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Abstract 

Resting heart rate (RHR) is associated with cardiovascular diseases and mortality in observational and 

Mendelian randomization studies. The aims of this study are to extend the number of RHR associated 

genetic variants and to obtain further insights in RHR biology and its clinical consequences. A 

genome-wide meta-analysis of ��� studies in up to ���,��� individuals revealed ��� independent 

genetic variants in ��� loci. We prioritized ��� genes and in silico annotations point to their 

enrichment in cardiomyocytes and provided insights in their ECG signature. Two-sample Mendelian 

randomization analyses indicated that higher genetically predicted RHR increases risk of dilated 

cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-

embolic stroke. We did not find evidence for a linear or non-linear genetic association between RHR 

and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic 

alteration of key differences between the current and previous Mendelian randomization study 

indicated that the most likely cause of the discrepancy between these studies arises from false positive 

findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value 

thresholds. The results extend our understanding of RHR biology and give additional insights in its 

role in cardiovascular disease development. 

Keywords 

Resting heart rate, all-cause mortality, atrial fibrillation, stroke, dilated cardiomyopathy, Genome-wide 

association study, two-sample Mendelian randomization, ECG.  
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Introduction 

Higher resting heart rate (RHR) is associated with cardiovascular diseases and all-cause mortality in 

traditional epidemiological studies�–�. However, RHR is influenced by disease status and a plethora of 

potential confounders, which could affect these associations.  

A Mendelian randomization (MR) approach, in which genetic variants associated with the RHR are 

used as a proxy for RHR, can also be used to study the association between RHR and cardiovascular 

diseases and all-cause mortality. Since genetic variants are fixed from conception and then randomly 

assigned from parents to offspring, they are more immune to reverse causation and confounders�. In 

our previous study, we identified �� loci associated with RHR and found evidence for a positive 

association between genetically predicted RHR and all-cause mortaliy�. However, a higher genetically 

predicted RHR was not found to increase risk of cardiovascular diseases�–� and appeared to decrease 

risks of atrial fibrillation and cardio-embolic stroke�. Identification of novel RHR loci could give new 

insights in the relationship between genetically predicted RHR and cardiovascular disease and 

mortality risk and will broaden our knowledge of the biological mechanisms underlying 

interindividual differences in RHR. 

To increase our knowledge on the genetic make-up of RHR and the association with mortality and 

cardiovascular disease, we conducted a meta-analysis of ��� genome-wide association studies 

(GWAS’s) in ���,��� participants (Figure �A), performed multiple analyses to gain insights in the 

underlying biology of the identified variants (Figure �B) and explored the relationship of genetically 

predicted RHR with mortality and cardiovascular diseases using a two-sample MR approach (Figure 

�C).  
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Results 

Genome-wide meta-analysis of resting heart rate 

We performed a meta-analysis of RHR GWAS’s using �� cohorts consisting of up to ���,��� 

individuals, which from here on will be referred to as the International Consortium of Resting Heart 

Rate (IC-RHR). Second, we performed a GWAS in ���,��� individuals from the UK Biobank. These 

large cohorts were meta-analyzed to include up to ���,��� individuals, in whom ��,���,��� directly 

genotyped and imputed autosomal variants were analyzed (Supplementary Data �, Figure �A). The 

meta-analysis revealed ��� independent genetic variants in ��� loci. Out of these ��� independent 

genetic variants, �� were outside previously identified RHR associated loci and �� of those were 

internally replicated (Figure �A, Supplementary Data �)�,��,��. Out of the ��� genetic variants inside 

previously identified RHR associated loci, a total of ��� were internally replicated. In addition,  ���

out of the ��� loci were considered internally replicated as they showed concordant direction of effects 

and nominal associations (P<�.��) in the UK Biobank GWAS and IC-RHR meta-analysis (Figure �B). 

The RHR associated genetic variants identified previous studies from Eppinga et al. and Den hoed et 

al. were all replicated in the current study (Supplementary Data �). A total of �� loci identified in the 

study from Guo et al. were not replicated in the current study, of which �� would not have been 

identified as locus using the current GWAS clumping criteria. The remaining �� loci did not reach 

genome-wide significance in the current meta-analysis with generally high P-values in the IC-RHR 

consortium, probably therefore failing replication (Supplementary Data �). The linkage 

disequilibrium (LD) score regression intercept of the meta-analysis was �.��� ± �.���, suggesting little 

evidence of genomic inflation (Figure �C). The QQ plots for the UK Biobank GWAS and IC-RHR 

meta-analysis are shown in Supplementary Figure �. The genomic control lambda’s, LD-Score 

intercepts and the attenuation ratio statistics suggested no inflation due to non-polygenic signals��,��. 

Single nucleotide polymorphism (SNP) heritability of RHR as calculated by LD score regression was 

estimated to be ��%. A polygenic score weighted by the effect sizes of the IC-RHR explained �.��% of 

the variation in RHR in the UK Biobank. A Chow-test indicated absence of strong differences between 

participants with a history of any cardiovascular disease or use of RHR-altering medication versus 

participants without such a medical history (Supplementary Data �). Genetic correlation analyses 
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were performed and we observed significant correlations with anthropometric measurements, pulse 

wave reflection index and physical activity measurements (Supplementary Data �). A query of the 

GWAS Catalog showed that the ��� genetic variants associated with RHR were most commonly in 

high LD (LD>�.�) with anthropometric measurements and blood pressure traits (Supplementary 

Data �).

Candidate Genes and Insights into Biology 

We explored the potential biology of the 352 RHR loci by prioritizing candidate genes in these loci 

(Supplementary Data 2). A total of 407 unique genes were in close proximity to the lead variant, 

defined as the nearest gene and any additional gene within 10kb (Supplementary Data 2). There were 

52 genes that contained coding genetic variants in LD (R2>0.80) with RHR lead variants. Functional 

annotation of these coding variants is provided in Supplementary Data 7. Using summary data based 

Mendelian randomization analysis (SMR) and heterogeneity in dependent instruments (HEIDI) tests, 

we found that the RHR associated loci and eQTLs colocalized at 88 genes (Supplementary Data 8)14. 

Lastly, 381 unique genes were taken forward by Data-driven Expression-Prioritized Integration for 

Complex Traits (DEPICT) analyses (Supplementary Data 9). Of the 670 unique candidate causal 

genes identified, 33 genes were prioritized by at least three out of four established methods, which 

may be used to prioritize candidate genes (Figure 2D). Of these genes, PHACTR4, ENO3 and SENP2

were prioritized by all four methods. Full annotations of all identified genes are in Supplementary 

Data 10. 

Pathway analyses and tissue enrichment 

Pathway analysis performed by DEPICT showed that RHR revolved around mainly cardiac biology, 

including cardiac tissue development, muscle cell differentiation and pro-arrhythmogenic pathways. A 

total of 1,471 reconstituted gene sets within 155 gene clusters were significantly associated with RHR 

(FDR<0.05). The newly discovered gene clusters consisted of mostly protein-protein interaction 

pathways and were commonly located in the periphery of the network (Supplementary Data 11, 

Supplementary Figure 2). The tissue enrichment analysis by DEPICT showed 28 tissues at FDR < 

0.05 and implicated the cardiovascular system as the most important tissue type, with 8 of the 10 most 
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significantly enriched tissues located within the cardiovascular system (Figure 3, Supplementary 

Data 12). Non-cardiovascular tissues with enrichment included muscle and fat tissues, the adrenal 

glands, the esophagus and urogenital structures. Conditional analyses showed that associations with 

non-cardiovascular tissues were rather due to co-expression of RHR genes in cardiovascular tissue 

than independent enrichment of RHR associated genes in non-cardiovascular tissues (Figure 3).

ECG morphology 

The ECGenetics browser, which contains genome-wide summary statistics of every time-point of the 

complete cardiac cycle at a resolution of ��� Hz, was used to gain insights into the 

electrophysiological effect of the RHR genetic variants��. A total of �� genetic variants were strongly 

associated with at least one ECG time point on the non-normalized and normalized association 

patterns across the full RR-interval at a stringent Bonferroni-corrected P-value<� × ��-�. The 

associations represented a plethora of ECG morphologies (Supplementary Data ��, Supplementary 

Figure �). The ACHE, ANKRD�, and SCN�A genes exhibited their largest electrical effects on atrial 

depolarization, BAG� and TTN on ventricular depolarization and RGS� and SYT�� on ventricular 

repolarization. The ECG-wide MR highlighted several loci that had not been associated with resting 

heart rate or cardiac rhythm and structure previously. The CCLN� gene exhibited strong effects on 

atrial depolarization, RAP�A and ZBTB�� exerted strong effects on early and late ventricular 

repolarization respectively. The ECG-wide MR showed that RHR variants exert the largest effect on 

ventricular repolarization on both the non-normalized and normalized association pattern 

(Supplementary Figure �).  

