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ABSTRACT 

Transcription factors (TFs) are proteins that affect
gene expression by binding to regulatory regions of
DNA in a sequence specific manner. The binding of
TFs to DNA is contr olled b y man y factors, inc luding
the DNA sequence, concentration of TF, chromatin
accessibility and co-factors. Here, we systematically
investigated the binding mechanism of hundreds of
TFs by analysing ChIP-seq data with our explainable
statistical model, ChIPanalyser. This tool uses as in-
puts the DNA sequence binding motif; the capacity to
distinguish between strong and weak binding sites;
the concentration of TF; and chromatin accessibil-
ity. We found that approximately one third of TFs are
predicted to bind the genome in a DNA accessibil-
ity independent fashion, which includes TFs that can
open the chromatin, their co-factors and TFs with
similar motifs. Our model predicted this to be the
case when the TF binds to its strongest binding re-
gions in the g enome , and only a small number of TFs
have the capacity to bind dense chromatin at their
weakest binding regions, such as CTCF, USF2 and
CEBPB. Our study demonstrated that the binding of
hundreds of human and mouse TFs is predicted by
ChIPanalyser with high accuracy and showed that
many TFs can bind dense chromatin. 
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INTRODUCTION 

Site specific transcription factors (TFs) control gene ex-
pression by binding to gene promoters and enhancers ( 1 , 2 )
but prediction of their binding in different cell types has
been a significant challenge to date. Ther efor e, we do not
have a clear understanding of the underlying mechanism
that underpins TF binding in various biological contexts.
The advent of high throughput technologies, such as chro-
ma tin immunoprecipita tion followed by sequencing (ChIP-
seq) drove huge progress in generating empirical data on
TF binding profiles, which is now the gold standard method
to experimentally determine TF binding profiles ( 3 ). Never-
theless, despite their notable impact on profiling TF bind-
ing, ChIP methods do not provide a mechanistic under-
standing of the binding e v ents of TFs to the genome. 

TFs bind to the DNA at specific short sequences known
as motifs , where TFs recognize and bind their motifs with
much higher affinity than any other sequence ( 4–6 ). There
is a wide array of methods, both in vitro and in vivo , that
can be used to determine TF binding sites ( 3 , 7 , 8 ). Howe v er,
.zabet@qmul.ac.uk 
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he presence of a motif is not sufficient for a TF to bind 

r regulate a gene ( 9–11 ). Thus, other factors besides DNA 

equence must influence TF binding, for example TF con- 
entration ( 12–15 ). 

Furthermore, TFs in humans and other higher eukary- 
tes also face the challenge posed by the complex structure 
f chromatin. Indeed, nucleosomes have long been known 

o impede TF binding and nucleosome-rich r egions ar e as- 
ociated with transcriptionally inacti v e chromatin ( 16 , 17 ). 
hus, nucleosome positioning and DNA accessibility is an- 
ther significant factor influencing TF binding. 
While it is assumed that in general TFs cannot bind 

ucleosome-rich chromatin, a subset of TFs known as pi- 
neer factors can interact with nucleosomes and bind their 
o gnate DN A. Not onl y that, but they are also able to dis-
lace nucleosomes and make way for other TFs to bind 

ithout the use of ATP-dependent chromatin re-modelers 
 18 ). The first pioneer factors discovered were FOXA1 and 

ATA4, two TFs that play an important role in endoderm 

ormation during embryogenesis ( 19 , 20 ). Since then, sev- 
ral other TFs involved in a variety of processes have been 

dentified as having pioneer function ( 21 ). Other examples 
re the pluripotency factors (SOX2, OCT3 / 4, KLF4 and c- 
YC), which can reprogram somatic cells and re v ert them 

o a pluripotent state. These factors have been shown to 

av e pioneer properties, e xcept for c-MYC w hich a ppears 
o lack pioneer properties itself, but is a co-factor that en- 
ances the activity of SOX2 / OCT4 ( 22 , 23 ). 
Bookmarking of binding sites by TFs (i.e. the continued 

ccupancy of TFs at their binding sites e v en during tran- 
criptionally inacti v e phases, such as during mitosis) is a 

echanism for quick reactivation of transcription sites af- 
er cell division. This behaviour has been observed in sev- 
ral TFs such as FOXA1 ( 24 ), GATA1 ( 25 ), as well as the
luripotency factors ( 26 ) and it serves to maintain cellular 
if ferentia tion, or lack thereof, in the case of the pluripo- 
ency factors. 

The mechanisms by which pioneer factors open chro- 
atin are not well understood. While it has been shown 

ha t FOXA1-media ted chroma tin relaxa tion does not re- 
uire ATP- dependent chromatin re-modelers, it is unclear 
hether r e-modelers ar e r ecruited ( 18 , 27 ). In the case of
OXA1, there is evidence for it directly causing chromatin 

elaxation through the displacement of linker histones ( 28 ). 
ther factors, such as OCT4, are known to recruit chro- 
atin re-modelers to their binding site to facilitate chro- 
atin opening. For example, OCT4 recruits the SWI / SNF 

omplex of chromatin re-modelers, particularly Brg1 

 29–31 ). 
When a TF binds to dense chromatin, it can either open 

he chromatin, stay idle or help maintain it in a closed 

tate. If binding results in opened chromatin, the TF would 

e classified as a pioneer factor, while in the latter case, 
t can be classified either as an insulator or a bookmark- 
ng TF. Insulators can bind at the boundary between dense 
nd open chromatin and stop the spreading of heter ochr o- 
atin, ther eby pr e v enting gene silencing and gene inacti- 

a tion ( 32 ). In addition, insula tors can bind between the
nhancer and the promoter, thus blocking their interaction 

nd interfering with gene expression ( 33 ). One interesting 

xample of an insulator is CTCF, which appears to have the 
bility to displace nucleosomes after cell division and main- 
ain nucleosome depleted regions in some contexts ( 34 ), 
hile other times its binding is inhibited by the presence 
f nucleosomes ( 35 , 36 ). This indicates that the relation- 
hip between TFs and chromatin is complex and context 
ependent. 
Here, we investigate the binding profiles and chromatin 

ccessibility pr efer ences of human and mouse TFs using 

hIPanalyser, an e xplainab le statistical model we previ- 
usly de v eloped ( 13 , 37 ). Other tools to predict ChIP pro-
les ( 38–40 ) train an opaque / black box machine learning 

ML) model on ChIP data and predict binding profiles in 

ther cell types. While those models can be interpreted, it is 
ften challenging to interpret mechanistically what dri v es 
he binding of a TF. ChIPanalyser uses a bottom-up ap- 
roach, where the models start from known biological and 

hysical components of TF binding and we train the pa- 
ameters of the model on ChIP data ( 11 , 13 , 37 , 41 ). One as-
umption we make is that the DNA binding motif (in the 
orm of PWM) is an accurate r epr esentation of the binding 

r efer ence of a TF. This is often the case ( 42 ), but there are
lso exceptions, and the ML models predict different bind- 
ng motifs ( 38–40 ). 

