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Background.  We evaluated the pharmacokinetics of tenofovir alafenamide fumarate (TAF) and tenofovir in a subset of African 
children enrolled in the CHAPAS-4 trial. 

Methods. Children aged 3–15 years with human immunodeficiency virus infection failing first-line antiretroviral therapy were 
randomized to emtricitabine/TAF versus standard-of-care nucleoside reverse transcriptase inhibitor combination, plus 
dolutegravir, atazanavir/ritonavir, darunavir/ritonavir, or lopinavir/ritonavir. Daily emtricitabine/TAF was dosed according to 
World Health Organization (WHO)–recommended weight bands: 120/15 mg in children weighing 14 to <25 kg and 200/25 mg 
in those weighing ≥25 kg. At steady state, 8–9 blood samples were taken to construct pharmacokinetic curves. Geometric mean 
(GM) area under the concentration–time curve (AUC) and the maximum concentration (Cmax) were calculated for TAF and 
tenofovir and compared to reference exposures in adults. 

Results. Pharmacokinetic results from 104 children taking TAF were analyzed. GM (coefficient of variation [CV%]) TAF 
AUClast when combined with dolutegravir (n = 18), darunavir/ritonavir (n = 34), or lopinavir/ritonavir (n = 20) were 284.5 (79), 
232.0 (61), and 210.2 (98) ng*hour/mL, respectively, and were comparable to adult reference values. When combined with 
atazanavir/ritonavir (n = 32), TAF AUClast increased to 511.4 (68) ng*hour/mL. For each combination, tenofovir GM (CV%) 
AUCtau and Cmax remained below reference values in adults taking 25 mg TAF with a boosted protease inhibitors. 

Conclusions. In children, TAF combined with boosted PIs or dolutegravir and dosed according to WHO-recommended weight 
bands provides TAF and tenofovir concentrations previously demonstrated to be well tolerated and effective in adults. These data 
provide the first evidence for use of these combinations in African children. 
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Combination antiretroviral therapy (ART) has transformed 
human immunodeficiency virus (HIV) infection in children 
from a disease with high morbidity and mortality to a chronic 

disease. ART including 2 nucleoside/nucleotide reverse 
trabscriptase inhibitors (NRTI-backbone) and an anchor 
drug (also referred to as third drug or agent) from a different 
class is still currently recommended for first- and second-line 
treatment in most settings. For children, current World 
Health Organization (WHO) standard-of-care second-line 
ART options include a backbone of abacavir or zidovudine 
with lamivudine combined with dolutegravir (DTG), lopina-
vir/ritonavir (LPV/r), atazanavir/ritonavir (ATV/r), or daruna-
vir/ritonavir (DRV/r) [1]. In adults, the NRTIs emtricitabine 
(FTC) and tenofovir disoproxil fumarate (TDF) are included 
as a preferred backbone for second-line ART due to high effi-
cacy in the context of first-line failure, with or without NRTI 
resistance [2]. However, TDF is generally not recommended 
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in young children due to potential bone and renal toxicity in 
growing children. The tenofovir prodrug, tenofovir alafena-
mide fumarate (TAF), achieves 7-fold higher intracellular con-
centrations of the active metabolite tenofovir diphosphate 
(TFV-DP) while maintaining lower levels of circulating TFV 
even with TAF doses about 1/10th of the TDF dose (300 mg 
for TDF and 25 mg for TAF in adults) [3]. The low dose re-
quired for TAF treatment also has the potential to lower the 
price of ART and allows for a smaller tablet, which is easier 
for children to take. 

In adults, a 10-mg TAF dose combined with the pharmaco-
kinetic booster ritonavir or cobicistat achieves similar exposure 
compared to 25 mg TAF without a booster [4]. However, 25 mg 
TAF combined with a boosted protease inhibitor (PI) did not 
lead to an increase in adverse events [4]. The European 
Medicines Agency (EMA) and the US Food and Drug 
Administration (FDA) differ in their dosing recommendations 
for TAF. The FDA recommends a dose of 25 mg TAF when 
combined with a boosted antiretroviral regimen while EMA 
recommends lowering the dose to 10 mg. In the fixed-dose 
combinations (FDCs) elvitegravir/cobicistat/FTC/TAF and 
DRV/cobicistat/FTC/TAF, the TAF dose is 10 mg in both the 
FDA and EMA recommendations [4, 5]. 

