

Mustafa Hiba (Orcid ID: 0000-0001-8325-0547) Khalil Asma (Orcid ID: 0000-0003-2802-7670)

Diagnostic Yield of Exome Sequencing in Prenatal Agenesis of Corpus Callosum:

A Systematic Review and Meta-analysis

H.J. Mustafa^{1,2}, J.P. Barbera³, E.V. Sambatur⁴, G. Pagani⁵, Y. Yaron^{6,7}, C.D. Baptiste⁸, R.J. Wapner⁹, C.J. Brewer¹⁰ and A. Khalil^{11,12}

¹ Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Indiana University School of Medicine, Indianapolis, IN

² Riley Children and Indiana University Health Fetal Center, Indianapolis, IN

³ Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA

⁴ Research Division, Houston Center for Maternal Fetal Medicine, Houston, TX

⁵ Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, ASST-Papa Giovanni XXIII, Bergamo, Italy

⁶ Prenatal Genetic Diagnosis Unit, Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

⁷ Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

⁸ Obstetrics and Gynecology, Reproductive Genetics, Columbia University Medical Center, New York, New York, USA

⁹ Obstetrics and Gynecology, Reproductive Genetics, Columbia University Medical Center, New York, New York, USA

¹⁰ Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH

¹¹ Fetal Medicine Unit, St George's Hospital, St George's University of London, London, UK

¹² Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St

George's University of London, London, UK

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/uog.27440

d Articl Accepte Hiba J. Mustafa, MD

Division of Maternal-Fetal Medicine, Indiana University School of Medicine, Indianapolis, IN The Fetal Center at Riley Children's and Indiana University Health, Indianapolis, IN hmustafa@iu.edu

Short title: Exome in prenatal agenesis of corpus callosum

Key words: exome, microarray, corpus callosum, prenatal diagnosis, systematic review, metaanalysis

Contribution

What are the novel findings of this work?

Of the 267 included prenatal agenesis of corpus callosum (ACC) cases, 43% had positive pathogenic/likely pathogenic variants. The highest yield was for ACC with extracranial anomalies 55%, then ACC with other cranial anomalies 43%, followed by isolated ACC 32%. We classified 116 genetic variants in 83 genes.

What are the clinical implications of this work?

The use of prenatal exome sequencing in both isolated ACC and ACC with extracranial anomalies should be considered after negative standard genetic testing with chromosomal microarray given the heterogeneity in the prenatal phenotype of vast associated syndromic categories.

ABSTRACT

Accepted Article

Objective: To determine the incremental increase in diagnostic yield of exome sequencing (ES) after negative chromosomal microarray analysis (CMA) in prenatally diagnosed ACC and to classify associated genes and variants.

Methods: A systematic search was performed to identify relevant studies published until June 2022 using four databases including PubMed, Scopus, Web of Science, and Cochrane Library. Studies in English reporting on the diagnostic yield of ES following negative CMA in prenatally diagnosed partial or complete ACC were included. Authors of cohort studies were contacted for individual participant data of which two provided their extended cohorts. The incremental increase in diagnostic yield with ES was assessed for pathogenic/likely pathogenic in: (1) all cases of ACC; (2) isolated ACC; (3) ACC with other cranial anomalies; and (4) non-isolated ACC (ACC with extracranial anomalies). To be able to identify all reported genetic variants, the systematic review portion included all ACC cases, however, for the meta-analysis portion, we included studies with \geq 3 ACC cases. Meta-analysis of proportions was employed using a random-effects model. Quality assessment of the included studies was performed using modified Standards for Reporting of Diagnostic Accuracy criteria.

Results: Twenty-eight studies encompassing 285 prenatal ACC cases that underwent ES following a negative CMA met the inclusion criteria for the systematic review. We classified 116 genetic variants in 83 genes associated with prenatal ACC along with full phenotypic description. Studies reporting on \geq 3 ACC cases were total of 15 studies encompassing 267 cases. Of all the included cases, 43% had positive P/LP ES. The highest yield was for ACC with extracranial anomalies 55% (95% CI 35, 73), then ACC with other cranial anomalies 43% (95% CI 30, 57), followed by isolated ACC 32% (95% CI 18, 51).

Conclusion: There is an apparent incremental increase in diagnostic yield of ES following negative CMA in prenatally diagnosed ACC. While the greatest yield is in ACC with extracranial

anomalies and ACC with other CNS anomalies, consideration should also be given to performing ES in the presence of isolated ACC as the only brain anomaly on prenatal imaging.

14690705, ja, Downloaded from https://obgyn.onlinelibrary.wiley.com/doi/10.1002/uog.27440 by St George'S University Of London, Wiley Online Library on [11/09/2023]. See the Terms

and Conditions

(https://onlinelibrary.wiley.com/terms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

INTRODUCTION

Accepted Article

Agenesis of the corpus callosum (ACC) is defined as an absence of the commissural tract of fibers that connects both hemispheres of the brain and can be classified as partial or complete.¹ The corpus callosum consists of 4 parts: rostrum, genu, body and splenium.² As the corpus callosum develops from anterior to posterior, the most affected segment in ACC is the posterior segment consisting of the body and splenium.^{1, 3, 4} ACC could be isolated or associated with other cranial or extracranial anomalies.¹ ACC is the most common commissural malformation with an incidence of 0.05 to 70 per 10,000 live births.^{5,6}

ACC is diagnosed prenatally during the second trimester ultrasound, by either an absent cavum septum pellucidum in the axial plane, or by colpocephaly of the lateral ventricles. ¹ Color doppler can also be done to visualize the course of the pericallosal artery to pinpoint the portion of dysgenesis from 11 weeks of gestation onwards.³

ACC has a heterogenous etiology with associations to different genes and syndromes. CDK5RAP2 and DCC gene are both linked to isolated ACC. ACC is widely associated with Coffin-Siris syndrome and is now also seen in novel congenital syndromes like Vici syndrome and Mowat-Wilson syndrome.⁷

Reported neurodevelopmental outcomes in isolated ACC are normal in 71.2% of cases, while, the remaining patients manifest borderline to severe abnormalities. ^{4, 8} These unpredictable outcomes make prenatal counseling a challenge. Genetic testing like karyotype, chromosomal microarray analysis (CMA) and exome sequencing (ES) enhance the availability of information necessary for prenatal counseling.⁹

ES has proven to be a powerful tool for evaluating postnatal patients, achieving an average molecular diagnostic rate of 25% of pathogenic/likely pathogenic (P/LP) variants when performed for mendelian disorders.¹⁰ This is in comparison to the currently used CMA which detects clinically significant CNVs in 5.7% of isolated ACC with a normal karyotype.¹¹ Prenatal diagnostic yield of fetal structural anomalies with ES, is higher in cases of pre-selected cohorts

for monogenic etiology compared to un-selected cohorts (42% vs. 15% respectively).¹² In prenatally detected ACC, ES is estimated to have a higher diagnostic rate of P/LP variants when compared to CMA or karyotype.¹³

There is a paucity of studies that have formally assessed the additional diagnostic yield of ES after negative CMA in prenatally diagnosed ACC, and there is no evidence to suggest which phenotypic ACC subtypes the diagnostic yield is highest. Hence, the objective of this systematic review and meta-analysis was to determine the incremental increase in diagnostic yield with ES after normal CMA in prenatally diagnosed ACC and to identify associated genes and variants.

METHODS

The present study was conducted based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline 2020.¹⁴ The study protocol was registered with PROSPERO (CRD42022333562).

Search strategy

A systematic search was performed in four electronic databases including Cochrane Library, Web of Science, Scopus, and MEDLINE by two authors (E.S and J.B), independently, from inception until June 2022. The search strategy included a combination of relevant medical subject heading (MeSH) terms and relevant keywords for ("Prenatal Diagnosis" OR "Antenatal Diagnosis" OR "Fetal Diseases" OR "Fetal Development") AND ("Exome sequencing" OR "Whole genome sequencing" OR "Whole Exome Sequencing" OR "Genome-wide Sequencing"). Further details, regarding the systematic search of literature is available in supplementary material The generated articles were transferred to Rayyan software for abstract screening. Duplicates that were identified both by Rayyan software and manually were removed. Abstract screening was performed independently by two authors (E.S. and J.B.) and disagreements were resolved by discussion with a third party (H.J.M.). Included studies' full texts were retrieved for data extraction.

Eligibility criteria

Accepted Article

We defined our eligibility criteria based on the PICO framework: (P) Population: pregnancies complicated by ACC whether complete or partial. (I) Intervention: ES. (C) Comparison: microarray/karyotype tests. (O) Outcome: P/LP variants. Inclusion criteria included pregnancies that were prenatally diagnosed with ACC on imaging with or without other anomalies (CNS or multi-system) undergoing ES following a negative CMA. The exclusion criteria were absence of CMA/karyotype or ES, papers of which authors did not provide missing number of cases and individual data information, and non-English papers. To be able to identify all reported

genetic variants, the systematic review portion included all ACC cases, however, for the metaanalysis portion, we included studies with \geq 3 ACC cases.

Data extraction and outcome measures

Two independent authors (E.S, J.B) performed the data extraction using a standardized sheet. Any disagreement regarding the inclusion, exclusion, or data extraction was resolved through a discussion with a third party (H.J.M). The standardized sheet included the following columns: name of the first author, publication year, period of the study, country, institute, design of the study, exome sequencing laboratory methodology, total number of cases, number of ACC cases, sequencing method, time of exome sequencing, postmortem or postnatal exam, number of negative microarray/karyotype results, total number of microarray/karyotype tests performed, number of positive ES cases, total number ES performed, and detailed information of positive ES cases including prenatal phenotype, gene, variant, inheritance, and clinical syndrome or diagnosis if any.

Four studies had unpublished data regarding associated genes or variants for which authors were contacted and they provided full relevant data,¹⁵⁻¹⁸ and two of which provided extended cohorts as well.^{17, 18}

Quality assessment

Accepted Articl

Quality assessment of the included studies was performed using modified Standards for Reporting of Diagnostic Accuracy criteria.¹⁹ The quality criteria deemed most important to optimize accuracy were: (1) whether trio analysis was performed; (2) whether ACMG criteria were used for variant interpretation; and (3) whether there was Sanger validation of variants.²⁰ Quality assessment was done by two reviewers (E.S. and J.B.) and any disagreement was resolved through discussion with a third party (H.J.M.).