TF binding to DN A and DN A accessibility are dynamic 
rocesses. Consequentl y, identifying w hether TF binding is 
ffecting DNA accessibility or DNA accessibility limits TF 

inding is a difficult task. For example, if one observes a 

ranscription factor binding in open chromatin, it is diffi- 
ult to know whether the presence of the TF opened the 
hromatin or the genomic area was already accessible and 

llowed that transcription factor to bind. ChIPanalyser al- 
ows to discriminate between these two scenarios by distin- 
uishing between: (i) the case when a TF is bound in an 

pen region of the chromatin because of being restricted 

nly to binding in open regions of the chromatin, or (ii) 

he case when the chromatin is open at all the sites in the 
enome where the TF can bind to the DNA. To achie v e 
his, we model the TFs as being able to bind anywhere in 

he genome independently of DNA accessibility le v els and 

ompare that to binding being restricted to the TF to top ac- 
essible regions. If ChIPanalyser predicts many peaks that 
re not observed in ChIP-seq data when allowing binding 

 v erywhere in the genome, but not when restricting the TF 

inding to top accessible regions, then we can conclude that 
he TF binding is affected by the DNA accessibility. In con- 
rast, if by allowing binding e v erywhere in the genome (in- 
luding dense chromatin regions) we do not predict novel 
eaks (not observed in ChIP-seq data) compared to allow- 

ng binding only in top accessible regions of the genome, 
hen the binding of the TFs is not limited by DNA acces- 
ibility. Ne v ertheless, this approach (using ChIPanalyser), 
annot discriminate whether a TF opens the chromatin (be- 
ng a pioneer factor), binds together to the DNA with an- 
ther TF that opens the chromatin (co-factor of a pioneer), 
r shares a similar binding motif with a pioneer TF or its 
o-factors. 

We first train the ChIPanalyser model on bulk ChIP-seq 

nd DNA accessibility data (e.g. ATAC-seq or DNaseI-seq) 
ata in order to estimate TF binding parameters, and then 

se those to determine whether TFs prefer to bind open or 
ucleosome associated DNA. Our results show that many 
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TFs bind to DNA in an accessibility independent manner
at their strongest binding sites. We highlight different be-
havioural classes among mouse and human TFs. Addition-
ally, the ability to bind to inaccessible DNA can be linked
to various functional roles such as bookmarking, chromatin
opening or chromatin insulation. 

MATERIALS AND METHODS 

Datasets 

K562 cell line. To investigate TF binding behaviour, we
considered 244 TFs in K562 cells for which ChIP-seq data
were available from ENCODE ( 43 , 44 ). First, we selected
ChIP-seq datasets in WT K562 cells and excluded from fur-
ther analysis data where the cells were subjected to differ-
ent treatments (e.g. RNAi). Furthermore, TFs for which a
PWM motif was not available in the JASPAR database and
had less than 60 ChIP-seq peaks were also excluded from
the dataset. All metadata information for the downloaded
data can be found in supplementary data Supplementary
Table S1. The final number of TFs after triage was 110 (see
Supplementary Table S2). Where multiple experiments were
available for one TF, the data were merged. 

In addition to the TF ChIP-seq data, DNase I hyper-
sensitivity data were also downloaded from ENCODE for
the K562 cell line (experiment accession ENCSR000EOT).
This was processed in the same way as the ChIP-seq data
(see below) until the peak calling stage, where broad peaks
were called with a q-value threshold of 0.1 instead. 

Mouse cell lines. We considered 78 ChIP-seq datasets in
8 mouse cell lines from ENCODE ( 43 , 44 ) and, following
the same filtering steps as in the K562 cells (motif in JAS-
PAR core and more than 60 ChIP-seq peaks), 60 ChIP-seq
datasets were selected (Supplementary Table S6). We used
se v eral datasets for DNA accessibility ( 43 , 45–48 ) (see Sup-
plementary Table S7). 

IMR90 and HepG2 cell lines. We considered 11 TFs in
IMR90 and 3 in HepG2 cell lines using ChIP-seq data
available from ENCODE ( 43 , 44 ) (see Supplementary Table
S9). Raw human chromatin accessibility fastq datasets for
IMR90 and HepG2 (in the form of DNase-seq, MNase-seq,
ATAC-seq and NOMe-seq) were downloaded from EN-
CODE release 3 ( 44 ). 

Note that whilst ATAC-seq, DNase-seq and MNase-seq
follow the same accessibility pattern (starting at 100% ac-
cessible DNA for QDA = 0 and then gradually decreasing
their percentage of accessible genome), NOMe-seq does not
follow this pattern and in this case QDA = 0 corresponds
to 41% of accessible regions and QDA = 0.99 corresponds
to 8% accessible regions (Supplementary Figure S10C-D).
In other words, there are no reads from 59% of the genome
in the NOMe-seq data from IMR90. In the case of IMR90
cells, MNase-seq does not reach 0%, which can be explained
by the quality of the data and the size of the sequencing li-
brary (MNase-seq measures the nucleosome profiles and,
thus, increasing the sequencing depth could allow captur-
ing regions with higher density of nucleosomes and lower
accessibility). 
To select regions with strong, medium and weak ChIP
signal, we first ordered 50 kb regions based on the number
of ChIP peaks they contain for the corresponding TF and
then we selected groups of 50 regions from the top, middle
and bottom of the list. 

When analysing the different methods to estimate DNA
accessibility, we found that ATAC-seq and DNaseI-seq
showed better performance compared to MNase-seq and
NOMe-seq. Since this was performed in two different cell
lines with different DNA accessibility datasets, our results
indica te tha t this would not be affected by the dataset qual-
ity. Howe v er, gi v en the lower number of analysed TFs for
the comparison of the different methods to measure accessi-
bility, these results could also be impacted by a single lower
quality dataset. 

Pre-processing of ChIP-seq and DNA accessibility data 

We used Trimmomatic v. 0.39 ( 49 ) or cutadapt version
1.18 ( 50 ) to remove ILLUMIN A ada pters and poor-quality
r eads. Then, the data wer e aligned to the hg38 r efer ence
genome ( 51 ) with bowtie2 version 2.3.4.1 ( 52 ). Peaks were
called with macs2 version 2.1.2 with a q -value threshold of
0.5 ( 53 ). 

Modelling TF binding with ChIPanalyser 

Model description. ChIPanalyser implements an approx-
imation of the statistical thermodynamics model and is
described in detail in ( 54 , 37 ). Briefly, ChIPanal yser esti-
mates ChIP-seq like profiles based on four parameters: (i)
a weighted DNA binding motif r eferr ed to as a position
weight matrix (PWM), (ii) DNA accessibility data, (iii) the
number of molecules bound to the DNA (determined ex-
perimentally or predicted) and (iv) a factor that modulates
TF specificity. The model outputs the probability that a TF
is bound to a site j as gi v en by: 

P 

bound 
j = 

N · a j · e 
1 
λ
w j 

N · a j · e 
1 
λ
w j + L · n ·

〈 
a i · e 

1 
λ
w i 

〉 

where N is the number of TF molecules bound to the
genome, a j is a measure of DNA accessibility at site j on
the genome (the probability that site j is in accessible chro-
matin), λ is the specificity scaling factor, w is the PWM
score and L and n are the length and ploidy of the genome,
respecti v ely. 