Single-nucleus RNA expression 

Single-nucleus RNA sequencing data obtained from the healthy human heart revealed that RHR gene 

expression is highest in ventricular cardiomyocytes, followed by atrial cardiomyocytes 

(Supplementary Data 14)16. The candidate genes of genetic variants involved in non-isoelectric parts 

of the ECG showed stronger expression patterns than the isoelectric parts, for example those involved 

in left atrial depolarization (ANKRD1), ventricular depolarization (FOHD3, RBM20, MYO18B, TTN) 

and ventricular repolarization (CACNA1C) (Supplementary Figure 3). 
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Mendelian randomization analyses 

A series of two-sample MR analyses was performed to test whether genetically predicted RHR is 

associated with all-cause mortality and cardiovascular diseases (definitions provided in 

Supplementary Data ��-��). We initially used the inverse variance weighted multiplicative random-

effects (IVW-MRE) model, which provides a consistent estimate under the assumption of balanced 

pleiotropy. If we found evidence for a genetic association using the IVW-MRE model, we further 

interrogated this findings using several sensitivity analyses that are more robust to different sources of 

bias in MR analyses.  

First, we assessed the association between genetically predicted RHR and all cause-mortality in the 

UK Biobank participants over a median follow-up of �.� years (interquartile range �.�-�.�) 

(Supplementary Data ��-��). Genetically-predicted RHR was not associated with the risk of all-

cause mortality (HR �.���, ��% CI �.���-�.���, P=�.��) as shown in Figure �. We did not find 

evidence for an association between genetically predicted RHR and parental longevity. Neither did we 

find evidence for an association between RHR and the �� leading causes of mortality in the UK 

Biobank. Systematic alteration of key differences between the current and previous Mendelian 

randomization study indicated that the most likely cause of the discrepancy between these studies 

arises from false positive findings in previous one-sample MR analyses caused by weak-instrument 

bias at lower P-value thresholds (Supplementary Figure �, Supplementary Data ��)�. Non-linear 

MR analyses showed an always-increasing dose-response relation between genetically predicted RHR 

and all-cause mortality that was compatible with a null effect (Figure �, Supplementary Data ��-��), 

providing no evidence for an U-shaped pattern that has been previously described�. 

We then explored the association between genetically predicted RHR and several prevalent 

cardiovascular diseases. We did not find evidence for an association between genetically predicted 

RHR and coronary artery disease in the UK Biobank (OR �.���, ��% CI �.��� – �.���, P=�.��) or in 

the CARDIoGRAMplusC�D cohort (OR �.���, ��% CI �.��� – �.���, P=�.��), in line with previous 

analyses�,�. Similarly, there was no evidence for an association between genetically predicted RHR and 

myocardial infarction in the UK Biobank or in the CARDIoGRAMplusC�D cohort (Figure �, 
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Supplementary Data ��-��). We found no evidence for non-linear dose-response relations of 

genetically predicted RHR with coronary artery disease or myocardial infarction (Supplementary 

Data ��-��).  

Higher genetically predicted RHR was suggestively associated with a lower risk of atrial fibrillation 

development in the UK Biobank (OR �.���, ��% CI �.��� – �.���, P=�.��) and in the AFgen consortium 

(OR �.���, ��% CI �.��� – �.���, P=�.��), but these results were not significant after correction for 

multiple testing (P<�.�� × ��-�). MR-Lasso, which can provide evidence for potential causal associations 

when there is a small number of genetic variants with heterogeneous ratio estimates, indicated that 

genetically predicted RHR was significantly inversely associated with atrial fibrillation (Figure �, 

Supplementary Data ��). The contamination mixture model, which provides evidence for potential 

causal associations if the plurality of the genetic instruments is valid, provided evidence for a negative 

association between genetically predicted RHR and atrial fibrillation in the UK Biobank cohort, but this 

was not replicated in the AFgen consortium (Figure �). Non-linear MR analyses showed a significant 

negative exponential growth pattern in the dose-response relation between genetically predicted RHR 

and atrial fibrillation (Supplementary Data ��-��, Supplementary Figure �). Specifically, individuals 

at the extreme right tail of the distribution of genetically predicted RHR had a lower risk of atrial 

fibrillation. For example, compared with the population mean RHR of approximately �� bpm, 

individuals with a genetically predicted RHR of �� bpm and �� bpm had a significantly lower risk of 

atrial fibrillation (OR �.���, ��% CI �.��� – �.���, P=�.��; OR �.���, ��% CI �.��� – �.���, P=�.�� × 

��-�), while this was not true for a genetically predicted RHR of �� bpm (OR �.���, ��% CI �.��� – 

�.���, P=�.��).  

We found that higher genetically predicted RHR is associated with risk of any stroke (OR �.���, ��% CI 

�.��� – �.���, P=�.�� × ��-�), ischemic stroke (OR �.���, ��% CI �.��� – �.���, P=�.�� × ��-�) and 

cardio-embolic stroke (OR �.���, ��% CI �.��� – �.���, P=�.�� × ��-�), suggestively associated with 

large artery stroke (OR �.���, ��% CI �.��� – �.���, P=�.��) and not with small vessel stroke (OR �.���, 

��% CI �.��� – �.���, P=�.��) in the MEGASTROKE consortium. The results were consistent across 

MR methods for any, ischemic and cardioembolic stroke (Figure �, Supplementary Data ��). The 
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associations between genetically determined RHR and any stroke or ischemic stroke could not be 

replicated in the UK Biobank using an univariable MR IVW-MRE approach (OR �.���, ��% CI �.��� 

– �.���, P=�.��; OR �.���, ��% CI �.��� – �.���, P=�.��). We found no evidence for a non-linear 

association between genetically determined RHR and any or ischemic stroke (Supplementary Data ��-

��). We used a multivariable MR approach to gain insights in potential mediating factors or pleiotropic 

pathways in the association between genetically predicted RHR and stroke. First, we found that the 

direct effects of RHR on cardio-embolic stroke to be attenuated by the effects of atrial fibrillation and 

estimate the attenuation through atrial fibrillation to be ��.�% (Figure �, Supplementary Data ��-��). 

The direct effects of genetically predicted RHR on any stroke and ischemic stroke were most strongly 

attenuated by pulse pressure, with estimated attenuation of ��.�% and ��.�% respectively (Figure �, 

Supplementary Data ��-��). There was a strong association between genetically predicted RHR and 

pulse pressure (β -�.���, SE �.���, P=�.�� × ��-��), but MR-Steiger sensitivity analysis filtered a large 

part of the genetic variants and repeating the MR on the remaining subset did not show a significant 

association between RHR and pulse pressure (β -�.���, SE �.���, P=�.��, Supplementary Data ��-��).  

Lastly, we found that genetically predicted RHR is associated with an increased risk of dilated 

cardiomyopathy in the UK Biobank (OR �.���, ��% CI �.��� – �.���, P=�.�� × ��-�). The results were 

robust to MR-Lasso (OR �.���, ��% CI �.��� – �.���, P=�.�� × ��-�) and MR-contamination mixture 

models (OR �.���, ��% CI �.��� – �.���, P=�.�� × ��-�). We excluded �� variants associated with the 

Q-R upslope at −�� ms of the R peak (P<�.��), which has been established as a biomarker for dilated 

cardiomyopathy��, to investigate whether reversed causation contributed to the association with dilated 

cardiomyopathy. The results were similar to the main analyses (Supplementary Table �). We did not 

find evidence for an association between genetically predicted RHR and heart failure, heart failure 

excluding cardiomyopathies, and hypertrophic cardiomyopathy (Figure �, Supplementary Data ��). 

