGapdh-R	5'-ACTCCACGACATACTCAGC	Gene
hGapdh-F #1	5`-GAGTCAACGGATTTGGTCGT	qPCR: Human Housekeeping
hGapdh-R #1	5`-GACAAGCTTCCCGTTCTCAG	Gene
hGapdh-F #2	5'-CAAGGTCATCCATGACAACTTTG	qPCR: Human Housekeeping
hGapdh-R #2	5'-GGGCCATCCACAGTCTTCTG	Gene
hRn18S-F	5`-CCCGAAGCGTTTACTTTGAAA	qPCR: Murine/Human House-
hRn18S-R	5`-CGCGGTCCTATTCCATTATTC	keeping Gene
mErg-F	5`-GCTCAGCCATCTCCCTCTGCAG	aPCR: Murine Fra expression
mErg-R	5-ICGAGCAGGAACTGCCACAGC	

hErg-F	5'-GGAGTGGGCGGTGAAAGA	aBCB: Human Era avarian		
hErg-R	5'-AAGGATGTCGGCGTTGTAGC	qFCR. Human Erg expression		
mTek-F	5'-CTGTGGAGTCAGCTTGCTCCTTT	aPCP: Murino Tak expression		
mTek-R	5'-ACCTCCAGTGGATCTTGGTGCTG	qrok. wurne <i>Tek</i> expression		
hTek-F	5`-TACACCTGCCTCATGCTCAG	aBCB: Human Era avarian		
hTek-R	5'-TTCACAAGCCTTCTCACACG	qPCR. Human <i>Erg</i> expression		