Variant classification or re-classification

d Articl

Accepte

Variant reclassification was done to reflect newly available data using the same techniques that were employed in the original studies to prevent any bias. All variants were generated in Alamut Visual Plus v1.6.1 to verify correct nomenclature. Alamut is a genome browser that can generate variants and their corresponding HGVS nomenclature, facilitating variant classification by genomic scientists. All variants were reported in genome build GRCh37 (hg19). Variants from all papers were matched to the same MANE select transcripts for each gene. In six cases, variants could not be reclassified because the reported nomenclature could not be verified or incomplete variant information was provided in the original report, making it impossible to know for certain where the variant was in the genome. Thus, the primary variant classification assigned for these six cases in the original publication was used for the variant analysis. Phenotypic information for reanalysis was gathered through searches of several databases (ClinVar, DECIPHER, HGMD, gnomAD) with the assistance of advanced search tools (Genomenon, Alamut Visual, UCSC Genome Browser, PubMed, Google).

Because variant classification guidelines have evolved over the past few years and different groups may apply American College of Medical Genetics (ACMG) guidelines differently, we harmonized all reported variant classifications with current ACMG guidelines.²⁰ Current ACMG classification of genetic sequence variants includes two parts, one classification for Pathogenic or Likely Pathogenic variants and one for classification of Benign or Likely Benign variants. Each pathogenic criterion is weighted as very strong (PSV1), strong (PS1-4), moderate (PM1-6) or supporting (PP1-5) and benign criterion is weighted as stand-alone (BA1), strong (BS1-4) or supporting (BP1-6). The criteria are then combined according to the ACMG scoring rules to choose a classification from the 5 tier system which is pathogenic (P), likely pathogenic (LP), uncertain significance, likely benign and benign.²¹ All variants were classified by our genomic scientist (C.B.) and these classifications were reviewed by an additional study member (J.B.). We

Accepted Article

also included ClinGen recommendations regarding evidence type PVS1.²² Evidence type PP5, report by a reputable source, was used judiciously to avoid double counting in cases where ClinVar entries were from the original case report. Additionally, some reported variant classifications were outdated and were therefore reclassified using current evidence. We considered our variant classification to be concordant with the original report if the variant was Pathogenic or Likely Pathogenic in both instances or if it was VUS in both instances. In 3 cases of classification for compound heterozygous inheritance of an AR disorder, a pathogenic variant with a VUS was considered a likely pathogenic diagnosis.

Statistical Analysis and Data synthesis

For studies with 3 or more fetal ACC cases undergoing ES following negative CMA, we calculated the pooled proportions and their 95% confidence intervals in 4 different groups of ACC cases: (1) all ACC cases; (2) isolated ACC (ACC is the only finding); (3) ACC with other cranial anomalies; and (4) non-isolated ACC (ACC with extracranial anomalies).

Heterogeneity of the included studies was assessed graphically and statistically by Higgins I² test. The weight given to each study was decided according to the inverse variance method in order to minimize the imprecision of the pooled effect estimate. The random effect model was used for pooling the effect sizes and their 95% CI was consequently calculated. To test the overall significance of the random model, *z*-test was performed. Potential publication bias was graphically assessed by creating funnel plots for each of the groups. RStudio²³ (RStudio, Inc., Boston, MA) was used for the statistical analysis and creating forest and funnel plots.

RESULTS

Study characteristics

As shown in PRISMA flow chart (Figure 1), our search strategy generated 13,102 abstracts. There were 5,011 removed for duplication. Following abstract screening, a total of 168 studies underwent full-text assessment of which 28 studies met our criteria.

Table 1 shows characteristics of the included studies in the systematic review. 15 studies reported on \geq 3 ACC cases and 13 studies had less than 3 cases. Publication years ranged between 2014 and 2022. 17 studies were retrospective and 11 were prospective. Full exome methodology for each study is outlined in Table 1. Twenty-one studies performed trio ES, 5 studies had a combination of proband, duo and trio ES, and in two studies methodology was not reported.

Figure 2 shows the overall quality assessment of the included studies using modified STARD as described in the methods section. Most studies utilized trio sequencing, ACMG classification criteria, and Sanger validation for variants. Almost all studies provided CNS phenotypic description.

Systematic review

Accepted Articl

The systematic review portion included a total of 285 ACC cases that had ES performed after negative CMA. We also aimed to include cases undergoing karyotype, all included studies performed CMA. There were 115 variants including 82 genes that were P/LP per the original articles. Upon further re-analysis, one variant was downgraded to a benign, and 2 VUS cases were upgraded to P/LP resulting in total of 116 P/LP variants in 83 genes. The rest of the VUS remained as VUS.

Pregnancy outcomes were reported for 84 positive cases of which 69 had pregnancy termination (69/84, 82.1%), two stillbirths (2/84, 2.4%), three neonatal demise (3/84, 3.6%), and ten live birth (10/84, 11.9%). 113 specified the type of ES performed. Maternal-paternal-fetal trio

testing was done in most cases (108/113, 95.6%). Duo ES was performed in one case (1/113, 0.9%). Proband only ES was performed in four cases (4/113, 3.5%).

Table 2 shows the genes with the highest overall frequency which include TUBA1A (7 cases, 6.0%), L1CAM (6 cases, 5.2%), FGFR2 (5 cases, 4.3%), ARID1B (4 cases, 3.4%), ARX (3 cases, 2.6%), COL4A1 (3 cases, 2.6%), EPG5 (3 cases, 2.6%), PEX1 (3 cases, 2.6%), TUBB (3 cases, 2.6%), and ZEB2 (3 cases, 2.6%) and two cases (1.7%) each of KANSL1, NFIA, and TUBB3 genes. The remaining 70 genes were involved in only one case each.

Phenotype association by gene

Isolated ACC

Accepted Article

There were 19 genes associated with 25 cases in which ACC was the only finding (Table 3A). The genes included ARID1B (3 cases, 12%), L1CAM (3 cases, 12%), EPG5 (2 cases, 8%), NFIA (2 cases, 8%), 1 case (4%) each of AP4M1, ALDH7A1, EXOSC3, KANSL1, KCNQ2, PPP2R1A, PTCH1, PTDSS1, PTPN11, SCN2A, SHH, SON, TUBB2B, ZBTB20, and ZEB2. The most common genetic syndromes were Coffin-Siris Syndrome, X-linked hydrocephaly, and Vici Syndrome.

Inheritance pattern was documented in 24 of these cases (24/25, 96%). Out of these 24 isolated single ACC cases, inheritance patterns were autosomal dominant (17/24, 70.8%), autosomal recessive (4/24, 16.7%), and X-linked (3/24, 12.5%). Among the autosomal dominant cases, 16/17 (94.1%) were *de novo*. Among the X-linked cases, 2/3 (66.6%) were *de novo*. Also of note, among the autosomal recessive cases, one case had two variants in the ALDH7A1 gene, with one being *de novo* and the other maternally inherited.

ACC with other cranial anomalies

There were 31 genes associated with 42 cases (Table 3B). The genes included TUBA1A (6 cases, 14.3%), COL4A1 (3 cases, 7.1%), TUBB (3 cases, 7.1%), ARX (2 cases, 4.8%), L1CAM

(2 cases, 4.8%), and OFD1 (2 cases, 4.8%). There was one case (2.4%) each of the remaining 25 genes, of which one case had two different genes. The most common genetic syndromes were Tubulinopathy, X-linked hydrocephalus, Brain small vessel disease, X-linked lissencephaly, and Orofaciodigital syndrome.

Inheritance pattern was documented in 38 of these cases (38/42, 90.5%). Inheritance patterns were autosomal dominant (21/38, 55.3%), autosomal recessive (6/38, 15.8%), and X-linked (11/38, 28.9%). Among the autosomal dominant cases, 20/21 (95.2%) were *de novo*. Among the X-linked cases, 6/11 (54.5%) were *de novo*.

ACC with extracranial anomalies

Accepted Articl

There were 40 genes associated with 44 cases in which ACC occurred with extracranial anomalies (Table 3C). The genes included FGFR2 (5 cases, 11.4%) and ZEB2 (2 cases, 4.5%), and one case (2.3%) each of 38 remaining genes, of which one case had two different genes. The most common genetic syndromes were Apert Syndrome and Mowat Wilson Syndrome.

Inheritance pattern was documented in 38 of these cases (38/44, 86.4%). Inheritance patterns were autosomal dominant (24/38, 63.2%), autosomal recessive (9/38, 23.7%), and X-linked (5/38, 13.2%). Among the autosomal dominant cases, 18/24 (75%) were *de novo*. Among the X-linked cases, 1/5 (20%) was *de novo*.

Meta-analysis of pooled proportions for exome sequencing diagnostic yield

As mentioned previously in the methods section, synthetic analysis was performed on studies reporting \geq 3 ACC cases which included a total of 15 studies encompassing 267 positive P/LP cases and negative CMA. Of the total included cases, 43% (95% 31, 56) had positive P/LP ES. The highest yield was for ACC with extracranial anomalies 55% (95% CI 35, 73), then ACC with cranial anomalies 43% (95% CI 30, 57), followed by isolated ACC 32% (95% CI 18, 51) (Table 4, Supplemental Figures 1-4).

DISCUSSION

Accepted Article

Summary of the main findings

Our review reports 267 cases with prenatal ACC that underwent ES following negative CMA. Of the included cases, positive P/LP yield was 43%. The highest yield was for ACC with extracranial anomalies 55%, then ACC with other cranial anomalies 43%, followed by isolated ACC 32%. We also classified 116 genetic variants in 83 genes associated with prenatal ACC along with full phenotypic description.