Previous studies on TAF-containing FDCs in children >2 years 
have reported good viral efficacy with dosing related to both 
weight and coadministration with ritonavir or cobicistat [6–9]. 
However, the current guidance on TAF dosing in children mainly 
relates to the use of FDCs that are not expected to be available in 
sub-Saharan Africa, a high-HIV-prevalence setting with an urgent 
need for better, simplified options. With these FDCs, children 
weighing ≥25 kg receive adult doses: 25 mg and 10 mg TAF in 
regimens without or with a boosted PI, respectively; for children 
weighing 14 to <25 kg, 15 mg TAF for an unboosted regimen 
and 6 mg TAF for a boosted regimen are used. 

There are currently no data to support the use of 120/15 mg 
FTC/TAF and 200/25 mg FTC/TAF formulations in children, 
in combination with boosted PIs or in combination with the 
preferred anchor drug DTG. 

Here we describe the results of a substudy nested within the 
CHAPAS-4 (Children with HIV in Africa – Pharmacokinetics 
and Acceptability of Simple second-line antiretroviral 
regimens) second-line ART clinical trial, investigating the 

pharmacokinetics of TAF and TFV when combined with a 
boosted PI or DTG in children weighing >14 kg. 

METHODS 

Study Design and Participants 

CHAPAS-4 (ISRCTN22964075) is an open-label, multicenter, 
4 × 2 factorial randomized trial evaluating efficacy and safety 
of 4 anchor drugs combined with 2 backbone regimens to op-
timize the second-line treatment of HIV in children aged 3–15 
years failing first-line treatment and to better harmonize with 
adult ART. In this article, we report the pharmacokinetic pa-
rameters of TAF and TFV gained from intensive pharmacoki-
netic substudies nested within the CHAPAS-4 trial. We 
enrolled children weighing ≥14 kg randomized to FTC/TAF 
backbone, from 4 sites in Uganda, Zambia, and Zimbabwe. 
Local ethics committees approved the main trial and pharma-
cokinetic substudies. 

Children were enrolled if their parents/caretakers provided 
written consent to participate in the CHAPAS-4 trial and the 
pharmacokinetic substudy; verbal consent was reconfirmed 
before initiating the pharmacokinetic sampling. Older chil-
dren provided written assent, as per local country guidelines. 
The consent and assent documents were translated into local 
languages. Children weighing 14 to <25 kg received 120/ 
15 mg FTC/TAF; those weighing ≥25 kg received 200/ 
25 mg, both as FDC tablets. FTC/TAF was used in combina-
tion with 1 of 4 randomized anchor drugs (ie, DTG, ATV/r, 
DRV/r, or LPV/r) dosed in weight bands (see Table 1 for 
drug doses) [1]. We aimed to enroll a minimum of 28 chil-
dren taking TAF with ATV/r, 18 children taking TAF with 
DRV/r, and 16 children taking TAF with DTG or LPV/r; 
more children on ATV/r and DRV/r were included because 
of the expected extent of the drug interaction with ATV/r 
and DRV/r. 

Procedures 

Children with illnesses that could affect pharmacokinetic re-
sults, including severe diarrhea, vomiting, renal or liver diseas-
es, and severe malnutrition, and those on concomitant 
medication known to cause drug–drug interactions with the 
drugs in the treatment regimen were not eligible. Children 

Table 1. Daily Dose of Anchor Drugs taken by CHAPAS-4 participants in World Health Organization–Recommended Weight Bands 

Weight Band DTG ATV/r DRV/r LPV/r  

14–19.9 kg 25 mg QD as 5 × 5-mg dispersible tablets 200/75 mg QD (RTV as 3 × 25-mg tablet) 600/100 mg QD 400/100 mg in 2 doses 

20–24.9 kg 50 mg QD as film-coated tablet 200/75 mg QD (RTV as 3 × 25-mg tablet) 600/100 mg QD 400/100 mg in 2 doses 

25–34.9 kg 50 mg QD as film-coated tablet 300/100 mg QD 800/100 mg QD 600/150 mg in 2 doses 400/100 mg  
AM and 200/50 mg PM 