We did not find evidence for a non-linear association between genetically determined RHR and any 

type of heart failure (Supplementary Data ��-��). Scatterplots and dose-response curves of the 

association between RHR and all assessed outcomes can be found in Supplementary Figures �-��. 
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We assessed whether the Wald estimates between the RHR associated genetic variants and the 

cardiovascular diseases could identify risk loci not anticipated to be associated with these outcomes in 

the outcome GWASs. The locus FOXC� for coronary artery disease, USP�� for myocardial infarction, 

and SLC��F� and SSPN for atrial fibrillation were significantly (P<�.�� × ��-�) and concordantly 

associated with their respective outcomes in both cohorts while not reaching genome-wide 

significance in either one of the outcome cohorts (Supplementary Data ��).  
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Discussion 

We report ��� genetic variants in ��� loci associated with RHR, discovered in the largest GWAS meta-

analysis of RHR to date in up to ���,��� individuals�,�,��,��. This increase of samplesize allowed us to 

report �� novel RHR associated genetic variants and, importantly, provide internal replication for ��� 

genetic variants previously associated with RHR. A total of ��� candidate genes were prioritized, 

providing a comprehensive data catalog for future studies on RHR and offering potential new insights 

into its biology. Four strategies were employed to prioritize candidate genes and PHACTR�, ENO� and 

SENP� were highlighted by all four strategies. The PHACTR� gene regulates protein phosphatase � 

which interacts with actin and is involved in processes ranging from angiogenesis to cell cycle 

regulation��. It has been associated with pulse pressure and systolic blood pressure in a previous 

GWAS analysis��. ENO� encodes beta-enolase, which plays an important role in glycolysis and 

striated muscle development��. It has been implicated in cardiac myocyte development through its 

function in energy metabolism in both humans and rats��,��. SENP� encodes sentrin-specific protease �, 

which deconjugates small ubiquitin-related modifiers � and � that are involved in regulating 

posttranslational modification of a wide variety of proteins that affect a multitude different cellular 

processes��,��. Several of these affected proteins are critical in cardiac development and mouse models 

have shown that alterations in SENP� activity lead to congenital heart defects��,��. Involvement of 

SENP� in a multitude of cellular processes is reflected by its implication in GWAS of various 

conditions, including systolic and diastolic blood pressure��, type � diabetes��, the conduction system 

of the heart��,�� and estimated glomerular filtration rate��. The loci we associated with coronary artery 

disease (FOXC�), myocardial infarction (USP��) and atrial fibrillation (SLC��F� and SSPN) through 

their effects on RHR have been associated with these cardiovascular diseases in recent studies��–��. 

To obtain further biological insights into RHR, we performed pathway analyses using DEPICT and 

found numerous newly associated pathways. The strongest associated clusters were identified 

previously and their importance to RHR biology was therefore validated in the current study�. 

Conditional analyses on the tissue enrichment demonstrates that genes influencing RHR are more 

likely co-expressed than primarily or solely located within non-cardiovascular tissues. However, it 
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should be noted that conditional analyses inherently attenuate tissue-enrichment considering DEPICT 

is based on co-regulation of gene expression��. Using cardiac single-nucleus RNA data, we 

demonstrate that RHR genes are mostly expressed in cardiomyocytes. We provide electrophysiological 

insights in the biology of the RHR associated variants and show that they exert diverse effects on ECG 

morphology with the largest effect on ventricular repolarization.  

In-depth analyses were performed to assess genetic associations of RHR with clinical outcomes. In 

contrast to previous observational�,� and MR studies�, we do not find evidence for an association 

between genetically predicted RHR and all-cause mortality. Moreover, genetically predicted RHR was 

not associated with parental longevity nor with any of the �� leading causes of mortality. Lack of such 

associations suggest that follow-up length or large heterogenetic effects of RHR on different causes of 

mortality are unlikely causes for the absence of an association between genetically predicted RHR and 

all-cause mortality��. We demonstrate that the most likely cause of the discrepancy between current 

and previous results arises from false positive findings in previous one-sample MR analyses that were 

caused by weak-instrument bias at lower P-value thresholds��. We hypothesize that RHR is not on the 

causal pathway to mortality itself and that previous observational studies are more likely to reflect 

confounders, such as stress and socio-economic status, or reversed causation, in which an individual’s 

disease status increases both RHR and mortality risk��,��. 

The linear MR between RHR and atrial fibrillation provided suggestive evidence for an inverse 

relationship between RHR and atrial fibrillation, in line with a previous linear MR study�. We do find 

a significant negative exponential dose-response curve between RHR and atrial fibrillation in support 

of an inverse relationship, and take the non-linear MR forward as the main result considering the 

fractional polynomial test indicated that a non-linear model fitted the localized average causal effect 

estimates better than the linear model. Previous observational studies on the relationship between RHR 

and atrial fibrillation have shown conflicting results and have described various relationships including 

inverse linear��–��, U-shaped�� and J-shaped�� associations. All these association patterns support the 

hypothesis that individuals with a low RHR might exhibit a higher risk of atrial fibrillation 

development compared to those with an average RHR. A recent stratified Mendelian randomization 

showed an inverse genetic relationship between RHR and atrial fibrillation in individuals with a RHR 
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below �� bpm as well��. Possible mechanisms that could underly an increased risk of atrial fibrillation 

in individuals with a low RHR include increased left atrial stroke volume and consequent atrial 

remodeling due to myocyte stretching��, or an increased vagal tone promoting global disorganization 

in the left atrium due to increased heterogeneity of the refractory period��. In contrast to the often 

hypothesized U-shaped or J-shaped association��,��, we find a decreasing risk of atrial fibrillation 

development in those with a high RHR. One potential explanation is that previous observational 

studies were affected by collider bias through confounding factors which increase atrial fibrillation 

risk and typically occur in tandem with a high rather than a low RHR, such as hypertension�� and 

obesity��. We advocate for cautious interpretation of current result due to the diverse biological 

mechanisms through which the RHR associated genetic variants alter the risk of  atrial fibrillation 

development��. 

We found that genetically predicted RHR was inversely associated with risk of any, ischemic and cardio-

embolic stroke. The results were not replicated in the UK Biobank, possibly due to the substantially 

lower amount of cases. The inverse association is in contrast to many observational studies and we 

therefore performed multivariable MR analyses to pinpoint biological mechanisms that could underly 

the discrepancy�,�. We showed that atrial fibrillation attenuates the protective effect of higher genetically 

predicted RHR on developing cardio-embolic stroke. This indicates either biological or mediated 

pleiotropic effects of atrial fibrillation in the association between genetically determined RHR and 

cardio-embolic stroke, which cannot be distinguished based on the current results. Correction for atrial 

fibrillation only minimally affected the association between RHR and any or ischemic stroke, despite 

cardio-embolic stroke accounting for a substantial amount of ischemic stroke cases��. Although 

hypertension is another important risk factor for stroke, it commonly occurs in tandem with a higher and 

not a lower RHR�,��,�� and we found that neither systolic nor diastolic blood pressure to affect the 

association between RHR and stroke. We did find that pulse pressure attenuates the association between 

RHR and any, ischemic and large-artery stroke. Lower RHR has previously been demonstrated to 

increase pulse pressure due to a higher likelihood of pressure wave reflections during prolonged systole��

and increased pulse pressure has been established as a risk factor of stroke��–��. Moreover, the Conduit 

Artery Functional Endpoint Study (CAFE) study postulated that pulse pressure underlies the inferiority 
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of β-blocker based treatment (which lowers RHR) to amlodipine based treatment in prevention of stroke 

despite equal effects on peripheral blood pressure��,��. Our results could be considered as support for this 

mechanism in the scenario that the RHR associated genetic variants only affect pulse pressure through 

RHR and the association with stroke is primarily driven by RHR. However, we consider this unlikely 

as the MR-Steiger sensitivity analysis indicated that the association between the RHR associated genetic 

variants and pulse pressure is unlikely mediated through RHR entirely. Biological pleiotropic effects are 

therefore more likely to cause the attenuation of the association between RHR and stroke when 

correcting for pulse pressure. 

Finally, our study provides evidence that higher genetically predicted RHR increases risks of developing 

dilated cardiomyopathy. The importance of decreasing RHR in the treatment of heart failure with 

reduced ejection fraction, the clinical phenotype of dilated cardiomyopathy, has been thoroughly 

studied. Beta-blockers have been shown to reduce mortality in individuals with heart failure with 

reduced ejection fraction and form the corner stone of pharmacological treatment��–��. There is also 

evidence that ivabradine lowers cardiovascular mortality in heart failure with a reduced ejection 

fraction��. This protective effect is more likely due to its effect on RHR than heart rate variability as it 

has a larger effect on RHR��. The fact that the MR results were robust to exclusion of SNPs associated 

with the -�� ms point of the R-peak, an established biomarker of dilated cardiomyopathy, supports the 

interpretation that current findings are driven by RHR differences which mimic pharmacological rate 

control��. Our MR on the compound definition of heart failure could be hampered by its phenotypical 

heterogeneity, as we were unable to differentiate between heart failure with reduced and preserved 

ejection fraction. It would be interesting to repeat current Mendelian randomization analysis if more in-

depth phenotyping on left ventricular ejection fraction and function becomes available, especially 

considering the different effects of RHR on familial dilated versus hypertrophic cardiomyopathy in the 

current study. 