Interpretation of the key findings

In cases of fetal ultrasound anomalies, ACOG recommends investigation by CMA for prenatal genetic diagnosis.²⁴ CMA detects additional pathogenic copy number variants (CNVs) in 0.4-1.7% of fetuses with both normal karyotype and absent structural anomalies, thus is offered to all patients who opt for prenatal genetic diagnosis.^{25, 26} The ACMG recommends trio ES for patients with ultrasound anomalies in an index pregnancy, only if CMA and karyotype are both negative.^{27, 28}

Currently available knowledge on ES is that it has an incremental yield in identifying diagnostic genetic variants where aneuploidy and CNVs are ruled out with karyotype and CMA, allowing for differentiation between genetic syndromes and isolated congenital anomalies.¹⁸ Its greatest yield is with multi-system anomalies.²⁹ The isolated CNS finding reported with the highest likelihood of having a P/LP variant diagnosed on ES is ACC, further solidifying the efficacy of ES in identifying causative genetic variants in ACC as also seen in our results.³⁰

A limitation of ES, that diminished its use as a prenatal genetic test is its high turn-around time (TAT). In 2014 ES was reported to have an average TAT of 18 weeks.³¹ 46 of our cases had TATs reported ranging from 7-107 days with an average of 24. With decreasing TATs, it can be said that ES should now be done at the same time as CMA to lead to a higher genetic diagnosis.

In our analysis of genes associated with ACC, TUBA1A was the most prevalent and associated with phenotypes Lissencephaly type 3 and Tubilinopathy. L1CAM and ARID1B had the greatest number of genetic variants associated with isolated ACC. FGFR2 gene in Apert syndrome had the greatest number of ACC cases with extracranial anomalies.

Knowledge of P/LP genetic variants and their syndromic associations prenatally can allow for paramount decisions to be made on management of the pregnancy. ES is helpful when making decisions on delivery plans, intrapartum fetal monitoring, evaluation with additional imaging and procedures, referral to pediatric specialists and tertiary care centers for delivery and an overall earlier intervention in the pathogenic process. ^{32, 33}

Strengths and limitations

The strengths of this review are the thorough search strategy in four large databases and the methodology used to collect and interpret the data, that's standardized and reproducible. International collaboration between two largest series on prenatal congenital anomalies and ES who provided their data, and their extended cohorts increased the number of included cases. All studies used ACMG classification for genetic variant interpretation and most also used trioanalysis for ES and Sanger sequencing for validation. Studies with less than 3 cases were excluded from the meta-analysis, decreasing the chance of bias in our results.

Limitations are that only a few ES studies were done specifically on ACC, with high heterogeneity in the included studies. Most studies did not specify whether ACC was complete or partial, limiting our ability to determine the yield of ES in these subgroups. Prenatal findings are phenotypes as described on ultrasound and/or MRI which could limit the classification scheme of ACC used in this review. Intrauterine MRI can detect associated anomalies that are otherwise not picked up on ultrasound, but not all of the 15 studies in our data analysis reported using MRI.³⁴ This is a limiting factor that may have led to misclassification of cases as isolated ACC. Although

cases were classified as isolated, it is possible that their disease process evolves and presents with more anomalies in a later gestation or early in the neonatal period. Not all studies provided confirmatory postnatal examinations or autopsy findings that could've allowed us to reach a more accurate classification.

A general limitation of ES is that it has higher diagnostic yield in case of pre-selected cohorts, such as terminated pregnancies or severe cases, for monogenic disorders than it does for unselected cohorts.¹² Although the studies in this review include a wide range of cohorts, both selected and un-selected, it's possible the diagnostic yield would be lower if all studies used unselected cohorts. As seen in Table 1., different sequencers were used in each study ranging between 2000 to 6000 genes and we postulate that this variation has also resulted in a higher diagnostic yield in our results.

Few of the genes are not reported in scientific literature as having a prior known association with ACC or its syndromes. Some genetic variants were also reported as being novel mutations when the study was conducted. Further research must be done regarding the strength and association between these novel genetic variants and ACC.

Conclusions and future clinical and research implications

Articl

Accepted

In conclusion, our results highlight a key finding in the use of ES for prenatal genetic diagnosis. While the highest yield was for cases with extracranial anomalies (55%), consideration for performing ES should also be given for isolated ACC given the yield of 32% for positive P/LP findings.

Use of ES in both the prenatal and postnatal setting with characterization of both genotypes and phenotypes into large data repositories is required to improve our understanding of phenotype-genotype relationships. This also will require following pregnancies with unknown or uncertain variants or those with discordant phenotypes from the prenatal period through childhood to elucidate the causality of the genetic variants and the full expansion of their phenotypes. It will also be worthwhile to investigate further the implications of the genes catalogued in this review on the development of the corpus callosum. Further research may also focus on the patient experience of undergoing ES during pregnancy, the impact on provider healthcare utilization, patient outcomes, and the impact on decision making for future pregnancies and family planning.

14690705, ja, Downloaded from https://obgyn.onlinelibrary.wiley.com/doi/10.1002/uog 27440 by St George'S University Of London, Wiley Online Library on [11/09/2023]. See the Terms

and Conditions

(https://onlinelibrary.wiley.com/terms

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

REFERENCES

Rotmensch S, Monteagudo A. Agenesis of the Corpus Callosum. *Am J Obstet Gynecol* 2020; **223**: B17-B22.

2. Baynes K. Corpus Callosum. In *Encyclopedia of the Human Brain*. Elsevier, 2002; 51-64.

3. Volpe P, Paladini D, Resta M, Stanziano A, Salvatore M, Quarantelli M, De Robertis V, Buonadonna AL, Caruso G, Gentile M. Characteristics, associations and outcome of partial agenesis of the corpus callosum in the fetus. *Ultrasound in Obstetrics & Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology* 2006; **27**: 509-516.

4. S. Santo FDA, T. Homfray, P. Rich, G. Pilu, A. Bhide, B. Thilaganathan, A. T. Papageorghiou. Counseling in fetal medicine: agenesis of the corpus callosum - Santo - 2012 - Ultrasound in Obstetrics & Gynecology - Wiley Online Library. 2022. DOI: 10.1002/uog.12315.

5. Bayram AK, Kütük MS, Doganay S, Özgün MT, Gümüş H, Başbuğ M, Kumandaş S, Canpolat M, Per H. An analysis of 109 fetuses with prenatal diagnosis of complete agenesis of corpus callosum. *Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology* 2020; **41**.

6. Jeret JS, Serur D, Wisniewski K, C F. Frequency of agenesis of the corpus callosum in the developmentally disabled population as determined by computerized tomography. *Pediatr Neurosci* 1985; **12**.

7. Hofman J, Hutny M, Sztuba K, J P. Corpus Callosum Agenesis: An Insight into the Etiology and Spectrum of Symptoms. *Brain sciences* 2020; **10**.

8. Sotiriadis A, G M. Neurodevelopment after prenatal diagnosis of isolated agenesis of the corpus callosum: an integrative review. *Am J Obstet Gynecol* 2012; **206**.

9. Bernardes da Cunha S, Carneiro MC, Miguel Sa M, Rodrigues A, Pina C. Neurodevelopmental Outcomes following Prenatal Diagnosis of Isolated Corpus Callosum Agenesis: A Systematic Review. *Fetal Diagn Ther* 2021; **48**: 88-95.

10. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. *The New England journal of medicine* 2013; **369**.

 D'Antonio F, Pagani G, Familiari A, Khalil A, Sagies T-L, Malinger G, Leibovitz Z, Garel C, Moutard ML, Pilu G, Bhide A, Acharya G, Leombroni M, Manzoli L, Papageorghiou A, Prefumo
 F. Outcomes Associated With Isolated Agenesis of the Corpus Callosum: A Meta-analysis. *Pediatrics* 2016; **138**: e20160445.

12. Mellis R, Oprych K, Scotchman E, Hill M, LS C. Diagnostic yield of exome sequencing for prenatal diagnosis of fetal structural anomalies: A systematic review and meta-analysis. *Prenat Diagn* 2022; **42**.

13. She Q, Tang E, Peng C, Wang L, Wang D, Tan W. Prenatal genetic testing in 19 fetuses with corpus callosum abnormality. *J Clin Lab Anal* 2021; **35**: e23971.

14. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *PLoS Med* 2021; **18**: e1003583.

15. Normand EA, Braxton A, Nassef S, Ward PA, Vetrini F, He W, Patel V, Qu C, Westerfield LE, Stover S, Dharmadhikari AV, Muzny DM, Gibbs RA, Dai H, Meng L, Wang X, Xiao R, Liu P, Bi W, Xia F, Walkiewicz M, Van den Veyver IB, Eng CM, Yang Y. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. *Genome Med* 2018;

10.

Accepted Article

16. Yaron Y, Ofen Glassner V, Mory A, Zunz Henig N, Kurolap A, Bar Shira A, Brabbing Goldstein D, Marom D, Ben Sira L, Baris Feldman H, Malinger G, Krajden Haratz K, Reches A. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. *Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology* 2022; **60**.

17. Petrovski S, Aggarwal V, Giordano JL, Stosic M, Wou K, Bier L, Spiegel E, Brennan K, Stong N, Jobanputra V, Ren Z, Zhu X, Mebane C, Nahum O, Wang Q, Kamalakaran S, Malone C, Anyane-Yeboa K, Miller R, Levy B, Goldstein DB, Wapner RJ. Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. *The Lancet* 2019; **393**: 758-767.

18. Lord J, McMullan DJ, Eberhardt RY, Rinck G, Hamilton SJ, Quinlan-Jones E, Prigmore E, Keelagher R, Best SK, Carey GK, Mellis R, Robart S, Berry IR, Chandler KE, Cilliers D, Cresswell L, Edwards SL, Gardiner C, Henderson A, Holden ST, Homfray T, Lester T, Lewis RA, Newbury-Ecob R, Prescott K, Quarrell OW, Ramsden SC, Roberts E, Tapon D, Tooley MJ, Vasudevan PC, Weber AP, Wellesley DG, Westwood P, White H, Parker M, Williams D, Jenkins L, Scott RH, Kilby MD, Chitty LS, Hurles ME, Maher ER, Bateman M, Campbell C, Campbell J, Carey G, Cohen K, Collingwood E, Constantinou P, Delmege C, Ellis R, Evans J, Everett T, Pinto CF, Forrester N, Fowler E, Hamilton S, Healey K, Hudson R, Lester T, Lewis R, Marton T, Mehta S, Park SM, Rowland J, Steer J, Taylor EJ, Wilson E. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. *The Lancet* 2019; **393**: 747-757.