≥35 kg 50 mg QD as film-coated tablet 300/100 mg QD 800/100 mg QD 800/200 mg in 2 doses 

Abbreviations: ATV/r, atazanavir/ritonavir; DRV/r, darunavir/ritonavir; DTG, dolutegravir; LPV/r, lopinavir/ritonavir; QD, once daily; RTV, ritonavir.   
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were on at least 6 weeks of trial treatment to achieve steady-state 
plasma concentrations before the 24-hour pharmacokinetic pro-
files were taken. We took blood samples predose and at 0.5, 1, 
2, 4, 6, 8, 12, and 24 hours after observed intake of trial medication 
with a 250-kcal breakfast. The 0.5-hour sample was added in an 
amendment to the protocol and was therefore not available for 
all children. Blood sample volumes were within blood draw limits 
for children established for research studies [10]. Intake of co- 
medications other than antiretroviral drugs was not allowed with-
in the first 2 hours after intake of trial medication. 

Blood samples were refrigerated within 10 minutes and cen-
trifuged within 1 hour after collection. Plasma was separated 
and stored at −80°C until shipping to the central laboratory site 
for quantification. TAF and TFV plasma concentrations were 
measured at the Division of Clinical Pharmacology, University 
of Cape Town, South Africa. TAF and TFV were measured simul-
taneously using a validated and highly sensitive liquid chromatog-
raphy–tandem mass spectrometry bioanalytical quantification 
method with a lower limit of quantification of 0.500 ng/mL for 
both TAF and TFV. The concentration of the analyte found de-
vided by the known concentration of the analyte expressed as a 
percentage is the accuracy. The combined accuracy of the limit 
of quantification in low-, medium-, and high-quality controls of 
TAF and TFV was between 93.8% and 105.1%, with precision (co-
efficient of variation [%CV]) <13%. 

Noncompartmental Analysis 

We considered a pharmacokinetic curve nonevaluable if >1 
blood sample was hemolyzed, if protocol deviations had 

occurred that may have affected the pharmacokinetics of the 
study drugs (such as use of an interacting concomitant medica-
tion), or if a participant was nonadherent based on measured 
drug concentrations for both the anchor drug and TFV. The 
criterion for this last exclusion was arbitrarily predefined as 
the concentration 24 hours after trial medication intake 
(Ctrough) being >15 times higher than the baseline concentra-
tion (C0). We used Phoenix 64 software (Pharsight 
Corporation, Mountain View, California) for noncompart-
mental analysis (NCA) to determine pharmacokinetic parame-
ters for TAF and TFV. For TFV we report Ctrough, maximum 
concentration (Cmax), time to maximum plasma concentration 
(Tmax), and area under the concentration–time curve from dose 
to 24 hours after dose (AUCtau). For TFV we report Cmax, Tmax, 
and AUC from dose to the time of the last measurable concen-
tration (AUClast). AUC was calculated by the linear up/log 
down trapezoidal method. All samples below the lower limit 
of quantification (0.500 ng/mL) were omitted. Statistical analy-
sis was performed in R software (version 4.2.2). 

For TAF, we compared our observed geometric mean (GM) 
of AUClast and Cmax to the GM of the same pharmacokinetic 
measures in adults taking 25 mg TAF once daily in a boosted 
or an unboosted regimen [4, 11]. In addition, we report the per-
centage of children with AUClast >55 ng*hour/mL based on 
good virological efficacy in adults with this exposure [4, 12]. 

For TFV, we aimed for the GM AUC0–24 to be similar to the 
AUC0–24 in adults taking 25 mg TAF with an unboosted regi-
men (293 ng*hour/mL), while staying below the AUC observed 
in adults taking 25 mg TAF combined with a boosted regimen 

Figure 1. Participant flowchart of children included in the pharmacokinetic substudy. *Two exclusions from the same participant. Abbreviations: COVID-19, Coronavirus 
Disease 2019; PK, pharmacokinetic; TAF, tenofovir alafenamide fumarate.   
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(937 ng*hour/mL) [4, 11]. In addition, we aimed for individual 
TFV AUC0–24 to stay below mean TFV concentrations seen in 
children taking 8 mg/kg TDF to a maximum of 300 mg 
(2586 ng*hour/mL), mainly in combination with LPV/r [13]. 
This exposure to TFV from taking this TDF dose was associated 
with toxicity in previous pediatric studies [13, 14]. 