Several limitations should be considered. Although the current ��� RHR associated genetic variants 

explained more than double the RHR variance compared to the �� loci from our previous study�, there 

is still a large gap with heritability estimates from twin-studies that range between the ��% and ��%��–
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��. Future studies could include whole exome sequencing data to further increase our insights in the 

genetic architecture of RHR��. Second, individuals with cardiovascular diseases were included in the 

GWAS, which could potentially affect exposure-outcome associations. However, post-hoc analysis 

showed that UK Biobank participants with a history of cardiovascular disease or who used RHR-

altering medication can be jointly analyzed with participants without such a medical profile. In 

addition, a two-sample MR strategy was adopted, reducing the risk that potential weak-instrument bias 

increases type � error rates through reintroduction of confounding, population stratification or 

correlated pleiotropy��. We note the broad biological nature of RHR genetic variants as illustrated by 

the diverse ECG patterns the genetic variants elicit on the full cardiac cycle. These broad effects 

should be taken into consideration for correct interpretation of the MR results, as pleiotropy and 

reversed causation might be introduced in the MR. For example, some genetic variants were included 

in the MR analyses which could be more specific for another trait (i.g. rs������� near BAG� for 

dilated cardiomyopathy). We believe that the influence of reversed causation on current results to be 

minimal, because we excluded variants more strongly associated with the outcome. The MR results 

were generally consistent across a multitude of sensitivity analyses, strengthening the interpretation of 

a true relationship. However, our study is not interventional in design and conservative interpretation 

of the results as generally unconfounded rather than causal estimates should be preferred. We stress 

that any causal claims can only be made if interventions or drugs alter RHR equal to the biological 

mechanisms in which RHR associated genetic variants affect RHR. 

In conclusion, our GWAS meta-analysis discovered ��� RHR variants within ��� RHR loci, to which 

we prioritized ��� candidate causal genes. We demonstrated cardiovascular tissues as the primary 

enrichment sites for RHR gene effects and showed that their gene-expression is highest in 

cardiomyocytes. ECG signatures showed that RHR associated genetic variants exert the largest effect 

on RHR through ventricular repolarization. We found no evidence for linear and non-linear 

associations between genetically predicted RHR and all-cause mortality across several analyses, 

suggesting that the well-known link between higher RHR and all-cause mortality reflects confounding 

factors and reversed causation. The results point towards an inverse association between genetically 

predicted RHR and development of atrial fibrillation and any stroke, ischemic stroke and cardio-
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embolic stroke, whereas it is positively associated with dilated cardiomyopathy development. 

Multivariable MR analysis showed that atrial fibrillation attenuates the protective effect of higher 

RHR on the development of cardio-embolic stroke. Pulse pressure attenuates the protective effects on 

any stroke, ischemic and large artery stroke, but this likely reflects biological pleiotropy rather than 

true mediation. 
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Methods 

Method details 

Populations 

The full RHR meta-analysis included ��� studies with data on RHR in up to ���,��� individuals. RHR  

was obtained from ECG in �� studies, from pulse rate in �� studies (of which seven were self-

measured by the participants), from blood pressure monitor in nine studies, from electronic medical 

records in three studies, from manual measurement in one study and through a combination of 

multiple of the before mentioned methods in two studies. Further information on cohort characteristics 

is provided in Supplementary Data � and statistical details are provided in the “Genome-wide 

association studies” section.

Imputation and quality control 

Genotyping and quality control before imputation were performed using different genome-wide 

genotyping arrays and methods, as further detailed in the Supplementary Data �.

The UK Biobank was imputed to the Haplotype Reference v�.� panel (HRC) by the Wellcome Trust 

Centre for Human Genetics. Analysis has been restricted to variants that are in the HRC v�.�. Quality 

control of samples and variants, and imputation was performed by the Wellcome Trust Centre for 

Human Genetics, as described in more detail elsewhere��. 

The �� cohorts of the IC-RHR were imputed to ���� Genomes Phase � and �. For further information, 

please see Supplementary Data �.  

On cohort level, we performed quality control by: �) re-formatting and SNP-name harmonization; �) 

checking the used reference panel by plotting effect allele frequency plots using ����G as a reference; 

�) checking for genomic inflation by plotting QQ plots; �) checking the betas by plotting histograms of 

the beta, frequency and info; �) comparison of the expected P-value based on beta and standard error 

versus reported P-values.  

Association with other traits 

Genetic correlation analyses with GWAS of previously investigated traits were performed using LD 

Hub platform��. Genetic correlations were considered significant if they achieved a Bonferroni-
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corrected significance threshold of P<� .��/���=�.�� × ��-�. The GWAS Catalog was queried to find 

previously established genetic variants (P<� × ��−�) in LD (R�>�.�) with all ��� RHR variants��. 

Summary statistics were downloaded from the NHGRI-EBI GWAS Catalog on ��/��/����.

Functional annotation of genes 

For all independent genetic variants that were genome-wide significantly associated in the final meta-

analysis, candidate causal genes were prioritized as followed: �) by proximity, the nearest gene and 

any other gene within �� kb; �) protein coding genes containing variants in LD with RHR associated 

variants at R�>�.�; �) eQTL genes in LD with RHR associated variants at R� >�.�; and �) DEPICT 

gene mapping using variants that achieved P<� × ��-� (further information described below). 

Annotation of all identified genes was performed by querying GeneALacart��.  

Query of dbNSFP 

The dbNSFP database (version �a) was queried to obtain functional prediction and annotation of all 

potential non-synonymous genetic variants��. The dbNSFP database contains information on multiple 

prediction algorithms and conservation scores further detailed elsewhere��.  

eQTL analyses  

Colocalization of multiple expression quantitative trait loci (eQTL) was performed using SMR and 

HEIDI analyses (version �.���)�� in data repositories from GTEx V���, GTEx brain��, Brain-eMeta 

eQTL�� and blood eQTL from Westra�� and CAGE��. Colocalization analyses were performed to test 

whether the effect size of the RHR associated variants on the phenotype are most likely mediated by 

gene expression��. eQTL genes were considered as a candidate causal gene if they achieved a 

significance after Bonferroni correction for the amount of eQTL’s tested (P<�.��/���,���=�.�� × ��-�), 

passed the HEIDI test at P>�.�� and if the lead variants of the eQTL genes were in LD (R� > �.�) with 

the RHR associated genetic variants.  

DEPICT analyses  

DEPICT was used to find genes associated with identified variants, enriched gene sets and tissues in 

which these genes are highly expressed. DEPICT.v�.beta version rel��� (obtained from 
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https://data.broadinstitute.org/mpg/depict/) was used to perform integrated gene function analyses as 

stated above��. DEPICT was run using all genetic variants that achieved P<� × ��-�.  

Pathway analyses  

DEPICT was used to find enriched gene sets using the settings as described above��. Enriched genesets 

were further clustered on the basis of the correlation between scores for all genes using an Affinity 

Propagation method as provided by DEPICT��. Each cluster was named according to the name of the 

most central gene set as identified using the Affinity Propagation method. Identified meta-clusters 

were compared to the clusters found in the study of Eppinga et al. and were determined to be new if 

not a single cluster within the meta-cluster had been identified before. Clustering was performed using 

python �.��� and visualization using Cytoscape �.�.���.  

Tissue enrichment 

DEPICT was used to find enriched tissues using the settings as described above��. Enriched tissues 

were further investigated by performing conditional analyses to provide evidence for an independent 

association with RHR. The following formula was used:  

T���� =
Z� − ��� Z�

�� − ���
�

Here, Zt is the maximum Z value of all tissue Z values, Zs a vector of all tissue Z values and ρts the 

correlation between the tissue of Zt and the tissue of Zs
��. The maximum Z value (Zt) was determined 

for every new iteration. Conditional analyses were performed up until the highest Z value reached 

~�.��, which corresponds to the lowest Z value with an FDR < �.��. 

ECG morphology 

The ECGenetics browser was used to gain insights in the electrophysiological effect of the RHR 

associated genetic variants��. Detailed information on the methodology can be found in the study of 

Verweij et al. and is briefly discussed below. The ECGenitics browser contains genome-wide summary 

statistics of the complete cardiac cycle. The complete cardiac cycle was defined using two methods, 

including a) the signal averaged electrocardiographic beat surrounding the R wave at a resolution of 
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���hz resulting in ��� averaged data points and b) R-R intervals corrected signal (made of equal 

length of ��� data points). 

All RHR associated genetic variants were tested for their association with both the non-normalized 

and normalized association patterns. A heatmap was constructed containing all associated genetic 

variants associated with at least one point on the ECG at a Bonferonni-corrected P-value of 

�.��/���/(��� × �)=� × ��-�. Effects were aligned to the most positively associated allele across all time 

points. The heatmap shows a hue ranging from red (positive effect) to a blue color (negative effect) 

color scale, with yellow indicating no effect. Secondly, the total effect of the ��� RHR associated 

genetic variants on ECG morphology was assessed using a ECG-wide MR approach (inverse variance 

weighted fixed-effects model) on the non-normalized and normalized association pattern.  