Accepted Article

19. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Moher D, Rennie D, de Vet HC, Lijmer JG. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. *Ann Intern Med* 2003; **138**.

20. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL. Standards and guidelines for the interpretation of

sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genetics in medicine : official journal of the American College of Medical Genetics* 2015; **17**.

21. Richards AA, Garg V. Genetics of Congenital Heart Disease. 7.

22. Abou Tayoun AN, Pesaran T, DiStefano MT, Oza A, Rehm HL, Biesecker LG, Harrison SM. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. *Hum Mutat* 2018; **39**.

23. RStudio: Integrated Development Environment for R. 2020.

Accepted Article

24. Practice Bulletin No. 162 Summary: Prenatal Diagnostic Testing for Genetic Disorders. *Obstet Gynecol* 2016; **127**: 976-978.

25. Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, Savage M, Platt LD, Saltzman D, Grobman WA, Klugman S, Scholl T, Simpson JL, McCall K, Aggarwal VS, Bunke B, Nahum O, Patel A, Lamb AN, Thom EA, Beaudet AL, Ledbetter DH, Shaffer LG, Jackson L. Chromosomal Microarray versus Karyotyping for Prenatal Diagnosis. *N Engl J Med* 2012; **367**: 2175-2184.

26. Stosic M, Levy B, Wapner R. The Use of Chromosomal Microarray Analysis in Prenatal Diagnosis. *Obstet Gynecol Clin North Am* 2018; **45**: 55-68.

27. Monaghan KG, Leach NT, Pekarek D, Prasad P, Rose NC, Practice AP, Guidelines C. The use of fetal exome sequencing in prenatal diagnosis: a points to consider document of the American College of Medical Genetics and Genomics (ACMG). *Genetics in Medicine: Official Journal of the American College of Medical Genetics* 2020; **22**: 675-680.

28. Hopkins MK, Dugoff L, Kuller JA. Exome Sequencing and Its Emerging Role in Prenatal Genetic Diagnosis. 2020.

29. Heide S, Spentchian M, Valence S, Buratti J, Mach C, Lejeune E, Olin V, Massimello M, Lehalle D, Mouthon L, Whalen S, Faudet A, Mignot C, Garel C, Blondiaux E, Lefebvre M, Quenum-Miraillet G, Chantot-Bastaraud S, Milh M, Bretelle F, Portes VD, Guibaud L, Putoux A,

Tsatsaris V, Spodenkiewic M, Layet V, Dard R, Mandelbrot L, Guet A, Moutton S, Gorce M, Nizon M, Vincent M, Beneteau C, Rocchisanni MA, Benachi A, Saada J, Attié-Bitach T, Guilbaud L, Maurice P, Friszer S, Jouannic JM, de Villemeur TB, Moutard ML, Keren B, Héron D. Prenatal exome sequencing in 65 fetuses with abnormality of the corpus callosum: contribution to further diagnostic delineation. *Genetics in medicine : official journal of the American College of Medical Genetics* 2020; **22**.

30. Baptiste C, Mellis R, Aggarwal V, Lord J, Eberhardt R, Kilby MD, Maher ER, Wapner R, Giordano J, Chitty L. Fetal central nervous system anomalies: When should we offer exome sequencing? *Prenat Diagn* 2022; **42**: 736-743.

31. Atwal PS, Brennan ML, Cox R, Niaki M, Platt J, Homeyer M, Kwan A, Parkin S, Schelley S, Slattery L, Wilnai Y, Bernstein JA, Enns GM, Hudgins L. Clinical whole-exome sequencing: are we there yet? *Genetics in medicine : official journal of the American College of Medical Genetics* 2014; **16**.

32. Tolusso LK, Hazelton P, Wong B, DT S. Beyond diagnostic yield: prenatal exome sequencing results in maternal, neonatal, and familial clinical management changes. *Genetics in medicine : official journal of the American College of Medical Genetics* 2021; **23**.

33. Practice Bulletin No. 162: Prenatal Diagnostic Testing for Genetic Disorders. *Obstet Gynecol* 2016; **127**: e108-e122.

34. Glenn OA, Goldstein RB, Li KC, Young SJ, Norton ME, Busse RF, Goldberg JD, AJ B. Fetal magnetic resonance imaging in the evaluation of fetuses referred for sonographically suspected abnormalities of the corpus callosum. *Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine* 2005; **24**.

35. Boissel S, Fallet-Bianco C, Chitayat D, Kremer V, Nassif C, Rypens F, Delrue MA, Dal Soglio D, Oligny LL, Patey N, Flori E, Cloutier M, Dyment D, Campeau P, Karalis A, Nizard S, Fraser WD, Audibert F, Lemyre E, Rouleau GA, Hamdan FF, Kibar Z, Michaud JL. Genomic study

of severe fetal anomalies and discovery of GREB1L mutations in renal agenesis. *Genetics in medicine : official journal of the American College of Medical Genetics* 2018; **20**.

36. de Wit MC, Boekhorst F, Mancini GM, Smit LS, Groenenberg IAL, Dudink J, de Vries FAT, Go ATJI, Galjaard RJH. Advanced genomic testing may aid in counseling of isolated agenesis of the corpus callosum on prenatal ultrasound. *Prenat Diagn* 2017; **37**.

37. Fu F, Li R, Li Y, Nie ZQ, Lei T, Wang D, Yang X, Han J, Pan M, Zhen L, Ou Y, Li J, Li FT, Jing X, Li D, Liao C. Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. *Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology* 2018; **51**.

38. Aggarwal S, Vineeth VS, Das Bhowmik A, Tandon A, Kulkarni A, Narayanan DL, Bhattacherjee A, Dalal A. Exome sequencing for perinatal phenotypes: The significance of deep phenotyping. *Prenat Diagn* 2020; **40**.

39. Greenbaum L, Pode-Shakked B, Eisenberg-Barzilai S, Dicastro-Keidar M, Bar-Ziv A, Goldstein N, Reznik-Wolf H, Poran H, Rigbi A, Barel O, Bertoli-Avella AM, Bauer P, Regev M, Raas-Rothschild A, E P, M B. Evaluation of Diagnostic Yield in Fetal Whole-Exome Sequencing: A Report on 45 Consecutive Families. *Frontiers in genetics* 2019; **10**.

Accepted Article

40. Lefebvre M, Bruel AL, Tisserant E, Bourgon N, Duffourd Y, Collardeau-Frachon S, Attie-Bitach T, Kuentz P, Assoum M, Schaefer E, El Chehadeh S, Antal MC, Kremer V, Girard-Lemaitre F, Mandel JL, Lehalle D, Nambot S, Jean-Marcais N, Houcinat N, Moutton S, Marle N, Lambert L, Jonveaux P, Foliguet B, Mazutti JP, Gaillard D, Alanio E, Poirisier C, Lebre AS, Aubert-Lenoir M, Arbez-Gindre F, Odent S, Quelin C, Loget P, Fradin M, Willems M, Bigi N, Perez MJ, Blesson S, Francannet C, Beaufrere AM, Patrier-Sallebert S, Guerrot AM, Goldenberg A, Brehin AC, Lespinasse J, Touraine R, Capri Y, Saint-Frison MH, Laurent N, Philippe C, Tran Mau-Them F, Thevenon J, Faivre L, Thauvin-Robinet C, Vitobello A. Genotype-first in a cohort of 95 fetuses with multiple congenital abnormalities: when exome sequencing reveals unexpected fetal phenotype-genotype correlations. *J Med Genet* 2021; **58**: 400-413. 41. Tan H, Xie Y, Chen F, Chen M, Yu L, Chen D, J C. Novel and recurrent variants identified in fetuses with central nervous system abnormalities by trios-medical exome sequencing. *Clinica chimica acta; international journal of clinical chemistry* 2020; **510**.

42. de Koning MA, Hoffer MJV, Nibbeling EAR, Bijlsma EK, Toirkens MJP, Adama-Scheltema PN, Verweij EJ, Veenhof MB, Santen GWE, CMPCD P-S. Prenatal exome sequencing: A useful tool for the fetal neurologist. *Clin Genet* 2022; **101**.

43. Lei Ty, She Q, Fu F, Zhen L, Li R, Yu Qx, Wang D, Li Ys, Cheng K, Zhou H, Yang X, Pan M, Li Dz, Liao C. Prenatal exome sequencing in fetuses with callosal anomalies. *Prenat Diagn* 2022; **42**: 744-752.

44. Yaron Y, Ofen Glassner V, Mory A, Zunz Henig N, Kurolap A, Bar Shira A, Brabbing Goldstein D, Marom D, Ben Sira L, Baris Feldman H, Malinger G, Krajden Haratz K, Reches A. Exome sequencing as first-tier test for fetuses with severe central nervous system structural anomalies. *Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology* 2022; **60**.

Accepted Article

45. Carss KJ, Hillman SC, Parthiban V, McMullan DJ, Maher ER, Kilby MD, ME H. Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. *Hum Mol Genet* 2014; **23**.

46. Shamseldin HE, Kurdi W, Almusafri F, Alnemer M, Alkaff A, Babay Z, Alhashem A, Tulbah M, Alsahan N, Khan R, Sallout B, Al Mardawi E, Seidahmed MZ, Meriki N, Alsaber Y, Qari A, Khalifa O, Eyaid W, Rahbeeni Z, Kurdi A, Hashem M, Alshidi T, Al-Obeid E, Abdulwahab F, Ibrahim N, Ewida N, El-Akouri K, Al Mulla M, Ben-Omran T, Pergande M, Cirak S, Al Tala S, Shaheen R, Faqeih E, Alkuraya FS. Molecular autopsy in maternal-fetal medicine. *Genet Med* 2018; **20**: 420-427.

47. Aarabi M, Sniezek O, Jiang H, Saller DN, Bellissimo D, Yatsenko SA, A R. Importance of complete phenotyping in prenatal whole exome sequencing. *Hum Genet* 2018; **137**.