Computing optimal parameters 

The number of bound molecules N and the TF specificity
factor λ are two of the parameters that are needed for esti-
mating ChIP-like profiles. These are difficult to measure ex-
perimentally, so we estimated them by training ChIPanal-
yser on the corresponding ChIP-seq data. We binned the
genome into 50 kb bins and trained the model on the top 10
bins with the highest ChIP-seq signal. We then validated the
estimated parameters on a different set of 50 bins of 50 kb
each from the same ChIP-seq dataset. 
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uantile density accessibility (QDA). To assess to role of 
hromatin accessibility in the binding of TFs, we calculated 

uantiles between 0 and 0.99 for the accessibility data and 

ubset it based on these ( 37 ). We termed this analysis quan- 
ile density accessibility (QDA). Each QDA r epr esents a 

ubset of the genomic regions that the model considers ac- 
essible. For each quantile, we selected the regions with ac- 
essibility scores equal or greater than the quantile value 
uch that a QDA of 0 corresponds to the subset of regions 
reater or equal to the ‘0 quantile’ of the distribution of 
cores (i.e. all regions), a QDA of 0.5 corresponds to the 
ubset of regions with scores greater or equal to the median 

f the distribution (top 50% regions with highest DNA ac- 
essibility signal) and a QDA of 0.9 corresponds to the sub- 
et of regions with scores greater than the 90th percentile of 
he distribution (top 10% regions with highest DNA acces- 
ibility signal) (Figure 1 B, C). 

lustering of the TFs 

o cluster TFs based on their pr efer ence for open or dense 
hromatin, we first used k-means clustering to identify the 
ifferent classes of TFs from the data without prior assump- 
ions. Our analysis showed that there are two main classes of 
Fs (Supplementary Figure S3A), namely: (i) TFs display- 

ng accessibility independent binding ( 61 ) and (ii) TFs dis- 
laying a clear accessibility dependent binding ( 48 ). We did 

ot find TFs that display inaccessibility dependent binding, 
hich indica tes tha t either ther e ar e fewer TFs displaying 

his behaviour, or that our collection of ChIP-seq data does 
ot contain many TFs displaying that behaviour. Ne v erthe- 

ess, four TFs showed higher accuracy of predictions when 

ssuming they can bind anywhere in the genome, compared 

hen their binding is restricted only to accessible regions 
see purple TFs in Supplementary Figure S3B, C). This in- 
ica tes tha t some of the classes in Figure 1 B have too few
Fs in our dataset to be detected by k -means clustering. 
Since only a few TFs displayed some specific behaviours, 

e also used a manual selection of thresholds to group TFs 
Figure 3 A). We computed the mean AUC for the dense 
hromatin (QDA between 0 and 0.2) and open chromatin 

QDA between 0.8 and 0.95) and the difference between 

hese means. Using these values we classified TFs as: (i) ac- 
essibility independent factors (AIF) when both means are 
bove 0.8 and the difference is lower than 0.1, (ii) accessibil- 
ty dependent factors (ADF) when the difference is greater 
han 0.3 and the mean AUC in open chromatin is > 0.8, 
iii) inaccessibility dependent factors (IDF) when the dif- 
erence is > 0.3 and the mean AUC in dense chromatin is 
reater than 0.8, (iv) partial AIF / ADF when the difference 
s between 0.1 and 0.3 and the mean AUC in open chro- 

atin is > 0.8, (v) partial AIF / IDF when the difference is 
etween 0.1 and 0.3 and the mean AUC in dense chromatin 

s > 0.8 and (vi) poorly predicted if both means are below 

.65. TFs that did not meet any of these criteria were classi- 
ed as other. The threshold of 0.8 AUC was selected based 

n the result from the k -means analysis by rounding the 
owest AUC for the AIFs cluster, which was 0.79. In ad- 
ition, we selected a threshold of 0.65 for poorly predicted 

Fs by rounding the average AUC for the others cluster in 

he k -means analysis, which was 0.64. 
ata access 

ll scripts used for pre-processing and further anal- 
sis can be accessed at https://github.com/nrzabet/ 
uman TF analysis and https://zenodo.org/record/ 
085275 . 

ESULTS 

odelling binding of human transcription factors 

o investigate TF binding behaviour, we considered 110 

F ChIP-seq datasets as well as DNA accessibility data 

DNaseI-seq) in K562 cells available from ENCODE 

 43 , 44 ) (Supplementary Figure S1 and Supplementary Ta- 
le S1). For each TF, we used a binding motif, in the form of
osition weight matrix (PWM), available from the JASPAR 

ore database ( 55 ). To model the binding profiles of these 
Fs in K562 cells, we used ChIPanalyser ( 13 , 37 ), a Bio-
onductor package that estimates ChIP-seq profiles based 

n four parameters: (i) binding motif of the TF in PWM 

ormat, (ii) DNA accessibility data, (iii) the number of TF 

olecules bound to the DNA (N) and (iv) a factor that 
odulates TF specificity ( �). The latter models the ability 

f a TF to discriminate between high and low affinity bind- 
ng sites, where the affinity is estimated based on the PWM 

core. In particular, � is inversely proportional to the ca- 
acity to dif ferentia te between high and low affinity sites. 
n other words, a high � means that there are more of the 
eaker binding sites, while low values for � means that there 
re fewer but stronger binding sites for a TF. The number 
f molecules bound (N) and specificity factor ( �) are diffi- 
ult to measure experimentally but can be estimated by fit- 
ing the model to ChIP-seq data and selecting the values 
hat minimise the mean squared error (MSE) between the 
redicted profile and the actual ChIP-seq profile ( 37 ) (Fig- 
re 1 A). To run this analysis, the genome was tiled into 50 

b bins and the model was then trained on 10 regions with 

trongest ChIP-seq signal. The top 10 regions of 50 kb size 
ontain the strongest peaks (true positi v es), but at the same 
ime, they contain many regions that are not bound by the 
F (true negati v es). This pr ovides an appr opriate set of in-
ut data to train our model with sufficient true positi v es and 

rue negati v es ( 37 ). Note that training on regions with fe wer
nd weaker ChIP-seq peaks would not contain enough true 
ositi v es regions and the best trained model will be a flat line
t 0 ( 37 ). Following training, the estimated parameters were 
 alidated b y computing the area under the curve (AUC) be- 
ween the predicted profile and the ChIP-seq profile on the 
ubsequent 50 regions with strongest ChIP-seq signal ( 37 ). 

ChIPanalyser uses DNA accessibility data among other 
arameters to predict TF binding, and this provides the op- 
ortunity to investigate the role of DNA accessibility on the 
inding of TFs to the genome. We subset the DNA acces- 
ibility signal using a quantile vector into quantile density 

ccessibility (QDAs) between 0 and 0.99 ( 37 ). In practice, 
his means that for each QDA, the model considers a per- 
entage of the top ATAC-seq or DNaseI-seq signal regions 
s accessib le, regar dless of their actual accessibility scores 
see Figure 1 B, C and Materials and Methods). 

To observe the pr efer ences of the various TFs for chro- 
atin accessibility, we ran the analysis for each QDA and 

https://github.com/nrzabet/human_TF_analysis
https://zenodo.org/record/8085275
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Figur e 1. Wor kflow over view. ( A ) ChIPanal yser models TF binding based on PWM motifs , DNA sequence , and DNA accessibility data together with 
ChIP-seq data. After extracting TF binding profiles from ChIP-seq data, we split the genomic regions into 50 Kb bins and selected the top 10 regions 
with the highest number of ChIP-seq peaks as training regions, and the following 50 regions with the highest number of ChIP-seq peaks as validation 
r egions. The ChIP analyser model was tr ained on the tr aining r egions to minimise mean squar ed error (MSE), then valida ted to estima te the accuracy of 
the binding profile predictions. (B, C) Approach to investigate TF pr efer ence for DN A accessibility. ( B ) DN A accessibility data (DNaseI-seq or ATAC-seq) 
is used to ( C ) select the regions of the genome that have a signal above a threshold (e.g. QDA of 0.1 results in selecting the 90% of the genome with the 
highest le v els of accessibility signal). ( D ) Graphical r epr esentation of the binding properties of each class of TF and how each class af fects chroma tin 
structure after binding. Accessibility Independent Factors (AIFs) bind open or dense chromatin without preference, but AIF binding sometimes can 
displace nucleosomes. Accessibility Dependent Factors (ADFs) bind open chromatin only and no changes in accessibility are observed after binding. 
Finally, Inaccessibility Dependent Factors (IDFs) bind chromatin in thr ee differ ent scenarios: (i) bind dense chromatin and maintain it (no changes are 
observed); (ii) bind dense chromatin and r einfor ce it, thus changes are observed in the increased number of nucleosomes and lastly (iii) bind open chromatin, 
which becomes compacted. The different classes of TFs that group as AIFs (pioneer, bookmarking, chromatin remodeller and co-factors of those), ADFs 
(traditional TFs and their co-factors) and IDFs (insulators, chromatin remodeller and co-factors of those) are shown in the side panels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/16/8480/7230090 by guest on 15 Septem