RESULTS 

Between January 2019 and March 2021, 115 children from 
Uganda, Zambia, and Zimbabwe randomized to receive a 
TAF regimen were included in the pharmacokinetic substudy 
and contributed 116 pharmacokinetic curves. Of the 116 phar-
macokinetic curves, 104 curves in 104 children were evaluable 
and included in the NCA (Figure 1). Twelve pharmacokinetic 
curves from 11 children were excluded from the NCA due to 
protocol deviations or shipping issues (Figure 1). Twenty-two 
of 104 (21%) children did not have a sample at 0.5 hour after 
dose: 6 on DTG, 6 on ATV/r, 5 on DRV/r, and 5 on LPV/r. 

All pharmacokinetic data of TAF and TFV are reported in  
Table 2. TAF pharmacokinetic results from TAF combined 
with DTG, DRV/r, or LPV/r were similar to adult reference val-
ues (206 ng*hour/mL for adults taking TAF in a regimen with-
out a booster and 222 ng*hour/mL for adults taking 25 mg TAF 
in a regimen with DRV boosted with cobicistat). TAF com-
bined with ATV/r resulted in significantly higher TAF concen-
trations than those seen in the other groups: AUClast = 511 
(68%) ng*hour/mL; P values <.01 (analysis of variance 
[ANOVA] on log-transformed values with Tukey post hoc 
analysis). None of the 104 children eligible for NCA had a 
TAF AUClast <55 ng*hour/mL. 

GM (CV%) TAF Cmax in children taking TAF in combination 
with DTG, DRV/r, and LPV/r was similar to the mean Cmax ob-
served in adults taking a regimen without a booster. For chil-
dren taking TAF in combination with ATV/r, the GM (CV%) 
Cmax is 86% higher than the Cmax in adults taking TAF in com-
bination with DRV and cobicistat. The median Tmax did not 
vary significantly between anchor drug combination, with 
only a slight delay observed in combination with ATV/r. 

Table 2. Demographics of Participants and Pharmacokinetic Parameters of Tenofovir Alafenamide Fumarate and Tenofovir in Combination With 1 of 4 
Anchor Drugs 

Characteristic 

Anchor Drug 

Reference Adults TAF + DTG TAF + ATV/r TAF + DRV/r TAF + LPV/r  

TAF dose <25 kg: 15 mg (n = 9) 
≥25 kg: 25 mg  

(n = 9) 

<25 kg: 15 mg (n = 15) 
≥25 kg: 25 mg  

(n = 17) 

<25 kg: 15 mg (n = 18) 
≥25 kg: 25 mg  

(n = 16) 

<25 kg: 15 mg (n = 8) 
≥25 kg: 25 mg  

(n = 12) 

25 mg TAF  
unboosted/10 mg  

TAF boosted [4, 11] 

25 mg TAF  
DRV/c [4] 

Boosting Unboosted Boosted Boosted Boosted Unboosted/ 
boosted 

Boosted 

No. of participants 18 32 34 20 539 11 

Demographics              

Age, y 10.9 (5.46–14.2) 
[7.64–13.1] 

9.98 (4.79–15.0) 
[6.83–13.2] 

10.9 (3.83–14.7) 
[8.92–12.7] 

11.2 (4.27–14.6) 
[9.38–13.4] 

… …  

Weight, kg 25.9 (15.9–53.0) 
[19.4–35.2] 

25.8 (14.5–50.0) 
[20.4–33.7] 

24.0 (14.5–47.0) 
[21.6–32.7] 

25.5 (14.2–48.5) 
[22.5–41.9] 

… …  

BMI, kg/m2 16.4 (12.2–21.7) 
[14.4–17.4] 

15.9 (12.8–19.8) 
[14.4–16.9] 

14.8 (12.5–19.0) 
[13.9–16.5] 

15.8 (13.0–20.4) 
[14.0–18.2] 