48. Reches A, Hiersch L, Simchoni S, Barel D, Greenberg R, Ben Sira L, Malinger G, Y Y. Whole-exome sequencing in fetuses with central nervous system abnormalities. *Journal of perinatology : official journal of the California Perinatal Association* 2018; **38**.

49. Jiang Y, Qian YQ, Yang MM, Zhan QT, Chen Y, Xi FF, Sagnelli M, Dong MY, Zhao BH, Q L. Whole-Exome Sequencing Revealed Mutations of MED12 and EFNB1 in Fetal Agenesis of the Corpus Callosum. *Frontiers in genetics* 2019; **10**.

50. Meier N, Bruder E, Lapaire O, Hoesli I, Kang A, Hench J, Hoeller S, De Geyter J, Miny P, Heinimann K, Chaoui R, Tercanli S, I F. Exome sequencing of fetal anomaly syndromes: novel phenotype-genotype discoveries. *European journal of human genetics : EJHG* 2019; **27**.

51. Corsten-Janssen N, Bouman K, Diphoorn JCD, Scheper AJ, Kinds R, El Mecky J, Breet H, Verheij JBGM, Suijkerbuijk R, Duin LK, Manten GTR, van Langen IM, Sijmons RH, Sikkema-Raddatz B, Westers H, van Diemen CC. A prospective study on rapid exome sequencing as a diagnostic test for multiple congenital anomalies on fetal ultrasound. *Prenat Diagn* 2020; **40**.

Accepted Article

52. Deden C, Neveling K, Zafeiropopoulou D, Gilissen C, Pfundt R, Rinne T, de Leeuw N, Faas B, Gardeitchik T, Sallevelt SCEH, Paulussen A, Stevens SJC, Sikkel E, Elting MW, van Maarle MC, Diderich KEM, Corsten-Janssen N, Lichtenbelt KD, Lachmeijer G, Vissers LELM, Yntema HG, Nelen M, Feenstra I, van Zelst-Stams WAG. Rapid whole exome sequencing in pregnancies to identify the underlying genetic cause in fetuses with congenital anomalies detected by ultrasound imaging. *Prenat Diagn* 2020; **40**.

Qi Q, Jiang Y, Zhou X, Meng H, Hao N, Chang J, Bai J, Wang C, Wang M, Guo J, Ouyang Y, Xu Z, Xiao M, Zhang VW, Liu J. Simultaneous Detection of CNVs and SNVs Improves the Diagnostic Yield of Fetuses with Ultrasound Anomalies and Normal Karyotypes. *Genes* 2020; **11**.
Rinaldi B, Race V, Corveleyn A, Van Hoof E, Bauters M, Van Den Bogaert K, Denayer E, de Ravel T, Legius E, Baldewijns M, Aertsen M, Lewi L, De Catte L, Breckpot J, Devriendt K. Next-generation sequencing in prenatal setting: Some examples of unexpected variant association. *Eur J Med Genet* 2020; **63**.

55. He M, Du L, Xie H, Zhang L, Gu Y, Lei T, Zheng J, D C. The Added Value of Whole-Exome Sequencing for Anomalous Fetuses With Detailed Prenatal Ultrasound and Postnatal Phenotype. *Frontiers in genetics* 2021; **12**.

56. Lei L, Zhou L, JJ X. Whole-exome sequencing increases the diagnostic rate for prenatal fetal structural anomalies. *Eur J Med Genet* 2021; **64**.

1469/075, ja, Downloaded from https://obgsn.onlinelibrary.wiley.com/doi/10.1002/uog.27440 by St George'S University Of London, Wiley Online Library on [11/09/2023], See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

FIGURE LEGENDS

Figure 1: PRISMA flow chart of search and selection process

Figure 2: Quality assessment of 28 studies included in systematic review, using modified Standards for Reporting of Diagnostic Accuracy criteria.

Author	Study	Count	Institute	Study	Inclusion criteria	Exclusion criteria	Exome	Total	Agenesis
	period	ry		design			Methodology	number	of
								of	Corpus
								cases	Callosu
									m
									number
Boissel	2013-	Canad	CHU Sainte-Justine's,	Prospective	Terminated pregnancies or	Not Reported	ES, trio, 110×	36	14
2017 ³⁵	2016	а	(Mount Sinai Hospital,		stillborns with: "(i) at least two major		coverage, Agilent		
			Toronto, Canada; Hôpitaux		malformations, (ii) severe		capture + Illumina		
			Universitaires de Strasbourg,		ventriculomegaly (atria >15 mm		HiSeq 2000 or		
			France, and the Children's		bilaterally) and/or structural brain		2500		
			Hospital of East Ontario,		malformations, or (iii) an anomaly				
			Ottawa, Canada)		associated with a high risk of				
					perinatal lethality.				
De Wit	2008-	Nether	Erasmus Medical Center and	Retrospective	All patients diagnosed with isolated	Patients with presumed partial	Not reported	19	4
2017 ³⁶	2015	lands	Sophia Children's Hospital		complete agenesis of the fetal	ACC were excluded." Fetuses with			
					corpus callosum (cACC) on EUE at	other fetal anomalies or			
					any moment in pregnancy" "Fetuses	"sonomarkers"			
					with coexisting midline cysts and				
					colpocephaly were				
					includedbecause these				
					anomalies are considered to be a				
					part of the ACC sequence.				
Fu	2011-	China	Prenatal Diagnostic Center,	Retrospective	Fetal structural malformations on	Isolated sonographic soft markers	Agilent	196	8
2017 ³⁷	2015		Guangzhou Women and		prenatal ultrasound examination	such as choroid plexus cysts,	Bioanalyzer 2100		

			Children's Medical Cer	nter,	and/or magnetic resonance	echogenic foci in the heart or	(Agilent		
			Guangzhou Meo	lical	imaging. The anomalies included	bowel, thickened nuchal fold,	Technologies,		
			University		structural malformation, nuchal	absent nasal bone, single	Santa Clara, CA,		
					translucency thickness ≥ 3.5 mm	umbilical artery or persistent right	USA). A		
					and cystic hygroma.	umbilical vein."	HiSeq2500		
							sequencer was		
							used for sample		
							sequencing		
							according to the		
							manufacturer's		
							protocol (version		
							3; Illumina, Inc.,		
							San Diego, CA,		
							USA). Paired-end		
							sequencing was		
							performed for		
							each sample.		
Norman	2012-	USA	Baylor college of medicin	e Retrospective	The fetus had at least one structural	Not reported	Illumina	146	12
d 2018 ¹⁵	2017				anomaly detected by fetal imaging		HumanOmni1-		
					or autopsy"		Quad or		
							HumanExome-12		
							v1 SNP array for		
							quality control of		
							the exome data		
							and to detect large		
							CNVs, absence of		
							heterozygosity		

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

·	1	1	1		1	1			
							uniparental		
							disomy."		
							Next generation		
							sequencing		
							Sanger method for		
							confirmation		
Aggarw	NR	India	Nizam's Institute of Medical	Retrospective	Fetuses with a phenotype and/or	Cases where the first and second	Trio ES, DNA	32	5
al 2019 ³⁸			Sciences, Punjagutta,		family pedigree suggestive of	tier evaluation established a	isolated from		
			Hyderabad, Telangana		genetic etiology but without a	specific genetic etiology or	amniotic		
					specific clinical or laboratory	indicated an acquired or possible	fluid/skin/umbilical		
					diagnosis.	nongenetic basis were excluded	cord or cord blood		
						from the study.	(approximately 1		
							µg) was used to		
							perform exome		
							capture (n = 28)		
							using Nextera		
							Rapid Capture		
							Exome v1.2 kit		
							(Illumina, San		
							Diego, CA) or		
							SureSelect kit		
							(Agilent		
							Technologies,		
							Santa Clara, USA)		
							and targeted		
							exome		
							capture(8500		
							genes, n = 4)		

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

· · · · · · · · · · · · · · · · · · ·	r	1		1	1				
							using Kapa HTP		
							library preparation		
							kit (Illumina, San		
							Diego, CA)"		
							"libraries were		
							sequenced to		
							more than 100×		
							coverage on		
							Illumina		
							HiSeq2000		
							platform.		
Greenba	2015-	Israel	Danek Gertner Institute of	Retrospective	Fetal structural anomalies of	Not reported	Sequencing was	44	5
um	2018		Human Genetics at Sheba		terminated or ongoing pregnancies		performed on		
2019 ³⁹			Medical Center				llumina platform to		
							obtain an average		
							coverage depth of		
							approximately		
							100×.		
Lord	2014-	UK	34 fetal medicine units in	Prospective	Undergoing invasive testing for	If abnormal aneuploidy considered	ES, trio, 1628	610	28
2019 ¹⁸	1018		England and Scotland		identified nuchal translucency or	to have caused structural	aenes. Aailent		
					structural anomalies in their fetus.	abnormality was detected, if one	capture + Illumina		
					as detected by ultrasound after 11	or both parents were younger than	Hi-Sea 2500.		
					weeks of gestation	16 years or if one or both parents	98.3% of bait		
						did not or could not provide	regions covered at		
						informed consent	minimum denth of		
							54		

14690705

 \mathcal{L}

Of London, Wiley Online Library

on [11/09/2023]. See

Petrovsk	2015-	USA	Columbia University Carmen	Prospective	Singleton pregnancies: "all fe	al Fetuses with a known infection or	Trio ES of the	234	18
i 2019 ¹⁷	2017		and John Thain Center for		structural anomalies, includi	exposure to a known teratogenic	fetuses and		
			Prenatal Pediatrics		nuchal translucency of more th	n drug, families with a known	parents (parent-		
					3.5 mm, were included."	diagnosis of a genetic disorder,	fetus		
						and cases in which a parental	trios)+Illumina		
						DNA sample was not available	HiSeq 2500		
						were excluded. Fetuses with	platform		
						ultrasound soft markers that were			
						suggestive of Down syndrome but			
						that showed no other anomalies,			
						those with an isolated nuchal			
						translucency of less than 3.5 mm,			
						and those with abnormal			
						karyotype or CMA results that			
						were considered causative of the			
						anomaly were also excluded.			
Heide	2018-	Franc	Multiple fetal centers	Prospective	Pregnant women with fetal isolat	d Not reported	Trio ES on a	65	65
2020 ²⁹	2020	е			or nonisolated abnormal corp	IS	NextSeq 500		
					callosum who opted for invasi	e	Sequencing		
					testing (amniocentesis) a	ıd	System (Illumina,		
					consented for participation in t	e	San Diego, CA),		
					study were included.		with a 2 × 150 bp		
							high output		
							sequencing kit		
							after a 12-plex		
							enrichment with		
							SeqCap EZ		
							MedExome kit		