Single-nucleus RNA expression 

All genes prioritized in the current study were queried in the single cell data from the study of Tucker 

et al. through the Broad Institute’s Single Cell Portal (available at: 

https://singlecell.broadinstitute.org/single_cell/study/SCP���/transcriptional-and-cellular-diversity-of-

the-human-heart under study ID SCP��) to gain insights in their transcriptional and cellular diversity��. 

We selected the �� genetic variants strongly associated with at least one ECG time point. We took 

forward the most likely candidate gene per genetic variant, based on the amount gene identification 

strategies by which the gene was identified. When a genetic variant highlighted multiple genes 

identified by the same amount of gene identification strategies, we took forward the gene with the 

highest biological plausibility of involvement in RHR biology. A dotted heatmap was constructed for 

this subset of genes.  

UK Biobank definitions 

In the UK Biobank, we captured prevalence and incidence of functional outcomes through data 

collected at the Assessment Centre in-patient Health Episode Statistics (HES), and data on cause of 

death from the National Health Service (NHS) Information Centre. Prevalent disease was also based 

on an interview with a trained nurse at the baseline visit (self-reported). HES data was available up to 

��-��-���� for English participants, ��-��-���� for Welsh participants and ��-��-���� for Scottish. 
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Information on cause of death was available for participants from England and Wales until ��-��-����, 

and from the NHS Central Register Scotland for participants from Scotland until ��-��-����. 

Definitions of all-cause mortality, �� leading causes of mortality (defined as any cause of mortality 

with a prevalence > �.�%), coronary artery disease, myocardial infarction, atrial fibrillation, stroke 

(any stroke, any ischemic stroke), heart failure and subtypes (hypertrophic cardiomyopathy, dilated 

cardiomyopathy) are provided in Supplementary Data ��. Longevity was obtained through 

questionnaires in which participants were asked to provide the age of death of both parents. 

Individuals were excluded in case the answer was older than ��� years, if they reported themselves as 

adopted, if their parent was still alive but not yet long-lived or their parent died prematurely (fathers 

<�� years or mothers <�� years), in line with previously established methods��. Combined parental 

longevity was assessed by summing Z scores of age of death from both parents if information on both 

parents was provided��. Systolic and diastolic blood pressure values were obtained through two 

automated and/or two manual blood pressure measurements. The average value of all available blood 

pressure measurements was used per phenotype. Automated measurements were corrected according 

to previously described methodology��. In addition, we corrected systolic and diastolic blood pressure 

for medication use, by adding respectively �� and �� mmHg to the blood pressure trait��. Pulse pressure 

was calculated by subtracting diastolic from systolic blood pressure. 

Statistical details of the analyses on functional outcomes are provided in the “Genetics and Regression 

Analyses on functional outcomes in the UK Biobank” and “Mendelian randomization” sections.

External cohort definitions 

External cohorts included the CARDIoGRAMplusC�D��, AFGen��, MEGASTROKE�� and ICBP-

plus�� consortia and descriptions have been detailed previously. Effect sizes from the ICBP-plus 

consortium were obtained from the meta-analysis of the UK Biobank and ICBP-plus, after subtracting 

the effects from the UK Biobank (for further details, see “Meta-subtract of blood pressure traits”). An 

overview of these studies is provided in Supplementary Data ��. We searched for proxies (LD>�.�) 

in case variants could not be found within the outcome datasets. 
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Quantification and Statistical Analysis 

Genome-wide association studies 

All included cohorts performed genetic variant association analyses on RHR using linear regression 

analyses assuming an additive genetic model (Supplementary Data �). No transformation of heart 

rate was performed and extreme (>�SD) phenotypic outliers were excluded analogous to previous 

GWAS on RHR and as per predefined criteria�. The GWAS model was adjusted for age, age�, body 

mass index (BMI), sex and study specific covariates (e.g. principal components, genotyping array and 

RHR measuring method in case multiple RHR methods were used within a study).  

The UK Biobank GWAS was performed using BOLT-LMM v�.�beta�, employing a mixed linear 

model that corrects for population structure and cryptic relatedness��. A total of ���,��� participants 

from the UK Biobank remained available for the GWAS after exclusion of ��,��� individuals for 

whom no genetic data was available, �,��� individuals who failed genetic quality control, �,��� 

individuals who were outside the � SD range for RHR and �,��� individuals due to missing covariates 

(Supplementary Data �).  

Study-specific details and methodology of the �� cohorts of the IC-RHR were are provided in 

Supplementary Data �. A fixed effect meta-analysis using the inverse variance method in METAL 

was performed on all �� cohorts, including up to a total of ���,��� individuals��. Genomic control was 

applied at study-level by correcting for the study-specific lambda.  

All genetic variants were excluded if they had poor imputation quality score (Info<�.�) and effective 

sample size (Neff) < �� for the genetic variants computed as sample size x Info x � x minor allele 

frequency (MAF) x (� - MAF). After these exclusions, a total of ��,���,��� and ��,���,��� variants 

remained available for the UK Biobank and IC-RHR GWAS respectively.  

Again, a fixed effects meta-analysis using the inverse variance method in METAL was performed to 

pool the data from the UK Biobank and IC-RHR up to ���,��� participants using ~�� M genetic 

variants��. LD score regression software (v�.�.�) was used to calculate linkage disequilibrium score 

regression intercepts��,��. We corrected for genomic inflation prior to the meta-analysis by multiplying 

the standard-errors with the square root of linkage disequilibrium score regression intercepts in the UK 

Biobank (�.��� ± �.���) and the IC-RHR (�.��� ± �.���)��,��.  
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PLINK (version �.�) was used to prune genetic variants in a set of independently associated variants��. 

An independent genetic variant was defined as a genome-wide significant genetic variant in low LD 

(R�<�.���) with another genome-wide significant variant within a five megabase window. A genetic 

locus was defined as the most significant variant in an one megabase region at either side of the 

independent genetic variant.  

An one-stage replication analysis was performed next. The following criteria had to be satisfied for a 

signal to be reported as a replicated signal for RHR: 

�. the sentinel genetic variant has P<� × ��-� in the discovery (UKB+ IC-RHR) meta-analysis;

�. the sentinel genetic variant shows support (P<�.��) in the UKB GWAS alone;

�. the sentinel genetic variant shows support (P<�.��) in the IC-RHR meta-analysis alone;

�. the sentinel genetic variant has concordant direction of effect between UKB and IC-RHR 

datasets;

The sentinel genetic variants were compared with previous loci from previous GWAS of RHR and 

were determined novel if located outside a � megabyte distance of previously RHR associated loci�,��,��. 

We selected the P-value thresholds to be an order of magnitude more stringent than a genome-wide 

significance P-value to ensure robust results and to minimize false positive findings.  

Post-hoc quality control 

We performed additional analyses to investigate whether individuals with a history of cardiovascular 

disease or those who took RHR-altering medication could influence the results of the GWAS. The UK 

Biobank population was stratified by a medical history of any cardiovascular disease or those who 

reported taking RHR altering medication. A history of any cardiovascular disease was defined 

according to the definition in Supplementary Data ��. RHR altering medication was defined as 

intake of beta-blockers, calcium antagonists, sotalol, amiodarone, flecainide, anti-depressants, 

atropine, other anti-cholinergic medication, cardiac glycosides, diuretics, ACE-inhibitors or 

angiotensin II receptor blockers, analogous to previous methods��. Linear regressions on RHR were 

performed in both populations, using cluster-robust standard errors with genetic family IDs as clusters 

to account for relatedness among participants. Exclusions and covariates were similar as to those used 
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for the GWAS. Individuals belonging together based on �rd-degree or closer as indicated by the kinship 

matrix (kinship coefficient > �.����) provided by UK Biobank received a family ID. A Chow-test was 

used to investigate whether there were significant differences in beta estimates in participants with and 

without cardiovascular disease or RHR-altering medication��. The post-hoc quality control was 

performed using statistical software STATA �� (StataCorp LP). 

Genetics and regression analyses  

All of the outcomes assessed in the UK Biobank that are reported in this manuscript have been 

adjusted for age, sex, the first �� principal components (PCs) to account for population stratification, 

and genotyping array (Affymetrix UK Biobank Axiom® array or Affymetrix UK BiLEVE Axiom 

array). The exclusions were performed according to the above mentioned methods for the GWAS of 

RHR in the UK Biobank. In addition, we excluded ��,��� individuals based on familial relatedness, 

after which ���,��� individuals remained available for further analyses. 