… …  

Male sex, No. (%) 8 (44%) 15 (47%) 16 (47%) 9 (45%) … … 

TAF              

AUClast (ng*h/mL) 285 (79) 538 (54) 232 (61) 212 (98) 206 (72) 222 (NR)  

Cmax (ng/mL) 145 (91) 309 (78) 155 (104) 155 (107) 162 (51) 181 (NR)  

Tmax 1.1 (0.5–4.0) 2.0 (0.5–6.1) 1.0 (0.5–4.1) 1.0 (0.5–2.0) … …  

% with AUC >55 ng*h/mL 100% 100% 100% 100% … … 

TFV              

AUCtau, ng*h/mL 324 (29) 847 (37) 744 (26)a 864 (46) 293 (27) 937 (NR)  

Cmax, ng/mL 19.6 (26) 53.2 (42) 44.5 (26) 50.3 (43) 15.2 (26) 56 (NR)  

Ctrough, ng/mL 11.0 (35) 28.1 (39) 26.1 (28) 31.2 (48) 11 (28.5) 33.2 (NR)  

Tmax, h 2.0 (1.0–4.0) 3.0 (1.0–6.0) 2.0 (1.0–6.1) 2.0 (0.5–6.0) … …  

% with AUC <2586 ng*h/mL 100% 100% 100% 100% … … 

Pharmacokinetic data (except Tmax) are presented as geometric mean with coefficient of variation (CV%); age, weight, BMI, and Tmax are presented as median (range) [interquartile range].  

Abbreviations: ATV/r, atazanavir/ritonavir; AUC, area under the concentration–time curve from 0 to 24 h (AUCtau) or from 0 to the last sample with a measurable concentration (AUClast); BMI, 
body mass index; Cmax, highest concentration of pharmacokinetic curve; Ctrough, concentration 24 hours after dose; DRV/c, darunavir/cobicistat; DRV/r, darunavir/ritonavir; DTG, dolutegravir; 
LPV/r, lopinavir/ritonavir; NR, not reported; TAF, tenofovir alafenamide fumarate; TFV, tenofovir; Tmax, time maximum concentration was reached.  
aBased on 33 participants because the AUCtau of 1 participant could not be accurately calculated.   
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The TFV GM (CV%) AUC0–24 of each treatment group stayed 
between the reference values for adults taking TAF unboosted 
(293 ng*hour/mL) and boosted (937 ng*hour/mL). The boosted 
PI arm had significantly higher mean TFV AUCtau than the 
DTG group (P < .01; ANOVA on log-transformed values with 
Tukey post hoc analysis). However, there were no individuals 
with TFV AUCtau higher than our predefined maximum reference 
value of 2586 ng*hour/mL. Furthermore, TFV GM (CV%) Cmax 

for each of the treatment groups was between values reported in 
adults taking TAF with an unboosted regimen (15.2 ng/mL) 
and adults taking TAF and DRV boosted with cobicistat (56 ng/ 
mL). The median TFV Tmax was around 2 hours after dose for 
each treatment group. 

TFV Ctrough was higher than the reference value 11 ng/mL for 
each group taking TAF with a boosted PI. Children taking TAF 
with DTG achieved TFV Ctrough comparable to reference values. 

Pharmacokinetic parameters of TAF and TFV by anchor 
drug combinations are shown in Table 2. Pharmacokinetic pro-
files of TAF and TFV are shown in Figures 2 and 3. 

DISCUSSION 

A dose of 15 mg TAF in children weighing 14 to <25 kg, and 
25 mg TAF in children weighing ≥25 kg, in combination 
with FTC and 1 of 4 anchor drugs achieved GM AUC compa-
rable to target concentrations of TAF and TFV that are safe and 
effective in adults. No TAF AUClast was observed lower than 
the predefined efficacy threshold, and no TFV AUCtau was ob-
served higher than the predefined maximum toxicity threshold. 
Based on a sufficiently similar course of infection and 
concentration-effect relationship in adults and children, 
achieving similar exposure parameters in children is generally 
regarded as a good indicator of drug safety and efficacy and 
has been used to license drug doses in children [15, 16]. 