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

							(Roche, Basel,		
							Switzerland)		
Lefebvre	2015-	Franc	Santé, INSERM Université	Retrospective	The fetuses had to present at least	Not reported	Trio ES, Libraries	95	8
2020 ⁴⁰	2019	е	de Bourgogne		two independent congenital		of genomic DNA		
					malformations and normal standard		samples were		
					chromosomal analysis and array-		prepared using the		
					comparative genomic		Agilent Sureselect		
					hybridization(CGH) results. Fetal		Human All Exon		
					examinations and investigations		v5 kit (Agilent		
					should not have identified an		Technologies,		
					etiological clinical diagnosis.		Santa Clara, CA),		
							and were		
							sequenced on a		
							HiSeq instrument		
							(Illumina, San		
							Diego, CA) for		
							paired-end 76-bp		
							reads.		
Tan	2017-	China	Department of Fetal	Retrospective	Fetuses with CNS abnormalities at	Not reported	Trio ES, "NextSeq	11	3
2020 ⁴¹	2018		Medicine and Prenatal		the routine prenatal ultrasound scan		platform (Illumina)		
			Diagnosis of the Third		were enrolled, including widen		and paired-end		
			Affiliated Hospital of		ventriculomegaly, agenesis of		reads generated		
			Guangzhou Medical		corpus callosum, and meningocele."		were aligned to the		
			University		"All cases had a negative result of		human genome		
					karyotyping and chromosomal		(hg19). Variants		
					microarray analysis.		were called and		
							annotated using		
							the Biomedical		
	1	1	1	1		1			1

14690705, ja, D

ś

Of London, Wiley Online Librar

on [11/09/2023]. See

							Genomics		
							Workbench (CLC		
							bio-Qiagen,		
							Aarhus,		
							Denmark).		
De	2017-	Nether	Leiden University Medical	Retrospective	Parents of fetuses with CNS	Not reported	WES, trio, 1128	19	12
Koning	2020	lands	Centre		malformations, either isolated or in		genes, 80×		
2021 ⁴²					combination with other structural		coverage, Agilent		
					anomalies as detected by prenatal		capture + NextSeq		
					US		500		
She	2015-	China	Prenatal Diagnosis Center of	Retrospective	Prenatally detected corpus	Not reported	Trio ES, the	19	5
2021 ¹³	2020		the Six Affiliated Hospital,		callosum abnormality on imaging		libraries were		
			Guangzhou Medical				tested with qPCR		
			University				for enrichment,		
							and size		
							distribution and		
							concentration		
							were determined		
							using an Agilent		
							Bioanalyzer 2100		
							(Agilent		
							Technologies).		
							The libraries were		
							subjected to		
							paired-end		
							sequencing on a		
							HiSeq2500		
							sequencer		
		1							

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

							according to the		
							manufacturer's		
							protocol (version		
							3, Illumina).		
Lei	2015-	China	The six affiliated hospital,	Prospective	Fetuses with callosal anomalies	Fetuses with abnormal	Trio ES, Agilent	50	50
2022 ⁴³	2019		Guangzhou medical center		with or without other structural	karyotyping or CMA results were	capture + Illumina		
					anomalies, but normal findings by	excluded."	HiSeq 6000		
					karyotyping and chromosomal				
					microarray analysis (CMA).				
Yaron	2014-	Israel	Sourasky medical center,	Retrospective	All cases referred to our institution	Mild isolated findings, such as mild	Trio ES, NovaSeq	86	34
202244	2021		prenatal genetic diagnosis		for genetic evaluation following	ventriculomegaly, were not	6000 sequencer		
			unit. Genetics Institute		termination of pregnancy due to a	included in this study.	AQ19 (Illumina.		
					maior fetal CNS anomaly		San Diego, CA,		
							USA) with 100-bp		
							paired and reads		
		<u> </u>					paired-end reads.		
Character	ristics of a	studies w	ith less than 3 ACC case num	bers					
Carss	NR	UK	The Fetal Medicine Centre	Retrospective	Women who had a fetus with a	Not Reported	Trio ES, 103×	28	2
2014 ⁴⁵			Birmingham Women's		structural anomaly suspected at		coverage, Agilent		
			Foundation Trust, UK		their routine ultrasound scan at 11-		capture + Illumina		
					14 weeks or 18 – 20 weeks		HiSeq		
					gestation.				
Shamsel	NR	Saudi	Department of Genetics,	Prospective	Pregnancies diagnosed with	Not reported	For exome	44	2
din		Arabia	King Faisal Specialist		unexplained intrauterine fetal		analysis, samples		
2017 ⁴⁶			Hospital and Research		demise or terminated due to major		were prepared		
	•	1							
			Center		unexplained fetal malformations		according to the		
			Center		unexplained fetal malformations		according to the preparation guide		
			Center		unexplained fetal malformations		according to the preparation guide of Agilent		
			Center		unexplained fetal malformations		according to the preparation guide of Agilent SureSelect Target		

14690705, ja, Do

27440 by St Ge

Of Lon

. Wiley Online Library

on [11/09/2023]. See

the

		r			1	1			
							Enrichment Kit		
							(Santa Clara, CA,		
							USA) and the		
							resulting libraries		
							were sequenced		
							using the Illumina		
							HiSeq2000		
							sequencer (Santa		
							Clara, CA, USA)."		
							Sanger		
							sequencing for		
							confirmation		
Aarabi	NR	USA	Medical Genetics and	Retrospective	Prenatal cases with congenital	Not reported	Trio ES, 20,000	20	1
2018 ⁴⁷			Genomics Laboratories,		anomalies detected by		gene panel, 60 –		
			Magee-Womens Hospital of		ultrasoundat least one major		140 × coverage		
			UPMC, Pittsburgh, PA		structural birth defect" "All				
					participants had normal fetal				
					karyotype and microarray studies				
					prior to enrollment.				
Reches	2014-	Israel	The Obstetrics and	Retrospective	Cases with prenatally diagnosed	Not reported	Trio ES,	7	2
2018 ⁴⁸	2017		Gynecology Ultrasound		CNS abnormality, whose		approximately 37		
			Division at the Lis Maternity		chromosomal microarray analysis		Mb (214,405		
			Hospital		was negative		exons) of the		
							Consensus		
							Coding		
							Sequences (CCS)		
							were enriched		
							from fragmented		
Í							-		

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

							genomic DNA by		
							>340.000 probes		
							designed against		
							the human		
							denome (Nextera		
							Banid Contura		
							Exome, mumma)		
							library sequenced		
							on an Illumina		
							NextSeq or HiSeq		
							4000 platform		
							(Illumina) to an		
							average coverage		
							depth ×100–130.		
Jiang	2019	China	Department of Obstetrics,	Retrospective	Not reported	Not reported	Trio ES; Target	Jiang	2019
•	_0.0		•	readopedave			_	-	
2019 ⁴⁹			Women's Hospital, School of	Reliospedive			enrichment of	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang	The appendix of			enrichment of target region	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University	Theirospective			enrichment of target region sequences by	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect Human Exon	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect Human Exon Sequence	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect Human Exon Sequence Capture Kit,	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect Human Exon Sequence Capture Kit, Illumina DNA	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect Human Exon Sequence Capture Kit, Illumina DNA Standards and	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect Human Exon Sequence Capture Kit, Illumina DNA Standards and Primer Premix Kit	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect Human Exon Sequence Capture Kit, Illumina DNA Standards and Primer Premix Kit (Kapa	2019	
2019 ⁴⁹			Women's Hospital, School of Medicine, Zhejiang University				enrichment of target region sequences by Agilent SureSelect Human Exon Sequence Capture Kit, Illumina DNA Standards and Primer Premix Kit (Kapa Biosystems,	2019	

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

							Boston, MA,		
							USA), Illumina		
							HiSeq 2500		
							platform (Illumina,		
							San Diego, CA,		
							USA)		
Meier	NR	Switze	Medical Genetics, Institute of	Prospective	Families were included in the study	Not reported	Trio ES, Library	12	2
2019 ⁵⁰		rland	Medical Genetics and		if (i) the fetus showed a pattern of		preparation		
			Pathology, University		two or more anomalies associated		(Agilent		
			Hospital Basel		with a high risk for fetal or perinatal		SureSelectXT		
					lethality that suggested a genetic		Library Prep Kit)		
					disorder or (ii) there was familial		and exome		
					recurrence of the fetal anomaly		capture using the		
					phenotype and if (iii) there were		Agilent		
					detailed clinical fetal ultrasound		SureSelectXT		
					and/or autopsy data available and		Human All Exon		
					(iv) high-resolution chromosomal		V6 (Agilent, Santa		
					microarray did not show a causal		Clara, CA) was		
					chromosomal anomaly or copy		followed by		
					number variant.		paired-end read		
							sequencing (2 ×		
							100 bp read		
							length) on a HiSeq		
							2500 or HiSeq		
							4000 platform		
							(Illumina, San		
							Diego, CA) with an		