ber 2023
used the AUC as a goodness of fit metric to estimate the
model accuracy. If the AUC for the lower QDAs is high, it
indica tes tha t the TF can bind dense chroma tin with high
affinity. This is because the prediction accuracy remains
high e v en though all or most of the genome is considered
accessible to the TF by the model, including dense chro-
matin. In contrast, if the AUC is high only for the high val-
ues of QDAs, it indicates that the TF binds only in open
chromatin, as only the most open r egions ar e consider ed
accessible to the TF by the model. We were able to identify

three main classes of TFs based on their chromatin acces-  
sibility pr efer ence: accessibility independent factors (AIF),
accessibility dependent factors (ADF) and inaccessibility
dependent factors (IDF) (Figure 1 D). Each TF class has
different DNA binding properties and impact on the sur-
r ounding chr oma tin, as illustra ted in Figure 1 D. 

Figure 2 shows the analysis for CTCF in K562 cells. First,
for each accessibility threshold value (QDA value), we fit
the model to the ChIP-seq data over the training dataset
and evaluate its performance over the validation dataset
(Figure 2 A, B). Figure 2 B re v eals that there are negligi-
ble differences between the performance of the model when
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Figure 2. Model of CTCF binding. We plot the analysis of CTCF binding in K562 cells. ( A ) Heatmap showing the optimal range for the optimal QDA for 
CTCF (0.9). ( B ) AUC for the optimal parameters estimated for CTCF for all QDAs. ( C ) ChIP profile estimated with ChIPanalyser based on the optimal 
parameters. The grey shaded area represents the ChIP signal, the orange line represents the ChIPanalyser prediction of the ChIP signal, the blue lines 
r epr esent occupancy at each locus, the yellow shaded areas represent closed chromatin, and the white shaded areas represent open chromatin. 
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ssuming that CTCF can bind to all regions of the genome 
ndependent of their DNA accessibility le v els (QDA = 0) 
r when assuming that CTCF can bind only to the top 

0% accessible regions of the genome (QDA = 0.9). This 
eans that CTCF binds to DNA in an accessibility inde- 

endent way and, thus, can be classified as an AIF. Fig- 
re 2 C shows an example comparison between the pre- 
icted CTCF profile and the ChIP-seq da ta, illustra ting 

hat the predictions are accur ate. Similar ly, Supplemen- 
ary Figure S2A shows two additional examples for other 
Fs (PBX2 and BACH1), while Supplementary Figure S2B 

hows the distribution of AUC values across all TFs, which 

onfirm that the predictions display high accuracy. A com- 
lete list of the estimated optimal parameters and AUC 

alues for all TFs is available in Supplementary Tables S2 

nd S3. 
i
any human TFs are predicted to bind to the DNA at their 
trong binding regions independent of DNA accessibility 

ollo wing this workflo w, we analysed the rest of the avail- 
ble ChIP-seq data in K562 cells. Supplementary Figure S2 

onfirms that our model accurately fits the ChIP-seq data. 
or e pr ecisely, 95 out of 110 ChIP-seq datasets were mod- 

lled with high accuracy having an AUC of at least 0.8 and 

one have an AUC lower than 0.65 (Supplementary Figure 
2B). To group TFs with respect to their binding prefer- 
nce in open and dense chromatin, we first tried k-means 
lustering. We used k -means clustering to identify groups 
f TFs based on how well ChIPanalyser fits the ChIP-seq 

ata (using AUC metric) assuming that the TF can bind 

n regions with different le v els of accessibility. Howe v er, 
 e w ere only able to detect two clusters despite observ- 

ng multiple distinct behaviours when inspecting the AUC 
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Figure 3. K562 classification of TFs . ( A ) We present the rules used to group the TFs in the dif ferent classes. (B–G) Hea tmaps with the AUC for the optimal 
parameters estimated for each TF for all QDAs: ( B ) AIFs, ( C ) partial AIFs / ADFs, ( D ) ADFs, ( E ) partial AIFs / IDFs, ( F ) other and ( G ) poorly predicted. 
Each row r epr esents a TF and each column an accessibility thr eshold (QDA value). The blue colour r epr esents the AUC le v el for the corresponding QDA 

and TF. We mark with green and bold the TFs that were previously reported to act as pioneer TFs. For FOS, there are two different datasets leading to 
opposite results and that was highlighted by bold and orange colour of the text. Finally, we mark by purple and bold TFs that display a decrease in AUC 

with increasing the accessibility, which are potential Inaccessibility Dependent Factors (IDFs). 
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trends. For example, K-means clustering was not able to
identify any IDFs. This is most likely due to having too few
TFs exhibiting IDF behaviour in our dataset (see Materi-
als and Methods and Supplementary Figure S3). To eval-
uate if our original k -means analysis was too stringent, we
also performed the k -means analysis with fiv e clusters (Sup-
plementary Figure S4). This analysis resulted in grouping
all IDFs together with poorly predicted ChIP-seq datasets
and splitting the ADFs in two subgroups. Thus, we opted
for a threshold-based approach to classify the TFs, where
the values for the threshold selection were informed by the
k -means clustering (see Materials and Methods). This anal-
ysis identified se v eral classes of TFs with respect to their
binding in open and dense chromatin (Figure 3 A). Most
importantly, the classification based on manual thresholds
leads to similar results to K-means clusters (Supplementary
Figure S4F). 

Unexpectedly, we found that many TFs display no pref-
erence for open or dense chromatin (33 AIFs), while some
display a slight pr efer ence for open chromatin (49 par-
tial AIFs / ADFs) (Figure 3 B, C). CREB1, FOXA1, FOS,
GATA1 and JUN were previously identified as pioneer fac-
tors (see Supplementary Table S4) and, thus, their classi-
fication as AIFs or partial AIFs (green TFs in Figure 3 B,
C) is supported by the pre vious wor k. Only a small num-
ber of TFs displayed strong pr efer ence for open chromatin
(12 ADFs) or moderate pr efer ence for dense chromatin
(4 partial AIFs / IDFs) (Figure 3 D, E). Se v en TFs only par-
tially met the criteria for either ADFs or AIFs and were
classified as ‘other’ (Figure 3 F). Finally, fiv e TFs (NR2C2,
YBX1, SOX6, SMAD2 and E2F8) were not accurately pre-
dicted independently of the parameters that were used (Fig-
ure 3 G), likely due to the quality of the ChIP-seq data or the
PWM motif (Supplementary Table S5). 