We used TAF AUClast as our primary target for efficacy 
based on FDA recommendations on TAF dose in children 
and compared this parameter to adults taking 25 mg TAF in 
both a boosted and an unboosted antiretroviral regimen. The 
use of TAF AUClast was also supported by the high viral efficacy 
that was observed in previous pediatric studies with TAF expo-
sures comparable to adult exposures [6–8, 17]. Moreover, all 
children in our study achieved a TAF AUClast of at least 
55 ng*hour/mL, our minimum exposure target based on adults 
showing good virological efficacy with this exposure [4, 12]. 

TFV AUCtau was chosen as the target for safety. This was 
based on previous FDA guidance of TAF-containing products 
and previous clinical study results indicating improved safety 
of TAF versus TDF linked to lower circulating TFV in plasma. 
TFV plasma concentrations that were achieved in our study 
were comparable or lower than TFV AUC observed in adults 
receiving 25 mg TAF in a regimen containing the booster co-
bicistat. In addition, TFV AUCtau of all individuals (ie, with 
DTG and with boosted PIs) remained below the median 
AUCtau observed in children 2 to <12 years old taking the li-
censed TDF dose of 8 mg/kg with a maximum of 300 mg. 
The reference value of TFV exposure in children can be con-
sidered a conservative target, considering that most children 
were able to tolerate TDF well, and few children taking TDF 
with boosted PIs show signs of toxicity [18]. Therefore, we 
expect results below the median exposure of children taking 
TDF to be safe. 

As expected, and seen in earlier studies in adults, TFV AUCtau 

and Cmax concentrations increased when taken with a boosted PI 
regimen. However, GM concentrations remained below TFV 
concentrations seen in adults taking DRV boosted with cobicistat. 
Nonsignificant differences between GM TFV AUC were observed 
between PI regimens. However, a significant increase was seen in 
TAF AUC and Cmax for children combining TAF with ATV/r. 
The same relative increase was seen in adults combining TAF 
with ATV/r [19]. Increased TAF exposure when combined with 
ATV/r could be explained by inhibition of the transporter 
P-glycoprotein’s active TAF excretion back into the gut and 

Figure 2. Median tenofovir alafenamide fumarate (TAF) plasma concentration 
(upper) and mean tenofovir (TFV) plasma concentration (lower) versus time curves 
of children on TAF combined with dolutegravir (DTG), atazanavir/ritonavir (ATV/r), 
darunavir/ritonavir (DRV/r), or lopinavir/ritonavir (LPV/r). Twenty-two of 104 (21%) 
children did not have a sample at 0.5 h after dose: 6 on DTG, 6 on ATV/r, 5 on DRV/r, 
and 5 on LPV/r.   
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differences in enzyme induction and inhibiting effects attributed 
to the different PIs [19]. This increase in TAF exposure is not likely 
to be clinically relevant because TFV levels remain lower than ref-
erence values in adults taking TAF with a boosted PI and TFV ref-
erence levels of children taking TDF from a study where 92% of 
children were concomitantly treated with LPV/r. 

Our study uses TAF AUC as a proxy for efficacy and TFV 
AUC as a proxy for safety. It is likely that TFV AUC also cor-
relates to the efficacy of the drug, and likewise, TAF will be in-
dicative of safety. In our study, TAF exposure was significantly 
higher when it was combined with ATV/r with unknown im-
pact on drug safety. Reassuringly, no safety signal has been 
raised by the independent data monitoring committee that re-
views unblinded trial data regularly. For the other anchor drug 
combinations, TAF and TFV concentrations were comparable 
to adult exposure, indicating safe and effective exposure in our 
study. Tenofovir’s intracellular active metabolite, TFV-DP, 
could be used as a marker for efficacy. TFV-DP concentrations 
from dried blood spots as well as sparse pharmacokinetic sam-
ples of all children receiving TAF in CHAPAS-4 will be evalu-
ated, and any correlation with viral efficacy and safety will be 
assessed using pharmacokinetic/pharmacodynamic analysis at 
the end of the CHAPAS-4 trial. 

Safety and efficacy data from the CHAPAS-4 trial are mon-
itored by randomized arm, by the independent data monitoring 
committee, and will be released at the end of the trial. In partic-
ular, renal and bone safety linked to tenofovir use is being as-
sessed by calcaneal ultrasound, dual energy X-ray 
absorptiometry, and additional biochemistry tests. No safety 
signal has been reported by the committee. 