SNP-outcome associations for all outcomes (see section “UK Biobank outcome definitions”) were 

obtained for all ��� variants with a P<� × ��-� in the RHR GWAS (see section “Mendelian 

randomization”). The associations with all-cause mortality and �� leading causes of mortality within 

the UK Biobank (defined as a prevalence higher than �.�%) were obtained using a Cox proportional 

hazard model during a median (interquartile range) follow-up of �.� (�.�-�.�) years. The association 

with parental longevity was assessed using linear regression analysis. The associations with both 

prevalent and incidence of cardiovascular diseases were assessed using logistic regression analyses. 

Cox and linear regressions were corrected for age at baseline, while the logistic regression analysis 

were corrected for age until the last date of follow-up to correctly account for both prevalent and 

incident disease.  

We performed in depth assessment of the association between RHR and all-cause mortality in the UK 

Biobank by systematically altering the differences between the current study and the previous study 

from Eppinga et al., which included a) the set of SNPs, b) the P-value threshold for SNP inclusion, c) 

the assessment of the outcome in an independent cohort and d) the follow-up length�. Genetic risk 

scores for RHR were created following an additive model by summing the number of alleles (�, � or �) 
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for each individual after multiplication with the effect size for RHR. Genetic risk scores were 

constructed using the ��� discovered variants within the full meta-analyses using the effect sizes of the 

IC-RHR, the effect sizes of the UK Biobank and using the �� previously discovered variants at five P-

value thresholds (� × ��-�, � × ��-�, � × ��-�, � × ��-�, � × ��-�). These were transformed to translate to a 

change of � bpm. The association with all-cause mortality was tested using Cox regression analyses in 

different populations of the UK Biobank. One population included all individuals (ncases = ���,���, 

ncontrols = ��,���). Another population included a subset of individuals which were genotyped for the 

UK Biobank interim release from May ����, which included in the GWAS by Eppinga et al. (ncases = 

���,���, ncontrols = �,���). The final population consisted of a subset of individuals without genetic 

information at the time of the UK Biobank interim release, which was therefore not included in the 

GWAS by Eppinga et al., ncases = ��,����, ncontrols = ��,���). Please note that sample sizes might 

slightly differ from those in the previous GWAS due to updated exclusions. Lastly, point d) was taken 

into account by re-performing above mentioned steps using mortality data up until the previously 

available follow-up (All individuals, ncases = ���,���, ncontrols = �,���; individuals not included in 

the GWAS by Eppinga et al., ncases = ���,���, ncontrols = �,���; and those included in the GWAS by 

Eppinga et al., ncases = ���,���, ncontrols = �,���). All regression analyses were performed using 

statistical software STATA �� (StataCorp LP).  

Mendelian randomization analyses  

All ��� independent genetic variants at P<� × ��-� in the final meta-analysis were taken forward in the 

MR. To minimize overlap between exposure and outcome cohorts, effect sizes were taken from the IC-

RHR data to test the associations with outcomes within the UK Biobank, whereas effects sizes were 

taken from the UK Biobank to test the association within other independent cohorts. Proxies (LD>�.�) 

were searched in case genetic variants could not be found within the UK Biobank or IC-RHR. All 

effect sizes were transformed to translate to a change in RHR of � bpm.

Potential weak instrument bias was assessed by calculating the F statistic using the following equation: 

� =
�� (�− �)

�− ��
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In this formula, n is the sample size of the exposure and R� is the amount of variance of the exposure 

explained by the SNP��. R� was calculated based on summary statistics using a previously established 

formula��. Genetic variants were not excluded from further analyses if the F-statistic was < �� as this 

can exacerbate bias by increasing the chance of winner’s curse��. Exposure and outcome summary 

statistics were then harmonized using the TwoSample MR package��. Forward strand alleles were 

inferred using allele frequency information and palindromic SNPs were removed if the MAF was 

above the recommended setting of �.����.MR-Steiger filtering was applied to explore pleiotropic 

effects through assessment of potential reversed causation. R� for both the exposure and outcome were 

calculated and variants were removed from further analyses if the R� of the exposure is significantly 

lower (P-value < �.��) than the R� of the tested outcome��. R� for linear traits was calculated as 

described above��, R� for binary outcomes was calculated on the liability scale��. A true causal 

direction was assumed if the R� for binary outcomes was too small to be correctly estimated. Variants 

were excluded from further analyses in case a false causal direction was indicated.  

The linear association between genetically determined RHR on all outcomes was initially assessed 

using the IVW multiplicative random-effects method, which provides a consistent estimate under the 

assumption of balanced pleiotropy. The Rücker framework was applied to assess heterogeneity and 

thus potential pleiotropy within the MR effect estimates��. A Cochran’s Q P-value of <�.�� was 

considered as prove of heterogeneity within the IVW estimate and, as a consequence, balanced 

horizontal pleiotropy. An I� index > ��% supports this conclusion��. The MR-Egger test was performed 

to allow SNPs to exert unbalanced horizontal pleiotropy��. The Rücker framework assesses 

heterogeneity within the MR-Egger regression (Rucker’s Q) and calculates the difference between 

heterogeneity within the IVW effect estimate (Q-Q')��. A significant Q-Q' (P<�.��) in combination 

with a significant non-zero intercept of the MR-Egger regression (P<�.��) was considered as 

indication for unbalanced horizontal pleiotropy. We then moved from an IVW-model to the MR-Egger 

model as initial analysis, as the MR-Egger can provide causal estimates if SNPs exert unbalanced 

horizontal pleiotropy under the assumption that Instrument Strength Independent of Direct Effect 

(InSIDE) assumption holds. Weak instrument bias in the MR-Egger regression analysis was assessed 

by I�
GX and was considered to indicate low risk of measurement error if larger than ��%��. The MR-
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Lasso method was used to find consistent estimates under the same assumptions as the IVW method, 

but only for the set of genetic variants not identified as outlier��. This method is most valuable in the 

scenario that a small proportion of the genetic variants is invalid and show heterogeneous ratio 

estimates��. The weighed median approach was used to provide a consistent estimate if up to half of 

the variants are invalid. Finally, we performed the MR contamination mixture method to provide a 

consistent estimate if no larger subset of invalid genetic variants estimate the same causal association 

than the subset of valid genetic variants��. 

The non-linear associations between genetically determined RHR, all-cause mortality and 

cardiovascular diseases were assessed using a fractional polynomial method���,���. This association was 

assessed using the UK Biobank as outcome cohort, considering this was the largest cohort with 

individual level data available to us. Consequently, we used the independent weights of the IC-RHR 

meta-analysis to construct a weighted polygenetic risk score of RHR by summing the number of 

alleles (�, � or �) for each individual after multiplication with the effect size between the genetic 

variant and RHR. We first calculate residual RHR by subtracting the results of the regression of RHR 

to the polygenetic score of RHR from RHR itself. Covariates of the regression included age, age�, sex, 

BMI, genotyping array and PC�-PC��, analogous the GWAS. Residual RHR, which characterizes the 

predicted RHR for an individual if their polygenetic score took the value zero, was then divided in ��

quantiles. Stratifying on residual RHR rather than total RHR avoids overadjustment and collider bias 

as residual RHR is not downstream of the effect of the genetic variants on the outcome in a causal 

diagram. We then calculated the genetic associations with the exposure in each stratum of residual 

RHR using linear regression analyses, correcting for the same covariates as described above. Two tests 

for non-linearity in the genetic association with the exposure (trend and Cochran’s Q tests) were 

performed to investigate heterogeneity in the polygenetic score of RHR on residual RHR in different 

strata. We then calculated the genetic associations with the outcome in each stratum. The same 

methodology was used as described in “Genetics and regression analyses”, including the same 

covariate model (age, sex, genotyping array and PC�-PC��) and regression type (Cox regression for 

all-cause mortality and logistic regression for cardiovascular diseases). The outcome regression 

coefficient was then divided by the exposure regression coefficient as a ratio of coefficients to obtain 
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local average causal effects (LACE) in each stratum. These localized average causal effect were meta-

regressed against the mean of the exposure in each stratum in a flexible semiparametric framework, 

using the derivative of fractional polynomial models of degrees � and �. All possible fractional 

polynomials of degree � and � were fitted using the powers -�, -�, �, �.�, �, �, and � as described 

previously���. The fractional polynomial of degree � is fit to the data if the fractional polynomial of 

degree � was as good of a fit (P>�.��) as the degree � as indicated by the likelihood ratio test. Three 

tests for non-linearity of the association between genetically predicted RHR and the outcomes are 

reported: a trend test, which assesses for a linear trend among the localized average causal effect 

estimates, a Cochran’s Q test, and a fractional polynomial test, which assesses whether a non-linear 

model fits the localized average causal effect estimates better than a linear model. Please note that 

before fitting the fractional polynomials, we subtracted �� from values of RHR as the most flexible fit 

is achieved when the exposure is close to � but still positive. A reference of RHR of �� bpm was taken 

as this was close to the mean RHR of ��.� bpm. An additional �,��� individuals were dropped 

compared to the linear MR estimates obtained from the UK Biobank cohort due to missing BMI 

values necessary for the correction of the exposure regression coefficients.  