It is worthwhile noting that FOS was classified as both
an Accessibility Independent and Dependent Factor by our
analysis (orange TFs Figure 3 B, D and Supplementary Fig-
ure S3B, C). Interestingly, the classification as an AIF was
based on ChIP-seq da ta tha t was genera ted with an eGFP
tagged version of FOS, while the ADF classification was
based on the untagged version of FOS. One possibility is
that, in the eGFP tagged experiment, the le v els of FOS are
higher than endogenous le v els in K562 cells and at higher
concentrations FOS could also bind in dense chromatin re-
gions of the genome. This raises the possibility that a TF
can act as an accessibility dependent factor in a cell line
where it is expressed at low or medium le v els and as an ac-
cessibility independent factor in cells where it is expressed a
high or very high levels. In addition, it is known that eGFP
can dimerise ( 56 ) and this could lead to a stronger recruit-
ment of the eGFP tagged version of FOS compared to un-
tagged version of FOS. One possibility is that homodimers
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f eGFP tagged version of FOS could have the capacity to 

ind dense chromatin. 
It is also possible that some of the TFs identified as AIFs 

n our analysis bind in the same regions of the genome and 

ur analysis identifies co-factors of TFs binding in high- 
ccupancy target (HOT) regions ( 57 ) To investigate this, 
e looked for overlapping peaks of all TFs classified as 
IF in K562 cells. Between the peaks used for model val- 

dation (based on which we performed TF classification), 
e found only negligible overlaps (Supplementary Figure 
5A), ther efor e the classification is not likely to be dri v en
y TFs binding HOT r egions. Furthermor e, we also inves- 
igated overlaps among the top 1000 and top 5000 peaks 
nd we observed that the extent of overlap increases with 

he addition of weaker peaks (Supplementary Figure S5B- 
), indicating that most of these TFs do not co-localise 

n the strongest binding regions in the genome, but do co- 
ocalise in weaker regions. The three main groups of TFs 
hat co-localise are USF1 with USF2, CREB1 with ATF1 

nd SP2 with NFYA. TFs belonging to the same families, 
uch as USF1 and USF2 or CREB1 and ATF1 are expected 

o share some lower affinity binding sites. Indeed, both pairs 
f TFs have similar binding motifs to each other. Further- 
ore, SP2 has been predicted to interact with NFY fam- 

ly members such as NFYB and NFYC ( 58 ). Ther efor e, the
o-localisation of these TFs is most likely a result of similar 
unction or recognition of similar low-affinity motifs and 

ot due to many TFs binding in HOT regions. 
Next, we used an alternative method to evaluate which 

Fs display strong binding in regions of the genome with 

ow accessibility. In particular, we plotted the average ChIP- 
eq signal at 1000 regions with strongest and 1000 re- 
ions with lowest DNaseI-seq signal (Supplementary Fig- 
res S6 and S7). We found that 9 AIFs (ATF4, CTCF, E2F6, 
GR1, IRF2, MAFK, NFIC, NFYB and ZKSCAN1), 
0 partial AIFs / ADFs (CEBPB, ELF1, HMBOX1, JUN, 
UND, MAFF, MEIS2, NFE2, YY1 and ZNF384), 3 par- 
ial AIFs / IDFs (ZNF146, REST and ZNF274) and only 2 

DFs (ZBTB40 and MYNN) display at least similar ChIP- 
eq signal in dense chromatin regions as in open chromatin 

 egions. Inter esting, ZNF146 and REST showed stronger 
inding in dense chromatin than in open chromatin further 
upporting their classification as IDFs. Altogether, these re- 
ults show that a large number of TFs that our analysis 
redicted to display DNA accessibility independent bind- 

ng also show strong binding in dense chromatin. 
In our analysis, we have considered all ChIP-seq peaks 

ndependent if they are promoter proximal or distal. Thus, 
e investigated if the classification of TFs as AIFs in our 
nalysis has been impacted by their pr efer ence for proximal 
r distal binding to TSS. If open chromatin next to promot- 
rs were to dominate the signal (leading to classification of 
IFs), then we should see that for all AIFs the majority 

f the ChIP-seq peaks used for the analysis are next to a 

SS. In contrast, if dense chromatin was to dominate the 
ignal (leading to classification of AIFs), then we should 

ee that all AIFs have only a few peaks next to a TSS. W ha t
e see is a mixture, with some TFs displaying preference 

or proximal binding and others for distal binding for both 

IFs and ADFs (Supplementary Figure S8B), which indi- 
a tes tha t whether we train the model on TSS peaks or distal
eaks does not influence the classification of TFs as AIFs 
r non-AIFs. We repeated the analysis by using only prox- 

mal or only distal ChIP-seq peaks for nine TFs that were 
elected since they were classified as AIFs, showed strong 

inding in dense chromatin (Supplementary Figures S6A 

nd S8A) and displayed different le v els of TSS proximal 
nd distal binding (Supplementary Figure S8B). Our results 
howed only negligible differences in the AUCs of the nine 
Fs when considering either TSS proximal or TSS distal 
nly binding, and TFs were consistently classified as (par- 
ial) AIFs (Supplementary Figure S8D). Note when TFs 
hat were classified as partial AIFs or other (ZKSCAN1, 
FIC and MAFK), the analysis was performed on regions 
ith weaker ChIP-seq signal (Supplementary Figure S8C) 
ecause these TFs had few TSS proximal ChIP-seq peaks. 

ouse TFs display similar behaviour to human TFs 

ext, we performed a similar analysis for ChIP-seq datasets 
n mouse cell lines from the ENCODE project ( 43 , 44 ). We
btained 60 ChIP-seq datasets covering 30 TFs (with a 

WM motif in the JASPAR core database) in eight cell lines 
Supplementary Figure S9 and Supplementary Table S6). 

e also considered and additional study of MYOD1 from 

 59 ). Most of the ChIP-seq datasets (90%) were modelled 

ith high accuracy (AUC > 0.8); see Figure 4 A. Depend- 
ng on availability, we used DNase or ATAC-seq datasets 
s measures of DNA accessibility (see Supplementary Ta- 
le S7). For each ChIP-seq dataset, we computed the AUC 

or all QDA values (Supplementary Table S8) and then 

sed the threshold-based approach to group these TFs into 

he different classes (Figure 4 B–H). Interestingly, we ob- 
erved that while some TFs were classified in the same group 

or all cell lines, ther e wer e some that were classified in 

wo or e v en three groups (Figure 4 B). ( 59 ). Most of the
hIP-seq datasets (90%) were modelled with high accuracy 

AUC > 0.8); see Figure 4 A. 
Similarly, to our findings in the human cell line, CTCF 

as classified as an AIF in three of the mouse datasets. In- 
erestingly, it was also classified as a partial IDF in two of 
he mouse datasets. This behaviour is in line with the litera- 
ur e surrounding CT CF, which suggests that its pr efer ence 
or chromatin state varies depending on context ( 34–36 ). Fi- 
all y, CTCF was poorl y predicted in one dataset, likely due 
o the quality of the data. 

USF2 is the only TF that was identified in all four 
atasets (two in human and two in mouse) as an AIF 

uggesting that there is a high probability this TF binds 
n a DNA accessibility independent manner. USF1 dis- 
layed DNA accessibility independent binding character- 

stics in three datasets (two in mouse and one in human) 
nd partial pr efer ence to dense chromatin in one dataset 
mouse). These two TFs have been previously reported 

o bind heter ochr omatin ( 60 ), thus further supporting our 
ndings. ZNF384 also displayed DNA accessibility inde- 
endent binding characteristics in three datasets (mouse), 
ut a partial pr efer ence to open chromatin in one dataset 
human). NRF1 and ZKSCAN1 both showed consistent 
NA accessibility independent binding in all three datasets. 
YOD1, a pr eviously r eported pioneer TF ( 61–63 ) was 

dentified in our study as displaying DNA accessibility 
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Figure 4. Classification of TFs in mouse cell lines . ( A ) Histogram with the AUC for the optimal parameters of the 60 TFs analysed in mouse cells. ( B ) Bar 
plot r epr esenting the differ ent classifica tions for each TF in the mouse cell line. We also included the classifica tion in human cells for the corresponding TF 

if that analysis was performed in K562 cells. (C–H) Heatmaps with the AUC for the optimal parameters estimated for each TF for all QDAs: ( C ) AIFs, ( D ) 
partial AIFs / ADFs , ( E ) ADFs , ( F ) partial AIFs / IDFs , ( G ) other and ( H ) poorly predicted. Each row represents a TF and each column an accessibility 
threshold (QDA value). The blue colour represents the AUC le v el for the corresponding QDA and TF. 
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independent binding in two different datasets. Only three
TFs displayed consistent strong pr efer ence for open chro-
matin in at least two datasets, namely: TBP, ETS1 and
JUND. 