Figures	Panel	Normality	Equal Variance	Transformed	Statistical Test	Post hoc Test	Comparisons	p value
1	В	YES (Shapiro-Wilk)	NO (Brown-Forsythe)		Kruskal-Wallis	Dunn's	Control vs TNFa	0.0042
							MG132 vs MG132+TNFa	>0.9999
2	В	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		One-way ANOVA	Dunnett's	Vehicle vs TNFa	0.0003
-	5		TEO (Blown Foldyale)			Dumoto	Vehicle vs II -1a	<0.0000
							Vehicle vs IL-1a	<0.0001
							Vehicle vs IL-18	0.1826
2	6				Walsh theat			0.1020
2	L L	res (Snapiro-Wilk)	NO (Brown-Forsythe)		weich t-test		Lung_venicie vs LPS	0.047833
							Heart_Vehicle vs LPS	0.027198
							Liver_Vehicle vs LPS	0.047833
							Kidney_Vehicle vs LPS	0.012966
							Retina_Vehicle vs LPS	0.396898
2	D	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		Lung Vehicle vs LPS	0.000048
							Heart_Vehicle vs LPS	0.489644
							Liver Vehicle vs LPS	0.489644
							Kidney Vehicle vs LPS	0.669104
							Retina Vehicle vs LPS	0.669104
3	Δ	YES (Shaniro-Wilk)	YES (Spearman's)		Two-way ANOVA	Sidak's	Control: Vehicle vs LPS	<0.0001
- U			TEO (Opeannano)			Claaks	Tnfa-KO: Vehicle vs LPS	0 1771
2	Р	VEC (Chapiro Wills)	NO (Spearmania)	Log		Sidakla	Control: Vahiala va L BS	0.0475
3	В	TES (Shapiro-Wilk)	NO (Spearman's)	LUY	Two-way ANOVA	Sluaks		0.0473
-	-					<u> </u>	ITTI-KO: Vehicle VS LPS	0.7742
3	С	YES (Shapiro-Wilk)	NO (Spearman's)	Log	Two-way ANOVA	Sidak's	Control: Vehicle vs LPS	0.0044
							II1r1-ecKO: Vehicle vs LPS	0.0136
3	F	YES (Shapiro-Wilk)	NO (Spearman's)	Log	Two-way ANOVA	Sidak's	Control vs LPS	0.0007
							MG132 vs LPS+MG132	0.122
4	Α	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		One-way ANOVA	Dunnett's	Control vs Influenza (Low-2d)	0.995
							Control vs Influenza (Low-6d)	0.0156
							Control vs Influenza (High-6d)	0.0203
5	Δ	YES (Shaniro-Wilk)	YES (Brown-Eorsythe)		I Innaired t-test		ERG: NS vs ERG siRNA	<0.000001
Ŭ	~		TEO (Blown Foloyate)		onparied t test		TEK: NS vs ERG siRNA	0.001371
5		VES (Shapiro Wilk)	VES (Brown Forsytho)			Dunnotte	3'I ITP vs Eph	0.0002
5	<u> </u>	VEC (Chapire Wilk)	VEC (Brown Forsythe)		Uler size d t to st	Dunneus		0.0002
5	U	TES (Shapiro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		Lung: Control vs Erg IECko	0.013343
							Heart: Control Vs Erg IECko	0.612869
							Liver: Control vs Erg IECko	0.203006
							Kidney: Control vs Erg iECko	0.606031
5	F	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		Lung: Control vs Erg iECko	0.000388
							Heart: Control vs Erg iECko	0.553215
							Liver: Control vs Erg iECko	0.525163
							Kidney: Control vs Erg iECko	0.150877
5	н	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		One-way ANOVA	Dunnett's	t=0 vs t=6h	< 0.0001
							t=0h vs t=24h	< 0.0001
							t=0h vs t=48h	<0.0001
							t=0h vs t=72h	0.001
5	1	VES (Shaniro-Wilk)	VES (Brown-Eorsythe)			Dunnett's	t=0 vs t=6b	<0.001
J			TEO (DIOWIN-I Orayule)		One-way ANOVA	Dunneus	t=0 vs t=011	0.0446
							t=0h vo t=49h	0.0440
							t=0h vo t=72h	0.5494
C	•							0.0923
0	A	res (Snapiro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		Lung: Control vs Erg IECko	0.003417
							Heart: Control Vs Erg IECKo	0.064057
							Liver: Control vs Erg iECko	0.873277
							Kidney: Control vs Erg iECko	0.626458
6	E	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		Control vs Erg iECko	0.0066
6	F	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		Control vs Erg iECko	0.438
6		YES (Shapiro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		Control vs Erg iECko	0.0073
6	J	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		Control vs Erg iECko	0.0035
S1	А	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		One-way ANOVA	Dunnett's	t=0h vs t=2h	0.0724
							t=0h vs t=4h	0.0074
							t=0h vs t=8h	0.0038
S2	B	YES (Shaniro-Wilk)	NO (Brown-Forsythe)		Welch t-test		Vehicle vs LPS	0.0199
62		NO (Shapiro Wilk)	VES (Brown Forsytho)		Brown Forsytho ANOVA	Dunnott's T3	t=0b.vc.t=6b	<0.0001
52	U		TEO (DIOWIN-I Orayule)		Biowini orayane ANOVA	Dunneus 15	t=0h vo t=24h	0.0001
							t=0h vo t=49h	0.0000
		X(50.0)			T 1101/1	0.1.11		0.0710
<u>S2</u>	F	YES (Shapiro-Wilk)	NO (Spearman's)	Log	Two-way ANOVA	Sidak's	Control:Vehicle vs Control:LPS	<0.0001
	-					.	ECko:Vehicle vs ECko:LPS	<0.0001
S2	G	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		One-way ANOVA	Sidak's	Vehicle vs TNFa	0.0438
							TNFa vs TNFa+IL1a	0.8112
							TNFa vs TNFa+IL1b	0.9996
S2	Н	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		Two-way ANOVA		Treatment Interaction	< 0.0001
							Gender Interaction	0.222
S4	В	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		One-way ANOVA	Dunnett's	Control vs Influenza-Low-D6	0.0076
							Control vs Influenza-High-D6	0.0015
S6	Α	YES (Shapiro-Wilk)	NO (Brown-Forsythe)		Welch t-test		Control vs Era iECko	0.005
S6	В	YES (Shaniro-Wilk)	YES (Brown-Forsythe)		Unpaired t-test		TEK: NS vs FRG siRNA	0.0008
			0 (0.0.011 0.09/00)		0.190.10011001		CDH5: NS vs FRG siRNA	0 7486
							CI DN5: NS ve ERG eiRNA	0.0006
96	C	VES (Shapiro Wills)	VES (Brown Forewthe)		Unpaired t toot		Tak' NS ve EPG ciDNA	0.0156
30	U		TEO (DIOWII-FUISyulle)		Unpaired t-test			0.0150
								0.0040
0.2	-	V/F0 (0) - 1 1000	V(EQ. (Dec.) =		0	D	TEK LOL	0.7523
56	Ď	YES (Shapiro-Wilk)	YES (Brown-Forsythe)		One-way ANOVA	Dunnett's	TEK: t=0h vs t=6h	<0.0001
							$I = K \cdot t = (h vs t = 24h)$	<0.0001