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

Image: Constant Image: Constant Nether University Medical Centre Prospective (a) Two or more independent major Excluded fetuses diagnosed Trio ES, Fetal and 55 1 Janssen 2019 lands Groningen Fetal anomalies, (b) Hydrops fetalis prenatally of having an anomaly parental DNA Image: Constant Properties more prepared for Image: Constant Properties More Properties More Properies More Properies<
Corsten- 2018- Nether University Medical Centre Prospective (a) Two or more independent major Excluded fetuses diagnosed Trio ES, Fetal and 55 1 Janssen 2019 lands Groningen fetal anomalies, (b) Hydrops fetalis prenatally of having an anomaly parental DNA were prepared for 2020 ⁵¹ V A
Janssen 2019 lands Groningen fetal anomalies, (b) Hydrops fetals prenatally of having an anomaly parental DNA 2020 ⁵¹ Image: Second
2020 ⁵¹ 2020 ⁵¹ A P P P P P P P P P P P P P P P P P P
Image: standard Image: standard One major fetal anomaly and a first-defect is known defect is known rES using Image: standard Geree relative with the same SureSelect Human All Exon Image: standard Image: standard V6 (Agilent, USA) V6 (Agilent, USA) Image: standard Image: standard Image: standard Image: standard
Image: Sure Select Sure Select Image: Sure Select Human All Exon Image: Sure Select Human All Exon Image: Sure Select V6 (Agilent, USA) Image: Select Image: Select
Image: Sector
V6 (Agilent, USA) target enrichment, according to standard
target enrichment, according to standard
according to standard
standard
procedures, on
Bravo automated
liquid handling
robots (Agilent),
and then
sequenced on an
Illumina
NextSeq500
sequencer aiming
for 20× coverage
for 95% of the
target genes.
Deden 2016- Nether Radboud University Medical Prospective Fetal structural anomalies Fetal materials derived from a Trio ES, DNA 54 1
2020 ⁵² 2020 lands Center, Radboud Institute for suspicious for genetic cause pregnancy that had ended in fetal library preparation
Health Sciences detected by ultrasound death, or from a termination of was performed
using SureSelect

14690705, ja, D

ś

Of London, Wiley Online Librar

on [11/09/2023]. See

T								pregnancy (TOP) were not	QXT in		
								included in this study.	combination with		
									the Sure Select All		
									Human Exon Kit		
									(v5. Agilent).		
									followed by		
									2x150bp paired-		
									end sequencing		
									on a NextSeq500		
									Sequence		
									to 200x		
									10 300*.		
Qi	2016-	China	Hospital,	Peking	Union	Prospective	(1) Singleton pregnancy and a fetus	(1) Parents that refused to accept	Trio ES, libraries	83	1
2020 ⁵³	2019		Medical Co	ollege &	Chinese		with at least one ultrasonic	the procedure of genetic analysis	of genomic DNA		
			Academy	of	Medical		structural anomaly; (2) fetal sample	simultaneously; and (2) abnormal	samples were		
			Sciences				was obtained through an invasive	karyotype results.	prepared using the		
							procedure, including chorionic villus		Agilent Sureselect		
							sampling (CVS), amniocentesis or		Human All Exon		
							cordocentesis; (3) prenatal genetic		v5 kit (Agilent		
							diagnosis including karyotyping,		Technologies,		
							CMA and trio-based CES was		Santa Clara, CA,		
							performed in parallel; (4) all of the		USA), and were		
							above-mentioned testing were		sequenced on a		
							performed on each prenatal sample		HiSeq instrument		
							successfully; and (5) karyotyping		(Illumina, San		
						1					
							results were normal.		Diego, CA, USA.		

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

							coverage depth		
							was about 80–		
							100×.		
Rinaldi	2016-	Belgiu	University Hospitals Leuven	Retrospective	Fetal malformation or a severe	Not reported	Trio ES. "Library	29	1
202054	2018	m			condition on US (e.g., growth		preparation was		
					restriction, absence of spontaneous		performed using		
					movements), negative 1st-tier		TruSeq DNA		
					genetic testing during the		Sample		
					pregnancy, couples planning a new		Preparation Kit		
					pregnancy.		(Illumina, CA,		
							USA) whereas for		
							library		
							amplification and		
							paired-end		
							sequencing we		
							used a Hiseq2500		
							(Illumina, CA,		
							USA)."		
Не	2017-	China	The First Affiliated Hospital	Prospective	Singleton pregnancies: "Fetuses	Cases with anomalies in the first	Trio and proband	94	2
202155	2019		of Sun Yat-sen University		with structural anomalies detected	trimester and fetuses with	ES. "The DNA		
					by prenatal ultrasound	aneuploidies or CNVs were	libraries, after		
						excluded. Fetuses with a known	enrichment and		
						family history of genetic mutation	purification, were		
						or a known infection or exposure	sequenced on a		
						to a known teratogenic drug were	NovaSeq 6000		
						excluded.	sequencer		
							according to the		
							manufacturer's		

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

							instructions		
							(Illumina, San		
							Diego, CA, United		
							States)		
Lei	2017-	China	Chong Qing Health Center	Retrospective	Fetuses with ultrasound scanning	Fetuses with skeletal anomalies	Trio ES, Sample	85	2
2021 ⁵⁶	2019		for Women and Children		anomalies		dilution and flow-		
							cell loading		
							sequencing were		
							performed		
							according to		
							Illumina		
							specifications.		
							DNA libraries were		
							sequenced on the		
							Novaseq (Illumina,		
							San Diego, CA,		
							USA) with 150-bp		
							paired ends.		
Tolusso	2015-	USA	Cincinnati Children's	Retrospective	Patients evaluated in our fetal care	Patients pregnant at the time of	Not reported	20	1
2021 ³²	2019		Hospital Medical Center		center who had ES ordered during	chart review			
					pregnancy or after a fetal demise or				
					termination of pregnancy" "fetus had				
					congenital anomalies thought to be				
					caused by an underlying genetic				
					disorder but for which multigene				
					panels were not felt to be suitable				
1									

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

Abbreviations: ACC, agenesis of corpus callosum; CES, clinical exome sequencing; CNS, central nervous system; CNV, copy number variation; CMA, chromosomal microarray analysis; DNA, deoxyribonucleic acid; ES, exome sequencing; EUE, expert ultrasound examination; NR, not reported; rES, rapid exome sequencing; SNP, single nucleotide polymorphisms; US, ultrasound; WES, whole exome sequencing.

 Table 2. Phenotype associations by gene

Gene	Paper	Variant	Isolated ACC, ACC with other cranial anomalies, ACC with extracranial anomalies, or Non- specified	Phenotype /Syndrome
	Lei 2021	c.1169G>C chr12-49578980 p.R390P	ACC with extracranial anomalies	Lissencephaly type 3
	Heide 2020	c.832G>C, p.(Ala278Pro)	ACC with extracranial anomalies	Lissencephaly type 3
TUBA1A	Deden 2020	c.1285G>A; p.(Glu429Lys)	ACC with other cranial anomalies	Lissencephaly type 3
	Yaron 2022	c.878A>G (p.Asn293Ser)	ACC with other cranial anomalies	Tubilinopathy
		c.1105G>A (p.Ala369Thr)	ACC with other cranial anomalies	Tubilinopathy
	Boissel 2017	c.55G>A (p.A19T)	ACC with other cranial anomalies	Severe microlissencephaly with absence of commissures, basal ganglia and thalami

on [11/09/2023

	Potrovski 2010	Netavailable	ACC with other cranial	Agenesis of corpus callosum, severe	
	Pellovski 2019		anomanes	brainstem, absent cerebellum	
	Yaron 2022	c.3581C>T (p.Ser1194Leu)	ACC with extracranial anomalies	L1 Syndrome	
	Petrovski 2019	c.1417C>T p.(Arg473Cys)	Isolated ACC	L1 Syndrome	
	Lei 2022	c.2254G>A p.(Val752Met)	Isolated ACC	X-linked Hydrocephaly	
L1CAM		c.176C>T p. (Ala59Val) Isolated ACC		X-linked Hydrocephaly	
L1CAM	Tan 2020	c.1322delG p.G441Afs*72	ACC with other cranial anomalies ACC with other cranial	Agenesis of corpus callosum, bilateral hydrocephalus, and third ventricular dilatation MASA Syndrome	
		c.551G > A p.R184Q	anomalies		
	He 2021	c.755C>G, p.Ser252Trp	ACC with extracranial anomalies	Apert Syndrome	
FGFR2		c.755C>G, p.Ser252Trp	ACC with extracranial anomalies	Apert Syndrome	
	Lei 2022	c.755C>G p. (Ser252Trp)	ACC with extracranial anomalies	Apert Syndrome	

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

			ACC with extraorenial	Aport Sundromo
		c.755C>G p. (Ser252Trp)	anomalies	Apert Syndrome
	Meier 2019	c.[755C>G], p.(s252W)	ACC with extracranial anomalies	Apert Syndrome
	Heide 2020	c.4129C>T, p.(Arg1377*)	Isolated ACC	Coffin-Siris Syndrome
	She 2021	c.1601_1605delACCCT (p.N534TfsX117)	Isolated ACC	Coffin-Siris Syndrome
ARID1B	Yaron 2022	c.1636_1637 ACC with extrac anomalies		Coffin-Siris Syndrome
	Lei 2022	c.316_317insTGTA p.(Gln107TyrfsTer126)	Isolated ACC	Coffin-Siris Syndrome
	Lei 2022	c.994C>G p. (Arg332Gly)	ACC with other cranial anomalies	Proud Syndrome, Hydranencephaly with abnormal genitalia, Lissencephaly, X-linked 2
ARX	Reches 2018	c.994C>T; p.Arg332Cys	ACC with other cranial anomalies	Agenesis of corpus callosum, heterotopia and an interhemispheric cyst
	Lefebvre 2020	c.1374_1383del p.(Pro459*)	ACC with extracranial anomalies	Hydranencephaly with abnormal genitalia, Lissencephaly, X-linked 2
COL4A1	Yaron 2022	c.1186C>T (p.Arg396*)	ACC with other cranial anomalies	COL4A1-related

14690705, ja, Downloaded from https://obgy

onlinelibrary.wiky.com/doi/10.1002/uog.27440 by St George'S University Of London, Wiley Online Library on [11/09/2023]. See the Terms

and Conditions (https:

//onlinelibrary.wiley

Ĩ.