A multivariable MR approach was used to gain additional insights in the relationship between RHR 

(effect sizes of the UK Biobank) and (subtypes of) stroke from the MEGASTROKE consortium. We 

used either atrial fibrillation (AFgen consortium��), systolic blood pressure, diastolic blood pressure or 

pulse pressure (ICBP consortium, please see “Meta-substract of blood pressure traits” for further 

details��) as secondary exposures to obtain insights in the direct effect of RHR on (subtypes of) stroke 

that are independent of these secondary exposures���. First, a multivariable MR-IVW method was 

used, in which for each exposure the instruments are selected and regressed together against the 

outcome, weighting for the inverse variance of the outcome���. Weak instrument bias for any of the 

exposures was assessed using Qx� and Qx�
���. When both are larger than the critical value on the χ�

distribution, there is little evidence of weak instrument bias. The critical value on the χ� distribution 

was calculated by subtracting one degree of freedom from the amount of SNPs at a P-value of �.��. Qa

was considered to indicate potential pleiotropy when larger than the critical value on the χ� 

distribution as calculated by the amount of SNPs minus two degrees of freedom at a P-value of �.�����. 
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Multivariable MR-Egger was performed to allow for unbalanced horizontal pleiotropy���. An MR-

Egger intercept with a P-value < �.�� in combination with a significant Qa was considered proof of 

unbalanced horizontal pleiotropy and the MR-Egger regression to provide a robust causal estimate���. 

Multivariable MR-Lasso analysiswas performed as this method provides consistent estimates even 

when half of the genetic variants are invalid instruments and display unbalanced pleiotropy���. We also 

performed multivariable weighted median analysis as this type of analysis has been shown to perform 

well under higher levels of pleiotropy���. We did not search for proxies in the multivariable MR-setting 

as this could introduce uncertainty through different LD-patterns between the secondary exposure and 

outcome and we therefore re-estimate the effect of RHR on the outcome with the eligible SNPs to 

allow for a better comparison of the results.  

We assessed whether the Wald estimates between the RHR associated genetic variants and the 

cardiovascular disease outcomes could identify risk loci not previously associated with these outcomes 

in their respective GWASs. The genetic variants were considered associated with the outcome if a) the 

Wald estimates had concordant effects within the UK Biobank as well as either the 

CARDIoGRAMplusC�D��, AFGen�� or MEGASTROKE�� cohorts, b) when the Wald estimates were 

significant at a Bonferonni corrected threshold of P<�.�� × ��-�, that is, α=�.�� with Bonferroni 

correction for a maximum of ��� independent tests, and c) the genetic variant did not reach a genome-

wide significant threshold of P-value < � × ��-� in either one of the outcome cohorts used in the current 

study.  

MR analyses were performed using R (version �.�.�), the TwoSampleMR package (version �.�.�)�� and 

the MR-Lasso source code��. The multivariable MR analyses were performed using the MVMR 

(version �.�)��� and MendelianRandomization (version�.�.�) packages���. Non-linear MR analyses were 

performed based on previously described methods���. For the MR on (subtypes of) mortality, we 

considered a liberal P-value of P < �.�� significant for any of the outcomes using the IVW-MR 

random effects model. For the MR on cardiovascular diseases, we considered a Bonferroni corrected 

P-value for the amount of unique outcomes (P = �.��/�� = �.�� × ��-�) to be significant for the main 

IVW-MR random effects analyses, and a P-value between �.�� × ��-� and �.�� to indicate suggestive 

evidence for an assocation. A P-value tresthold of P < �.�� was adopted for the sensitivity analyses.
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Meta-subtract of blood pressure traits 

We used the MetaSubtract (version �.��) package in R to remove the effects sizes of the UK Biobank 

from the largest blood pressure GWAS’s to date in order to obtain the independent effect sizes of the 

ICBP consortium��,���. Effect sizes for the UK Biobank were obtained through linear regression 

analyses using every RHR SNP available in the UK Biobank as exposure, and systolic, diastolic and 

pulse pressure as outcomes. Covariates included age, age�, sex, BMI, genchip and PC�-PC��. Cluster-

robust standard errors with genetic family IDs as clusters were used to account for relatedness among 

participants. Individuals belonging together based on �rd-degree or closer as indicated by the kinship 

matrix (kinship coefficient > �.����) provided by UK Biobank received a family ID. To keep the 

cohort similar to the one used in the study from Evangelou et al., we excluded those who self-reported 

as of non-European ancestry (n=��,���) and pregnant women (n=���) from the ���,��� included in the 

GWAS, leaving ���,��� individuals for the analysis��. We note that we did not correct the standard 

errors for the genomic inflation reported for the GWASs of blood pressure traits in the UK Biobank as 

our linear regression estimates, while resembling the GWAS data, will not be exactly equal to BOLT-

LMM estimates due to different methodologies��. 
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Figures 

Figure �. Study Flowchart showing the study design, in silico annotations and function analyses.
A) Schematic overview of the study design for the discovery and replication of genetic loci associated 
with resting heart rate (RHR). The black bordered boxes show the methodology, the red bordered 
boxes show the most important results. B) Analyses performed to evaluate RHR variants and to gain 
further insights in the underlying biology. C) Schematic presentation of the MR analyses of RHR on 
mortality and cardiovascular diseases. Effect sizes were taken from the IC-RHR data to test the 
associations with mortality and cardiovascular diseases in the UK Biobank. Effect sizes were taken 
from the UK Biobank to test the association with coronary artery disease and myocardial infarction in 
the CARDIoGRAMplusC�D cohort, atrial fibrillation in the AFGen cohort and any, ischemic, cardio-
embolic, large artery and small vessel stroke within the MEGASTROKE consortium. BMI = body 
mass index, GWAS = genome-wide association study, HRC = Haplotype Reference Panel, IC-RHR = 
International Consortium for Resting Heart Rate, MB = megabase, N = sample size, Neff = Effective 
sample size, PC = principal components, RHR = resting heart rate, SNPs = single nucleotide 
polymorphisms, QC = quality control, ����G = ���� Genomes.

Figure �. Overview of the findings in the genome-wide association study and in silico search of 
candidate causal genes. 
A) Manhattan plot showing the -log��(P-value) for the association of all genotyped or imputed genetics 
variants with resting heart rate (RHR). Red indicates novel and internally replicated RHR associated 
loci and black indicates novel but unreplicated RHR associated loci. Dark grey indicates RHR 
associated genetic variants within � MB of previously identified RHR associated loci, which were 
internally replicated in the current study. Light grey indicates RHR associated genetic variants within � 
MB of previously identified RHR associated loci, which were not internally replicated in the current 
study. B) Venn diagram of the ��� identified loci. Of the ��� loci, ��� were internally replicated. C) 
Quantile-quantile (QQ) plot of the final meta-analysis. The black dots represent the observed statistic 
for the genotyped genetic variants against the corresponding expected statistic. The linkage 
disequilibrium score regression intercept after the final meta-analysis was �.���, suggesting little 
evidence of genomic inflation due to non-polygenic signal. D) Venn diagram of the prioritization of 
the ��� unique candidate causal genes as identified by one or multiple strategies. Venn plot shows 
overlap of genes tagged by one or multiple strategies, including �) by proximity, the nearest gene or 
any gene within �� kb; �) genes containing coding variants in LD with RHR associated variants at 
R�>�.�; �) eQTL genes in LD (R� >�.�) with RHR associated variants; and �) DEPICT gene mapping 
using variants that achieved P<� × ��-�. DEPICT = Data-driven Expression Prioritized Integration for 
Complex Traits, eQTL = expression quantitative trait loci. 

Figure �. Conditional analyses of tissue enrichment by DEPICT emphasizes cardiac tissue for 
RHR biology. 
A) Shows the results of the depict tissue enrichment analysis. The Y-axis shows the tissues clustered 
by first MeSH term, ordered on Z value per cluster. The X-axis shows the Z-value. An FDR <�.��, 
corresponding to a P-value < �.�� × ��-� and Z-value of �.��� was considered to be statistically 
significant. Significant tissues are plotted in red and annotated, other tissues are plotted in grey. 
Conditional analyses were performed by correcting for the tissue with the highest Z value to 
investigate whether significant tissues were independently associated with RHR. Not a single tissue 
remained significant at a FDR < �.�� after three consecutive corrections (for heart, heart valve and 
arteries). Panel B), C) and D) show Z values of all tissues after consecutive correction for respectively 
heart and heart valves, heart and arteries and heart valve and arteries and jointly provide information 
on which the other tissues co-dependent. 