SUPPLEMENTAL TABLE S3. Description of statistical tests used for comparisons.

SUPPLEMENTAL TABLE S4. List of mouse genders used for the generation of figure data.

Figure	Condition	Males	Females
2B	Vehicle	4	2
	TNFa	4	1
	IL1a	3	2
	IL1b	4	2
	IL-18	2	1
1C	Vehicle	3	
	LPS-2h	3	
1D	Vehicle	4	2
	LPS-8h	4	2
3A	Control+Vehicle	3	2
	Control + LPS	3	3
	Tnfa-KO + Vehicle	2	3
	Tnfa-KO + LPS	4	3
3B	Control + Vehicle	2	2
	Control + LPS	3	2
	II1r1-GKO + Vehicle	3	1
	ll1r1-GKO + LPS	4	2
3C	Control + Vehicle	4	
	Control + LPS	4	
	II1r1-ECko + Vehicle	4	
	ll1r1-ECko + LPS	4	
3F	Control	1	2
	LPS	1	2
	MG132	2	2
	LPS + MG132	2	3
4A	Control		3
	Influenza-Low-2d		3
	Influenza-Low-6d		3
	Influenza-High-6d		3
5D	Control		3
	Erg iECko		3
5F	Control		4
	Erg iECko		4
5H	t=0	3	4
	t=6	3	2
	t=24	4	4
	t=48	3	3
	t=72	2	4
51	t=0	3	4
	t=6	3	2
	t=24	4	4
	t=48	3	3
	t=72	2	4
6A	Control	1	3
	Erg iECko	2	3
6E	Control	3	1
	Erg iECko	3	1
6F	Control	3	1
	Erg iECko	3	1
61	Control	4	0
	Erg iECko	4	0
6J	Control	4	0
	Erg iECko	4	0

Major Resources Table

Animals (in vivo studies)

Species	Vendor or Source	Background Strain	Sex	Persistent ID / URL
Mouse	Jackson Laboratory	C57BI/6J	M/F	#000664
Mouse	Jackson Laboratory	ll1r1 ^{flox}	M/F	#028398
Mouse	Jackson Laboratory	Tnfa⁻/-	M/F	#003008
Mouse	Taconic	Cdh5(PAC)-Cre ^{ERT2}	M/F	#13073
Mouse	Jackson Laboratory	VE-Cadherin-Cre	M/F	#006137
Mouse	Jackson Laboratory	Tie2-Cre	M/F	#008863

Genetically Modified Animals

	Species	Vendor or Source	Background Strain	Other Infor- mation	Persistent ID / URL
Parent - Male					
Parent - Fe- male					