Binding pr edictions ar e consistently better when using A T A C-
seq and DNaseI-seq and ar e mor e accur ate at r egions with
strong and medium ChIP signal 

One surprising finding from our analysis in K562 cells is
that many TFs are predicted to bind independently of DNA
accessibility despite only a handful of TFs having been pre-
viously identified as pioneer TFs. This suggests that pioneer
TFs are only a subset of AIFs and other types of TFs, such
as co-factors of pioneers, bookmarking TFs or chromatin
re-modelers also bind in an accessibility independent man-
ner. Howe v er, our model is unable to distinguish between
these types of factors. Moreover, the use of DNaseI-seq data
might also be a potential source of bias and using different
methods to estimate DNA accessibility could change some
of these results. Similarly, we focussed our analysis at re-
gions of DNA displaying the strongest ChIP signal and it is
not clear if these results would remain the same when inves-
tigating regions of the genome with weaker signal. 

To address these issues, we analysed the binding of ele v en
TFs in IMR90 cells and three TFs in HepG2 cells (Sup-
plementary Figure S10A-B and Supplementary Table S9).
First, we considered four different DNA accessibility mea-
sures (DNaseI-seq, ATAC-seq, MNase-seq and NOME-
seq) in IMR90 and three (DNaseI-seq, ATAC-seq and
MNase-seq) in HepG2; see Supplementary Figure S10C-D
and Materials and Methods. Secondly, we ran the validation
analysis on 50 regions with strong, medium and weak ChIP-
seq signal (see Supplementary Table S9 and Materials and
Methods). Our results showed that while most analyses re-
sulted in a high prediction accuracy, there were significantly
more cases compared to previous analyses where our model
did not fit the data well (compar e Figur e 5 A to Supplemen-
tary Figure S2B and Figure 4 A). To identify if there is a
subgroup resulting in these lower accuracy models, we split
the cases based on whether the validation ChIP signal was
strong, medium or weak and found that most of the cases
where our model did not fit the data well were at regions
with weaker binding (Figure 5 B). Next, we ran a similar
analysis, but we split the data based on the DNA accessi-
bility method. We found that while ATAC-seq and DNaseI-
seq produced similar results, MNase-seq and NOMe-seq re-
sulted in worse performance by our model (Figure 5 C). Al-
together, these results support that PWM, DNA sequence,
binding specificity ( �), TF concentration and DNA acces-
sibility can accurately e xplain observ ed binding profiles of
TFs at regions of the genome displaying strong and medium
binding strength, but only partially at regions displaying
weaker binding. Furthermore, ATAC-seq and DNaseI-seq
resulted in consistently better predictions than MNase-seq
or NOMe-seq in our model, but this might be a reflection of
the quality of those particular datasets (see Supplementary
Figure S10C, D and Materials and Methods). 

In agreement with our findings in K562 cells and mouse
cell lines, our analysis re v ealed that CTCF can be classified
as both AIF and as partial IDF (Figure 5 D, Supplemen-
tary Figure S11 and Supplementary Table S10). Interest-
ingly, the latter is mainly associated with regions of weaker
binding, while the former with strong and medium bind-
ing. Supplementary Figure S12 shows an example where
ChIP analyser r eproduces with high accuracy (AUC = 0.95)
the CTCF ChIP-seq data when assuming that it can bind
anywhere independent of the le v el of DNA accessibility



Nucleic Acids Research, 2023, Vol. 51, No. 16 8489 

Figure 5. Effect of DNA accessibility method and ChIP-seq signal strength on TF classification . We consider 14 ChIP-seq datasets in IMR90 and HepG2 
cells and investigated the effect of DNA accessibility method (DNaseI-seq, ATAC-seq, MNase-seq and NOME-seq in IMR90 and DNaseI-seq, ATAC-seq 
and MNase-seq in HepG2) and ChIP-seq signal strength (validation regions with strong, medium and weak ChIP-seq signals) on the classification of TFs. 
( A ) Histogram with the AUC for the optimal parameters of all cases considered (13 TFs in two cell lines analysed with three or four DNA accessibility 
methods and strong, medium and weak binding genomic regions). ( B ) Density plot with the AUC for the optimal parameters of all combinations when 
the datasets are split based on ChIP-seq signal strength. We performed a Mann-Whitney U test and found that the differences in the means are statistically 
significant (p-value for strong compared to medium 0.046, strong compared to weak 2.46 × 10 −13 and medium compared to weak 3.37 × 10 −11 ). ( C ) 
Density plot with the AUC for the optimal parameters of all combinations when the datasets are split based on DNA accessibility method. We performed 
a Mann-Whitney U test and found that ATAC-seq and DNaseI-seq lead to similar results and these are different from MNase-seq and NOMe-seq (p-value 
for ATAC-seq compared to DNaseI-seq 0.32, MNase-seq compared to NOMe-seq 0.66, ATAC-seq compared to MNase-seq 3.03 × 10 −5 , ATAC-seq 
compared to NOMe-seq 3.52 × 10 −5 , DNaseI-seq compared to MNase-seq 2.97 × 10 −4 and DNaseI-seq compared to NOMe-seq 5.15 × 10 −4 ). ( D ) 
Classification of the 14 TFs in AIF, partial AIFs / ADFs, ADFs, partial AIFs / IDFs, other and poorly predicted. 
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QDA = 0), but misses se v eral peaks (AUC = 0.5) when
ssuming that it can bind only to the top 5% accessible 
N A (QDA = 0.95). Similarl y to CTCF, USF2, CEBPB 

nd NFL2L2 act as AIFs at regions with stronger ChIP 

ignal, but display IDF characteristics at weaker regions. 
FX5 and MXI1 act as AIF, mainly at regions with strong 

inding. 
FOXA1, CREB1 and FOS were previously identified as 

ioneer factors (Supplementary Table S4) and were classi- 
ed by our analysis as (partial) AIF (Figure 5 D, Supple- 
entary Figure S11 and Supplementary Table S10). Over- 

ll, we found that many TFs (nine out of fourteen) behave as 
IFs, but pr efer entially at r egions with stronger binding. At 

egions with weaker binding, they either behave as AIFs or 
ur model cannot accurately capture their binding profile. 
AFK is predicted most of the times to act as IDF and 
ost likely to prefer dense chromatin. MAZ and GATA4 

ere identified to bind preferentially to open chromatin in 

egions with strong and medium binding. 
One possib le e xplana tion for the observa tion tha t fewer 

Fs are classified as AIFs at regions with weaker binding 

s that they have weaker binding sites in those regions. To 

nvestigate this, we used PWMEnrich ( 64 ) to measure the 
trength of the binding sites located in peaks within strong, 
edium and weak binding r egions. Our r esults showed that 

he majority of TFs (8 out 13) showed only small or negli- 
ible reduction in the strength of the binding sites located 

n medium or weaker binding regions (Supplementary Fig- 
re S13). Ne v ertheless, one e xception is CREB1, which dis- 
layed a large reduction in the strength of binding sites lo- 
ated in weaker binding regions compared to binding sites 
ocated in strong binding regions. 
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Figure 6. Prediction of TF binding in MCF10A cells upon HER2 ov ere xpression . We considered the case of WT MCF10A cells and MCF10A cells were 
HER2 is over expr essed. Over expr ession of HER2 resulted in se v eral regions gaining DNA accessibility and a few losing DN A accessibility. Heatma ps with 
the prediction of TF binding using ChIPanalyser for ATF1, ETV6, JUN, JUND, MYC, NFATC3 and SRF at regions that lost or gained DNA accessibility 
( ±2 kb) in control and HER2 over expression. 
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Jun is predicted to bind before the chromatin is open in
MCF10A cells upon her2 o ver expr ession 