ns) on Wiley Online Library for rules of use; OA articles are

governed by the applicable Creative Com

ns License

		c.2086G>A (p.Gly696Ser)	ACC with other cranial anomalies	COL4A1-related
		c.388-1G>C	ACC with other cranial anomalies	Brain small vessel disease 1 with or without ocular anomalies
	De Koning 2021	c.5631del: p. (Ser1879Alafs*12)	ACC with extracranial anomalies	Vici Syndrome
EPG5	Aggarwal 2019	c.4665del; p.Glu1555Asp fs*12	Isolated ACC	Vici Syndrome
	Qi 2020	c.2461C>T(p.R821*);Het, c.88C>T(p.Q30*); Het	Isolated ACC	Vici Syndrome
PEX1	Boissel 2017	c.3205C>T;p.(Gln1069*) c.2097dup; p.(Ile700Tyrfs*42)	ACC with other cranial anomalies	Thin corpus callosum, microcephaly, ventriculomegaly, polymicrogyria and heterotopia in both cerebral and cerebellar hemispheres
	Normand 2018	c.2097dupT;(p.I700fs) c.3205C>T;(p.Q1069X)	Non-specified	Non-specified
	Aggrawal 2019	c.1670+1G>A	ACC with extracranial anomalies	Zellweger Syndrome

14690705, ja, Downloaded from https://obgy

onlinelibrary.wiky.com/doi/10.1002/uog.27440 by St George'S University Of London, Wiley Online Library on [11/09/2023]. See the Terms

and Conditions (https://onlinelibrary.wiley

iditions) on Wiley Online Library for rules of use; OA articles are

governed by the applicable Creative Com

ts License

	Yaron 2022	c.947T>C (p.Val316Ala)	ACC with other cranial anomalies	Tubulinopathy	
TUBB	Boissel 2017 c.920C>T (p.P307L)		ACC with other cranial anomalies	Microlissencephaly, agenesis of the corpus callosum, dysmorphic basal ganglia, cerebellar hypoplasia, and circumferential skin creases. Glomerular structures and a voluminous germinal area in cortex.	
	Lord 2019	c.860C>T, p.(Pro287Leu)	ACC with other cranial anomalies	Dysgenesis of the corpus callosum and lissencephaly	
	De Wit 2017	c.2403C>G (p.(Tyr801*)	ACC with extracranial anomalies	Mowat Wilson Syndrome	
ZEB2	Heide 2020	2q22.2q22.3	ACC with extracranial anomalies	Mowat Wilson Syndrome	
	De Koning 2021	c.786dup: p. (His263Thrfs*17)	Isolated ACC	Mowat Wilson Syndrome	

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

Gene	Number of Cases	Phenotype/Syndrome
ARID1B	3	Coffin-Siris Syndrome
L1CAM	3	L1 Syndrome, X-linked Hydrocephaly
EPG5	2	Vici Syndrome
NFIA	2	Brain Malformations with or without urinary defects
ALDH7A1	1	Non-specified (She)
AP4M1	1	Spastic Paraplegia 50, autosomal recessive
EXOSC3	1	Pontocerebellar hypoplasia, type 1B
KANSL1	1	Koolen de Vries syndrome
KCNQ2	1	Non-specified (Petrovski)
PPP2R1A	1	Mental Retardation, Autosomal Dominant 36
PTCH1	1	Non-specified (Petrovski)
PTDSS1	1	Lenz-Majewski Hyperostotic Dwarfism
PTPN11	1	Noonan syndrome
SCN2A	1	Seizures, benign familial infantile 3, developmental and epileptic encephalopathy 11
SHH	1	Non-specified (Petrovski)
SON	1	ZTTK Syndrome
TUBB2B	1	Cortical Dysplasia, complex, with other brain malformations 7

ZBTB20	1	Primrose Syndrome
ZEB2	1	Mowat–Wilson syndrome
Genes are arrange	ed by the number of case	es and then alphabetically

on [11/09/2023]

Gene	Number of Cases	Phenotype/Syndrome
TUBA1A	6	Lissencephaly Type 3, Tubulinopathy,
COL4A1	3	COL4A1-related (2), Brain small vessel disease 1
TUBB	3	Tubulinopathy, lissencephaly
ARX	2	Proud Syndrome, Hydranencephaly with abnormal genitalia, Lissencephaly, X-linked 2
L1CAM	2	MASA syndrome, hydrocephalus due to aqueductal stenosis
OFD1	2	X-linked Dominant Orofacial Digital Syndrome Type 1, orofaciodigital syndrome 2
ADCY5	1	Dyskinesia with orofacial involvement, autosomal dominant
ASPM	1	Microcephaly 5
ATRX	1	Alpha-thalassemia/mental retardation syndrome
BRPF1, RTTN	1 case with 2 mutations	Intellectual Developmental Disorder with dysmorphic facies and ptosis; microcephaly, short stature and polymicrogyria with seizures
CLTC	1	Mental retardation, AD 56
COL4A2	1	Brain small vessel disease 2
EBP	1	MEND syndrome
EFNB1	1	Complete Agenesis of Corpus Callosum
FOXG1	1	Non-specified (Yaron)
GFAP	1	Alexander Disease

GPSM2(CHET)	1	Non-specified (Petrovski)
GRIN2B	1	Non-specified (Tan)
KIAA0586	1	Joubert Syndrome type 23
LAMA1	1	Poretti–Boltshauser syndrome
MED12	1	Complete Agenesis of Corpus Callosum
NBN	1	Nijmegen Breakage syndrome
PDHA1	1	Non-specified (Boissel)
PEX1	1	Non-specified (Boissel)
POMGNT2	1	Muscle-eye-brain (yaron)
POMT1	1	Walker Warburg syndrome
RAC1	1	Dandy-Walker malformation, Intrauterine growth restriction
TMEM67	1	Joubert type 6/ Meckel type 3
TUBB3	1	Non-specified (Boissel)
Genes are arrang	ed by the number of cases	and then alphabetically

469070

.27440 by St G

y Of Lon

, Wiley Online Library on [11/09/2023]. See

 Table 3c.
 Phenotypic Expression of Genetic Variants in cases of ACC with extracranial anomalies

Gene	Number of Cases	Phenotype/Syndrome
FGFR2	5	Apert Syndrome
ZEB2	2	Mowat Wilson Syndrome
ACTG1	1	Baraitser-Winter Syndrome
ACVR1	1	Firbodysplasia Ossificans Progressiva
AHI1	1	Joubert syndrome-3
ALDH18A1	1	Cutis laxa, autosomal recessive, type IIIA
AMPD2	1	Pontocerebellar Hypoplasia Type 9
ARID1A	1	Coffin-Siris Syndrome 2
ARID1B	1	Coffin-Siris Syndrome
ARX	1	Hydranencephaly with abnormal genitalia, Lissencephaly, X-linked 2
ASXL3	1	Bainbridge-Ropers Syndrome
B3GLCT	1	Peters-plus syndrome
BRAT1	1	Rigidity and Multifocal Seizure Syndrome
CPT2	1	CPT II Deficiency
Dcorpus	1	Mirror movements 1
callosum		
EPG5	1	Vici Syndrome

on [11/09/2023

ERcorpus	1	cerebro-oculo-facio-skeletal syndrome 2 (COFS2)
callosum2		
GLI3, EPHB4	1 case with 2 mutations	Greig cephalopolysyndactyly syndrome, Capillary Malformation - Arteriovenous Malformation Type 2
KANSL1	1	Koolen de Vries syndrome
KIF1A	1	Mental retardation, autosomal dominant 9
KIF14	1	Non-specified (Meier)
L1CAM	1	L1 Syndrome
MED12	1	Opitz-Kaveggia Syndrome, Ohdo syndrome
MRPS16	1	Non-specified (Shamseldin)
MYBPC3	1	Hypertrophic Cardiomyopathy
MYCN	1	Non-specified (Lord)
NOTCH3	1	Lateral Meningocele syndrome
PEX1	1	Zellweger Syndrome
RXYLT1	1	Congenital Muscular Dystrophy-dystroglycanopathy with brain and eye anomalies type A10
SHROOM4	1	Stocco Dos Santos X-linked Mental Retardation Syndrome
SMC3	1	Cornelia de Lange Syndrome
SMARCE1	1	Coffin-Siris Syndrome 5
STAG2	1	X-linked neurodevelopmental disorder with craniofacial abnormalities (NEDXCF)
TAPT1	1	Osteochondrodysplasia
TCF12	1	Craniosynostosis 3

from https://obg

10.1002/uog.27440 by St George'S Univ

nsity Of London, Wiley Online Library on [11/09/2023]. See the Tern

ŝ

on Wiley Online Library for rules of use; OA articles

TCF4	1	Pitt-Hopkins Syndrome
TCTN2	1	Meckel–Gruber type 8 syndrome
TUBA1A	1	Lissencephaly Type 3
TUBB3	1	Non-specified (Reches)
Genes are arrar	nged by the number of cas	es and then alphabetically

 Table 4: Aggregate types of prenatal ACC and incremental increase in diagnostic yield with exome sequencing

Variable	Studies	ES Positive	Total ES (n)	Pooled Proportion %	l ² (%)	
	(n)	(n)		(95% CI)		
Total ACC	15	100	267	43 (31, 56)	64	
Isolated ACC*	9	24	102	32 (18, 51)	37	
ACC with other cranial anomalies	10	36	88	43 (30, 57)	29	
ACC with extracranial anomalies	12	35	66	55 (35, 73)	41	
ES, exome sequencing; CMA, chromosom	al microarr	ay analysis; C	I, confidence i	nterval; ACC, agenesis o	f corpus	
callosum; * ACC is the only brain finding						

no;	yes; yes a	ind no)													
Intro	Aim of article explained															
	Specific CNS phenotype study															
	Source of patients described															
	Number of patients ≥3															
	Eligibility criteria described															
Mathada	Description of NGS approach															
Methods	ACMG classification used															
	Trio analysis															
-	Sanger validation															
	Description of test protocol															
	Clinical patient background described															
	CNS phenotype described															
Results	VUS reported															
	Incidental findings reported															
	Evaluation of sensitivity															
Disaussic	Study limitations described															
Discussion	Study implications described															

ACMG, American College of Medical Genetics and Genomics; CNS, Central nervous system; NGS, next-generation sequencing; VUS, variants of uncertain significance.

Fig 2_STARD.jpg