Figure �. Mendelian randomization shows absence of linear and non-linear associations between 
genetically predicted RHR and all-cause mortality. 
Linear and non-linear Mendelian randomization analyses were performed to test the association 
between genetically predicted RHR and all-cause mortality. Panel A) shows a forestplot of the linear 
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MR analyses between genetically predicted RHR and all-cause mortality. Hazard ratios and ��% 
confidence intervals are shown. Panel B) shows the dose-response curve of the non-linear MR 
analyses between genetically predicted RHR and all-cause mortality. The comparisons are conducted 
within strata and therefore the graph provides information on the expected average change in the 
outcome if a person with a RHR of (say) �� bpm instead had a RHR value of �� bpm. The gradient at 
each point of the curve is the localized average causal effect. Shaded areas represent ��% confidence 
intervals. RHR = resting heart rate; HR = hazard ratio; CI = Confidence interval; MR = Mendelian 
randomization; IVW = inverse variance weighted; FE = Fixed effects; MRE = multiplicative random 
effects. 

Figure �. Mendelian randomization of genetically predicted RHR on cardiovascular diseases.  
Forestplots of the linear Mendelian randomization analyses of resting heart rate (RHR) on 
cardiovascular diseases. Effect sizes were taken from the IC-RHR data to test the associations with 
mortality and cardiovascular diseases in the UK Biobank (panel A). Effect sizes were taken from the 
UK Biobank to test the association with cardiovascular diseases in in the CARDIoGRAMplusC�D, 
AFGen and MEGASTROKE consortia (panel B). Results of the MR-IVW, outlier-robust MR-Lasso 
and plurality valid MR-Mix are provided. Odds ratios and ��% confidence intervals are shown. RHR 
= resting heart rate; MR = Mendelian randomization; IVW = inverse variance weighted multiplicative 
random effects; OR = odds ratio; CI = Confidence interval. 

Figure 6. Multivariable Mendelian randomization reveals pulse pressure and atrial fibrillation 
as potential mediators of the association of genetically predicted RHR with ischemic and cardio-
embolic stroke, respectively. 
Forestplots of the results of the two-sample multivariable Mendelian randomization analyses of resting 
heart rate on any, ischemic and cardio-embolic stroke, when using atrial fibrillation, systolic, diastolic 
and pulse pressure as secondary exposures. Shown in red are the univariable Mendelian randomization 
estimates which represent the total estimates of resting heart rate on the outcome. In black are the 
multivariable Mendelian randomization estimates, which show the direct effect of RHR when 
corrected for the secondary exposure. These results indicate that atrial fibrillation attenuates the 
beneficial effect of higher resting heart rate on cardio-embolic stroke, while pulse pressure attenuates 
the beneficial effect on any and ischemic stroke. MR-Steiger sensitivity analysis indicated that the 
association between the RHR associated genetic variants and pulse pressure is unlikely mediated 
through RHR entirely and biological pleiotropic effects are therefore more likely to cause the 
attenuation of the association between RHR and stroke when correcting for pulse pressure. Odds ratios 
and 95% confidence intervals are shown. RHR = resting heart rate; MV = multivariable, Nsnp = 
number of SNPs. 
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Supplementary Information

Supplementary Figures 

Supplementary Figure �: quantile–quantile (QQ) plot for the GWAS of RHR in A) the UK Biobank and B) the 
IC-RHR.

Supplementary Figure �: Network plot of DEPICT gene set enrichment analyses way.

Supplementary Figure �: ECG-wide heatmap and single cell gene expression dotplot of RHR SNPs.

Supplementary Figure �: ECG-wide Mendelian randomization analyses of RHR SNPs.

Supplementary Figure �: Forestplot of the results of the association between the genetic risk score of RHR and 
all-cause mortality across different sets of SNPs, effect sizes, P value thresholds, populations and follow-up 
lengths. 

Supplementary Figure �: Scatterplots of the Mendelian randomization analyses between genetically predicted 
RHR and mortality and longevity within the UK Biobank.  

Supplementary Figure �: Scatterplots of the Mendelian randomization analyses between genetically predicted 
RHR and cardiovascular diseases within the UK Biobank. 

Supplementary Figure �: Dose-response curve of the non-linear Mendelian randomization analyses between 
genetically predicted RHR and cardiovascular diseases within the UK Biobank. 

Supplementary Figure �: Scatterplots of the Mendelian randomization analyses between genetically predicted 
RHR and cardiovascular diseases within the CARDIoGRAMplusC�D, AFGen or MEGASTROKE cohorts.

Supplementary Figure ��: Scatterplots of the Mendelian randomization analyses between genetically predicted 
RHR and blood pressure phenotypes within the ICBP consortium 

Supplementary Tables 

Supplementary Table �: Sensitivity analysis for the two-sample Mendelian randomization analysis between 
RHR and dilated cardiomyopathy.

Supplementary Data 

Supplementary Data �: Study characteristics of the cohorts. 

Supplementary Data �: ��� Genome-wide significant RHR SNPs. 

Supplementary Data �: Comparison of previously RHR associated loci and/or genetic variants identified in the 
studies from Guo et al., Eppinga et al., and Den hoed et al., with the genetic variants associated with RHR in the 
current study.   

Supplementary Data �: Chow-test for all genome-wide significant RHR SNPs to assess differences of effect 
estimates between participants taking RHR-altering medication or with a history of any cardiovascular disease 
versus those who did not. 

Supplementary Data �: Genetic correlation between RHR and previously performed GWAS’s.  

Supplementary Data �: List of RHR variants associated with previously discovered variants.

Supplementary Data �: List of coding variants.

Supplementary Data �: List of functional eQTL genes. 

Supplementary Data �: List of DEPICT genes. 

Supplementary Data ��: List of gene annotations for all identified genes.  

Supplementary Data ��: Results of gene set enrichment analyses by DEPICT. 

Supplementary Data ��: Results of tissue enrichment analysis by DEPICT. 

Supplementary Data ��: Effect of RHR SNPs on the ECG. 
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Supplementary Data ��: Mean scaled expression per gene and tissue from the Single-nucleus RNA sequencing 
data obtained from the healthy human heart.  

Supplementary Data ��: Definitions of mortality and cardiovascular disease phenotypes in the UK Biobank. 

Supplementary Data ��: Definitions of cardiovascular disease phenotypes in the CARDIoGRAMplusC�D, 
AFGen and MEGASTROKE consortia. 

Supplementary Data ��: Results of the two-sample Mendelian randomization analyses of RHR on mortality 
within the UK Biobank. 

Supplementary Data ��: Additional sensitivity analyses of the two-sample Mendelian randomization analyses 
of RHR on mortality within the UK Biobank. 

Supplementary Data ��: Single SNP exposure, outcome and exposure-outcome associations between RHR and 
mortality. 

Supplementary Data ��: Association between genetic risk scores of RHR and all-cause mortality across 
different sets of SNPs, effect sizes, P value thresholds, populations and follow-up lengths. 

Supplementary Data ��: Results of the non-linear Mendelian randomization estimates between genetically 
predicted RHR and all-cause mortality and cardiovascular diseases in the UK Biobank.

Supplementary Data ��: Localized average causal effects on all-cause mortality and cardiovascular diseases in 
the UK Biobank for �� quantiles of RHR.

Supplementary Data ��: Results of the Mendelian randomization between RHR and cardiovascular diseases. 

Supplementary Data ��: Additional sensitivity analyses of the two-sample Mendelian randomization analyses 
of RHR and cardiovascular diseases. 

Supplementary Data ��: Single SNP exposure, outcome and exposure-outcome associations between RHR 
(effect sizes IC-RHR) and cardiovascular disease (UK Biobank).  

Supplementary Data ��: Single SNP exposure, outcome and exposure-outcome associations between RHR 
(effect sizes UK Biobank) and cardiovascular diseases (CARDIoGRAMplusC�D, AFGen and MEGASTROKE 
consortia).  

Supplementary Data ��: Results of the two-sample multivariable Mendelian randomization analyses between 
resting heart rate, atrial fibrillation, blood pressure traits and stroke. 

Supplementary Data ��: Sensitivity analyses in the two-sample multivariable MR between resting heart rate, 
atrial fibrillation, blood pressure traits and stroke. 

Supplementary Data ��: Results of the Mendelian randomization between RHR and blood pressure phenotypes 
within the ICBP consortium. 

Supplementary Data ��: Additional sensitivity analyses of the Two-sample Mendelian randomization analyses 
of RHR and blood pressure phenotypes within the ICBP consortium.

Supplementary Data ��: List of Wald estimates with significant (P < �.�� × ��-�) associations with the 
cardiovascular outcomes.