Recent work showed that HER2 ov ere xpression in
MCF10A cells resulted in a large number of regions gaining
DNA accessibility and a small number losing DNA acces-
sibility ( 65 ). One possibility is that these changes in DNA
accessibility can be explained by changes in the le v els of
some AIF binding to those regions. HER2 ov ere xpression
also resulted in some TFs displaying changes in phospho-
rylation which could result in an increase or decrease of
the number of bound TF molecules. We cross-r efer enced
the TFs that were classified at least once as (partial) AIFs
in our K562 experiment with the TFs that were shown
to change phosphorylation upon HER2 ov ere xpression
and found se v en TFs (ATF1, ETV6, JUN, JUND, MYC,
NFATC3 and SRF). Using RNA-seq data, we estimated
the number of bound molecules in MCF10A by m ultipl ying
the number of bound molecules in K562 cells with the
ratio between the mRNA le v els for the corresponding TF
in the two cells, and kept � the same as in K562 analysis
(for each TF: N MCF10A 

= N K562 × mRN A MCF10A 

/ mRN A
K562 and �MCF10A 

= �K562 ). Rescaling the number of bound
molecules by changes in RNA-seq between two cell types
or two conditions was shown previously to generate results
that reproduced ChIP-seq profiles with high accuracy
( 37 ). Then, for the HER2 ov ere xpression e xperiment,
we further rescaled the number of bound molecules
based on the change in amounts of phosphorylated
TFs ( 65 ). 

Figure 6 shows the predicted binding le v els at regions that
gained and regions that lost DNA accessibility assuming
that these se v en TFs can bind independently of DNA acces-
sibility le v els. Interestingly, ETV6, JUN and SRF ar e pr e-
dicted to bind strongest at these regions. SRF is the only
TF that our model predicts to bind in an accessibility inde-
pendent fashion and shows a noticeable increase in binding
upon HER2 ov ere xpression, but that happens at both re-
gions that gained and regions that lost DNA accessibility
(also see Supplementary Figure S14). 

Our results show that there are negligible differences in
the binding of JUN at regions that gained accessibility upon
HER2 ov ere xpression, suggesting that this TF is bound
ther e befor e the r egions become accessible. JUN is part of
the AP-1 complex, which has been reported to have pio-
neer functions (see Supplementary Table S4). Thus, while
JUN can potentially bind inaccessible r egions, ther e isn’t a
subsequent opening of chromatin; instead, JUN appears to
remain bound to closed chromatin. This is consistent with
JUN being a bookmarking TF that binds to the DNA in
dense chromatin and, when another co-factor is recruited,
it could potentially open the chromatin. 

DISCUSSION 

Using our statistical thermodynamics frame wor k, we sys-
tema tically investiga ted the binding characteristics of a
large number of human and mouse TFs in different cell lines
and focussed our analysis on the relationship between TF
binding and DNA accessibility. For se v eral TFs, we also in-
vestigated the impact of using different DNA accessibility
methods (ATAC-seq, DNaseI-seq, MNase and NOMe-seq)
on our binding predictions in depth, to better understand
potential sources of bias. In addition, we also compared the
effects of modelling regions with stronger binding and re-
gions that display w eaker binding. Overall, w e found that
more TFs than previously reported do not display binding
pr efer ence for open or dense chr omatin (appr oximately one
third), but this generally occurs at their strongest binding
sites. Regions of the genome displaying weaker binding of-
ten are poorly modelled or show pr efer ence for either open
or dense chromatin. In addition, we also provide evidence
of DNA accessibility independent binding for TFs that have
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een previously reported to bind dense chromatin and ex- 
lain their complex interaction with chromatin. 

ever al tr anscription factors have no or limited pr efer ence f or
pen or dense chromatin 

 previous study proposed that a pproximatel y 16% of TFs 
isplay pioneer functions ( 42 ). Here, we find a higher pro- 
ortion of TFs that bind chromatin independent of the 
NA accessibility status (approximately one third). Fur- 

hermor e, another r ecent large scale study identified 32 TFs 
s potential pioneer TFs in se v eral human cell lines ( 66 ).
ost importantly, 15 (out of 33) of the TFs that we classify 

s AIFs (ATF1, BACH1, CREB1, CTCF, CUX1, E2F6, 
SF2, EGR1, ELK1, GABPA, NFYA, NFYB, USF1, 
SF2 and ZKSCAN1) and 13 (out of 49) that we clas- 

ify as partial AIFs (ATF1, CEBPB, E2F1, CUX1, NR4A1, 
TS1, HMBOX1, MAX, NFATC3, NR2F2, POU5F1, SP1 

nd SREBF1) in this study wer e pr eviously identified as po- 
ential pioneer TFs using different methods in ( 42 , 66 ). In 

ddition to pioneers, AIFs also include bookmarking TFs 
binding both open and dense chromatin) and co-factors 
f pioneers (being recruited by pioneer factors), which in- 
ica tes tha t our estima tes of the number of TFs that bind

n an accessibility independent fashion are supported by 

his previous study. Previous studies have reported that 
TCF is a chromatin insulator ( 67 ). Ne v ertheless, CTCF 

lso shows depletion of nucleosomes ∼200 base pairs (bp) 
t the centre of its binding site ( 68 ). While the former sug-
ests that CT CF pr efers dense chromatin and does not open 

he chromatin, the latter indicates potential pioneer func- 
ions, wher e CT CF binds dense chromatin and opens it. In 

ddition, it is reported that CTCF helps maintain the open 

hroma tin sta te by steric hindrance of the DNA methyla- 
ion machinery ( 69 ). Our results also showed that regions 
isplaying weaker binding of CTCF could represent areas 
f the genome wher e CT CF acts as a potential insulator, 
hile regions with strong binding re v eal areas of the genome 
her e CT CF might act as a pioneer factor. Altogether our 

esults confirm that both functions are possible modes of 
ction for CTCF. 

Similarly to CTCF, CEBPB and NFE2L2 were identi- 
ed as AIFs, mainly at stronger binding sites, and partial 
DFs at weaker binding sites. CEBPB has been previously 

eported as having pioneer function and being able to main- 
ain open chromatin ( 70 ), while NFE2L2 (NRF2) was re- 
orted as being a transcription activa tor ( 71 ). W hile our 
esults support these previous findings, we also discovered 

 new role at weaker binding sites for these TFs. We pro- 
ose that they pr efer entially bind the genome in denser 
hromatin and either maintain a closed chromatin state, 
r are unable to open the chroma tin a t those sites. This 
ould be a consequence of the TF not being recruited in 

ufficient numbers to open the chroma tin a t weak sites, or 
t could indicate a bookmarking role, such as in the case 
f JUN. 
USF1 and USF2 are members of the highly conserved 

asic-Helix-Loop-Helix-Leucine Zipper proteins (bHLH- 
Z) that bind to the symmetrical DNA sequences called E- 
ox es ( 72 ). Pr eviously, it has been hypothesised that USF1 
nd USF2 are able to bind heter ochr omatin and behave as o
ioneers ( 60 ). USF1 has been shown to form heterodimers 
hat act as insulators, pre v enting the spread of heter ochr o- 
atin ( 73 ). PLAG1 is one cofactor of USF2 that was sug- 

ested to display pioneer activity and enable USF2 bind- 
ng, but the direct interaction was not proven ( 74 , 75 ). Al-
ogether, these previous findings support our results that 
SF2 binds as an AIF, and USF1 as an AIF or partial IDF. 
Our analysis also identified NRF1, ZNF384 and 