In adults, the use of TAF has been linked to weight gain, es-
pecially when TAF is combined with DTG. Data linking TAF 
and weight gain are currently not available, but a trial in chil-
dren receiving DTG has shown no significant increase in 
body weight with the use of DTG separately [20, 21]. 
Whether children are also exempt from excessive weight gain 
when treated with TAF or with a combination of TAF and 
DTG is currently unknown but will be elucidated when data 
by randomized arm become available at the end of the 
CHAPAS-4 trial (expected in early 2024). 

A potential limitation of our study is that not all children in 
our study had a sample taken at 0.5 hours after dose (22 of 
104), which could have impacted AUC and Cmax results. The 
reason for not including 0.5-hour sample in the original proto-
col was blood draw volume limits in children. To increase the 
likelihood of capturing Cmax of TAF and TFV, a protocol 
amendment was introduced to include it. This required the 
pharmacokinetic assessment to be moved to a clinic visit on 
which fewer blood draws for safety parameters were scheduled. 
Of the 82 children with a 0.5-hour sample, 21 had reached their 
maximum TAF concentration at 0.5 hour after dose, and 1 had 
reached its maximum TFV concentration at 0.5 hours after 
dose. For this reason, TAF AUClast and Cmax presented in our 
results may have been slightly underestimated. However, since 
TAF AUCtau is our target for efficacy, and there is currently no 
evidence that the Cmax is related to toxicity, a higher value would 
not cause any concern. As only 1 of 83 TFV concentrations 
reached Cmax at 0.5 hours, and because TFV has a long half-life, 
missing Cmax will have little effect on the total AUC. Therefore, 
we expect the effect on our safety parameter to be negligible. 

Figure 3. Area under the concentration–time curve (AUC) from 0 to the last sample with a measurable concentration (AUClast) of tenofovir alafenamide fumarate (TAF) (left 
panel) and AUC from 0 to 24 h (AUCtau) of tenofovir (right panel) shown with different stratifications of the children in the study: atazanavir/ritonavir, darunavir/ritonavir, 
lopinavir/ritonavir, dolutegravir, those taking TAF combined with any boosted protease inhibitors (boosted regimen combined), and all children combined. The box and whis-
kers show median and 2.5th–97.5th percentiles. *Significantly different mean AUC. P < .01 (analysis of variance on log-transformed values with Tukey post hoc analysis). 
Abbreviations: ATV/r, atazanavir/ritonavir; AUClast, area under the concentration–time curve from 0 to the last sample; AUCtau, area under the concentration–time curve from 
0 to 24 hours; DRV/c, darunavir/cobicistat; DRV/r, darunavir/ritonavir; DTG, dolutegravir; LPV/r, lopinavir/ritonavir; TAF, tenofovir alafenamide fumarate; TDF, tenofovir dis-
oproxil fumarate; TFV, tenofovir.   
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TAF has the potential to reduce procurement costs of drug 
regimens because of the low active dose compared to the cur-
rent standard-of-care backbone regimens. Furthermore, TAF 
treatment provides an important alternative to abacavir- 
containing standard-of-care regimens to children who cannot 
use TDF due to renal and bone toxicities. Formulations con-
taining TAF have therefore remained in the WHO PADO5 
list (Priorities for Antiretroviral Drug Optimization) [22]. 
This pharmacokinetic substudy bridges the data gap for phar-
macokinetic data on TAF combinations in children and pro-
vides much-needed evidence on the safe use of TAF in a 
large cohort of children when given in combination with boost-
ed PIs and DTG. Our pharmacokinetic data suggest that adjust-
ing the TAF dose according to the anchor drug in the 
combination is not necessary, thus supporting simplification 
of treatment guidelines. There are also benefits of simplifying 
drug procurement by national procurement programs. 

In conclusion, children aged 3–15 years, weighing ≥14 kg 
and taking TAF doses according to WHO-recommended 
weight bands with ritonavir-boosted PIs or DTG, achieved 
TAF and TFV concentrations that are safe and effective in 
adults. These data contribute to the practical use of TAF within 
regimens available in sub-Saharan Africa and other low- and 
middle-income settings. 
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