Antibodies

Target	Vendor	Catalog	Working	Lot	Persistent ID / URL
antigen	or	#	concen-	#	
	Source		tration		
ERG	Abcam	ab92513	1:200 -		RRID:AB_2630401
			1:1000		
ERG	Santa	sc-353	1:500 -		RRID:AB_675518
	Cruz		1:2000		
FLI1	Abcam	ab15289	1:1000		RRID:AB_301825
CD31	R&D	AF3628	1:1000		RRID:AB_2161028
	Sys-				
	tems				
Hemag-	BEI Re-	NR-3148	1:200		https://www.beiresources.org/Catalog/BEIPoly-
glutinin	sources				clonalAntiserum/NR-3148.aspx
TIE2	R&D	AF762	1:100		RRID:AB_2203220
	Sys-				
	tems				
CD45	R&D	AF114	1:100		RRID:AB_442146
	Sys-				
	tems				
MPO	Epredia	RB373-	1:100		https://www.fishersci.com/shop/products/lab-
		A0			vision-myeloperoxidase-mpo-rabbit-polyclonal-
					antibody-bsa-azide/RB373A0
FLAG	Sigma	F180	1:1000		RRID:AB_262044
GAPDH	Sigma	G9545	1:1000		RRID:AB_796208
GAPDH	Milli-	MAB374	1:1000		RRID:AB_2107445
	pore				

DNA/cDNA Clones

Clone Name	Sequence	Source / Repository	Persistent ID / URL

Cultured Cells

Name	Vendor or Source	Sex (F, M, or un- known)	Persistent ID / URL
Human Umbilical Vein ECs	ATCC	Unknown	#PCS-100-010

Data & Code Availability

Description	Source / Repository	Persistent ID / URL

Other

Description	Source / Repository	Persistent ID / URL

ARRIVE GUIDELINES

Figure 2B

Groups	Sex	Age	Number (prior to experi- ment)	Number (after ter- mination)	Littermates (Yes/No)	Other description
Group 1 (Control)	M/F	8-12 weeks old	5	5	Yes	
τνγα	M/F	8-12 weeks old	5	5	Yes	
IL-1α	M/F	8-12 weeks old	5	5	Yes	
IL-1β	M/F	8-12 weeks old	5	5	Yes	

Figure 2C and D

Groups	Sex	Age	Number (prior to experi- ment)	Number (after ter- mination)	Littermates (Yes/No)	Other description
Group 1 (Control)	M/F	8-12 weeks old	3-5	3-5	Yes	
LPS	M/F	8-12 weeks old	3-5	3-5	Yes	

Figure 3A-C,F

Groups	Sex	Age	Number (prior to experi- ment)	Number (after ter- mination)	Littermates (Yes/No)	Other description
Group 1 (Control)	M/F	8-12 weeks old	4-6	4-6	Yes	
LPS	M/F	8-12 weeks old	4-6	4-6	Yes	

Figure 4A

Groups	Sex	Age	Number (prior to experi- ment)	Number (after ter- mination)	Littermates (Yes/No)	Other description
Group 1 (Control)	F	6-8 weeks old	3	3	Yes	
Influ- enza_Low Dose_2 day	F	6-8 weeks old	3	3	Yes	

Influ-	F	6-8 weeks	3	3	Yes	
enza_Low		old				
Dose_6						
day						
Influ-	F	6-8 weeks	3	3	Yes	
enza_High		old				
Dose_6						
day						

Figure 5 D-F

Groups	Sex	Age	Number (prior to experi- ment)	Number (after ter- mination)	Littermates (Yes/No)	Other description
Group 1 (Control)	M/F	8-12 weeks old	3-4	3-4	Yes	
Erg iECko	M/F	8-12 weeks old	3-4	3-4	Yes	

Figure 6 A,E,F

Groups	Sex	Age	Number (prior to experi- ment)	Number (after ter- mination)	Littermates (Yes/No)	Other description
Group 1 (Control)	M/F	8-12 weeks old	4-6	4-6	Yes	
Erg iECko	M/F	8-12 weeks old	4-6	4-6	Yes	