HLHE40 as AIF. NRF1 binding is methylation restricted 

n mouse embryonic stem cells, as it can be outcompeted by 

e novo DNA methylation. This suggests that methylation- 
ensiti v e TFs may rely on neighbouring pioneer TF binding 

o ensure a h ypometh ylated environment ( 76 ). ZNF384 

as shown to interact with a variety of structural and 

egulatory proteins (vimentin, zyxin, PCBP1), but their 
ndividual roles in transcription regulation is not entirely 

lear ( 77 ). BHLHE40 was shown to induce binding-site 
irected DNA demethylation and hypothesised to have pi- 
neer function ( 78 , 79 ), which provides additional evidence 

or our classification as an AIF. 
Many TFs in our analysis display accessibility indepen- 

ent binding, but this is mainly the case for regions of the 
enome for which they have the highest affinity. One ques- 
ion that arises is whether these TFs could truly bind inde- 
endently of DNA accessibility. In our analysis, RFX5 was 
redicted to be an AIF only at regions with strong binding. 
e v ertheless, RFX5 was shown to displace nucleosomes, in- 

ica ting tha t it has pioneer function ( 80 ). Altogether, these 
esults support the fact that e v en if a TF is found to bind in
 DNA accessibility independent way only at its strongest 
inding sites, it does not mean it cannot be a pioneer fac- 
or or that they are pioneer factors and not co-factors or 
ookmarking TFs. 
FOXA1 is one of the best characterised pioneer TFs ( 28 ). 

n our analysis, FOXA1 was characterised as a partial AIF 

n K562 cells and in three scenarios in HepG2 (for regions 
ith strong and medium binding) and only in one case as an 

IF in HepG2 cells (at regions with medium binding when 

sing ATAC-seq data) (Figures 3 C and 5 D). Interestingly, a 

revious study also reported that FOXA1 would have a re- 
uced pioneer activity ( 42 ). Nevertheless, it was shown that 
espite its capacity to bind nucleosomes ( 18 ), its binding is 
hromatin context dependent ( 81 ). In other words, modifi- 
ations of the histone tails might have an effect of FoxA1 ca- 
acity to bind nucleosomes and could explain why in some 
f our datasets and conditions we predict to display only 

artial accessibility independent binding. 
JUN is part of the AP-1 complex, which has been pro- 

osed as a pioneer factor ( 82 ). Our analysis identified JUN 

s a partial AIF in K562 cells and mouse cell lines. Nev- 
rtheless, we predicted that JUN is already bound at re- 
ions that become accessible upon HER2 over expr ession 

n MCF10A cells. This indica tes tha t JUN is more likely 

 bookmarking TF that can bind in dense chromatin and 

 equir es co-factor(s) expressed upon HER2 over expr ession 

o open the chromatin. 
Finally, knockdown of MXI1 was shown to block chro- 
a tin condensa tion ( 83 ) suggesting tha t this TF could po-

entially act as an IDF. In our analysis MXI1 was consis- 
ently classified either as an AIF or as a partial AIF. While 
ur analysis does not contradict the capacity of this TF to 
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bind dense chromatin, it provides additional insights into
its binding mechanism. 

In our analysis, we did not consider the role of DNA
methylation on TF binding. Previous work has shown that
some TFs can distinguish between methylated and un-
methylated DNA ( 84–88 ). Se v eral pre vious in vitro studies
( 85 , 89 , 90 ) have observed that the binding of a large per-
centage of TFs seem to be affected by DNA methylation.
Howe v er, in studies using cellular context, this is not the
case and a recent paper showed that there was no significant
change in the function of 97% of enhancers after changes
in DNA methyla tion ( 87 ), indica ting tha t binding of TFs
in vivo is independent of DNA methylation at many bind-
ing sites. Furthermore, another recent study found that both
sites with no methylation or intermediate le v els of methyla-
tion displayed ChIP-seq peaks for se v eral TFs (including
CTCF, CEBPA, and FOXA1) ( 91 ). Some of the TFs in-
cluded in our analysis that pr efer entially bind unmethylated
DNA include CTCF, GABPA, ELK1 and REST. The for-
mer three were classified as AIFs in our analysis and, for
all thr ee, ChIP analyser pr edicts their ChIP-seq profiles ac-
curately (AUC > 0.85; CTCF = 0.914, GABPA = 0.958
and ELK1 = 0.871) without considering DNA methyla-
tion. Supplementary Figure S6 confirms that CTCF dis-
plays very strong binding in dense chromatin (with similar
strength as in open chromatin) further supporting that its
binding is not affected by DNA accessibility. In contrast,
GABPA and CREB1 display significantly weaker binding
at dense chromatin regions (Supplementary Figure S6) in-
dica ting tha t they might not be capable of binding dense
chroma tin a t least by themselves or that their binding is im-
pacted by DNA methylation in dense chromatin. Overall,
this shows that without taking DNA methylation into ac-
count, ChIPanalyser is able to predict the vast majority of
the TF binding sites in a cell type specific manner. 

T r anscription factors that prefer dense or open chromatin 

MAFK was found to be pr efer entially associated with dense
chromatin in most cases and thus classified as an IDF. These
r esults ar e supported by the fact that MAFK lacks a trans-
activating domain ( 92 ) and is mainly associated with hete-
r ochr omatic parts of the genome ( 93 ). 

We also identified four TFs with moderate pr efer ence
for dense chromatin, namely: REST, ZNF274, ZNF24 and
ZNF146. REST has been reported to be preferentially as-
sociated with silenced chromatin ( 94 ), ZNF274 is part of
a complex that recruits H3K9me3 writers and, thus, is in-
volved in heter ochr omatin establishment and maintenance
( 95 ), ZNF24 is associated with gene r epr ession ( 96 ), while
ZNF146 pr efer entially binds at silenced Line-1 elements
( 97 ). These pr evious r eports support our classification of
these TFs as IDFs. 

TBP, ETS1, JUND, MAZ and GATA4 were TFs that
were consistently identified to show binding pr efer ence for
open chromatin. Interestingly, GATA4 has been reported
to act as a pioneer factor (Supplementary Table S4), but
in our analysis, we found only partial AIF properties at re-
gions with medium and weak binding (Figure 5 D). This in-
dica tes tha t GATA4 function might be concentration- and
chromatin context-dependent. 
W hen investiga ting dif ferent da tasets in the same cell type
or in different cell types, we found that the classification of
a TF may differ (e.g. Figure 4 B). There are se v eral possi-
bilities that could explain this. One possibility is that the
datasets have different qualities in terms of quality of the an-
tibody or library and fragment size. Modelling datasets with
different qualities can result in classifica tion dif ferences but
selecting the most reproducible classification from biologi-
cal replicates for the same TF can remove some of these bi-
ases. Alternati v ely, TFs will display different concentrations
in different cell lines and, as seen in the analysis of JUN
in K562, this can result in different preferences for dense
chromatin. Finally, co-factors of TFs could be expressed in
one cell type and not in another. This could help differenti-
ate if a TF can open the chromatin by itself (it is modelled
as an AIF in all cell types where it is expressed) or if it is
also modelled as a bookmarking TF (modelled as an AIF
in cell types where the pioneer co-factor is expressed and as
an IDF where the co-factor is not expressed). 

DA T A A V AILABILITY 

All scripts used for pre-processing and further analysis can
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